1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT( 48 &transaction->delayed_refs.href_root.rb_root)); 49 if (transaction->delayed_refs.pending_csums) 50 btrfs_err(transaction->fs_info, 51 "pending csums is %llu", 52 transaction->delayed_refs.pending_csums); 53 while (!list_empty(&transaction->pending_chunks)) { 54 struct extent_map *em; 55 56 em = list_first_entry(&transaction->pending_chunks, 57 struct extent_map, list); 58 list_del_init(&em->list); 59 free_extent_map(em); 60 } 61 /* 62 * If any block groups are found in ->deleted_bgs then it's 63 * because the transaction was aborted and a commit did not 64 * happen (things failed before writing the new superblock 65 * and calling btrfs_finish_extent_commit()), so we can not 66 * discard the physical locations of the block groups. 67 */ 68 while (!list_empty(&transaction->deleted_bgs)) { 69 struct btrfs_block_group_cache *cache; 70 71 cache = list_first_entry(&transaction->deleted_bgs, 72 struct btrfs_block_group_cache, 73 bg_list); 74 list_del_init(&cache->bg_list); 75 btrfs_put_block_group_trimming(cache); 76 btrfs_put_block_group(cache); 77 } 78 kfree(transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 112 { 113 struct btrfs_fs_info *fs_info = trans->fs_info; 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->root_key.objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 btrfs_qgroup_clean_swapped_blocks(root); 126 } 127 128 /* We can free old roots now. */ 129 spin_lock(&trans->dropped_roots_lock); 130 while (!list_empty(&trans->dropped_roots)) { 131 root = list_first_entry(&trans->dropped_roots, 132 struct btrfs_root, root_list); 133 list_del_init(&root->root_list); 134 spin_unlock(&trans->dropped_roots_lock); 135 btrfs_drop_and_free_fs_root(fs_info, root); 136 spin_lock(&trans->dropped_roots_lock); 137 } 138 spin_unlock(&trans->dropped_roots_lock); 139 up_write(&fs_info->commit_root_sem); 140 } 141 142 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 143 unsigned int type) 144 { 145 if (type & TRANS_EXTWRITERS) 146 atomic_inc(&trans->num_extwriters); 147 } 148 149 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 150 unsigned int type) 151 { 152 if (type & TRANS_EXTWRITERS) 153 atomic_dec(&trans->num_extwriters); 154 } 155 156 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 157 unsigned int type) 158 { 159 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 160 } 161 162 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 163 { 164 return atomic_read(&trans->num_extwriters); 165 } 166 167 /* 168 * either allocate a new transaction or hop into the existing one 169 */ 170 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 171 unsigned int type) 172 { 173 struct btrfs_transaction *cur_trans; 174 175 spin_lock(&fs_info->trans_lock); 176 loop: 177 /* The file system has been taken offline. No new transactions. */ 178 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 179 spin_unlock(&fs_info->trans_lock); 180 return -EROFS; 181 } 182 183 cur_trans = fs_info->running_transaction; 184 if (cur_trans) { 185 if (cur_trans->aborted) { 186 spin_unlock(&fs_info->trans_lock); 187 return cur_trans->aborted; 188 } 189 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 190 spin_unlock(&fs_info->trans_lock); 191 return -EBUSY; 192 } 193 refcount_inc(&cur_trans->use_count); 194 atomic_inc(&cur_trans->num_writers); 195 extwriter_counter_inc(cur_trans, type); 196 spin_unlock(&fs_info->trans_lock); 197 return 0; 198 } 199 spin_unlock(&fs_info->trans_lock); 200 201 /* 202 * If we are ATTACH, we just want to catch the current transaction, 203 * and commit it. If there is no transaction, just return ENOENT. 204 */ 205 if (type == TRANS_ATTACH) 206 return -ENOENT; 207 208 /* 209 * JOIN_NOLOCK only happens during the transaction commit, so 210 * it is impossible that ->running_transaction is NULL 211 */ 212 BUG_ON(type == TRANS_JOIN_NOLOCK); 213 214 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 215 if (!cur_trans) 216 return -ENOMEM; 217 218 spin_lock(&fs_info->trans_lock); 219 if (fs_info->running_transaction) { 220 /* 221 * someone started a transaction after we unlocked. Make sure 222 * to redo the checks above 223 */ 224 kfree(cur_trans); 225 goto loop; 226 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 227 spin_unlock(&fs_info->trans_lock); 228 kfree(cur_trans); 229 return -EROFS; 230 } 231 232 cur_trans->fs_info = fs_info; 233 atomic_set(&cur_trans->num_writers, 1); 234 extwriter_counter_init(cur_trans, type); 235 init_waitqueue_head(&cur_trans->writer_wait); 236 init_waitqueue_head(&cur_trans->commit_wait); 237 cur_trans->state = TRANS_STATE_RUNNING; 238 /* 239 * One for this trans handle, one so it will live on until we 240 * commit the transaction. 241 */ 242 refcount_set(&cur_trans->use_count, 2); 243 cur_trans->flags = 0; 244 cur_trans->start_time = ktime_get_seconds(); 245 246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 247 248 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 250 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 251 252 /* 253 * although the tree mod log is per file system and not per transaction, 254 * the log must never go across transaction boundaries. 255 */ 256 smp_mb(); 257 if (!list_empty(&fs_info->tree_mod_seq_list)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 261 atomic64_set(&fs_info->tree_mod_seq, 0); 262 263 spin_lock_init(&cur_trans->delayed_refs.lock); 264 265 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 266 INIT_LIST_HEAD(&cur_trans->pending_chunks); 267 INIT_LIST_HEAD(&cur_trans->switch_commits); 268 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 269 INIT_LIST_HEAD(&cur_trans->io_bgs); 270 INIT_LIST_HEAD(&cur_trans->dropped_roots); 271 mutex_init(&cur_trans->cache_write_mutex); 272 cur_trans->num_dirty_bgs = 0; 273 spin_lock_init(&cur_trans->dirty_bgs_lock); 274 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 275 spin_lock_init(&cur_trans->dropped_roots_lock); 276 list_add_tail(&cur_trans->list, &fs_info->trans_list); 277 extent_io_tree_init(&cur_trans->dirty_pages, 278 fs_info->btree_inode); 279 fs_info->generation++; 280 cur_trans->transid = fs_info->generation; 281 fs_info->running_transaction = cur_trans; 282 cur_trans->aborted = 0; 283 spin_unlock(&fs_info->trans_lock); 284 285 return 0; 286 } 287 288 /* 289 * this does all the record keeping required to make sure that a reference 290 * counted root is properly recorded in a given transaction. This is required 291 * to make sure the old root from before we joined the transaction is deleted 292 * when the transaction commits 293 */ 294 static int record_root_in_trans(struct btrfs_trans_handle *trans, 295 struct btrfs_root *root, 296 int force) 297 { 298 struct btrfs_fs_info *fs_info = root->fs_info; 299 300 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 301 root->last_trans < trans->transid) || force) { 302 WARN_ON(root == fs_info->extent_root); 303 WARN_ON(!force && root->commit_root != root->node); 304 305 /* 306 * see below for IN_TRANS_SETUP usage rules 307 * we have the reloc mutex held now, so there 308 * is only one writer in this function 309 */ 310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 311 312 /* make sure readers find IN_TRANS_SETUP before 313 * they find our root->last_trans update 314 */ 315 smp_wmb(); 316 317 spin_lock(&fs_info->fs_roots_radix_lock); 318 if (root->last_trans == trans->transid && !force) { 319 spin_unlock(&fs_info->fs_roots_radix_lock); 320 return 0; 321 } 322 radix_tree_tag_set(&fs_info->fs_roots_radix, 323 (unsigned long)root->root_key.objectid, 324 BTRFS_ROOT_TRANS_TAG); 325 spin_unlock(&fs_info->fs_roots_radix_lock); 326 root->last_trans = trans->transid; 327 328 /* this is pretty tricky. We don't want to 329 * take the relocation lock in btrfs_record_root_in_trans 330 * unless we're really doing the first setup for this root in 331 * this transaction. 332 * 333 * Normally we'd use root->last_trans as a flag to decide 334 * if we want to take the expensive mutex. 335 * 336 * But, we have to set root->last_trans before we 337 * init the relocation root, otherwise, we trip over warnings 338 * in ctree.c. The solution used here is to flag ourselves 339 * with root IN_TRANS_SETUP. When this is 1, we're still 340 * fixing up the reloc trees and everyone must wait. 341 * 342 * When this is zero, they can trust root->last_trans and fly 343 * through btrfs_record_root_in_trans without having to take the 344 * lock. smp_wmb() makes sure that all the writes above are 345 * done before we pop in the zero below 346 */ 347 btrfs_init_reloc_root(trans, root); 348 smp_mb__before_atomic(); 349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 350 } 351 return 0; 352 } 353 354 355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_fs_info *fs_info = root->fs_info; 359 struct btrfs_transaction *cur_trans = trans->transaction; 360 361 /* Add ourselves to the transaction dropped list */ 362 spin_lock(&cur_trans->dropped_roots_lock); 363 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 364 spin_unlock(&cur_trans->dropped_roots_lock); 365 366 /* Make sure we don't try to update the root at commit time */ 367 spin_lock(&fs_info->fs_roots_radix_lock); 368 radix_tree_tag_clear(&fs_info->fs_roots_radix, 369 (unsigned long)root->root_key.objectid, 370 BTRFS_ROOT_TRANS_TAG); 371 spin_unlock(&fs_info->fs_roots_radix_lock); 372 } 373 374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 375 struct btrfs_root *root) 376 { 377 struct btrfs_fs_info *fs_info = root->fs_info; 378 379 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 380 return 0; 381 382 /* 383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 384 * and barriers 385 */ 386 smp_rmb(); 387 if (root->last_trans == trans->transid && 388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 389 return 0; 390 391 mutex_lock(&fs_info->reloc_mutex); 392 record_root_in_trans(trans, root, 0); 393 mutex_unlock(&fs_info->reloc_mutex); 394 395 return 0; 396 } 397 398 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 399 { 400 return (trans->state >= TRANS_STATE_BLOCKED && 401 trans->state < TRANS_STATE_UNBLOCKED && 402 !trans->aborted); 403 } 404 405 /* wait for commit against the current transaction to become unblocked 406 * when this is done, it is safe to start a new transaction, but the current 407 * transaction might not be fully on disk. 408 */ 409 static void wait_current_trans(struct btrfs_fs_info *fs_info) 410 { 411 struct btrfs_transaction *cur_trans; 412 413 spin_lock(&fs_info->trans_lock); 414 cur_trans = fs_info->running_transaction; 415 if (cur_trans && is_transaction_blocked(cur_trans)) { 416 refcount_inc(&cur_trans->use_count); 417 spin_unlock(&fs_info->trans_lock); 418 419 wait_event(fs_info->transaction_wait, 420 cur_trans->state >= TRANS_STATE_UNBLOCKED || 421 cur_trans->aborted); 422 btrfs_put_transaction(cur_trans); 423 } else { 424 spin_unlock(&fs_info->trans_lock); 425 } 426 } 427 428 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 429 { 430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 431 return 0; 432 433 if (type == TRANS_START) 434 return 1; 435 436 return 0; 437 } 438 439 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 440 { 441 struct btrfs_fs_info *fs_info = root->fs_info; 442 443 if (!fs_info->reloc_ctl || 444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 446 root->reloc_root) 447 return false; 448 449 return true; 450 } 451 452 static struct btrfs_trans_handle * 453 start_transaction(struct btrfs_root *root, unsigned int num_items, 454 unsigned int type, enum btrfs_reserve_flush_enum flush, 455 bool enforce_qgroups) 456 { 457 struct btrfs_fs_info *fs_info = root->fs_info; 458 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 459 struct btrfs_trans_handle *h; 460 struct btrfs_transaction *cur_trans; 461 u64 num_bytes = 0; 462 u64 qgroup_reserved = 0; 463 bool reloc_reserved = false; 464 int ret; 465 466 /* Send isn't supposed to start transactions. */ 467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 468 469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 470 return ERR_PTR(-EROFS); 471 472 if (current->journal_info) { 473 WARN_ON(type & TRANS_EXTWRITERS); 474 h = current->journal_info; 475 refcount_inc(&h->use_count); 476 WARN_ON(refcount_read(&h->use_count) > 2); 477 h->orig_rsv = h->block_rsv; 478 h->block_rsv = NULL; 479 goto got_it; 480 } 481 482 /* 483 * Do the reservation before we join the transaction so we can do all 484 * the appropriate flushing if need be. 485 */ 486 if (num_items && root != fs_info->chunk_root) { 487 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 488 u64 delayed_refs_bytes = 0; 489 490 qgroup_reserved = num_items * fs_info->nodesize; 491 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 492 enforce_qgroups); 493 if (ret) 494 return ERR_PTR(ret); 495 496 /* 497 * We want to reserve all the bytes we may need all at once, so 498 * we only do 1 enospc flushing cycle per transaction start. We 499 * accomplish this by simply assuming we'll do 2 x num_items 500 * worth of delayed refs updates in this trans handle, and 501 * refill that amount for whatever is missing in the reserve. 502 */ 503 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 504 if (delayed_refs_rsv->full == 0) { 505 delayed_refs_bytes = num_bytes; 506 num_bytes <<= 1; 507 } 508 509 /* 510 * Do the reservation for the relocation root creation 511 */ 512 if (need_reserve_reloc_root(root)) { 513 num_bytes += fs_info->nodesize; 514 reloc_reserved = true; 515 } 516 517 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 518 if (ret) 519 goto reserve_fail; 520 if (delayed_refs_bytes) { 521 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 522 delayed_refs_bytes); 523 num_bytes -= delayed_refs_bytes; 524 } 525 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 526 !delayed_refs_rsv->full) { 527 /* 528 * Some people call with btrfs_start_transaction(root, 0) 529 * because they can be throttled, but have some other mechanism 530 * for reserving space. We still want these guys to refill the 531 * delayed block_rsv so just add 1 items worth of reservation 532 * here. 533 */ 534 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 535 if (ret) 536 goto reserve_fail; 537 } 538 again: 539 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 540 if (!h) { 541 ret = -ENOMEM; 542 goto alloc_fail; 543 } 544 545 /* 546 * If we are JOIN_NOLOCK we're already committing a transaction and 547 * waiting on this guy, so we don't need to do the sb_start_intwrite 548 * because we're already holding a ref. We need this because we could 549 * have raced in and did an fsync() on a file which can kick a commit 550 * and then we deadlock with somebody doing a freeze. 551 * 552 * If we are ATTACH, it means we just want to catch the current 553 * transaction and commit it, so we needn't do sb_start_intwrite(). 554 */ 555 if (type & __TRANS_FREEZABLE) 556 sb_start_intwrite(fs_info->sb); 557 558 if (may_wait_transaction(fs_info, type)) 559 wait_current_trans(fs_info); 560 561 do { 562 ret = join_transaction(fs_info, type); 563 if (ret == -EBUSY) { 564 wait_current_trans(fs_info); 565 if (unlikely(type == TRANS_ATTACH)) 566 ret = -ENOENT; 567 } 568 } while (ret == -EBUSY); 569 570 if (ret < 0) 571 goto join_fail; 572 573 cur_trans = fs_info->running_transaction; 574 575 h->transid = cur_trans->transid; 576 h->transaction = cur_trans; 577 h->root = root; 578 refcount_set(&h->use_count, 1); 579 h->fs_info = root->fs_info; 580 581 h->type = type; 582 h->can_flush_pending_bgs = true; 583 INIT_LIST_HEAD(&h->new_bgs); 584 585 smp_mb(); 586 if (cur_trans->state >= TRANS_STATE_BLOCKED && 587 may_wait_transaction(fs_info, type)) { 588 current->journal_info = h; 589 btrfs_commit_transaction(h); 590 goto again; 591 } 592 593 if (num_bytes) { 594 trace_btrfs_space_reservation(fs_info, "transaction", 595 h->transid, num_bytes, 1); 596 h->block_rsv = &fs_info->trans_block_rsv; 597 h->bytes_reserved = num_bytes; 598 h->reloc_reserved = reloc_reserved; 599 } 600 601 got_it: 602 btrfs_record_root_in_trans(h, root); 603 604 if (!current->journal_info) 605 current->journal_info = h; 606 return h; 607 608 join_fail: 609 if (type & __TRANS_FREEZABLE) 610 sb_end_intwrite(fs_info->sb); 611 kmem_cache_free(btrfs_trans_handle_cachep, h); 612 alloc_fail: 613 if (num_bytes) 614 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 615 num_bytes); 616 reserve_fail: 617 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 618 return ERR_PTR(ret); 619 } 620 621 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 622 unsigned int num_items) 623 { 624 return start_transaction(root, num_items, TRANS_START, 625 BTRFS_RESERVE_FLUSH_ALL, true); 626 } 627 628 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 629 struct btrfs_root *root, 630 unsigned int num_items, 631 int min_factor) 632 { 633 struct btrfs_fs_info *fs_info = root->fs_info; 634 struct btrfs_trans_handle *trans; 635 u64 num_bytes; 636 int ret; 637 638 /* 639 * We have two callers: unlink and block group removal. The 640 * former should succeed even if we will temporarily exceed 641 * quota and the latter operates on the extent root so 642 * qgroup enforcement is ignored anyway. 643 */ 644 trans = start_transaction(root, num_items, TRANS_START, 645 BTRFS_RESERVE_FLUSH_ALL, false); 646 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 647 return trans; 648 649 trans = btrfs_start_transaction(root, 0); 650 if (IS_ERR(trans)) 651 return trans; 652 653 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 654 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 655 num_bytes, min_factor); 656 if (ret) { 657 btrfs_end_transaction(trans); 658 return ERR_PTR(ret); 659 } 660 661 trans->block_rsv = &fs_info->trans_block_rsv; 662 trans->bytes_reserved = num_bytes; 663 trace_btrfs_space_reservation(fs_info, "transaction", 664 trans->transid, num_bytes, 1); 665 666 return trans; 667 } 668 669 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 670 { 671 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 672 true); 673 } 674 675 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 676 { 677 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 678 BTRFS_RESERVE_NO_FLUSH, true); 679 } 680 681 /* 682 * btrfs_attach_transaction() - catch the running transaction 683 * 684 * It is used when we want to commit the current the transaction, but 685 * don't want to start a new one. 686 * 687 * Note: If this function return -ENOENT, it just means there is no 688 * running transaction. But it is possible that the inactive transaction 689 * is still in the memory, not fully on disk. If you hope there is no 690 * inactive transaction in the fs when -ENOENT is returned, you should 691 * invoke 692 * btrfs_attach_transaction_barrier() 693 */ 694 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 695 { 696 return start_transaction(root, 0, TRANS_ATTACH, 697 BTRFS_RESERVE_NO_FLUSH, true); 698 } 699 700 /* 701 * btrfs_attach_transaction_barrier() - catch the running transaction 702 * 703 * It is similar to the above function, the difference is this one 704 * will wait for all the inactive transactions until they fully 705 * complete. 706 */ 707 struct btrfs_trans_handle * 708 btrfs_attach_transaction_barrier(struct btrfs_root *root) 709 { 710 struct btrfs_trans_handle *trans; 711 712 trans = start_transaction(root, 0, TRANS_ATTACH, 713 BTRFS_RESERVE_NO_FLUSH, true); 714 if (trans == ERR_PTR(-ENOENT)) 715 btrfs_wait_for_commit(root->fs_info, 0); 716 717 return trans; 718 } 719 720 /* wait for a transaction commit to be fully complete */ 721 static noinline void wait_for_commit(struct btrfs_transaction *commit) 722 { 723 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 724 } 725 726 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 727 { 728 struct btrfs_transaction *cur_trans = NULL, *t; 729 int ret = 0; 730 731 if (transid) { 732 if (transid <= fs_info->last_trans_committed) 733 goto out; 734 735 /* find specified transaction */ 736 spin_lock(&fs_info->trans_lock); 737 list_for_each_entry(t, &fs_info->trans_list, list) { 738 if (t->transid == transid) { 739 cur_trans = t; 740 refcount_inc(&cur_trans->use_count); 741 ret = 0; 742 break; 743 } 744 if (t->transid > transid) { 745 ret = 0; 746 break; 747 } 748 } 749 spin_unlock(&fs_info->trans_lock); 750 751 /* 752 * The specified transaction doesn't exist, or we 753 * raced with btrfs_commit_transaction 754 */ 755 if (!cur_trans) { 756 if (transid > fs_info->last_trans_committed) 757 ret = -EINVAL; 758 goto out; 759 } 760 } else { 761 /* find newest transaction that is committing | committed */ 762 spin_lock(&fs_info->trans_lock); 763 list_for_each_entry_reverse(t, &fs_info->trans_list, 764 list) { 765 if (t->state >= TRANS_STATE_COMMIT_START) { 766 if (t->state == TRANS_STATE_COMPLETED) 767 break; 768 cur_trans = t; 769 refcount_inc(&cur_trans->use_count); 770 break; 771 } 772 } 773 spin_unlock(&fs_info->trans_lock); 774 if (!cur_trans) 775 goto out; /* nothing committing|committed */ 776 } 777 778 wait_for_commit(cur_trans); 779 btrfs_put_transaction(cur_trans); 780 out: 781 return ret; 782 } 783 784 void btrfs_throttle(struct btrfs_fs_info *fs_info) 785 { 786 wait_current_trans(fs_info); 787 } 788 789 static int should_end_transaction(struct btrfs_trans_handle *trans) 790 { 791 struct btrfs_fs_info *fs_info = trans->fs_info; 792 793 if (btrfs_check_space_for_delayed_refs(fs_info)) 794 return 1; 795 796 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 797 } 798 799 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 800 { 801 struct btrfs_transaction *cur_trans = trans->transaction; 802 803 smp_mb(); 804 if (cur_trans->state >= TRANS_STATE_BLOCKED || 805 cur_trans->delayed_refs.flushing) 806 return 1; 807 808 return should_end_transaction(trans); 809 } 810 811 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 812 813 { 814 struct btrfs_fs_info *fs_info = trans->fs_info; 815 816 if (!trans->block_rsv) { 817 ASSERT(!trans->bytes_reserved); 818 return; 819 } 820 821 if (!trans->bytes_reserved) 822 return; 823 824 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 825 trace_btrfs_space_reservation(fs_info, "transaction", 826 trans->transid, trans->bytes_reserved, 0); 827 btrfs_block_rsv_release(fs_info, trans->block_rsv, 828 trans->bytes_reserved); 829 trans->bytes_reserved = 0; 830 } 831 832 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 833 int throttle) 834 { 835 struct btrfs_fs_info *info = trans->fs_info; 836 struct btrfs_transaction *cur_trans = trans->transaction; 837 int lock = (trans->type != TRANS_JOIN_NOLOCK); 838 int err = 0; 839 840 if (refcount_read(&trans->use_count) > 1) { 841 refcount_dec(&trans->use_count); 842 trans->block_rsv = trans->orig_rsv; 843 return 0; 844 } 845 846 btrfs_trans_release_metadata(trans); 847 trans->block_rsv = NULL; 848 849 btrfs_create_pending_block_groups(trans); 850 851 btrfs_trans_release_chunk_metadata(trans); 852 853 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 854 if (throttle) 855 return btrfs_commit_transaction(trans); 856 else 857 wake_up_process(info->transaction_kthread); 858 } 859 860 if (trans->type & __TRANS_FREEZABLE) 861 sb_end_intwrite(info->sb); 862 863 WARN_ON(cur_trans != info->running_transaction); 864 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 865 atomic_dec(&cur_trans->num_writers); 866 extwriter_counter_dec(cur_trans, trans->type); 867 868 cond_wake_up(&cur_trans->writer_wait); 869 btrfs_put_transaction(cur_trans); 870 871 if (current->journal_info == trans) 872 current->journal_info = NULL; 873 874 if (throttle) 875 btrfs_run_delayed_iputs(info); 876 877 if (trans->aborted || 878 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 879 wake_up_process(info->transaction_kthread); 880 err = -EIO; 881 } 882 883 kmem_cache_free(btrfs_trans_handle_cachep, trans); 884 return err; 885 } 886 887 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 888 { 889 return __btrfs_end_transaction(trans, 0); 890 } 891 892 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 893 { 894 return __btrfs_end_transaction(trans, 1); 895 } 896 897 /* 898 * when btree blocks are allocated, they have some corresponding bits set for 899 * them in one of two extent_io trees. This is used to make sure all of 900 * those extents are sent to disk but does not wait on them 901 */ 902 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 903 struct extent_io_tree *dirty_pages, int mark) 904 { 905 int err = 0; 906 int werr = 0; 907 struct address_space *mapping = fs_info->btree_inode->i_mapping; 908 struct extent_state *cached_state = NULL; 909 u64 start = 0; 910 u64 end; 911 912 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 913 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 914 mark, &cached_state)) { 915 bool wait_writeback = false; 916 917 err = convert_extent_bit(dirty_pages, start, end, 918 EXTENT_NEED_WAIT, 919 mark, &cached_state); 920 /* 921 * convert_extent_bit can return -ENOMEM, which is most of the 922 * time a temporary error. So when it happens, ignore the error 923 * and wait for writeback of this range to finish - because we 924 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 925 * to __btrfs_wait_marked_extents() would not know that 926 * writeback for this range started and therefore wouldn't 927 * wait for it to finish - we don't want to commit a 928 * superblock that points to btree nodes/leafs for which 929 * writeback hasn't finished yet (and without errors). 930 * We cleanup any entries left in the io tree when committing 931 * the transaction (through clear_btree_io_tree()). 932 */ 933 if (err == -ENOMEM) { 934 err = 0; 935 wait_writeback = true; 936 } 937 if (!err) 938 err = filemap_fdatawrite_range(mapping, start, end); 939 if (err) 940 werr = err; 941 else if (wait_writeback) 942 werr = filemap_fdatawait_range(mapping, start, end); 943 free_extent_state(cached_state); 944 cached_state = NULL; 945 cond_resched(); 946 start = end + 1; 947 } 948 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 949 return werr; 950 } 951 952 /* 953 * when btree blocks are allocated, they have some corresponding bits set for 954 * them in one of two extent_io trees. This is used to make sure all of 955 * those extents are on disk for transaction or log commit. We wait 956 * on all the pages and clear them from the dirty pages state tree 957 */ 958 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 959 struct extent_io_tree *dirty_pages) 960 { 961 int err = 0; 962 int werr = 0; 963 struct address_space *mapping = fs_info->btree_inode->i_mapping; 964 struct extent_state *cached_state = NULL; 965 u64 start = 0; 966 u64 end; 967 968 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 969 EXTENT_NEED_WAIT, &cached_state)) { 970 /* 971 * Ignore -ENOMEM errors returned by clear_extent_bit(). 972 * When committing the transaction, we'll remove any entries 973 * left in the io tree. For a log commit, we don't remove them 974 * after committing the log because the tree can be accessed 975 * concurrently - we do it only at transaction commit time when 976 * it's safe to do it (through clear_btree_io_tree()). 977 */ 978 err = clear_extent_bit(dirty_pages, start, end, 979 EXTENT_NEED_WAIT, 0, 0, &cached_state); 980 if (err == -ENOMEM) 981 err = 0; 982 if (!err) 983 err = filemap_fdatawait_range(mapping, start, end); 984 if (err) 985 werr = err; 986 free_extent_state(cached_state); 987 cached_state = NULL; 988 cond_resched(); 989 start = end + 1; 990 } 991 if (err) 992 werr = err; 993 return werr; 994 } 995 996 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 997 struct extent_io_tree *dirty_pages) 998 { 999 bool errors = false; 1000 int err; 1001 1002 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1003 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1004 errors = true; 1005 1006 if (errors && !err) 1007 err = -EIO; 1008 return err; 1009 } 1010 1011 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1012 { 1013 struct btrfs_fs_info *fs_info = log_root->fs_info; 1014 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1015 bool errors = false; 1016 int err; 1017 1018 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1019 1020 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1021 if ((mark & EXTENT_DIRTY) && 1022 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1023 errors = true; 1024 1025 if ((mark & EXTENT_NEW) && 1026 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1027 errors = true; 1028 1029 if (errors && !err) 1030 err = -EIO; 1031 return err; 1032 } 1033 1034 /* 1035 * When btree blocks are allocated the corresponding extents are marked dirty. 1036 * This function ensures such extents are persisted on disk for transaction or 1037 * log commit. 1038 * 1039 * @trans: transaction whose dirty pages we'd like to write 1040 */ 1041 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1042 { 1043 int ret; 1044 int ret2; 1045 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1046 struct btrfs_fs_info *fs_info = trans->fs_info; 1047 struct blk_plug plug; 1048 1049 blk_start_plug(&plug); 1050 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1051 blk_finish_plug(&plug); 1052 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1053 1054 clear_btree_io_tree(&trans->transaction->dirty_pages); 1055 1056 if (ret) 1057 return ret; 1058 else if (ret2) 1059 return ret2; 1060 else 1061 return 0; 1062 } 1063 1064 /* 1065 * this is used to update the root pointer in the tree of tree roots. 1066 * 1067 * But, in the case of the extent allocation tree, updating the root 1068 * pointer may allocate blocks which may change the root of the extent 1069 * allocation tree. 1070 * 1071 * So, this loops and repeats and makes sure the cowonly root didn't 1072 * change while the root pointer was being updated in the metadata. 1073 */ 1074 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1075 struct btrfs_root *root) 1076 { 1077 int ret; 1078 u64 old_root_bytenr; 1079 u64 old_root_used; 1080 struct btrfs_fs_info *fs_info = root->fs_info; 1081 struct btrfs_root *tree_root = fs_info->tree_root; 1082 1083 old_root_used = btrfs_root_used(&root->root_item); 1084 1085 while (1) { 1086 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1087 if (old_root_bytenr == root->node->start && 1088 old_root_used == btrfs_root_used(&root->root_item)) 1089 break; 1090 1091 btrfs_set_root_node(&root->root_item, root->node); 1092 ret = btrfs_update_root(trans, tree_root, 1093 &root->root_key, 1094 &root->root_item); 1095 if (ret) 1096 return ret; 1097 1098 old_root_used = btrfs_root_used(&root->root_item); 1099 } 1100 1101 return 0; 1102 } 1103 1104 /* 1105 * update all the cowonly tree roots on disk 1106 * 1107 * The error handling in this function may not be obvious. Any of the 1108 * failures will cause the file system to go offline. We still need 1109 * to clean up the delayed refs. 1110 */ 1111 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1112 { 1113 struct btrfs_fs_info *fs_info = trans->fs_info; 1114 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1115 struct list_head *io_bgs = &trans->transaction->io_bgs; 1116 struct list_head *next; 1117 struct extent_buffer *eb; 1118 int ret; 1119 1120 eb = btrfs_lock_root_node(fs_info->tree_root); 1121 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1122 0, &eb); 1123 btrfs_tree_unlock(eb); 1124 free_extent_buffer(eb); 1125 1126 if (ret) 1127 return ret; 1128 1129 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1130 if (ret) 1131 return ret; 1132 1133 ret = btrfs_run_dev_stats(trans, fs_info); 1134 if (ret) 1135 return ret; 1136 ret = btrfs_run_dev_replace(trans, fs_info); 1137 if (ret) 1138 return ret; 1139 ret = btrfs_run_qgroups(trans); 1140 if (ret) 1141 return ret; 1142 1143 ret = btrfs_setup_space_cache(trans, fs_info); 1144 if (ret) 1145 return ret; 1146 1147 /* run_qgroups might have added some more refs */ 1148 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1149 if (ret) 1150 return ret; 1151 again: 1152 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1153 struct btrfs_root *root; 1154 next = fs_info->dirty_cowonly_roots.next; 1155 list_del_init(next); 1156 root = list_entry(next, struct btrfs_root, dirty_list); 1157 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1158 1159 if (root != fs_info->extent_root) 1160 list_add_tail(&root->dirty_list, 1161 &trans->transaction->switch_commits); 1162 ret = update_cowonly_root(trans, root); 1163 if (ret) 1164 return ret; 1165 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1166 if (ret) 1167 return ret; 1168 } 1169 1170 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1171 ret = btrfs_write_dirty_block_groups(trans, fs_info); 1172 if (ret) 1173 return ret; 1174 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1175 if (ret) 1176 return ret; 1177 } 1178 1179 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1180 goto again; 1181 1182 list_add_tail(&fs_info->extent_root->dirty_list, 1183 &trans->transaction->switch_commits); 1184 1185 /* Update dev-replace pointer once everything is committed */ 1186 fs_info->dev_replace.committed_cursor_left = 1187 fs_info->dev_replace.cursor_left_last_write_of_item; 1188 1189 return 0; 1190 } 1191 1192 /* 1193 * dead roots are old snapshots that need to be deleted. This allocates 1194 * a dirty root struct and adds it into the list of dead roots that need to 1195 * be deleted 1196 */ 1197 void btrfs_add_dead_root(struct btrfs_root *root) 1198 { 1199 struct btrfs_fs_info *fs_info = root->fs_info; 1200 1201 spin_lock(&fs_info->trans_lock); 1202 if (list_empty(&root->root_list)) 1203 list_add_tail(&root->root_list, &fs_info->dead_roots); 1204 spin_unlock(&fs_info->trans_lock); 1205 } 1206 1207 /* 1208 * update all the cowonly tree roots on disk 1209 */ 1210 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1211 { 1212 struct btrfs_fs_info *fs_info = trans->fs_info; 1213 struct btrfs_root *gang[8]; 1214 int i; 1215 int ret; 1216 int err = 0; 1217 1218 spin_lock(&fs_info->fs_roots_radix_lock); 1219 while (1) { 1220 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1221 (void **)gang, 0, 1222 ARRAY_SIZE(gang), 1223 BTRFS_ROOT_TRANS_TAG); 1224 if (ret == 0) 1225 break; 1226 for (i = 0; i < ret; i++) { 1227 struct btrfs_root *root = gang[i]; 1228 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1229 (unsigned long)root->root_key.objectid, 1230 BTRFS_ROOT_TRANS_TAG); 1231 spin_unlock(&fs_info->fs_roots_radix_lock); 1232 1233 btrfs_free_log(trans, root); 1234 btrfs_update_reloc_root(trans, root); 1235 1236 btrfs_save_ino_cache(root, trans); 1237 1238 /* see comments in should_cow_block() */ 1239 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1240 smp_mb__after_atomic(); 1241 1242 if (root->commit_root != root->node) { 1243 list_add_tail(&root->dirty_list, 1244 &trans->transaction->switch_commits); 1245 btrfs_set_root_node(&root->root_item, 1246 root->node); 1247 } 1248 1249 err = btrfs_update_root(trans, fs_info->tree_root, 1250 &root->root_key, 1251 &root->root_item); 1252 spin_lock(&fs_info->fs_roots_radix_lock); 1253 if (err) 1254 break; 1255 btrfs_qgroup_free_meta_all_pertrans(root); 1256 } 1257 } 1258 spin_unlock(&fs_info->fs_roots_radix_lock); 1259 return err; 1260 } 1261 1262 /* 1263 * defrag a given btree. 1264 * Every leaf in the btree is read and defragged. 1265 */ 1266 int btrfs_defrag_root(struct btrfs_root *root) 1267 { 1268 struct btrfs_fs_info *info = root->fs_info; 1269 struct btrfs_trans_handle *trans; 1270 int ret; 1271 1272 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1273 return 0; 1274 1275 while (1) { 1276 trans = btrfs_start_transaction(root, 0); 1277 if (IS_ERR(trans)) 1278 return PTR_ERR(trans); 1279 1280 ret = btrfs_defrag_leaves(trans, root); 1281 1282 btrfs_end_transaction(trans); 1283 btrfs_btree_balance_dirty(info); 1284 cond_resched(); 1285 1286 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1287 break; 1288 1289 if (btrfs_defrag_cancelled(info)) { 1290 btrfs_debug(info, "defrag_root cancelled"); 1291 ret = -EAGAIN; 1292 break; 1293 } 1294 } 1295 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1296 return ret; 1297 } 1298 1299 /* 1300 * Do all special snapshot related qgroup dirty hack. 1301 * 1302 * Will do all needed qgroup inherit and dirty hack like switch commit 1303 * roots inside one transaction and write all btree into disk, to make 1304 * qgroup works. 1305 */ 1306 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1307 struct btrfs_root *src, 1308 struct btrfs_root *parent, 1309 struct btrfs_qgroup_inherit *inherit, 1310 u64 dst_objectid) 1311 { 1312 struct btrfs_fs_info *fs_info = src->fs_info; 1313 int ret; 1314 1315 /* 1316 * Save some performance in the case that qgroups are not 1317 * enabled. If this check races with the ioctl, rescan will 1318 * kick in anyway. 1319 */ 1320 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1321 return 0; 1322 1323 /* 1324 * Ensure dirty @src will be committed. Or, after coming 1325 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1326 * recorded root will never be updated again, causing an outdated root 1327 * item. 1328 */ 1329 record_root_in_trans(trans, src, 1); 1330 1331 /* 1332 * We are going to commit transaction, see btrfs_commit_transaction() 1333 * comment for reason locking tree_log_mutex 1334 */ 1335 mutex_lock(&fs_info->tree_log_mutex); 1336 1337 ret = commit_fs_roots(trans); 1338 if (ret) 1339 goto out; 1340 ret = btrfs_qgroup_account_extents(trans); 1341 if (ret < 0) 1342 goto out; 1343 1344 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1345 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1346 inherit); 1347 if (ret < 0) 1348 goto out; 1349 1350 /* 1351 * Now we do a simplified commit transaction, which will: 1352 * 1) commit all subvolume and extent tree 1353 * To ensure all subvolume and extent tree have a valid 1354 * commit_root to accounting later insert_dir_item() 1355 * 2) write all btree blocks onto disk 1356 * This is to make sure later btree modification will be cowed 1357 * Or commit_root can be populated and cause wrong qgroup numbers 1358 * In this simplified commit, we don't really care about other trees 1359 * like chunk and root tree, as they won't affect qgroup. 1360 * And we don't write super to avoid half committed status. 1361 */ 1362 ret = commit_cowonly_roots(trans); 1363 if (ret) 1364 goto out; 1365 switch_commit_roots(trans->transaction); 1366 ret = btrfs_write_and_wait_transaction(trans); 1367 if (ret) 1368 btrfs_handle_fs_error(fs_info, ret, 1369 "Error while writing out transaction for qgroup"); 1370 1371 out: 1372 mutex_unlock(&fs_info->tree_log_mutex); 1373 1374 /* 1375 * Force parent root to be updated, as we recorded it before so its 1376 * last_trans == cur_transid. 1377 * Or it won't be committed again onto disk after later 1378 * insert_dir_item() 1379 */ 1380 if (!ret) 1381 record_root_in_trans(trans, parent, 1); 1382 return ret; 1383 } 1384 1385 /* 1386 * new snapshots need to be created at a very specific time in the 1387 * transaction commit. This does the actual creation. 1388 * 1389 * Note: 1390 * If the error which may affect the commitment of the current transaction 1391 * happens, we should return the error number. If the error which just affect 1392 * the creation of the pending snapshots, just return 0. 1393 */ 1394 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1395 struct btrfs_pending_snapshot *pending) 1396 { 1397 1398 struct btrfs_fs_info *fs_info = trans->fs_info; 1399 struct btrfs_key key; 1400 struct btrfs_root_item *new_root_item; 1401 struct btrfs_root *tree_root = fs_info->tree_root; 1402 struct btrfs_root *root = pending->root; 1403 struct btrfs_root *parent_root; 1404 struct btrfs_block_rsv *rsv; 1405 struct inode *parent_inode; 1406 struct btrfs_path *path; 1407 struct btrfs_dir_item *dir_item; 1408 struct dentry *dentry; 1409 struct extent_buffer *tmp; 1410 struct extent_buffer *old; 1411 struct timespec64 cur_time; 1412 int ret = 0; 1413 u64 to_reserve = 0; 1414 u64 index = 0; 1415 u64 objectid; 1416 u64 root_flags; 1417 uuid_le new_uuid; 1418 1419 ASSERT(pending->path); 1420 path = pending->path; 1421 1422 ASSERT(pending->root_item); 1423 new_root_item = pending->root_item; 1424 1425 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1426 if (pending->error) 1427 goto no_free_objectid; 1428 1429 /* 1430 * Make qgroup to skip current new snapshot's qgroupid, as it is 1431 * accounted by later btrfs_qgroup_inherit(). 1432 */ 1433 btrfs_set_skip_qgroup(trans, objectid); 1434 1435 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1436 1437 if (to_reserve > 0) { 1438 pending->error = btrfs_block_rsv_add(root, 1439 &pending->block_rsv, 1440 to_reserve, 1441 BTRFS_RESERVE_NO_FLUSH); 1442 if (pending->error) 1443 goto clear_skip_qgroup; 1444 } 1445 1446 key.objectid = objectid; 1447 key.offset = (u64)-1; 1448 key.type = BTRFS_ROOT_ITEM_KEY; 1449 1450 rsv = trans->block_rsv; 1451 trans->block_rsv = &pending->block_rsv; 1452 trans->bytes_reserved = trans->block_rsv->reserved; 1453 trace_btrfs_space_reservation(fs_info, "transaction", 1454 trans->transid, 1455 trans->bytes_reserved, 1); 1456 dentry = pending->dentry; 1457 parent_inode = pending->dir; 1458 parent_root = BTRFS_I(parent_inode)->root; 1459 record_root_in_trans(trans, parent_root, 0); 1460 1461 cur_time = current_time(parent_inode); 1462 1463 /* 1464 * insert the directory item 1465 */ 1466 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1467 BUG_ON(ret); /* -ENOMEM */ 1468 1469 /* check if there is a file/dir which has the same name. */ 1470 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1471 btrfs_ino(BTRFS_I(parent_inode)), 1472 dentry->d_name.name, 1473 dentry->d_name.len, 0); 1474 if (dir_item != NULL && !IS_ERR(dir_item)) { 1475 pending->error = -EEXIST; 1476 goto dir_item_existed; 1477 } else if (IS_ERR(dir_item)) { 1478 ret = PTR_ERR(dir_item); 1479 btrfs_abort_transaction(trans, ret); 1480 goto fail; 1481 } 1482 btrfs_release_path(path); 1483 1484 /* 1485 * pull in the delayed directory update 1486 * and the delayed inode item 1487 * otherwise we corrupt the FS during 1488 * snapshot 1489 */ 1490 ret = btrfs_run_delayed_items(trans); 1491 if (ret) { /* Transaction aborted */ 1492 btrfs_abort_transaction(trans, ret); 1493 goto fail; 1494 } 1495 1496 record_root_in_trans(trans, root, 0); 1497 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1498 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1499 btrfs_check_and_init_root_item(new_root_item); 1500 1501 root_flags = btrfs_root_flags(new_root_item); 1502 if (pending->readonly) 1503 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1504 else 1505 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1506 btrfs_set_root_flags(new_root_item, root_flags); 1507 1508 btrfs_set_root_generation_v2(new_root_item, 1509 trans->transid); 1510 uuid_le_gen(&new_uuid); 1511 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1512 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1513 BTRFS_UUID_SIZE); 1514 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1515 memset(new_root_item->received_uuid, 0, 1516 sizeof(new_root_item->received_uuid)); 1517 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1518 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1519 btrfs_set_root_stransid(new_root_item, 0); 1520 btrfs_set_root_rtransid(new_root_item, 0); 1521 } 1522 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1523 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1524 btrfs_set_root_otransid(new_root_item, trans->transid); 1525 1526 old = btrfs_lock_root_node(root); 1527 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1528 if (ret) { 1529 btrfs_tree_unlock(old); 1530 free_extent_buffer(old); 1531 btrfs_abort_transaction(trans, ret); 1532 goto fail; 1533 } 1534 1535 btrfs_set_lock_blocking_write(old); 1536 1537 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1538 /* clean up in any case */ 1539 btrfs_tree_unlock(old); 1540 free_extent_buffer(old); 1541 if (ret) { 1542 btrfs_abort_transaction(trans, ret); 1543 goto fail; 1544 } 1545 /* see comments in should_cow_block() */ 1546 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1547 smp_wmb(); 1548 1549 btrfs_set_root_node(new_root_item, tmp); 1550 /* record when the snapshot was created in key.offset */ 1551 key.offset = trans->transid; 1552 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1553 btrfs_tree_unlock(tmp); 1554 free_extent_buffer(tmp); 1555 if (ret) { 1556 btrfs_abort_transaction(trans, ret); 1557 goto fail; 1558 } 1559 1560 /* 1561 * insert root back/forward references 1562 */ 1563 ret = btrfs_add_root_ref(trans, objectid, 1564 parent_root->root_key.objectid, 1565 btrfs_ino(BTRFS_I(parent_inode)), index, 1566 dentry->d_name.name, dentry->d_name.len); 1567 if (ret) { 1568 btrfs_abort_transaction(trans, ret); 1569 goto fail; 1570 } 1571 1572 key.offset = (u64)-1; 1573 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1574 if (IS_ERR(pending->snap)) { 1575 ret = PTR_ERR(pending->snap); 1576 btrfs_abort_transaction(trans, ret); 1577 goto fail; 1578 } 1579 1580 ret = btrfs_reloc_post_snapshot(trans, pending); 1581 if (ret) { 1582 btrfs_abort_transaction(trans, ret); 1583 goto fail; 1584 } 1585 1586 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1587 if (ret) { 1588 btrfs_abort_transaction(trans, ret); 1589 goto fail; 1590 } 1591 1592 /* 1593 * Do special qgroup accounting for snapshot, as we do some qgroup 1594 * snapshot hack to do fast snapshot. 1595 * To co-operate with that hack, we do hack again. 1596 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1597 */ 1598 ret = qgroup_account_snapshot(trans, root, parent_root, 1599 pending->inherit, objectid); 1600 if (ret < 0) 1601 goto fail; 1602 1603 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1604 dentry->d_name.len, BTRFS_I(parent_inode), 1605 &key, BTRFS_FT_DIR, index); 1606 /* We have check then name at the beginning, so it is impossible. */ 1607 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1608 if (ret) { 1609 btrfs_abort_transaction(trans, ret); 1610 goto fail; 1611 } 1612 1613 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1614 dentry->d_name.len * 2); 1615 parent_inode->i_mtime = parent_inode->i_ctime = 1616 current_time(parent_inode); 1617 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1618 if (ret) { 1619 btrfs_abort_transaction(trans, ret); 1620 goto fail; 1621 } 1622 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1623 objectid); 1624 if (ret) { 1625 btrfs_abort_transaction(trans, ret); 1626 goto fail; 1627 } 1628 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1629 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1630 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1631 objectid); 1632 if (ret && ret != -EEXIST) { 1633 btrfs_abort_transaction(trans, ret); 1634 goto fail; 1635 } 1636 } 1637 1638 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1639 if (ret) { 1640 btrfs_abort_transaction(trans, ret); 1641 goto fail; 1642 } 1643 1644 fail: 1645 pending->error = ret; 1646 dir_item_existed: 1647 trans->block_rsv = rsv; 1648 trans->bytes_reserved = 0; 1649 clear_skip_qgroup: 1650 btrfs_clear_skip_qgroup(trans); 1651 no_free_objectid: 1652 kfree(new_root_item); 1653 pending->root_item = NULL; 1654 btrfs_free_path(path); 1655 pending->path = NULL; 1656 1657 return ret; 1658 } 1659 1660 /* 1661 * create all the snapshots we've scheduled for creation 1662 */ 1663 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1664 { 1665 struct btrfs_pending_snapshot *pending, *next; 1666 struct list_head *head = &trans->transaction->pending_snapshots; 1667 int ret = 0; 1668 1669 list_for_each_entry_safe(pending, next, head, list) { 1670 list_del(&pending->list); 1671 ret = create_pending_snapshot(trans, pending); 1672 if (ret) 1673 break; 1674 } 1675 return ret; 1676 } 1677 1678 static void update_super_roots(struct btrfs_fs_info *fs_info) 1679 { 1680 struct btrfs_root_item *root_item; 1681 struct btrfs_super_block *super; 1682 1683 super = fs_info->super_copy; 1684 1685 root_item = &fs_info->chunk_root->root_item; 1686 super->chunk_root = root_item->bytenr; 1687 super->chunk_root_generation = root_item->generation; 1688 super->chunk_root_level = root_item->level; 1689 1690 root_item = &fs_info->tree_root->root_item; 1691 super->root = root_item->bytenr; 1692 super->generation = root_item->generation; 1693 super->root_level = root_item->level; 1694 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1695 super->cache_generation = root_item->generation; 1696 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1697 super->uuid_tree_generation = root_item->generation; 1698 } 1699 1700 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1701 { 1702 struct btrfs_transaction *trans; 1703 int ret = 0; 1704 1705 spin_lock(&info->trans_lock); 1706 trans = info->running_transaction; 1707 if (trans) 1708 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1709 spin_unlock(&info->trans_lock); 1710 return ret; 1711 } 1712 1713 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1714 { 1715 struct btrfs_transaction *trans; 1716 int ret = 0; 1717 1718 spin_lock(&info->trans_lock); 1719 trans = info->running_transaction; 1720 if (trans) 1721 ret = is_transaction_blocked(trans); 1722 spin_unlock(&info->trans_lock); 1723 return ret; 1724 } 1725 1726 /* 1727 * wait for the current transaction commit to start and block subsequent 1728 * transaction joins 1729 */ 1730 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1731 struct btrfs_transaction *trans) 1732 { 1733 wait_event(fs_info->transaction_blocked_wait, 1734 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1735 } 1736 1737 /* 1738 * wait for the current transaction to start and then become unblocked. 1739 * caller holds ref. 1740 */ 1741 static void wait_current_trans_commit_start_and_unblock( 1742 struct btrfs_fs_info *fs_info, 1743 struct btrfs_transaction *trans) 1744 { 1745 wait_event(fs_info->transaction_wait, 1746 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1747 } 1748 1749 /* 1750 * commit transactions asynchronously. once btrfs_commit_transaction_async 1751 * returns, any subsequent transaction will not be allowed to join. 1752 */ 1753 struct btrfs_async_commit { 1754 struct btrfs_trans_handle *newtrans; 1755 struct work_struct work; 1756 }; 1757 1758 static void do_async_commit(struct work_struct *work) 1759 { 1760 struct btrfs_async_commit *ac = 1761 container_of(work, struct btrfs_async_commit, work); 1762 1763 /* 1764 * We've got freeze protection passed with the transaction. 1765 * Tell lockdep about it. 1766 */ 1767 if (ac->newtrans->type & __TRANS_FREEZABLE) 1768 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1769 1770 current->journal_info = ac->newtrans; 1771 1772 btrfs_commit_transaction(ac->newtrans); 1773 kfree(ac); 1774 } 1775 1776 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1777 int wait_for_unblock) 1778 { 1779 struct btrfs_fs_info *fs_info = trans->fs_info; 1780 struct btrfs_async_commit *ac; 1781 struct btrfs_transaction *cur_trans; 1782 1783 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1784 if (!ac) 1785 return -ENOMEM; 1786 1787 INIT_WORK(&ac->work, do_async_commit); 1788 ac->newtrans = btrfs_join_transaction(trans->root); 1789 if (IS_ERR(ac->newtrans)) { 1790 int err = PTR_ERR(ac->newtrans); 1791 kfree(ac); 1792 return err; 1793 } 1794 1795 /* take transaction reference */ 1796 cur_trans = trans->transaction; 1797 refcount_inc(&cur_trans->use_count); 1798 1799 btrfs_end_transaction(trans); 1800 1801 /* 1802 * Tell lockdep we've released the freeze rwsem, since the 1803 * async commit thread will be the one to unlock it. 1804 */ 1805 if (ac->newtrans->type & __TRANS_FREEZABLE) 1806 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1807 1808 schedule_work(&ac->work); 1809 1810 /* wait for transaction to start and unblock */ 1811 if (wait_for_unblock) 1812 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1813 else 1814 wait_current_trans_commit_start(fs_info, cur_trans); 1815 1816 if (current->journal_info == trans) 1817 current->journal_info = NULL; 1818 1819 btrfs_put_transaction(cur_trans); 1820 return 0; 1821 } 1822 1823 1824 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1825 { 1826 struct btrfs_fs_info *fs_info = trans->fs_info; 1827 struct btrfs_transaction *cur_trans = trans->transaction; 1828 1829 WARN_ON(refcount_read(&trans->use_count) > 1); 1830 1831 btrfs_abort_transaction(trans, err); 1832 1833 spin_lock(&fs_info->trans_lock); 1834 1835 /* 1836 * If the transaction is removed from the list, it means this 1837 * transaction has been committed successfully, so it is impossible 1838 * to call the cleanup function. 1839 */ 1840 BUG_ON(list_empty(&cur_trans->list)); 1841 1842 list_del_init(&cur_trans->list); 1843 if (cur_trans == fs_info->running_transaction) { 1844 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1845 spin_unlock(&fs_info->trans_lock); 1846 wait_event(cur_trans->writer_wait, 1847 atomic_read(&cur_trans->num_writers) == 1); 1848 1849 spin_lock(&fs_info->trans_lock); 1850 } 1851 spin_unlock(&fs_info->trans_lock); 1852 1853 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1854 1855 spin_lock(&fs_info->trans_lock); 1856 if (cur_trans == fs_info->running_transaction) 1857 fs_info->running_transaction = NULL; 1858 spin_unlock(&fs_info->trans_lock); 1859 1860 if (trans->type & __TRANS_FREEZABLE) 1861 sb_end_intwrite(fs_info->sb); 1862 btrfs_put_transaction(cur_trans); 1863 btrfs_put_transaction(cur_trans); 1864 1865 trace_btrfs_transaction_commit(trans->root); 1866 1867 if (current->journal_info == trans) 1868 current->journal_info = NULL; 1869 btrfs_scrub_cancel(fs_info); 1870 1871 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1872 } 1873 1874 /* 1875 * Release reserved delayed ref space of all pending block groups of the 1876 * transaction and remove them from the list 1877 */ 1878 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1879 { 1880 struct btrfs_fs_info *fs_info = trans->fs_info; 1881 struct btrfs_block_group_cache *block_group, *tmp; 1882 1883 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1884 btrfs_delayed_refs_rsv_release(fs_info, 1); 1885 list_del_init(&block_group->bg_list); 1886 } 1887 } 1888 1889 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1890 { 1891 /* 1892 * We use writeback_inodes_sb here because if we used 1893 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1894 * Currently are holding the fs freeze lock, if we do an async flush 1895 * we'll do btrfs_join_transaction() and deadlock because we need to 1896 * wait for the fs freeze lock. Using the direct flushing we benefit 1897 * from already being in a transaction and our join_transaction doesn't 1898 * have to re-take the fs freeze lock. 1899 */ 1900 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1901 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1902 return 0; 1903 } 1904 1905 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1906 { 1907 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1908 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1909 } 1910 1911 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1912 { 1913 struct btrfs_fs_info *fs_info = trans->fs_info; 1914 struct btrfs_transaction *cur_trans = trans->transaction; 1915 struct btrfs_transaction *prev_trans = NULL; 1916 int ret; 1917 1918 /* Stop the commit early if ->aborted is set */ 1919 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1920 ret = cur_trans->aborted; 1921 btrfs_end_transaction(trans); 1922 return ret; 1923 } 1924 1925 btrfs_trans_release_metadata(trans); 1926 trans->block_rsv = NULL; 1927 1928 /* make a pass through all the delayed refs we have so far 1929 * any runnings procs may add more while we are here 1930 */ 1931 ret = btrfs_run_delayed_refs(trans, 0); 1932 if (ret) { 1933 btrfs_end_transaction(trans); 1934 return ret; 1935 } 1936 1937 cur_trans = trans->transaction; 1938 1939 /* 1940 * set the flushing flag so procs in this transaction have to 1941 * start sending their work down. 1942 */ 1943 cur_trans->delayed_refs.flushing = 1; 1944 smp_wmb(); 1945 1946 btrfs_create_pending_block_groups(trans); 1947 1948 ret = btrfs_run_delayed_refs(trans, 0); 1949 if (ret) { 1950 btrfs_end_transaction(trans); 1951 return ret; 1952 } 1953 1954 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1955 int run_it = 0; 1956 1957 /* this mutex is also taken before trying to set 1958 * block groups readonly. We need to make sure 1959 * that nobody has set a block group readonly 1960 * after a extents from that block group have been 1961 * allocated for cache files. btrfs_set_block_group_ro 1962 * will wait for the transaction to commit if it 1963 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1964 * 1965 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1966 * only one process starts all the block group IO. It wouldn't 1967 * hurt to have more than one go through, but there's no 1968 * real advantage to it either. 1969 */ 1970 mutex_lock(&fs_info->ro_block_group_mutex); 1971 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1972 &cur_trans->flags)) 1973 run_it = 1; 1974 mutex_unlock(&fs_info->ro_block_group_mutex); 1975 1976 if (run_it) { 1977 ret = btrfs_start_dirty_block_groups(trans); 1978 if (ret) { 1979 btrfs_end_transaction(trans); 1980 return ret; 1981 } 1982 } 1983 } 1984 1985 spin_lock(&fs_info->trans_lock); 1986 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1987 spin_unlock(&fs_info->trans_lock); 1988 refcount_inc(&cur_trans->use_count); 1989 ret = btrfs_end_transaction(trans); 1990 1991 wait_for_commit(cur_trans); 1992 1993 if (unlikely(cur_trans->aborted)) 1994 ret = cur_trans->aborted; 1995 1996 btrfs_put_transaction(cur_trans); 1997 1998 return ret; 1999 } 2000 2001 cur_trans->state = TRANS_STATE_COMMIT_START; 2002 wake_up(&fs_info->transaction_blocked_wait); 2003 2004 if (cur_trans->list.prev != &fs_info->trans_list) { 2005 prev_trans = list_entry(cur_trans->list.prev, 2006 struct btrfs_transaction, list); 2007 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2008 refcount_inc(&prev_trans->use_count); 2009 spin_unlock(&fs_info->trans_lock); 2010 2011 wait_for_commit(prev_trans); 2012 ret = prev_trans->aborted; 2013 2014 btrfs_put_transaction(prev_trans); 2015 if (ret) 2016 goto cleanup_transaction; 2017 } else { 2018 spin_unlock(&fs_info->trans_lock); 2019 } 2020 } else { 2021 spin_unlock(&fs_info->trans_lock); 2022 } 2023 2024 extwriter_counter_dec(cur_trans, trans->type); 2025 2026 ret = btrfs_start_delalloc_flush(fs_info); 2027 if (ret) 2028 goto cleanup_transaction; 2029 2030 ret = btrfs_run_delayed_items(trans); 2031 if (ret) 2032 goto cleanup_transaction; 2033 2034 wait_event(cur_trans->writer_wait, 2035 extwriter_counter_read(cur_trans) == 0); 2036 2037 /* some pending stuffs might be added after the previous flush. */ 2038 ret = btrfs_run_delayed_items(trans); 2039 if (ret) 2040 goto cleanup_transaction; 2041 2042 btrfs_wait_delalloc_flush(fs_info); 2043 2044 btrfs_scrub_pause(fs_info); 2045 /* 2046 * Ok now we need to make sure to block out any other joins while we 2047 * commit the transaction. We could have started a join before setting 2048 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2049 */ 2050 spin_lock(&fs_info->trans_lock); 2051 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2052 spin_unlock(&fs_info->trans_lock); 2053 wait_event(cur_trans->writer_wait, 2054 atomic_read(&cur_trans->num_writers) == 1); 2055 2056 /* ->aborted might be set after the previous check, so check it */ 2057 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2058 ret = cur_trans->aborted; 2059 goto scrub_continue; 2060 } 2061 /* 2062 * the reloc mutex makes sure that we stop 2063 * the balancing code from coming in and moving 2064 * extents around in the middle of the commit 2065 */ 2066 mutex_lock(&fs_info->reloc_mutex); 2067 2068 /* 2069 * We needn't worry about the delayed items because we will 2070 * deal with them in create_pending_snapshot(), which is the 2071 * core function of the snapshot creation. 2072 */ 2073 ret = create_pending_snapshots(trans); 2074 if (ret) { 2075 mutex_unlock(&fs_info->reloc_mutex); 2076 goto scrub_continue; 2077 } 2078 2079 /* 2080 * We insert the dir indexes of the snapshots and update the inode 2081 * of the snapshots' parents after the snapshot creation, so there 2082 * are some delayed items which are not dealt with. Now deal with 2083 * them. 2084 * 2085 * We needn't worry that this operation will corrupt the snapshots, 2086 * because all the tree which are snapshoted will be forced to COW 2087 * the nodes and leaves. 2088 */ 2089 ret = btrfs_run_delayed_items(trans); 2090 if (ret) { 2091 mutex_unlock(&fs_info->reloc_mutex); 2092 goto scrub_continue; 2093 } 2094 2095 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2096 if (ret) { 2097 mutex_unlock(&fs_info->reloc_mutex); 2098 goto scrub_continue; 2099 } 2100 2101 /* 2102 * make sure none of the code above managed to slip in a 2103 * delayed item 2104 */ 2105 btrfs_assert_delayed_root_empty(fs_info); 2106 2107 WARN_ON(cur_trans != trans->transaction); 2108 2109 /* btrfs_commit_tree_roots is responsible for getting the 2110 * various roots consistent with each other. Every pointer 2111 * in the tree of tree roots has to point to the most up to date 2112 * root for every subvolume and other tree. So, we have to keep 2113 * the tree logging code from jumping in and changing any 2114 * of the trees. 2115 * 2116 * At this point in the commit, there can't be any tree-log 2117 * writers, but a little lower down we drop the trans mutex 2118 * and let new people in. By holding the tree_log_mutex 2119 * from now until after the super is written, we avoid races 2120 * with the tree-log code. 2121 */ 2122 mutex_lock(&fs_info->tree_log_mutex); 2123 2124 ret = commit_fs_roots(trans); 2125 if (ret) { 2126 mutex_unlock(&fs_info->tree_log_mutex); 2127 mutex_unlock(&fs_info->reloc_mutex); 2128 goto scrub_continue; 2129 } 2130 2131 /* 2132 * Since the transaction is done, we can apply the pending changes 2133 * before the next transaction. 2134 */ 2135 btrfs_apply_pending_changes(fs_info); 2136 2137 /* commit_fs_roots gets rid of all the tree log roots, it is now 2138 * safe to free the root of tree log roots 2139 */ 2140 btrfs_free_log_root_tree(trans, fs_info); 2141 2142 /* 2143 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2144 * new delayed refs. Must handle them or qgroup can be wrong. 2145 */ 2146 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2147 if (ret) { 2148 mutex_unlock(&fs_info->tree_log_mutex); 2149 mutex_unlock(&fs_info->reloc_mutex); 2150 goto scrub_continue; 2151 } 2152 2153 /* 2154 * Since fs roots are all committed, we can get a quite accurate 2155 * new_roots. So let's do quota accounting. 2156 */ 2157 ret = btrfs_qgroup_account_extents(trans); 2158 if (ret < 0) { 2159 mutex_unlock(&fs_info->tree_log_mutex); 2160 mutex_unlock(&fs_info->reloc_mutex); 2161 goto scrub_continue; 2162 } 2163 2164 ret = commit_cowonly_roots(trans); 2165 if (ret) { 2166 mutex_unlock(&fs_info->tree_log_mutex); 2167 mutex_unlock(&fs_info->reloc_mutex); 2168 goto scrub_continue; 2169 } 2170 2171 /* 2172 * The tasks which save the space cache and inode cache may also 2173 * update ->aborted, check it. 2174 */ 2175 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2176 ret = cur_trans->aborted; 2177 mutex_unlock(&fs_info->tree_log_mutex); 2178 mutex_unlock(&fs_info->reloc_mutex); 2179 goto scrub_continue; 2180 } 2181 2182 btrfs_prepare_extent_commit(fs_info); 2183 2184 cur_trans = fs_info->running_transaction; 2185 2186 btrfs_set_root_node(&fs_info->tree_root->root_item, 2187 fs_info->tree_root->node); 2188 list_add_tail(&fs_info->tree_root->dirty_list, 2189 &cur_trans->switch_commits); 2190 2191 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2192 fs_info->chunk_root->node); 2193 list_add_tail(&fs_info->chunk_root->dirty_list, 2194 &cur_trans->switch_commits); 2195 2196 switch_commit_roots(cur_trans); 2197 2198 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2199 ASSERT(list_empty(&cur_trans->io_bgs)); 2200 update_super_roots(fs_info); 2201 2202 btrfs_set_super_log_root(fs_info->super_copy, 0); 2203 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2204 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2205 sizeof(*fs_info->super_copy)); 2206 2207 btrfs_update_commit_device_size(fs_info); 2208 btrfs_update_commit_device_bytes_used(cur_trans); 2209 2210 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2211 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2212 2213 btrfs_trans_release_chunk_metadata(trans); 2214 2215 spin_lock(&fs_info->trans_lock); 2216 cur_trans->state = TRANS_STATE_UNBLOCKED; 2217 fs_info->running_transaction = NULL; 2218 spin_unlock(&fs_info->trans_lock); 2219 mutex_unlock(&fs_info->reloc_mutex); 2220 2221 wake_up(&fs_info->transaction_wait); 2222 2223 ret = btrfs_write_and_wait_transaction(trans); 2224 if (ret) { 2225 btrfs_handle_fs_error(fs_info, ret, 2226 "Error while writing out transaction"); 2227 mutex_unlock(&fs_info->tree_log_mutex); 2228 goto scrub_continue; 2229 } 2230 2231 ret = write_all_supers(fs_info, 0); 2232 /* 2233 * the super is written, we can safely allow the tree-loggers 2234 * to go about their business 2235 */ 2236 mutex_unlock(&fs_info->tree_log_mutex); 2237 if (ret) 2238 goto scrub_continue; 2239 2240 btrfs_finish_extent_commit(trans); 2241 2242 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2243 btrfs_clear_space_info_full(fs_info); 2244 2245 fs_info->last_trans_committed = cur_trans->transid; 2246 /* 2247 * We needn't acquire the lock here because there is no other task 2248 * which can change it. 2249 */ 2250 cur_trans->state = TRANS_STATE_COMPLETED; 2251 wake_up(&cur_trans->commit_wait); 2252 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2253 2254 spin_lock(&fs_info->trans_lock); 2255 list_del_init(&cur_trans->list); 2256 spin_unlock(&fs_info->trans_lock); 2257 2258 btrfs_put_transaction(cur_trans); 2259 btrfs_put_transaction(cur_trans); 2260 2261 if (trans->type & __TRANS_FREEZABLE) 2262 sb_end_intwrite(fs_info->sb); 2263 2264 trace_btrfs_transaction_commit(trans->root); 2265 2266 btrfs_scrub_continue(fs_info); 2267 2268 if (current->journal_info == trans) 2269 current->journal_info = NULL; 2270 2271 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2272 2273 return ret; 2274 2275 scrub_continue: 2276 btrfs_scrub_continue(fs_info); 2277 cleanup_transaction: 2278 btrfs_trans_release_metadata(trans); 2279 btrfs_cleanup_pending_block_groups(trans); 2280 btrfs_trans_release_chunk_metadata(trans); 2281 trans->block_rsv = NULL; 2282 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2283 if (current->journal_info == trans) 2284 current->journal_info = NULL; 2285 cleanup_transaction(trans, ret); 2286 2287 return ret; 2288 } 2289 2290 /* 2291 * return < 0 if error 2292 * 0 if there are no more dead_roots at the time of call 2293 * 1 there are more to be processed, call me again 2294 * 2295 * The return value indicates there are certainly more snapshots to delete, but 2296 * if there comes a new one during processing, it may return 0. We don't mind, 2297 * because btrfs_commit_super will poke cleaner thread and it will process it a 2298 * few seconds later. 2299 */ 2300 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2301 { 2302 int ret; 2303 struct btrfs_fs_info *fs_info = root->fs_info; 2304 2305 spin_lock(&fs_info->trans_lock); 2306 if (list_empty(&fs_info->dead_roots)) { 2307 spin_unlock(&fs_info->trans_lock); 2308 return 0; 2309 } 2310 root = list_first_entry(&fs_info->dead_roots, 2311 struct btrfs_root, root_list); 2312 list_del_init(&root->root_list); 2313 spin_unlock(&fs_info->trans_lock); 2314 2315 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2316 2317 btrfs_kill_all_delayed_nodes(root); 2318 2319 if (btrfs_header_backref_rev(root->node) < 2320 BTRFS_MIXED_BACKREF_REV) 2321 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2322 else 2323 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2324 2325 return (ret < 0) ? 0 : 1; 2326 } 2327 2328 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2329 { 2330 unsigned long prev; 2331 unsigned long bit; 2332 2333 prev = xchg(&fs_info->pending_changes, 0); 2334 if (!prev) 2335 return; 2336 2337 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2338 if (prev & bit) 2339 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2340 prev &= ~bit; 2341 2342 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2343 if (prev & bit) 2344 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2345 prev &= ~bit; 2346 2347 bit = 1 << BTRFS_PENDING_COMMIT; 2348 if (prev & bit) 2349 btrfs_debug(fs_info, "pending commit done"); 2350 prev &= ~bit; 2351 2352 if (prev) 2353 btrfs_warn(fs_info, 2354 "unknown pending changes left 0x%lx, ignoring", prev); 2355 } 2356