xref: /linux/fs/btrfs/transaction.c (revision 43bb48c38e817b5f89fce340f49436a605e47e66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 };
117 
118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120 	WARN_ON(refcount_read(&transaction->use_count) == 0);
121 	if (refcount_dec_and_test(&transaction->use_count)) {
122 		BUG_ON(!list_empty(&transaction->list));
123 		WARN_ON(!RB_EMPTY_ROOT(
124 				&transaction->delayed_refs.href_root.rb_root));
125 		WARN_ON(!RB_EMPTY_ROOT(
126 				&transaction->delayed_refs.dirty_extent_root));
127 		if (transaction->delayed_refs.pending_csums)
128 			btrfs_err(transaction->fs_info,
129 				  "pending csums is %llu",
130 				  transaction->delayed_refs.pending_csums);
131 		/*
132 		 * If any block groups are found in ->deleted_bgs then it's
133 		 * because the transaction was aborted and a commit did not
134 		 * happen (things failed before writing the new superblock
135 		 * and calling btrfs_finish_extent_commit()), so we can not
136 		 * discard the physical locations of the block groups.
137 		 */
138 		while (!list_empty(&transaction->deleted_bgs)) {
139 			struct btrfs_block_group *cache;
140 
141 			cache = list_first_entry(&transaction->deleted_bgs,
142 						 struct btrfs_block_group,
143 						 bg_list);
144 			list_del_init(&cache->bg_list);
145 			btrfs_unfreeze_block_group(cache);
146 			btrfs_put_block_group(cache);
147 		}
148 		WARN_ON(!list_empty(&transaction->dev_update_list));
149 		kfree(transaction);
150 	}
151 }
152 
153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155 	struct btrfs_transaction *cur_trans = trans->transaction;
156 	struct btrfs_fs_info *fs_info = trans->fs_info;
157 	struct btrfs_root *root, *tmp;
158 
159 	down_write(&fs_info->commit_root_sem);
160 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161 				 dirty_list) {
162 		list_del_init(&root->dirty_list);
163 		free_extent_buffer(root->commit_root);
164 		root->commit_root = btrfs_root_node(root);
165 		if (is_fstree(root->root_key.objectid))
166 			btrfs_unpin_free_ino(root);
167 		extent_io_tree_release(&root->dirty_log_pages);
168 		btrfs_qgroup_clean_swapped_blocks(root);
169 	}
170 
171 	/* We can free old roots now. */
172 	spin_lock(&cur_trans->dropped_roots_lock);
173 	while (!list_empty(&cur_trans->dropped_roots)) {
174 		root = list_first_entry(&cur_trans->dropped_roots,
175 					struct btrfs_root, root_list);
176 		list_del_init(&root->root_list);
177 		spin_unlock(&cur_trans->dropped_roots_lock);
178 		btrfs_free_log(trans, root);
179 		btrfs_drop_and_free_fs_root(fs_info, root);
180 		spin_lock(&cur_trans->dropped_roots_lock);
181 	}
182 	spin_unlock(&cur_trans->dropped_roots_lock);
183 	up_write(&fs_info->commit_root_sem);
184 }
185 
186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 					 unsigned int type)
188 {
189 	if (type & TRANS_EXTWRITERS)
190 		atomic_inc(&trans->num_extwriters);
191 }
192 
193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 					 unsigned int type)
195 {
196 	if (type & TRANS_EXTWRITERS)
197 		atomic_dec(&trans->num_extwriters);
198 }
199 
200 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 					  unsigned int type)
202 {
203 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204 }
205 
206 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 {
208 	return atomic_read(&trans->num_extwriters);
209 }
210 
211 /*
212  * To be called after all the new block groups attached to the transaction
213  * handle have been created (btrfs_create_pending_block_groups()).
214  */
215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 {
217 	struct btrfs_fs_info *fs_info = trans->fs_info;
218 
219 	if (!trans->chunk_bytes_reserved)
220 		return;
221 
222 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223 
224 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225 				trans->chunk_bytes_reserved, NULL);
226 	trans->chunk_bytes_reserved = 0;
227 }
228 
229 /*
230  * either allocate a new transaction or hop into the existing one
231  */
232 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 				     unsigned int type)
234 {
235 	struct btrfs_transaction *cur_trans;
236 
237 	spin_lock(&fs_info->trans_lock);
238 loop:
239 	/* The file system has been taken offline. No new transactions. */
240 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241 		spin_unlock(&fs_info->trans_lock);
242 		return -EROFS;
243 	}
244 
245 	cur_trans = fs_info->running_transaction;
246 	if (cur_trans) {
247 		if (TRANS_ABORTED(cur_trans)) {
248 			spin_unlock(&fs_info->trans_lock);
249 			return cur_trans->aborted;
250 		}
251 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252 			spin_unlock(&fs_info->trans_lock);
253 			return -EBUSY;
254 		}
255 		refcount_inc(&cur_trans->use_count);
256 		atomic_inc(&cur_trans->num_writers);
257 		extwriter_counter_inc(cur_trans, type);
258 		spin_unlock(&fs_info->trans_lock);
259 		return 0;
260 	}
261 	spin_unlock(&fs_info->trans_lock);
262 
263 	/*
264 	 * If we are ATTACH, we just want to catch the current transaction,
265 	 * and commit it. If there is no transaction, just return ENOENT.
266 	 */
267 	if (type == TRANS_ATTACH)
268 		return -ENOENT;
269 
270 	/*
271 	 * JOIN_NOLOCK only happens during the transaction commit, so
272 	 * it is impossible that ->running_transaction is NULL
273 	 */
274 	BUG_ON(type == TRANS_JOIN_NOLOCK);
275 
276 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277 	if (!cur_trans)
278 		return -ENOMEM;
279 
280 	spin_lock(&fs_info->trans_lock);
281 	if (fs_info->running_transaction) {
282 		/*
283 		 * someone started a transaction after we unlocked.  Make sure
284 		 * to redo the checks above
285 		 */
286 		kfree(cur_trans);
287 		goto loop;
288 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 		spin_unlock(&fs_info->trans_lock);
290 		kfree(cur_trans);
291 		return -EROFS;
292 	}
293 
294 	cur_trans->fs_info = fs_info;
295 	atomic_set(&cur_trans->pending_ordered, 0);
296 	init_waitqueue_head(&cur_trans->pending_wait);
297 	atomic_set(&cur_trans->num_writers, 1);
298 	extwriter_counter_init(cur_trans, type);
299 	init_waitqueue_head(&cur_trans->writer_wait);
300 	init_waitqueue_head(&cur_trans->commit_wait);
301 	cur_trans->state = TRANS_STATE_RUNNING;
302 	/*
303 	 * One for this trans handle, one so it will live on until we
304 	 * commit the transaction.
305 	 */
306 	refcount_set(&cur_trans->use_count, 2);
307 	cur_trans->flags = 0;
308 	cur_trans->start_time = ktime_get_seconds();
309 
310 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
311 
312 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
313 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
314 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
315 
316 	/*
317 	 * although the tree mod log is per file system and not per transaction,
318 	 * the log must never go across transaction boundaries.
319 	 */
320 	smp_mb();
321 	if (!list_empty(&fs_info->tree_mod_seq_list))
322 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
323 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
324 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
325 	atomic64_set(&fs_info->tree_mod_seq, 0);
326 
327 	spin_lock_init(&cur_trans->delayed_refs.lock);
328 
329 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
330 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
331 	INIT_LIST_HEAD(&cur_trans->switch_commits);
332 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
333 	INIT_LIST_HEAD(&cur_trans->io_bgs);
334 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
335 	mutex_init(&cur_trans->cache_write_mutex);
336 	spin_lock_init(&cur_trans->dirty_bgs_lock);
337 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
338 	spin_lock_init(&cur_trans->dropped_roots_lock);
339 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
340 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
341 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
342 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
343 			IO_TREE_FS_PINNED_EXTENTS, NULL);
344 	fs_info->generation++;
345 	cur_trans->transid = fs_info->generation;
346 	fs_info->running_transaction = cur_trans;
347 	cur_trans->aborted = 0;
348 	spin_unlock(&fs_info->trans_lock);
349 
350 	return 0;
351 }
352 
353 /*
354  * This does all the record keeping required to make sure that a shareable root
355  * is properly recorded in a given transaction.  This is required to make sure
356  * the old root from before we joined the transaction is deleted when the
357  * transaction commits.
358  */
359 static int record_root_in_trans(struct btrfs_trans_handle *trans,
360 			       struct btrfs_root *root,
361 			       int force)
362 {
363 	struct btrfs_fs_info *fs_info = root->fs_info;
364 
365 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
366 	    root->last_trans < trans->transid) || force) {
367 		WARN_ON(root == fs_info->extent_root);
368 		WARN_ON(!force && root->commit_root != root->node);
369 
370 		/*
371 		 * see below for IN_TRANS_SETUP usage rules
372 		 * we have the reloc mutex held now, so there
373 		 * is only one writer in this function
374 		 */
375 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
376 
377 		/* make sure readers find IN_TRANS_SETUP before
378 		 * they find our root->last_trans update
379 		 */
380 		smp_wmb();
381 
382 		spin_lock(&fs_info->fs_roots_radix_lock);
383 		if (root->last_trans == trans->transid && !force) {
384 			spin_unlock(&fs_info->fs_roots_radix_lock);
385 			return 0;
386 		}
387 		radix_tree_tag_set(&fs_info->fs_roots_radix,
388 				   (unsigned long)root->root_key.objectid,
389 				   BTRFS_ROOT_TRANS_TAG);
390 		spin_unlock(&fs_info->fs_roots_radix_lock);
391 		root->last_trans = trans->transid;
392 
393 		/* this is pretty tricky.  We don't want to
394 		 * take the relocation lock in btrfs_record_root_in_trans
395 		 * unless we're really doing the first setup for this root in
396 		 * this transaction.
397 		 *
398 		 * Normally we'd use root->last_trans as a flag to decide
399 		 * if we want to take the expensive mutex.
400 		 *
401 		 * But, we have to set root->last_trans before we
402 		 * init the relocation root, otherwise, we trip over warnings
403 		 * in ctree.c.  The solution used here is to flag ourselves
404 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
405 		 * fixing up the reloc trees and everyone must wait.
406 		 *
407 		 * When this is zero, they can trust root->last_trans and fly
408 		 * through btrfs_record_root_in_trans without having to take the
409 		 * lock.  smp_wmb() makes sure that all the writes above are
410 		 * done before we pop in the zero below
411 		 */
412 		btrfs_init_reloc_root(trans, root);
413 		smp_mb__before_atomic();
414 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
415 	}
416 	return 0;
417 }
418 
419 
420 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
421 			    struct btrfs_root *root)
422 {
423 	struct btrfs_fs_info *fs_info = root->fs_info;
424 	struct btrfs_transaction *cur_trans = trans->transaction;
425 
426 	/* Add ourselves to the transaction dropped list */
427 	spin_lock(&cur_trans->dropped_roots_lock);
428 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
429 	spin_unlock(&cur_trans->dropped_roots_lock);
430 
431 	/* Make sure we don't try to update the root at commit time */
432 	spin_lock(&fs_info->fs_roots_radix_lock);
433 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
434 			     (unsigned long)root->root_key.objectid,
435 			     BTRFS_ROOT_TRANS_TAG);
436 	spin_unlock(&fs_info->fs_roots_radix_lock);
437 }
438 
439 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
440 			       struct btrfs_root *root)
441 {
442 	struct btrfs_fs_info *fs_info = root->fs_info;
443 
444 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
445 		return 0;
446 
447 	/*
448 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
449 	 * and barriers
450 	 */
451 	smp_rmb();
452 	if (root->last_trans == trans->transid &&
453 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
454 		return 0;
455 
456 	mutex_lock(&fs_info->reloc_mutex);
457 	record_root_in_trans(trans, root, 0);
458 	mutex_unlock(&fs_info->reloc_mutex);
459 
460 	return 0;
461 }
462 
463 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
464 {
465 	return (trans->state >= TRANS_STATE_COMMIT_START &&
466 		trans->state < TRANS_STATE_UNBLOCKED &&
467 		!TRANS_ABORTED(trans));
468 }
469 
470 /* wait for commit against the current transaction to become unblocked
471  * when this is done, it is safe to start a new transaction, but the current
472  * transaction might not be fully on disk.
473  */
474 static void wait_current_trans(struct btrfs_fs_info *fs_info)
475 {
476 	struct btrfs_transaction *cur_trans;
477 
478 	spin_lock(&fs_info->trans_lock);
479 	cur_trans = fs_info->running_transaction;
480 	if (cur_trans && is_transaction_blocked(cur_trans)) {
481 		refcount_inc(&cur_trans->use_count);
482 		spin_unlock(&fs_info->trans_lock);
483 
484 		wait_event(fs_info->transaction_wait,
485 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
486 			   TRANS_ABORTED(cur_trans));
487 		btrfs_put_transaction(cur_trans);
488 	} else {
489 		spin_unlock(&fs_info->trans_lock);
490 	}
491 }
492 
493 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
494 {
495 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
496 		return 0;
497 
498 	if (type == TRANS_START)
499 		return 1;
500 
501 	return 0;
502 }
503 
504 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
505 {
506 	struct btrfs_fs_info *fs_info = root->fs_info;
507 
508 	if (!fs_info->reloc_ctl ||
509 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
510 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
511 	    root->reloc_root)
512 		return false;
513 
514 	return true;
515 }
516 
517 static struct btrfs_trans_handle *
518 start_transaction(struct btrfs_root *root, unsigned int num_items,
519 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
520 		  bool enforce_qgroups)
521 {
522 	struct btrfs_fs_info *fs_info = root->fs_info;
523 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
524 	struct btrfs_trans_handle *h;
525 	struct btrfs_transaction *cur_trans;
526 	u64 num_bytes = 0;
527 	u64 qgroup_reserved = 0;
528 	bool reloc_reserved = false;
529 	bool do_chunk_alloc = false;
530 	int ret;
531 
532 	/* Send isn't supposed to start transactions. */
533 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
534 
535 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
536 		return ERR_PTR(-EROFS);
537 
538 	if (current->journal_info) {
539 		WARN_ON(type & TRANS_EXTWRITERS);
540 		h = current->journal_info;
541 		refcount_inc(&h->use_count);
542 		WARN_ON(refcount_read(&h->use_count) > 2);
543 		h->orig_rsv = h->block_rsv;
544 		h->block_rsv = NULL;
545 		goto got_it;
546 	}
547 
548 	/*
549 	 * Do the reservation before we join the transaction so we can do all
550 	 * the appropriate flushing if need be.
551 	 */
552 	if (num_items && root != fs_info->chunk_root) {
553 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
554 		u64 delayed_refs_bytes = 0;
555 
556 		qgroup_reserved = num_items * fs_info->nodesize;
557 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
558 				enforce_qgroups);
559 		if (ret)
560 			return ERR_PTR(ret);
561 
562 		/*
563 		 * We want to reserve all the bytes we may need all at once, so
564 		 * we only do 1 enospc flushing cycle per transaction start.  We
565 		 * accomplish this by simply assuming we'll do 2 x num_items
566 		 * worth of delayed refs updates in this trans handle, and
567 		 * refill that amount for whatever is missing in the reserve.
568 		 */
569 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
570 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
571 		    delayed_refs_rsv->full == 0) {
572 			delayed_refs_bytes = num_bytes;
573 			num_bytes <<= 1;
574 		}
575 
576 		/*
577 		 * Do the reservation for the relocation root creation
578 		 */
579 		if (need_reserve_reloc_root(root)) {
580 			num_bytes += fs_info->nodesize;
581 			reloc_reserved = true;
582 		}
583 
584 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
585 		if (ret)
586 			goto reserve_fail;
587 		if (delayed_refs_bytes) {
588 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
589 							  delayed_refs_bytes);
590 			num_bytes -= delayed_refs_bytes;
591 		}
592 
593 		if (rsv->space_info->force_alloc)
594 			do_chunk_alloc = true;
595 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
596 		   !delayed_refs_rsv->full) {
597 		/*
598 		 * Some people call with btrfs_start_transaction(root, 0)
599 		 * because they can be throttled, but have some other mechanism
600 		 * for reserving space.  We still want these guys to refill the
601 		 * delayed block_rsv so just add 1 items worth of reservation
602 		 * here.
603 		 */
604 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
605 		if (ret)
606 			goto reserve_fail;
607 	}
608 again:
609 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
610 	if (!h) {
611 		ret = -ENOMEM;
612 		goto alloc_fail;
613 	}
614 
615 	/*
616 	 * If we are JOIN_NOLOCK we're already committing a transaction and
617 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
618 	 * because we're already holding a ref.  We need this because we could
619 	 * have raced in and did an fsync() on a file which can kick a commit
620 	 * and then we deadlock with somebody doing a freeze.
621 	 *
622 	 * If we are ATTACH, it means we just want to catch the current
623 	 * transaction and commit it, so we needn't do sb_start_intwrite().
624 	 */
625 	if (type & __TRANS_FREEZABLE)
626 		sb_start_intwrite(fs_info->sb);
627 
628 	if (may_wait_transaction(fs_info, type))
629 		wait_current_trans(fs_info);
630 
631 	do {
632 		ret = join_transaction(fs_info, type);
633 		if (ret == -EBUSY) {
634 			wait_current_trans(fs_info);
635 			if (unlikely(type == TRANS_ATTACH ||
636 				     type == TRANS_JOIN_NOSTART))
637 				ret = -ENOENT;
638 		}
639 	} while (ret == -EBUSY);
640 
641 	if (ret < 0)
642 		goto join_fail;
643 
644 	cur_trans = fs_info->running_transaction;
645 
646 	h->transid = cur_trans->transid;
647 	h->transaction = cur_trans;
648 	h->root = root;
649 	refcount_set(&h->use_count, 1);
650 	h->fs_info = root->fs_info;
651 
652 	h->type = type;
653 	h->can_flush_pending_bgs = true;
654 	INIT_LIST_HEAD(&h->new_bgs);
655 
656 	smp_mb();
657 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
658 	    may_wait_transaction(fs_info, type)) {
659 		current->journal_info = h;
660 		btrfs_commit_transaction(h);
661 		goto again;
662 	}
663 
664 	if (num_bytes) {
665 		trace_btrfs_space_reservation(fs_info, "transaction",
666 					      h->transid, num_bytes, 1);
667 		h->block_rsv = &fs_info->trans_block_rsv;
668 		h->bytes_reserved = num_bytes;
669 		h->reloc_reserved = reloc_reserved;
670 	}
671 
672 got_it:
673 	if (!current->journal_info)
674 		current->journal_info = h;
675 
676 	/*
677 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
678 	 * ALLOC_FORCE the first run through, and then we won't allocate for
679 	 * anybody else who races in later.  We don't care about the return
680 	 * value here.
681 	 */
682 	if (do_chunk_alloc && num_bytes) {
683 		u64 flags = h->block_rsv->space_info->flags;
684 
685 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
686 				  CHUNK_ALLOC_NO_FORCE);
687 	}
688 
689 	/*
690 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
691 	 * call btrfs_join_transaction() while we're also starting a
692 	 * transaction.
693 	 *
694 	 * Thus it need to be called after current->journal_info initialized,
695 	 * or we can deadlock.
696 	 */
697 	btrfs_record_root_in_trans(h, root);
698 
699 	return h;
700 
701 join_fail:
702 	if (type & __TRANS_FREEZABLE)
703 		sb_end_intwrite(fs_info->sb);
704 	kmem_cache_free(btrfs_trans_handle_cachep, h);
705 alloc_fail:
706 	if (num_bytes)
707 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
708 					num_bytes, NULL);
709 reserve_fail:
710 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
711 	return ERR_PTR(ret);
712 }
713 
714 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
715 						   unsigned int num_items)
716 {
717 	return start_transaction(root, num_items, TRANS_START,
718 				 BTRFS_RESERVE_FLUSH_ALL, true);
719 }
720 
721 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
722 					struct btrfs_root *root,
723 					unsigned int num_items)
724 {
725 	return start_transaction(root, num_items, TRANS_START,
726 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
727 }
728 
729 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
730 {
731 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
732 				 true);
733 }
734 
735 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
736 {
737 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
738 				 BTRFS_RESERVE_NO_FLUSH, true);
739 }
740 
741 /*
742  * Similar to regular join but it never starts a transaction when none is
743  * running or after waiting for the current one to finish.
744  */
745 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
746 {
747 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
748 				 BTRFS_RESERVE_NO_FLUSH, true);
749 }
750 
751 /*
752  * btrfs_attach_transaction() - catch the running transaction
753  *
754  * It is used when we want to commit the current the transaction, but
755  * don't want to start a new one.
756  *
757  * Note: If this function return -ENOENT, it just means there is no
758  * running transaction. But it is possible that the inactive transaction
759  * is still in the memory, not fully on disk. If you hope there is no
760  * inactive transaction in the fs when -ENOENT is returned, you should
761  * invoke
762  *     btrfs_attach_transaction_barrier()
763  */
764 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
765 {
766 	return start_transaction(root, 0, TRANS_ATTACH,
767 				 BTRFS_RESERVE_NO_FLUSH, true);
768 }
769 
770 /*
771  * btrfs_attach_transaction_barrier() - catch the running transaction
772  *
773  * It is similar to the above function, the difference is this one
774  * will wait for all the inactive transactions until they fully
775  * complete.
776  */
777 struct btrfs_trans_handle *
778 btrfs_attach_transaction_barrier(struct btrfs_root *root)
779 {
780 	struct btrfs_trans_handle *trans;
781 
782 	trans = start_transaction(root, 0, TRANS_ATTACH,
783 				  BTRFS_RESERVE_NO_FLUSH, true);
784 	if (trans == ERR_PTR(-ENOENT))
785 		btrfs_wait_for_commit(root->fs_info, 0);
786 
787 	return trans;
788 }
789 
790 /* wait for a transaction commit to be fully complete */
791 static noinline void wait_for_commit(struct btrfs_transaction *commit)
792 {
793 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
794 }
795 
796 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
797 {
798 	struct btrfs_transaction *cur_trans = NULL, *t;
799 	int ret = 0;
800 
801 	if (transid) {
802 		if (transid <= fs_info->last_trans_committed)
803 			goto out;
804 
805 		/* find specified transaction */
806 		spin_lock(&fs_info->trans_lock);
807 		list_for_each_entry(t, &fs_info->trans_list, list) {
808 			if (t->transid == transid) {
809 				cur_trans = t;
810 				refcount_inc(&cur_trans->use_count);
811 				ret = 0;
812 				break;
813 			}
814 			if (t->transid > transid) {
815 				ret = 0;
816 				break;
817 			}
818 		}
819 		spin_unlock(&fs_info->trans_lock);
820 
821 		/*
822 		 * The specified transaction doesn't exist, or we
823 		 * raced with btrfs_commit_transaction
824 		 */
825 		if (!cur_trans) {
826 			if (transid > fs_info->last_trans_committed)
827 				ret = -EINVAL;
828 			goto out;
829 		}
830 	} else {
831 		/* find newest transaction that is committing | committed */
832 		spin_lock(&fs_info->trans_lock);
833 		list_for_each_entry_reverse(t, &fs_info->trans_list,
834 					    list) {
835 			if (t->state >= TRANS_STATE_COMMIT_START) {
836 				if (t->state == TRANS_STATE_COMPLETED)
837 					break;
838 				cur_trans = t;
839 				refcount_inc(&cur_trans->use_count);
840 				break;
841 			}
842 		}
843 		spin_unlock(&fs_info->trans_lock);
844 		if (!cur_trans)
845 			goto out;  /* nothing committing|committed */
846 	}
847 
848 	wait_for_commit(cur_trans);
849 	btrfs_put_transaction(cur_trans);
850 out:
851 	return ret;
852 }
853 
854 void btrfs_throttle(struct btrfs_fs_info *fs_info)
855 {
856 	wait_current_trans(fs_info);
857 }
858 
859 static int should_end_transaction(struct btrfs_trans_handle *trans)
860 {
861 	struct btrfs_fs_info *fs_info = trans->fs_info;
862 
863 	if (btrfs_check_space_for_delayed_refs(fs_info))
864 		return 1;
865 
866 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
867 }
868 
869 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
870 {
871 	struct btrfs_transaction *cur_trans = trans->transaction;
872 
873 	smp_mb();
874 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
875 	    cur_trans->delayed_refs.flushing)
876 		return 1;
877 
878 	return should_end_transaction(trans);
879 }
880 
881 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
882 
883 {
884 	struct btrfs_fs_info *fs_info = trans->fs_info;
885 
886 	if (!trans->block_rsv) {
887 		ASSERT(!trans->bytes_reserved);
888 		return;
889 	}
890 
891 	if (!trans->bytes_reserved)
892 		return;
893 
894 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
895 	trace_btrfs_space_reservation(fs_info, "transaction",
896 				      trans->transid, trans->bytes_reserved, 0);
897 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
898 				trans->bytes_reserved, NULL);
899 	trans->bytes_reserved = 0;
900 }
901 
902 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
903 				   int throttle)
904 {
905 	struct btrfs_fs_info *info = trans->fs_info;
906 	struct btrfs_transaction *cur_trans = trans->transaction;
907 	int err = 0;
908 
909 	if (refcount_read(&trans->use_count) > 1) {
910 		refcount_dec(&trans->use_count);
911 		trans->block_rsv = trans->orig_rsv;
912 		return 0;
913 	}
914 
915 	btrfs_trans_release_metadata(trans);
916 	trans->block_rsv = NULL;
917 
918 	btrfs_create_pending_block_groups(trans);
919 
920 	btrfs_trans_release_chunk_metadata(trans);
921 
922 	if (trans->type & __TRANS_FREEZABLE)
923 		sb_end_intwrite(info->sb);
924 
925 	WARN_ON(cur_trans != info->running_transaction);
926 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
927 	atomic_dec(&cur_trans->num_writers);
928 	extwriter_counter_dec(cur_trans, trans->type);
929 
930 	cond_wake_up(&cur_trans->writer_wait);
931 	btrfs_put_transaction(cur_trans);
932 
933 	if (current->journal_info == trans)
934 		current->journal_info = NULL;
935 
936 	if (throttle)
937 		btrfs_run_delayed_iputs(info);
938 
939 	if (TRANS_ABORTED(trans) ||
940 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
941 		wake_up_process(info->transaction_kthread);
942 		if (TRANS_ABORTED(trans))
943 			err = trans->aborted;
944 		else
945 			err = -EROFS;
946 	}
947 
948 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
949 	return err;
950 }
951 
952 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
953 {
954 	return __btrfs_end_transaction(trans, 0);
955 }
956 
957 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
958 {
959 	return __btrfs_end_transaction(trans, 1);
960 }
961 
962 /*
963  * when btree blocks are allocated, they have some corresponding bits set for
964  * them in one of two extent_io trees.  This is used to make sure all of
965  * those extents are sent to disk but does not wait on them
966  */
967 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
968 			       struct extent_io_tree *dirty_pages, int mark)
969 {
970 	int err = 0;
971 	int werr = 0;
972 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
973 	struct extent_state *cached_state = NULL;
974 	u64 start = 0;
975 	u64 end;
976 
977 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
978 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
979 				      mark, &cached_state)) {
980 		bool wait_writeback = false;
981 
982 		err = convert_extent_bit(dirty_pages, start, end,
983 					 EXTENT_NEED_WAIT,
984 					 mark, &cached_state);
985 		/*
986 		 * convert_extent_bit can return -ENOMEM, which is most of the
987 		 * time a temporary error. So when it happens, ignore the error
988 		 * and wait for writeback of this range to finish - because we
989 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
990 		 * to __btrfs_wait_marked_extents() would not know that
991 		 * writeback for this range started and therefore wouldn't
992 		 * wait for it to finish - we don't want to commit a
993 		 * superblock that points to btree nodes/leafs for which
994 		 * writeback hasn't finished yet (and without errors).
995 		 * We cleanup any entries left in the io tree when committing
996 		 * the transaction (through extent_io_tree_release()).
997 		 */
998 		if (err == -ENOMEM) {
999 			err = 0;
1000 			wait_writeback = true;
1001 		}
1002 		if (!err)
1003 			err = filemap_fdatawrite_range(mapping, start, end);
1004 		if (err)
1005 			werr = err;
1006 		else if (wait_writeback)
1007 			werr = filemap_fdatawait_range(mapping, start, end);
1008 		free_extent_state(cached_state);
1009 		cached_state = NULL;
1010 		cond_resched();
1011 		start = end + 1;
1012 	}
1013 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1014 	return werr;
1015 }
1016 
1017 /*
1018  * when btree blocks are allocated, they have some corresponding bits set for
1019  * them in one of two extent_io trees.  This is used to make sure all of
1020  * those extents are on disk for transaction or log commit.  We wait
1021  * on all the pages and clear them from the dirty pages state tree
1022  */
1023 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1024 				       struct extent_io_tree *dirty_pages)
1025 {
1026 	int err = 0;
1027 	int werr = 0;
1028 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1029 	struct extent_state *cached_state = NULL;
1030 	u64 start = 0;
1031 	u64 end;
1032 
1033 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1034 				      EXTENT_NEED_WAIT, &cached_state)) {
1035 		/*
1036 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1037 		 * When committing the transaction, we'll remove any entries
1038 		 * left in the io tree. For a log commit, we don't remove them
1039 		 * after committing the log because the tree can be accessed
1040 		 * concurrently - we do it only at transaction commit time when
1041 		 * it's safe to do it (through extent_io_tree_release()).
1042 		 */
1043 		err = clear_extent_bit(dirty_pages, start, end,
1044 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1045 		if (err == -ENOMEM)
1046 			err = 0;
1047 		if (!err)
1048 			err = filemap_fdatawait_range(mapping, start, end);
1049 		if (err)
1050 			werr = err;
1051 		free_extent_state(cached_state);
1052 		cached_state = NULL;
1053 		cond_resched();
1054 		start = end + 1;
1055 	}
1056 	if (err)
1057 		werr = err;
1058 	return werr;
1059 }
1060 
1061 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1062 		       struct extent_io_tree *dirty_pages)
1063 {
1064 	bool errors = false;
1065 	int err;
1066 
1067 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1068 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1069 		errors = true;
1070 
1071 	if (errors && !err)
1072 		err = -EIO;
1073 	return err;
1074 }
1075 
1076 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1077 {
1078 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1079 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1080 	bool errors = false;
1081 	int err;
1082 
1083 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1084 
1085 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1086 	if ((mark & EXTENT_DIRTY) &&
1087 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1088 		errors = true;
1089 
1090 	if ((mark & EXTENT_NEW) &&
1091 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1092 		errors = true;
1093 
1094 	if (errors && !err)
1095 		err = -EIO;
1096 	return err;
1097 }
1098 
1099 /*
1100  * When btree blocks are allocated the corresponding extents are marked dirty.
1101  * This function ensures such extents are persisted on disk for transaction or
1102  * log commit.
1103  *
1104  * @trans: transaction whose dirty pages we'd like to write
1105  */
1106 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1107 {
1108 	int ret;
1109 	int ret2;
1110 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1111 	struct btrfs_fs_info *fs_info = trans->fs_info;
1112 	struct blk_plug plug;
1113 
1114 	blk_start_plug(&plug);
1115 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1116 	blk_finish_plug(&plug);
1117 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1118 
1119 	extent_io_tree_release(&trans->transaction->dirty_pages);
1120 
1121 	if (ret)
1122 		return ret;
1123 	else if (ret2)
1124 		return ret2;
1125 	else
1126 		return 0;
1127 }
1128 
1129 /*
1130  * this is used to update the root pointer in the tree of tree roots.
1131  *
1132  * But, in the case of the extent allocation tree, updating the root
1133  * pointer may allocate blocks which may change the root of the extent
1134  * allocation tree.
1135  *
1136  * So, this loops and repeats and makes sure the cowonly root didn't
1137  * change while the root pointer was being updated in the metadata.
1138  */
1139 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1140 			       struct btrfs_root *root)
1141 {
1142 	int ret;
1143 	u64 old_root_bytenr;
1144 	u64 old_root_used;
1145 	struct btrfs_fs_info *fs_info = root->fs_info;
1146 	struct btrfs_root *tree_root = fs_info->tree_root;
1147 
1148 	old_root_used = btrfs_root_used(&root->root_item);
1149 
1150 	while (1) {
1151 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1152 		if (old_root_bytenr == root->node->start &&
1153 		    old_root_used == btrfs_root_used(&root->root_item))
1154 			break;
1155 
1156 		btrfs_set_root_node(&root->root_item, root->node);
1157 		ret = btrfs_update_root(trans, tree_root,
1158 					&root->root_key,
1159 					&root->root_item);
1160 		if (ret)
1161 			return ret;
1162 
1163 		old_root_used = btrfs_root_used(&root->root_item);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * update all the cowonly tree roots on disk
1171  *
1172  * The error handling in this function may not be obvious. Any of the
1173  * failures will cause the file system to go offline. We still need
1174  * to clean up the delayed refs.
1175  */
1176 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1177 {
1178 	struct btrfs_fs_info *fs_info = trans->fs_info;
1179 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1180 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1181 	struct list_head *next;
1182 	struct extent_buffer *eb;
1183 	int ret;
1184 
1185 	eb = btrfs_lock_root_node(fs_info->tree_root);
1186 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1187 			      0, &eb, BTRFS_NESTING_COW);
1188 	btrfs_tree_unlock(eb);
1189 	free_extent_buffer(eb);
1190 
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1195 	if (ret)
1196 		return ret;
1197 
1198 	ret = btrfs_run_dev_stats(trans);
1199 	if (ret)
1200 		return ret;
1201 	ret = btrfs_run_dev_replace(trans);
1202 	if (ret)
1203 		return ret;
1204 	ret = btrfs_run_qgroups(trans);
1205 	if (ret)
1206 		return ret;
1207 
1208 	ret = btrfs_setup_space_cache(trans);
1209 	if (ret)
1210 		return ret;
1211 
1212 	/* run_qgroups might have added some more refs */
1213 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1214 	if (ret)
1215 		return ret;
1216 again:
1217 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1218 		struct btrfs_root *root;
1219 		next = fs_info->dirty_cowonly_roots.next;
1220 		list_del_init(next);
1221 		root = list_entry(next, struct btrfs_root, dirty_list);
1222 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1223 
1224 		if (root != fs_info->extent_root)
1225 			list_add_tail(&root->dirty_list,
1226 				      &trans->transaction->switch_commits);
1227 		ret = update_cowonly_root(trans, root);
1228 		if (ret)
1229 			return ret;
1230 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1231 		if (ret)
1232 			return ret;
1233 	}
1234 
1235 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1236 		ret = btrfs_write_dirty_block_groups(trans);
1237 		if (ret)
1238 			return ret;
1239 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1240 		if (ret)
1241 			return ret;
1242 	}
1243 
1244 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1245 		goto again;
1246 
1247 	list_add_tail(&fs_info->extent_root->dirty_list,
1248 		      &trans->transaction->switch_commits);
1249 
1250 	/* Update dev-replace pointer once everything is committed */
1251 	fs_info->dev_replace.committed_cursor_left =
1252 		fs_info->dev_replace.cursor_left_last_write_of_item;
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * dead roots are old snapshots that need to be deleted.  This allocates
1259  * a dirty root struct and adds it into the list of dead roots that need to
1260  * be deleted
1261  */
1262 void btrfs_add_dead_root(struct btrfs_root *root)
1263 {
1264 	struct btrfs_fs_info *fs_info = root->fs_info;
1265 
1266 	spin_lock(&fs_info->trans_lock);
1267 	if (list_empty(&root->root_list)) {
1268 		btrfs_grab_root(root);
1269 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1270 	}
1271 	spin_unlock(&fs_info->trans_lock);
1272 }
1273 
1274 /*
1275  * update all the cowonly tree roots on disk
1276  */
1277 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1278 {
1279 	struct btrfs_fs_info *fs_info = trans->fs_info;
1280 	struct btrfs_root *gang[8];
1281 	int i;
1282 	int ret;
1283 	int err = 0;
1284 
1285 	spin_lock(&fs_info->fs_roots_radix_lock);
1286 	while (1) {
1287 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1288 						 (void **)gang, 0,
1289 						 ARRAY_SIZE(gang),
1290 						 BTRFS_ROOT_TRANS_TAG);
1291 		if (ret == 0)
1292 			break;
1293 		for (i = 0; i < ret; i++) {
1294 			struct btrfs_root *root = gang[i];
1295 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1296 					(unsigned long)root->root_key.objectid,
1297 					BTRFS_ROOT_TRANS_TAG);
1298 			spin_unlock(&fs_info->fs_roots_radix_lock);
1299 
1300 			btrfs_free_log(trans, root);
1301 			btrfs_update_reloc_root(trans, root);
1302 
1303 			btrfs_save_ino_cache(root, trans);
1304 
1305 			/* see comments in should_cow_block() */
1306 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1307 			smp_mb__after_atomic();
1308 
1309 			if (root->commit_root != root->node) {
1310 				list_add_tail(&root->dirty_list,
1311 					&trans->transaction->switch_commits);
1312 				btrfs_set_root_node(&root->root_item,
1313 						    root->node);
1314 			}
1315 
1316 			err = btrfs_update_root(trans, fs_info->tree_root,
1317 						&root->root_key,
1318 						&root->root_item);
1319 			spin_lock(&fs_info->fs_roots_radix_lock);
1320 			if (err)
1321 				break;
1322 			btrfs_qgroup_free_meta_all_pertrans(root);
1323 		}
1324 	}
1325 	spin_unlock(&fs_info->fs_roots_radix_lock);
1326 	return err;
1327 }
1328 
1329 /*
1330  * defrag a given btree.
1331  * Every leaf in the btree is read and defragged.
1332  */
1333 int btrfs_defrag_root(struct btrfs_root *root)
1334 {
1335 	struct btrfs_fs_info *info = root->fs_info;
1336 	struct btrfs_trans_handle *trans;
1337 	int ret;
1338 
1339 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1340 		return 0;
1341 
1342 	while (1) {
1343 		trans = btrfs_start_transaction(root, 0);
1344 		if (IS_ERR(trans))
1345 			return PTR_ERR(trans);
1346 
1347 		ret = btrfs_defrag_leaves(trans, root);
1348 
1349 		btrfs_end_transaction(trans);
1350 		btrfs_btree_balance_dirty(info);
1351 		cond_resched();
1352 
1353 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1354 			break;
1355 
1356 		if (btrfs_defrag_cancelled(info)) {
1357 			btrfs_debug(info, "defrag_root cancelled");
1358 			ret = -EAGAIN;
1359 			break;
1360 		}
1361 	}
1362 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1363 	return ret;
1364 }
1365 
1366 /*
1367  * Do all special snapshot related qgroup dirty hack.
1368  *
1369  * Will do all needed qgroup inherit and dirty hack like switch commit
1370  * roots inside one transaction and write all btree into disk, to make
1371  * qgroup works.
1372  */
1373 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1374 				   struct btrfs_root *src,
1375 				   struct btrfs_root *parent,
1376 				   struct btrfs_qgroup_inherit *inherit,
1377 				   u64 dst_objectid)
1378 {
1379 	struct btrfs_fs_info *fs_info = src->fs_info;
1380 	int ret;
1381 
1382 	/*
1383 	 * Save some performance in the case that qgroups are not
1384 	 * enabled. If this check races with the ioctl, rescan will
1385 	 * kick in anyway.
1386 	 */
1387 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1388 		return 0;
1389 
1390 	/*
1391 	 * Ensure dirty @src will be committed.  Or, after coming
1392 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1393 	 * recorded root will never be updated again, causing an outdated root
1394 	 * item.
1395 	 */
1396 	record_root_in_trans(trans, src, 1);
1397 
1398 	/*
1399 	 * We are going to commit transaction, see btrfs_commit_transaction()
1400 	 * comment for reason locking tree_log_mutex
1401 	 */
1402 	mutex_lock(&fs_info->tree_log_mutex);
1403 
1404 	ret = commit_fs_roots(trans);
1405 	if (ret)
1406 		goto out;
1407 	ret = btrfs_qgroup_account_extents(trans);
1408 	if (ret < 0)
1409 		goto out;
1410 
1411 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1412 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1413 				   inherit);
1414 	if (ret < 0)
1415 		goto out;
1416 
1417 	/*
1418 	 * Now we do a simplified commit transaction, which will:
1419 	 * 1) commit all subvolume and extent tree
1420 	 *    To ensure all subvolume and extent tree have a valid
1421 	 *    commit_root to accounting later insert_dir_item()
1422 	 * 2) write all btree blocks onto disk
1423 	 *    This is to make sure later btree modification will be cowed
1424 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1425 	 * In this simplified commit, we don't really care about other trees
1426 	 * like chunk and root tree, as they won't affect qgroup.
1427 	 * And we don't write super to avoid half committed status.
1428 	 */
1429 	ret = commit_cowonly_roots(trans);
1430 	if (ret)
1431 		goto out;
1432 	switch_commit_roots(trans);
1433 	ret = btrfs_write_and_wait_transaction(trans);
1434 	if (ret)
1435 		btrfs_handle_fs_error(fs_info, ret,
1436 			"Error while writing out transaction for qgroup");
1437 
1438 out:
1439 	mutex_unlock(&fs_info->tree_log_mutex);
1440 
1441 	/*
1442 	 * Force parent root to be updated, as we recorded it before so its
1443 	 * last_trans == cur_transid.
1444 	 * Or it won't be committed again onto disk after later
1445 	 * insert_dir_item()
1446 	 */
1447 	if (!ret)
1448 		record_root_in_trans(trans, parent, 1);
1449 	return ret;
1450 }
1451 
1452 /*
1453  * new snapshots need to be created at a very specific time in the
1454  * transaction commit.  This does the actual creation.
1455  *
1456  * Note:
1457  * If the error which may affect the commitment of the current transaction
1458  * happens, we should return the error number. If the error which just affect
1459  * the creation of the pending snapshots, just return 0.
1460  */
1461 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1462 				   struct btrfs_pending_snapshot *pending)
1463 {
1464 
1465 	struct btrfs_fs_info *fs_info = trans->fs_info;
1466 	struct btrfs_key key;
1467 	struct btrfs_root_item *new_root_item;
1468 	struct btrfs_root *tree_root = fs_info->tree_root;
1469 	struct btrfs_root *root = pending->root;
1470 	struct btrfs_root *parent_root;
1471 	struct btrfs_block_rsv *rsv;
1472 	struct inode *parent_inode;
1473 	struct btrfs_path *path;
1474 	struct btrfs_dir_item *dir_item;
1475 	struct dentry *dentry;
1476 	struct extent_buffer *tmp;
1477 	struct extent_buffer *old;
1478 	struct timespec64 cur_time;
1479 	int ret = 0;
1480 	u64 to_reserve = 0;
1481 	u64 index = 0;
1482 	u64 objectid;
1483 	u64 root_flags;
1484 
1485 	ASSERT(pending->path);
1486 	path = pending->path;
1487 
1488 	ASSERT(pending->root_item);
1489 	new_root_item = pending->root_item;
1490 
1491 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1492 	if (pending->error)
1493 		goto no_free_objectid;
1494 
1495 	/*
1496 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1497 	 * accounted by later btrfs_qgroup_inherit().
1498 	 */
1499 	btrfs_set_skip_qgroup(trans, objectid);
1500 
1501 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1502 
1503 	if (to_reserve > 0) {
1504 		pending->error = btrfs_block_rsv_add(root,
1505 						     &pending->block_rsv,
1506 						     to_reserve,
1507 						     BTRFS_RESERVE_NO_FLUSH);
1508 		if (pending->error)
1509 			goto clear_skip_qgroup;
1510 	}
1511 
1512 	key.objectid = objectid;
1513 	key.offset = (u64)-1;
1514 	key.type = BTRFS_ROOT_ITEM_KEY;
1515 
1516 	rsv = trans->block_rsv;
1517 	trans->block_rsv = &pending->block_rsv;
1518 	trans->bytes_reserved = trans->block_rsv->reserved;
1519 	trace_btrfs_space_reservation(fs_info, "transaction",
1520 				      trans->transid,
1521 				      trans->bytes_reserved, 1);
1522 	dentry = pending->dentry;
1523 	parent_inode = pending->dir;
1524 	parent_root = BTRFS_I(parent_inode)->root;
1525 	record_root_in_trans(trans, parent_root, 0);
1526 
1527 	cur_time = current_time(parent_inode);
1528 
1529 	/*
1530 	 * insert the directory item
1531 	 */
1532 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1533 	BUG_ON(ret); /* -ENOMEM */
1534 
1535 	/* check if there is a file/dir which has the same name. */
1536 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1537 					 btrfs_ino(BTRFS_I(parent_inode)),
1538 					 dentry->d_name.name,
1539 					 dentry->d_name.len, 0);
1540 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1541 		pending->error = -EEXIST;
1542 		goto dir_item_existed;
1543 	} else if (IS_ERR(dir_item)) {
1544 		ret = PTR_ERR(dir_item);
1545 		btrfs_abort_transaction(trans, ret);
1546 		goto fail;
1547 	}
1548 	btrfs_release_path(path);
1549 
1550 	/*
1551 	 * pull in the delayed directory update
1552 	 * and the delayed inode item
1553 	 * otherwise we corrupt the FS during
1554 	 * snapshot
1555 	 */
1556 	ret = btrfs_run_delayed_items(trans);
1557 	if (ret) {	/* Transaction aborted */
1558 		btrfs_abort_transaction(trans, ret);
1559 		goto fail;
1560 	}
1561 
1562 	record_root_in_trans(trans, root, 0);
1563 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1564 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1565 	btrfs_check_and_init_root_item(new_root_item);
1566 
1567 	root_flags = btrfs_root_flags(new_root_item);
1568 	if (pending->readonly)
1569 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1570 	else
1571 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1572 	btrfs_set_root_flags(new_root_item, root_flags);
1573 
1574 	btrfs_set_root_generation_v2(new_root_item,
1575 			trans->transid);
1576 	generate_random_guid(new_root_item->uuid);
1577 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1578 			BTRFS_UUID_SIZE);
1579 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1580 		memset(new_root_item->received_uuid, 0,
1581 		       sizeof(new_root_item->received_uuid));
1582 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1583 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1584 		btrfs_set_root_stransid(new_root_item, 0);
1585 		btrfs_set_root_rtransid(new_root_item, 0);
1586 	}
1587 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1588 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1589 	btrfs_set_root_otransid(new_root_item, trans->transid);
1590 
1591 	old = btrfs_lock_root_node(root);
1592 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1593 			      BTRFS_NESTING_COW);
1594 	if (ret) {
1595 		btrfs_tree_unlock(old);
1596 		free_extent_buffer(old);
1597 		btrfs_abort_transaction(trans, ret);
1598 		goto fail;
1599 	}
1600 
1601 	btrfs_set_lock_blocking_write(old);
1602 
1603 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1604 	/* clean up in any case */
1605 	btrfs_tree_unlock(old);
1606 	free_extent_buffer(old);
1607 	if (ret) {
1608 		btrfs_abort_transaction(trans, ret);
1609 		goto fail;
1610 	}
1611 	/* see comments in should_cow_block() */
1612 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1613 	smp_wmb();
1614 
1615 	btrfs_set_root_node(new_root_item, tmp);
1616 	/* record when the snapshot was created in key.offset */
1617 	key.offset = trans->transid;
1618 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1619 	btrfs_tree_unlock(tmp);
1620 	free_extent_buffer(tmp);
1621 	if (ret) {
1622 		btrfs_abort_transaction(trans, ret);
1623 		goto fail;
1624 	}
1625 
1626 	/*
1627 	 * insert root back/forward references
1628 	 */
1629 	ret = btrfs_add_root_ref(trans, objectid,
1630 				 parent_root->root_key.objectid,
1631 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1632 				 dentry->d_name.name, dentry->d_name.len);
1633 	if (ret) {
1634 		btrfs_abort_transaction(trans, ret);
1635 		goto fail;
1636 	}
1637 
1638 	key.offset = (u64)-1;
1639 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1640 	if (IS_ERR(pending->snap)) {
1641 		ret = PTR_ERR(pending->snap);
1642 		pending->snap = NULL;
1643 		btrfs_abort_transaction(trans, ret);
1644 		goto fail;
1645 	}
1646 
1647 	ret = btrfs_reloc_post_snapshot(trans, pending);
1648 	if (ret) {
1649 		btrfs_abort_transaction(trans, ret);
1650 		goto fail;
1651 	}
1652 
1653 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1654 	if (ret) {
1655 		btrfs_abort_transaction(trans, ret);
1656 		goto fail;
1657 	}
1658 
1659 	/*
1660 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1661 	 * snapshot hack to do fast snapshot.
1662 	 * To co-operate with that hack, we do hack again.
1663 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1664 	 */
1665 	ret = qgroup_account_snapshot(trans, root, parent_root,
1666 				      pending->inherit, objectid);
1667 	if (ret < 0)
1668 		goto fail;
1669 
1670 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1671 				    dentry->d_name.len, BTRFS_I(parent_inode),
1672 				    &key, BTRFS_FT_DIR, index);
1673 	/* We have check then name at the beginning, so it is impossible. */
1674 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1675 	if (ret) {
1676 		btrfs_abort_transaction(trans, ret);
1677 		goto fail;
1678 	}
1679 
1680 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1681 					 dentry->d_name.len * 2);
1682 	parent_inode->i_mtime = parent_inode->i_ctime =
1683 		current_time(parent_inode);
1684 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1685 	if (ret) {
1686 		btrfs_abort_transaction(trans, ret);
1687 		goto fail;
1688 	}
1689 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1690 				  BTRFS_UUID_KEY_SUBVOL,
1691 				  objectid);
1692 	if (ret) {
1693 		btrfs_abort_transaction(trans, ret);
1694 		goto fail;
1695 	}
1696 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1697 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1698 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1699 					  objectid);
1700 		if (ret && ret != -EEXIST) {
1701 			btrfs_abort_transaction(trans, ret);
1702 			goto fail;
1703 		}
1704 	}
1705 
1706 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1707 	if (ret) {
1708 		btrfs_abort_transaction(trans, ret);
1709 		goto fail;
1710 	}
1711 
1712 fail:
1713 	pending->error = ret;
1714 dir_item_existed:
1715 	trans->block_rsv = rsv;
1716 	trans->bytes_reserved = 0;
1717 clear_skip_qgroup:
1718 	btrfs_clear_skip_qgroup(trans);
1719 no_free_objectid:
1720 	kfree(new_root_item);
1721 	pending->root_item = NULL;
1722 	btrfs_free_path(path);
1723 	pending->path = NULL;
1724 
1725 	return ret;
1726 }
1727 
1728 /*
1729  * create all the snapshots we've scheduled for creation
1730  */
1731 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1732 {
1733 	struct btrfs_pending_snapshot *pending, *next;
1734 	struct list_head *head = &trans->transaction->pending_snapshots;
1735 	int ret = 0;
1736 
1737 	list_for_each_entry_safe(pending, next, head, list) {
1738 		list_del(&pending->list);
1739 		ret = create_pending_snapshot(trans, pending);
1740 		if (ret)
1741 			break;
1742 	}
1743 	return ret;
1744 }
1745 
1746 static void update_super_roots(struct btrfs_fs_info *fs_info)
1747 {
1748 	struct btrfs_root_item *root_item;
1749 	struct btrfs_super_block *super;
1750 
1751 	super = fs_info->super_copy;
1752 
1753 	root_item = &fs_info->chunk_root->root_item;
1754 	super->chunk_root = root_item->bytenr;
1755 	super->chunk_root_generation = root_item->generation;
1756 	super->chunk_root_level = root_item->level;
1757 
1758 	root_item = &fs_info->tree_root->root_item;
1759 	super->root = root_item->bytenr;
1760 	super->generation = root_item->generation;
1761 	super->root_level = root_item->level;
1762 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1763 		super->cache_generation = root_item->generation;
1764 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1765 		super->uuid_tree_generation = root_item->generation;
1766 }
1767 
1768 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1769 {
1770 	struct btrfs_transaction *trans;
1771 	int ret = 0;
1772 
1773 	spin_lock(&info->trans_lock);
1774 	trans = info->running_transaction;
1775 	if (trans)
1776 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1777 	spin_unlock(&info->trans_lock);
1778 	return ret;
1779 }
1780 
1781 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1782 {
1783 	struct btrfs_transaction *trans;
1784 	int ret = 0;
1785 
1786 	spin_lock(&info->trans_lock);
1787 	trans = info->running_transaction;
1788 	if (trans)
1789 		ret = is_transaction_blocked(trans);
1790 	spin_unlock(&info->trans_lock);
1791 	return ret;
1792 }
1793 
1794 /*
1795  * wait for the current transaction commit to start and block subsequent
1796  * transaction joins
1797  */
1798 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1799 					    struct btrfs_transaction *trans)
1800 {
1801 	wait_event(fs_info->transaction_blocked_wait,
1802 		   trans->state >= TRANS_STATE_COMMIT_START ||
1803 		   TRANS_ABORTED(trans));
1804 }
1805 
1806 /*
1807  * wait for the current transaction to start and then become unblocked.
1808  * caller holds ref.
1809  */
1810 static void wait_current_trans_commit_start_and_unblock(
1811 					struct btrfs_fs_info *fs_info,
1812 					struct btrfs_transaction *trans)
1813 {
1814 	wait_event(fs_info->transaction_wait,
1815 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1816 		   TRANS_ABORTED(trans));
1817 }
1818 
1819 /*
1820  * commit transactions asynchronously. once btrfs_commit_transaction_async
1821  * returns, any subsequent transaction will not be allowed to join.
1822  */
1823 struct btrfs_async_commit {
1824 	struct btrfs_trans_handle *newtrans;
1825 	struct work_struct work;
1826 };
1827 
1828 static void do_async_commit(struct work_struct *work)
1829 {
1830 	struct btrfs_async_commit *ac =
1831 		container_of(work, struct btrfs_async_commit, work);
1832 
1833 	/*
1834 	 * We've got freeze protection passed with the transaction.
1835 	 * Tell lockdep about it.
1836 	 */
1837 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1838 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1839 
1840 	current->journal_info = ac->newtrans;
1841 
1842 	btrfs_commit_transaction(ac->newtrans);
1843 	kfree(ac);
1844 }
1845 
1846 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1847 				   int wait_for_unblock)
1848 {
1849 	struct btrfs_fs_info *fs_info = trans->fs_info;
1850 	struct btrfs_async_commit *ac;
1851 	struct btrfs_transaction *cur_trans;
1852 
1853 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1854 	if (!ac)
1855 		return -ENOMEM;
1856 
1857 	INIT_WORK(&ac->work, do_async_commit);
1858 	ac->newtrans = btrfs_join_transaction(trans->root);
1859 	if (IS_ERR(ac->newtrans)) {
1860 		int err = PTR_ERR(ac->newtrans);
1861 		kfree(ac);
1862 		return err;
1863 	}
1864 
1865 	/* take transaction reference */
1866 	cur_trans = trans->transaction;
1867 	refcount_inc(&cur_trans->use_count);
1868 
1869 	btrfs_end_transaction(trans);
1870 
1871 	/*
1872 	 * Tell lockdep we've released the freeze rwsem, since the
1873 	 * async commit thread will be the one to unlock it.
1874 	 */
1875 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1876 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1877 
1878 	schedule_work(&ac->work);
1879 
1880 	/* wait for transaction to start and unblock */
1881 	if (wait_for_unblock)
1882 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1883 	else
1884 		wait_current_trans_commit_start(fs_info, cur_trans);
1885 
1886 	if (current->journal_info == trans)
1887 		current->journal_info = NULL;
1888 
1889 	btrfs_put_transaction(cur_trans);
1890 	return 0;
1891 }
1892 
1893 
1894 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1895 {
1896 	struct btrfs_fs_info *fs_info = trans->fs_info;
1897 	struct btrfs_transaction *cur_trans = trans->transaction;
1898 
1899 	WARN_ON(refcount_read(&trans->use_count) > 1);
1900 
1901 	btrfs_abort_transaction(trans, err);
1902 
1903 	spin_lock(&fs_info->trans_lock);
1904 
1905 	/*
1906 	 * If the transaction is removed from the list, it means this
1907 	 * transaction has been committed successfully, so it is impossible
1908 	 * to call the cleanup function.
1909 	 */
1910 	BUG_ON(list_empty(&cur_trans->list));
1911 
1912 	list_del_init(&cur_trans->list);
1913 	if (cur_trans == fs_info->running_transaction) {
1914 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1915 		spin_unlock(&fs_info->trans_lock);
1916 		wait_event(cur_trans->writer_wait,
1917 			   atomic_read(&cur_trans->num_writers) == 1);
1918 
1919 		spin_lock(&fs_info->trans_lock);
1920 	}
1921 	spin_unlock(&fs_info->trans_lock);
1922 
1923 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1924 
1925 	spin_lock(&fs_info->trans_lock);
1926 	if (cur_trans == fs_info->running_transaction)
1927 		fs_info->running_transaction = NULL;
1928 	spin_unlock(&fs_info->trans_lock);
1929 
1930 	if (trans->type & __TRANS_FREEZABLE)
1931 		sb_end_intwrite(fs_info->sb);
1932 	btrfs_put_transaction(cur_trans);
1933 	btrfs_put_transaction(cur_trans);
1934 
1935 	trace_btrfs_transaction_commit(trans->root);
1936 
1937 	if (current->journal_info == trans)
1938 		current->journal_info = NULL;
1939 	btrfs_scrub_cancel(fs_info);
1940 
1941 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942 }
1943 
1944 /*
1945  * Release reserved delayed ref space of all pending block groups of the
1946  * transaction and remove them from the list
1947  */
1948 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1949 {
1950        struct btrfs_fs_info *fs_info = trans->fs_info;
1951        struct btrfs_block_group *block_group, *tmp;
1952 
1953        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1954                btrfs_delayed_refs_rsv_release(fs_info, 1);
1955                list_del_init(&block_group->bg_list);
1956        }
1957 }
1958 
1959 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1960 {
1961 	struct btrfs_fs_info *fs_info = trans->fs_info;
1962 
1963 	/*
1964 	 * We use writeback_inodes_sb here because if we used
1965 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1966 	 * Currently are holding the fs freeze lock, if we do an async flush
1967 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1968 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1969 	 * from already being in a transaction and our join_transaction doesn't
1970 	 * have to re-take the fs freeze lock.
1971 	 */
1972 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1973 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1974 	} else {
1975 		struct btrfs_pending_snapshot *pending;
1976 		struct list_head *head = &trans->transaction->pending_snapshots;
1977 
1978 		/*
1979 		 * Flush dellaloc for any root that is going to be snapshotted.
1980 		 * This is done to avoid a corrupted version of files, in the
1981 		 * snapshots, that had both buffered and direct IO writes (even
1982 		 * if they were done sequentially) due to an unordered update of
1983 		 * the inode's size on disk.
1984 		 */
1985 		list_for_each_entry(pending, head, list) {
1986 			int ret;
1987 
1988 			ret = btrfs_start_delalloc_snapshot(pending->root);
1989 			if (ret)
1990 				return ret;
1991 		}
1992 	}
1993 	return 0;
1994 }
1995 
1996 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1997 {
1998 	struct btrfs_fs_info *fs_info = trans->fs_info;
1999 
2000 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2001 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2002 	} else {
2003 		struct btrfs_pending_snapshot *pending;
2004 		struct list_head *head = &trans->transaction->pending_snapshots;
2005 
2006 		/*
2007 		 * Wait for any dellaloc that we started previously for the roots
2008 		 * that are going to be snapshotted. This is to avoid a corrupted
2009 		 * version of files in the snapshots that had both buffered and
2010 		 * direct IO writes (even if they were done sequentially).
2011 		 */
2012 		list_for_each_entry(pending, head, list)
2013 			btrfs_wait_ordered_extents(pending->root,
2014 						   U64_MAX, 0, U64_MAX);
2015 	}
2016 }
2017 
2018 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2019 {
2020 	struct btrfs_fs_info *fs_info = trans->fs_info;
2021 	struct btrfs_transaction *cur_trans = trans->transaction;
2022 	struct btrfs_transaction *prev_trans = NULL;
2023 	int ret;
2024 
2025 	ASSERT(refcount_read(&trans->use_count) == 1);
2026 
2027 	/*
2028 	 * Some places just start a transaction to commit it.  We need to make
2029 	 * sure that if this commit fails that the abort code actually marks the
2030 	 * transaction as failed, so set trans->dirty to make the abort code do
2031 	 * the right thing.
2032 	 */
2033 	trans->dirty = true;
2034 
2035 	/* Stop the commit early if ->aborted is set */
2036 	if (TRANS_ABORTED(cur_trans)) {
2037 		ret = cur_trans->aborted;
2038 		btrfs_end_transaction(trans);
2039 		return ret;
2040 	}
2041 
2042 	btrfs_trans_release_metadata(trans);
2043 	trans->block_rsv = NULL;
2044 
2045 	/* make a pass through all the delayed refs we have so far
2046 	 * any runnings procs may add more while we are here
2047 	 */
2048 	ret = btrfs_run_delayed_refs(trans, 0);
2049 	if (ret) {
2050 		btrfs_end_transaction(trans);
2051 		return ret;
2052 	}
2053 
2054 	cur_trans = trans->transaction;
2055 
2056 	/*
2057 	 * set the flushing flag so procs in this transaction have to
2058 	 * start sending their work down.
2059 	 */
2060 	cur_trans->delayed_refs.flushing = 1;
2061 	smp_wmb();
2062 
2063 	btrfs_create_pending_block_groups(trans);
2064 
2065 	ret = btrfs_run_delayed_refs(trans, 0);
2066 	if (ret) {
2067 		btrfs_end_transaction(trans);
2068 		return ret;
2069 	}
2070 
2071 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2072 		int run_it = 0;
2073 
2074 		/* this mutex is also taken before trying to set
2075 		 * block groups readonly.  We need to make sure
2076 		 * that nobody has set a block group readonly
2077 		 * after a extents from that block group have been
2078 		 * allocated for cache files.  btrfs_set_block_group_ro
2079 		 * will wait for the transaction to commit if it
2080 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2081 		 *
2082 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2083 		 * only one process starts all the block group IO.  It wouldn't
2084 		 * hurt to have more than one go through, but there's no
2085 		 * real advantage to it either.
2086 		 */
2087 		mutex_lock(&fs_info->ro_block_group_mutex);
2088 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2089 				      &cur_trans->flags))
2090 			run_it = 1;
2091 		mutex_unlock(&fs_info->ro_block_group_mutex);
2092 
2093 		if (run_it) {
2094 			ret = btrfs_start_dirty_block_groups(trans);
2095 			if (ret) {
2096 				btrfs_end_transaction(trans);
2097 				return ret;
2098 			}
2099 		}
2100 	}
2101 
2102 	spin_lock(&fs_info->trans_lock);
2103 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2104 		spin_unlock(&fs_info->trans_lock);
2105 		refcount_inc(&cur_trans->use_count);
2106 		ret = btrfs_end_transaction(trans);
2107 
2108 		wait_for_commit(cur_trans);
2109 
2110 		if (TRANS_ABORTED(cur_trans))
2111 			ret = cur_trans->aborted;
2112 
2113 		btrfs_put_transaction(cur_trans);
2114 
2115 		return ret;
2116 	}
2117 
2118 	cur_trans->state = TRANS_STATE_COMMIT_START;
2119 	wake_up(&fs_info->transaction_blocked_wait);
2120 
2121 	if (cur_trans->list.prev != &fs_info->trans_list) {
2122 		prev_trans = list_entry(cur_trans->list.prev,
2123 					struct btrfs_transaction, list);
2124 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2125 			refcount_inc(&prev_trans->use_count);
2126 			spin_unlock(&fs_info->trans_lock);
2127 
2128 			wait_for_commit(prev_trans);
2129 			ret = READ_ONCE(prev_trans->aborted);
2130 
2131 			btrfs_put_transaction(prev_trans);
2132 			if (ret)
2133 				goto cleanup_transaction;
2134 		} else {
2135 			spin_unlock(&fs_info->trans_lock);
2136 		}
2137 	} else {
2138 		spin_unlock(&fs_info->trans_lock);
2139 		/*
2140 		 * The previous transaction was aborted and was already removed
2141 		 * from the list of transactions at fs_info->trans_list. So we
2142 		 * abort to prevent writing a new superblock that reflects a
2143 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2144 		 */
2145 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2146 			ret = -EROFS;
2147 			goto cleanup_transaction;
2148 		}
2149 	}
2150 
2151 	extwriter_counter_dec(cur_trans, trans->type);
2152 
2153 	ret = btrfs_start_delalloc_flush(trans);
2154 	if (ret)
2155 		goto cleanup_transaction;
2156 
2157 	ret = btrfs_run_delayed_items(trans);
2158 	if (ret)
2159 		goto cleanup_transaction;
2160 
2161 	wait_event(cur_trans->writer_wait,
2162 		   extwriter_counter_read(cur_trans) == 0);
2163 
2164 	/* some pending stuffs might be added after the previous flush. */
2165 	ret = btrfs_run_delayed_items(trans);
2166 	if (ret)
2167 		goto cleanup_transaction;
2168 
2169 	btrfs_wait_delalloc_flush(trans);
2170 
2171 	/*
2172 	 * Wait for all ordered extents started by a fast fsync that joined this
2173 	 * transaction. Otherwise if this transaction commits before the ordered
2174 	 * extents complete we lose logged data after a power failure.
2175 	 */
2176 	wait_event(cur_trans->pending_wait,
2177 		   atomic_read(&cur_trans->pending_ordered) == 0);
2178 
2179 	btrfs_scrub_pause(fs_info);
2180 	/*
2181 	 * Ok now we need to make sure to block out any other joins while we
2182 	 * commit the transaction.  We could have started a join before setting
2183 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2184 	 */
2185 	spin_lock(&fs_info->trans_lock);
2186 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2187 	spin_unlock(&fs_info->trans_lock);
2188 	wait_event(cur_trans->writer_wait,
2189 		   atomic_read(&cur_trans->num_writers) == 1);
2190 
2191 	if (TRANS_ABORTED(cur_trans)) {
2192 		ret = cur_trans->aborted;
2193 		goto scrub_continue;
2194 	}
2195 	/*
2196 	 * the reloc mutex makes sure that we stop
2197 	 * the balancing code from coming in and moving
2198 	 * extents around in the middle of the commit
2199 	 */
2200 	mutex_lock(&fs_info->reloc_mutex);
2201 
2202 	/*
2203 	 * We needn't worry about the delayed items because we will
2204 	 * deal with them in create_pending_snapshot(), which is the
2205 	 * core function of the snapshot creation.
2206 	 */
2207 	ret = create_pending_snapshots(trans);
2208 	if (ret)
2209 		goto unlock_reloc;
2210 
2211 	/*
2212 	 * We insert the dir indexes of the snapshots and update the inode
2213 	 * of the snapshots' parents after the snapshot creation, so there
2214 	 * are some delayed items which are not dealt with. Now deal with
2215 	 * them.
2216 	 *
2217 	 * We needn't worry that this operation will corrupt the snapshots,
2218 	 * because all the tree which are snapshoted will be forced to COW
2219 	 * the nodes and leaves.
2220 	 */
2221 	ret = btrfs_run_delayed_items(trans);
2222 	if (ret)
2223 		goto unlock_reloc;
2224 
2225 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2226 	if (ret)
2227 		goto unlock_reloc;
2228 
2229 	/*
2230 	 * make sure none of the code above managed to slip in a
2231 	 * delayed item
2232 	 */
2233 	btrfs_assert_delayed_root_empty(fs_info);
2234 
2235 	WARN_ON(cur_trans != trans->transaction);
2236 
2237 	/* btrfs_commit_tree_roots is responsible for getting the
2238 	 * various roots consistent with each other.  Every pointer
2239 	 * in the tree of tree roots has to point to the most up to date
2240 	 * root for every subvolume and other tree.  So, we have to keep
2241 	 * the tree logging code from jumping in and changing any
2242 	 * of the trees.
2243 	 *
2244 	 * At this point in the commit, there can't be any tree-log
2245 	 * writers, but a little lower down we drop the trans mutex
2246 	 * and let new people in.  By holding the tree_log_mutex
2247 	 * from now until after the super is written, we avoid races
2248 	 * with the tree-log code.
2249 	 */
2250 	mutex_lock(&fs_info->tree_log_mutex);
2251 
2252 	ret = commit_fs_roots(trans);
2253 	if (ret)
2254 		goto unlock_tree_log;
2255 
2256 	/*
2257 	 * Since the transaction is done, we can apply the pending changes
2258 	 * before the next transaction.
2259 	 */
2260 	btrfs_apply_pending_changes(fs_info);
2261 
2262 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2263 	 * safe to free the root of tree log roots
2264 	 */
2265 	btrfs_free_log_root_tree(trans, fs_info);
2266 
2267 	/*
2268 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2269 	 * new delayed refs. Must handle them or qgroup can be wrong.
2270 	 */
2271 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2272 	if (ret)
2273 		goto unlock_tree_log;
2274 
2275 	/*
2276 	 * Since fs roots are all committed, we can get a quite accurate
2277 	 * new_roots. So let's do quota accounting.
2278 	 */
2279 	ret = btrfs_qgroup_account_extents(trans);
2280 	if (ret < 0)
2281 		goto unlock_tree_log;
2282 
2283 	ret = commit_cowonly_roots(trans);
2284 	if (ret)
2285 		goto unlock_tree_log;
2286 
2287 	/*
2288 	 * The tasks which save the space cache and inode cache may also
2289 	 * update ->aborted, check it.
2290 	 */
2291 	if (TRANS_ABORTED(cur_trans)) {
2292 		ret = cur_trans->aborted;
2293 		goto unlock_tree_log;
2294 	}
2295 
2296 	btrfs_prepare_extent_commit(fs_info);
2297 
2298 	cur_trans = fs_info->running_transaction;
2299 
2300 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2301 			    fs_info->tree_root->node);
2302 	list_add_tail(&fs_info->tree_root->dirty_list,
2303 		      &cur_trans->switch_commits);
2304 
2305 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2306 			    fs_info->chunk_root->node);
2307 	list_add_tail(&fs_info->chunk_root->dirty_list,
2308 		      &cur_trans->switch_commits);
2309 
2310 	switch_commit_roots(trans);
2311 
2312 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2313 	ASSERT(list_empty(&cur_trans->io_bgs));
2314 	update_super_roots(fs_info);
2315 
2316 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2317 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2318 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2319 	       sizeof(*fs_info->super_copy));
2320 
2321 	btrfs_commit_device_sizes(cur_trans);
2322 
2323 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2324 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2325 
2326 	btrfs_trans_release_chunk_metadata(trans);
2327 
2328 	spin_lock(&fs_info->trans_lock);
2329 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2330 	fs_info->running_transaction = NULL;
2331 	spin_unlock(&fs_info->trans_lock);
2332 	mutex_unlock(&fs_info->reloc_mutex);
2333 
2334 	wake_up(&fs_info->transaction_wait);
2335 
2336 	ret = btrfs_write_and_wait_transaction(trans);
2337 	if (ret) {
2338 		btrfs_handle_fs_error(fs_info, ret,
2339 				      "Error while writing out transaction");
2340 		/*
2341 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2342 		 * but we can't jump to unlock_tree_log causing double unlock
2343 		 */
2344 		mutex_unlock(&fs_info->tree_log_mutex);
2345 		goto scrub_continue;
2346 	}
2347 
2348 	ret = write_all_supers(fs_info, 0);
2349 	/*
2350 	 * the super is written, we can safely allow the tree-loggers
2351 	 * to go about their business
2352 	 */
2353 	mutex_unlock(&fs_info->tree_log_mutex);
2354 	if (ret)
2355 		goto scrub_continue;
2356 
2357 	btrfs_finish_extent_commit(trans);
2358 
2359 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2360 		btrfs_clear_space_info_full(fs_info);
2361 
2362 	fs_info->last_trans_committed = cur_trans->transid;
2363 	/*
2364 	 * We needn't acquire the lock here because there is no other task
2365 	 * which can change it.
2366 	 */
2367 	cur_trans->state = TRANS_STATE_COMPLETED;
2368 	wake_up(&cur_trans->commit_wait);
2369 
2370 	spin_lock(&fs_info->trans_lock);
2371 	list_del_init(&cur_trans->list);
2372 	spin_unlock(&fs_info->trans_lock);
2373 
2374 	btrfs_put_transaction(cur_trans);
2375 	btrfs_put_transaction(cur_trans);
2376 
2377 	if (trans->type & __TRANS_FREEZABLE)
2378 		sb_end_intwrite(fs_info->sb);
2379 
2380 	trace_btrfs_transaction_commit(trans->root);
2381 
2382 	btrfs_scrub_continue(fs_info);
2383 
2384 	if (current->journal_info == trans)
2385 		current->journal_info = NULL;
2386 
2387 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2388 
2389 	return ret;
2390 
2391 unlock_tree_log:
2392 	mutex_unlock(&fs_info->tree_log_mutex);
2393 unlock_reloc:
2394 	mutex_unlock(&fs_info->reloc_mutex);
2395 scrub_continue:
2396 	btrfs_scrub_continue(fs_info);
2397 cleanup_transaction:
2398 	btrfs_trans_release_metadata(trans);
2399 	btrfs_cleanup_pending_block_groups(trans);
2400 	btrfs_trans_release_chunk_metadata(trans);
2401 	trans->block_rsv = NULL;
2402 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2403 	if (current->journal_info == trans)
2404 		current->journal_info = NULL;
2405 	cleanup_transaction(trans, ret);
2406 
2407 	return ret;
2408 }
2409 
2410 /*
2411  * return < 0 if error
2412  * 0 if there are no more dead_roots at the time of call
2413  * 1 there are more to be processed, call me again
2414  *
2415  * The return value indicates there are certainly more snapshots to delete, but
2416  * if there comes a new one during processing, it may return 0. We don't mind,
2417  * because btrfs_commit_super will poke cleaner thread and it will process it a
2418  * few seconds later.
2419  */
2420 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2421 {
2422 	int ret;
2423 	struct btrfs_fs_info *fs_info = root->fs_info;
2424 
2425 	spin_lock(&fs_info->trans_lock);
2426 	if (list_empty(&fs_info->dead_roots)) {
2427 		spin_unlock(&fs_info->trans_lock);
2428 		return 0;
2429 	}
2430 	root = list_first_entry(&fs_info->dead_roots,
2431 			struct btrfs_root, root_list);
2432 	list_del_init(&root->root_list);
2433 	spin_unlock(&fs_info->trans_lock);
2434 
2435 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2436 
2437 	btrfs_kill_all_delayed_nodes(root);
2438 	if (root->ino_cache_inode) {
2439 		iput(root->ino_cache_inode);
2440 		root->ino_cache_inode = NULL;
2441 	}
2442 
2443 	if (btrfs_header_backref_rev(root->node) <
2444 			BTRFS_MIXED_BACKREF_REV)
2445 		ret = btrfs_drop_snapshot(root, 0, 0);
2446 	else
2447 		ret = btrfs_drop_snapshot(root, 1, 0);
2448 
2449 	btrfs_put_root(root);
2450 	return (ret < 0) ? 0 : 1;
2451 }
2452 
2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2454 {
2455 	unsigned long prev;
2456 	unsigned long bit;
2457 
2458 	prev = xchg(&fs_info->pending_changes, 0);
2459 	if (!prev)
2460 		return;
2461 
2462 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2463 	if (prev & bit)
2464 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2465 	prev &= ~bit;
2466 
2467 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2468 	if (prev & bit)
2469 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2470 	prev &= ~bit;
2471 
2472 	bit = 1 << BTRFS_PENDING_COMMIT;
2473 	if (prev & bit)
2474 		btrfs_debug(fs_info, "pending commit done");
2475 	prev &= ~bit;
2476 
2477 	if (prev)
2478 		btrfs_warn(fs_info,
2479 			"unknown pending changes left 0x%lx, ignoring", prev);
2480 }
2481