xref: /linux/fs/btrfs/transaction.c (revision 36ec807b627b4c0a0a382f0ae48eac7187d14b2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37 
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |						    Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update	    |
98  * | super blocks.				    |
99  * |						    |
100  * | At this stage, new transaction is allowed to   |
101  * | start.					    |
102  * | All new start_transaction() calls will be	    |
103  * | attached to transid N+1.			    |
104  * |						    |
105  * | To next stage:				    |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices			    |
108  * V						    |
109  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.	    | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 	[TRANS_STATE_RUNNING]		= 0U,
116 	[TRANS_STATE_COMMIT_PREP]	= 0U,
117 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
118 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
119 					   __TRANS_ATTACH |
120 					   __TRANS_JOIN |
121 					   __TRANS_JOIN_NOSTART),
122 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOLOCK |
126 					   __TRANS_JOIN_NOSTART),
127 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
128 					   __TRANS_ATTACH |
129 					   __TRANS_JOIN |
130 					   __TRANS_JOIN_NOLOCK |
131 					   __TRANS_JOIN_NOSTART),
132 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
133 					   __TRANS_ATTACH |
134 					   __TRANS_JOIN |
135 					   __TRANS_JOIN_NOLOCK |
136 					   __TRANS_JOIN_NOSTART),
137 };
138 
139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 	WARN_ON(refcount_read(&transaction->use_count) == 0);
142 	if (refcount_dec_and_test(&transaction->use_count)) {
143 		BUG_ON(!list_empty(&transaction->list));
144 		WARN_ON(!RB_EMPTY_ROOT(
145 				&transaction->delayed_refs.href_root.rb_root));
146 		WARN_ON(!RB_EMPTY_ROOT(
147 				&transaction->delayed_refs.dirty_extent_root));
148 		if (transaction->delayed_refs.pending_csums)
149 			btrfs_err(transaction->fs_info,
150 				  "pending csums is %llu",
151 				  transaction->delayed_refs.pending_csums);
152 		/*
153 		 * If any block groups are found in ->deleted_bgs then it's
154 		 * because the transaction was aborted and a commit did not
155 		 * happen (things failed before writing the new superblock
156 		 * and calling btrfs_finish_extent_commit()), so we can not
157 		 * discard the physical locations of the block groups.
158 		 */
159 		while (!list_empty(&transaction->deleted_bgs)) {
160 			struct btrfs_block_group *cache;
161 
162 			cache = list_first_entry(&transaction->deleted_bgs,
163 						 struct btrfs_block_group,
164 						 bg_list);
165 			list_del_init(&cache->bg_list);
166 			btrfs_unfreeze_block_group(cache);
167 			btrfs_put_block_group(cache);
168 		}
169 		WARN_ON(!list_empty(&transaction->dev_update_list));
170 		kfree(transaction);
171 	}
172 }
173 
174 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
175 {
176 	struct btrfs_transaction *cur_trans = trans->transaction;
177 	struct btrfs_fs_info *fs_info = trans->fs_info;
178 	struct btrfs_root *root, *tmp;
179 
180 	/*
181 	 * At this point no one can be using this transaction to modify any tree
182 	 * and no one can start another transaction to modify any tree either.
183 	 */
184 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185 
186 	down_write(&fs_info->commit_root_sem);
187 
188 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189 		fs_info->last_reloc_trans = trans->transid;
190 
191 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
192 				 dirty_list) {
193 		list_del_init(&root->dirty_list);
194 		free_extent_buffer(root->commit_root);
195 		root->commit_root = btrfs_root_node(root);
196 		extent_io_tree_release(&root->dirty_log_pages);
197 		btrfs_qgroup_clean_swapped_blocks(root);
198 	}
199 
200 	/* We can free old roots now. */
201 	spin_lock(&cur_trans->dropped_roots_lock);
202 	while (!list_empty(&cur_trans->dropped_roots)) {
203 		root = list_first_entry(&cur_trans->dropped_roots,
204 					struct btrfs_root, root_list);
205 		list_del_init(&root->root_list);
206 		spin_unlock(&cur_trans->dropped_roots_lock);
207 		btrfs_free_log(trans, root);
208 		btrfs_drop_and_free_fs_root(fs_info, root);
209 		spin_lock(&cur_trans->dropped_roots_lock);
210 	}
211 	spin_unlock(&cur_trans->dropped_roots_lock);
212 
213 	up_write(&fs_info->commit_root_sem);
214 }
215 
216 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 					 unsigned int type)
218 {
219 	if (type & TRANS_EXTWRITERS)
220 		atomic_inc(&trans->num_extwriters);
221 }
222 
223 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 					 unsigned int type)
225 {
226 	if (type & TRANS_EXTWRITERS)
227 		atomic_dec(&trans->num_extwriters);
228 }
229 
230 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 					  unsigned int type)
232 {
233 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 }
235 
236 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237 {
238 	return atomic_read(&trans->num_extwriters);
239 }
240 
241 /*
242  * To be called after doing the chunk btree updates right after allocating a new
243  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244  * chunk after all chunk btree updates and after finishing the second phase of
245  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246  * group had its chunk item insertion delayed to the second phase.
247  */
248 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249 {
250 	struct btrfs_fs_info *fs_info = trans->fs_info;
251 
252 	if (!trans->chunk_bytes_reserved)
253 		return;
254 
255 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
256 				trans->chunk_bytes_reserved, NULL);
257 	trans->chunk_bytes_reserved = 0;
258 }
259 
260 /*
261  * either allocate a new transaction or hop into the existing one
262  */
263 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 				     unsigned int type)
265 {
266 	struct btrfs_transaction *cur_trans;
267 
268 	spin_lock(&fs_info->trans_lock);
269 loop:
270 	/* The file system has been taken offline. No new transactions. */
271 	if (BTRFS_FS_ERROR(fs_info)) {
272 		spin_unlock(&fs_info->trans_lock);
273 		return -EROFS;
274 	}
275 
276 	cur_trans = fs_info->running_transaction;
277 	if (cur_trans) {
278 		if (TRANS_ABORTED(cur_trans)) {
279 			spin_unlock(&fs_info->trans_lock);
280 			return cur_trans->aborted;
281 		}
282 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 			spin_unlock(&fs_info->trans_lock);
284 			return -EBUSY;
285 		}
286 		refcount_inc(&cur_trans->use_count);
287 		atomic_inc(&cur_trans->num_writers);
288 		extwriter_counter_inc(cur_trans, type);
289 		spin_unlock(&fs_info->trans_lock);
290 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 		return 0;
293 	}
294 	spin_unlock(&fs_info->trans_lock);
295 
296 	/*
297 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 	 * current transaction, and commit it. If there is no transaction, just
299 	 * return ENOENT.
300 	 */
301 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 		return -ENOENT;
303 
304 	/*
305 	 * JOIN_NOLOCK only happens during the transaction commit, so
306 	 * it is impossible that ->running_transaction is NULL
307 	 */
308 	BUG_ON(type == TRANS_JOIN_NOLOCK);
309 
310 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 	if (!cur_trans)
312 		return -ENOMEM;
313 
314 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316 
317 	spin_lock(&fs_info->trans_lock);
318 	if (fs_info->running_transaction) {
319 		/*
320 		 * someone started a transaction after we unlocked.  Make sure
321 		 * to redo the checks above
322 		 */
323 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 		kfree(cur_trans);
326 		goto loop;
327 	} else if (BTRFS_FS_ERROR(fs_info)) {
328 		spin_unlock(&fs_info->trans_lock);
329 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 		kfree(cur_trans);
332 		return -EROFS;
333 	}
334 
335 	cur_trans->fs_info = fs_info;
336 	atomic_set(&cur_trans->pending_ordered, 0);
337 	init_waitqueue_head(&cur_trans->pending_wait);
338 	atomic_set(&cur_trans->num_writers, 1);
339 	extwriter_counter_init(cur_trans, type);
340 	init_waitqueue_head(&cur_trans->writer_wait);
341 	init_waitqueue_head(&cur_trans->commit_wait);
342 	cur_trans->state = TRANS_STATE_RUNNING;
343 	/*
344 	 * One for this trans handle, one so it will live on until we
345 	 * commit the transaction.
346 	 */
347 	refcount_set(&cur_trans->use_count, 2);
348 	cur_trans->flags = 0;
349 	cur_trans->start_time = ktime_get_seconds();
350 
351 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352 
353 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
354 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
355 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356 
357 	/*
358 	 * although the tree mod log is per file system and not per transaction,
359 	 * the log must never go across transaction boundaries.
360 	 */
361 	smp_mb();
362 	if (!list_empty(&fs_info->tree_mod_seq_list))
363 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
364 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
365 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
366 	atomic64_set(&fs_info->tree_mod_seq, 0);
367 
368 	spin_lock_init(&cur_trans->delayed_refs.lock);
369 
370 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
371 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
372 	INIT_LIST_HEAD(&cur_trans->switch_commits);
373 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
374 	INIT_LIST_HEAD(&cur_trans->io_bgs);
375 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
376 	mutex_init(&cur_trans->cache_write_mutex);
377 	spin_lock_init(&cur_trans->dirty_bgs_lock);
378 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
379 	spin_lock_init(&cur_trans->dropped_roots_lock);
380 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
381 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
382 			IO_TREE_TRANS_DIRTY_PAGES);
383 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
384 			IO_TREE_FS_PINNED_EXTENTS);
385 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
386 	cur_trans->transid = fs_info->generation;
387 	fs_info->running_transaction = cur_trans;
388 	cur_trans->aborted = 0;
389 	spin_unlock(&fs_info->trans_lock);
390 
391 	return 0;
392 }
393 
394 /*
395  * This does all the record keeping required to make sure that a shareable root
396  * is properly recorded in a given transaction.  This is required to make sure
397  * the old root from before we joined the transaction is deleted when the
398  * transaction commits.
399  */
400 static int record_root_in_trans(struct btrfs_trans_handle *trans,
401 			       struct btrfs_root *root,
402 			       int force)
403 {
404 	struct btrfs_fs_info *fs_info = root->fs_info;
405 	int ret = 0;
406 
407 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
408 	    btrfs_get_root_last_trans(root) < trans->transid) || force) {
409 		WARN_ON(!force && root->commit_root != root->node);
410 
411 		/*
412 		 * see below for IN_TRANS_SETUP usage rules
413 		 * we have the reloc mutex held now, so there
414 		 * is only one writer in this function
415 		 */
416 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
417 
418 		/* make sure readers find IN_TRANS_SETUP before
419 		 * they find our root->last_trans update
420 		 */
421 		smp_wmb();
422 
423 		spin_lock(&fs_info->fs_roots_radix_lock);
424 		if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
425 			spin_unlock(&fs_info->fs_roots_radix_lock);
426 			return 0;
427 		}
428 		radix_tree_tag_set(&fs_info->fs_roots_radix,
429 				   (unsigned long)btrfs_root_id(root),
430 				   BTRFS_ROOT_TRANS_TAG);
431 		spin_unlock(&fs_info->fs_roots_radix_lock);
432 		btrfs_set_root_last_trans(root, trans->transid);
433 
434 		/* this is pretty tricky.  We don't want to
435 		 * take the relocation lock in btrfs_record_root_in_trans
436 		 * unless we're really doing the first setup for this root in
437 		 * this transaction.
438 		 *
439 		 * Normally we'd use root->last_trans as a flag to decide
440 		 * if we want to take the expensive mutex.
441 		 *
442 		 * But, we have to set root->last_trans before we
443 		 * init the relocation root, otherwise, we trip over warnings
444 		 * in ctree.c.  The solution used here is to flag ourselves
445 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
446 		 * fixing up the reloc trees and everyone must wait.
447 		 *
448 		 * When this is zero, they can trust root->last_trans and fly
449 		 * through btrfs_record_root_in_trans without having to take the
450 		 * lock.  smp_wmb() makes sure that all the writes above are
451 		 * done before we pop in the zero below
452 		 */
453 		ret = btrfs_init_reloc_root(trans, root);
454 		smp_mb__before_atomic();
455 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
456 	}
457 	return ret;
458 }
459 
460 
461 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462 			    struct btrfs_root *root)
463 {
464 	struct btrfs_fs_info *fs_info = root->fs_info;
465 	struct btrfs_transaction *cur_trans = trans->transaction;
466 
467 	/* Add ourselves to the transaction dropped list */
468 	spin_lock(&cur_trans->dropped_roots_lock);
469 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470 	spin_unlock(&cur_trans->dropped_roots_lock);
471 
472 	/* Make sure we don't try to update the root at commit time */
473 	spin_lock(&fs_info->fs_roots_radix_lock);
474 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
475 			     (unsigned long)btrfs_root_id(root),
476 			     BTRFS_ROOT_TRANS_TAG);
477 	spin_unlock(&fs_info->fs_roots_radix_lock);
478 }
479 
480 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481 			       struct btrfs_root *root)
482 {
483 	struct btrfs_fs_info *fs_info = root->fs_info;
484 	int ret;
485 
486 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 		return 0;
488 
489 	/*
490 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 	 * and barriers
492 	 */
493 	smp_rmb();
494 	if (btrfs_get_root_last_trans(root) == trans->transid &&
495 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496 		return 0;
497 
498 	mutex_lock(&fs_info->reloc_mutex);
499 	ret = record_root_in_trans(trans, root, 0);
500 	mutex_unlock(&fs_info->reloc_mutex);
501 
502 	return ret;
503 }
504 
505 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506 {
507 	return (trans->state >= TRANS_STATE_COMMIT_START &&
508 		trans->state < TRANS_STATE_UNBLOCKED &&
509 		!TRANS_ABORTED(trans));
510 }
511 
512 /* wait for commit against the current transaction to become unblocked
513  * when this is done, it is safe to start a new transaction, but the current
514  * transaction might not be fully on disk.
515  */
516 static void wait_current_trans(struct btrfs_fs_info *fs_info)
517 {
518 	struct btrfs_transaction *cur_trans;
519 
520 	spin_lock(&fs_info->trans_lock);
521 	cur_trans = fs_info->running_transaction;
522 	if (cur_trans && is_transaction_blocked(cur_trans)) {
523 		refcount_inc(&cur_trans->use_count);
524 		spin_unlock(&fs_info->trans_lock);
525 
526 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
527 		wait_event(fs_info->transaction_wait,
528 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
529 			   TRANS_ABORTED(cur_trans));
530 		btrfs_put_transaction(cur_trans);
531 	} else {
532 		spin_unlock(&fs_info->trans_lock);
533 	}
534 }
535 
536 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
537 {
538 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
539 		return 0;
540 
541 	if (type == TRANS_START)
542 		return 1;
543 
544 	return 0;
545 }
546 
547 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548 {
549 	struct btrfs_fs_info *fs_info = root->fs_info;
550 
551 	if (!fs_info->reloc_ctl ||
552 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
553 	    btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
554 	    root->reloc_root)
555 		return false;
556 
557 	return true;
558 }
559 
560 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561 					enum btrfs_reserve_flush_enum flush,
562 					u64 num_bytes,
563 					u64 *delayed_refs_bytes)
564 {
565 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
566 	u64 bytes = num_bytes + *delayed_refs_bytes;
567 	int ret;
568 
569 	/*
570 	 * We want to reserve all the bytes we may need all at once, so we only
571 	 * do 1 enospc flushing cycle per transaction start.
572 	 */
573 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
574 
575 	/*
576 	 * If we are an emergency flush, which can steal from the global block
577 	 * reserve, then attempt to not reserve space for the delayed refs, as
578 	 * we will consume space for them from the global block reserve.
579 	 */
580 	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
581 		bytes -= *delayed_refs_bytes;
582 		*delayed_refs_bytes = 0;
583 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
584 	}
585 
586 	return ret;
587 }
588 
589 static struct btrfs_trans_handle *
590 start_transaction(struct btrfs_root *root, unsigned int num_items,
591 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
592 		  bool enforce_qgroups)
593 {
594 	struct btrfs_fs_info *fs_info = root->fs_info;
595 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
596 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
597 	struct btrfs_trans_handle *h;
598 	struct btrfs_transaction *cur_trans;
599 	u64 num_bytes = 0;
600 	u64 qgroup_reserved = 0;
601 	u64 delayed_refs_bytes = 0;
602 	bool reloc_reserved = false;
603 	bool do_chunk_alloc = false;
604 	int ret;
605 
606 	if (BTRFS_FS_ERROR(fs_info))
607 		return ERR_PTR(-EROFS);
608 
609 	if (current->journal_info) {
610 		WARN_ON(type & TRANS_EXTWRITERS);
611 		h = current->journal_info;
612 		refcount_inc(&h->use_count);
613 		WARN_ON(refcount_read(&h->use_count) > 2);
614 		h->orig_rsv = h->block_rsv;
615 		h->block_rsv = NULL;
616 		goto got_it;
617 	}
618 
619 	/*
620 	 * Do the reservation before we join the transaction so we can do all
621 	 * the appropriate flushing if need be.
622 	 */
623 	if (num_items && root != fs_info->chunk_root) {
624 		qgroup_reserved = num_items * fs_info->nodesize;
625 		/*
626 		 * Use prealloc for now, as there might be a currently running
627 		 * transaction that could free this reserved space prematurely
628 		 * by committing.
629 		 */
630 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
631 							 enforce_qgroups, false);
632 		if (ret)
633 			return ERR_PTR(ret);
634 
635 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
636 		/*
637 		 * If we plan to insert/update/delete "num_items" from a btree,
638 		 * we will also generate delayed refs for extent buffers in the
639 		 * respective btree paths, so reserve space for the delayed refs
640 		 * that will be generated by the caller as it modifies btrees.
641 		 * Try to reserve them to avoid excessive use of the global
642 		 * block reserve.
643 		 */
644 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
645 
646 		/*
647 		 * Do the reservation for the relocation root creation
648 		 */
649 		if (need_reserve_reloc_root(root)) {
650 			num_bytes += fs_info->nodesize;
651 			reloc_reserved = true;
652 		}
653 
654 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655 						   &delayed_refs_bytes);
656 		if (ret)
657 			goto reserve_fail;
658 
659 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
660 
661 		if (trans_rsv->space_info->force_alloc)
662 			do_chunk_alloc = true;
663 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
664 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
665 		/*
666 		 * Some people call with btrfs_start_transaction(root, 0)
667 		 * because they can be throttled, but have some other mechanism
668 		 * for reserving space.  We still want these guys to refill the
669 		 * delayed block_rsv so just add 1 items worth of reservation
670 		 * here.
671 		 */
672 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
673 		if (ret)
674 			goto reserve_fail;
675 	}
676 again:
677 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
678 	if (!h) {
679 		ret = -ENOMEM;
680 		goto alloc_fail;
681 	}
682 
683 	/*
684 	 * If we are JOIN_NOLOCK we're already committing a transaction and
685 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
686 	 * because we're already holding a ref.  We need this because we could
687 	 * have raced in and did an fsync() on a file which can kick a commit
688 	 * and then we deadlock with somebody doing a freeze.
689 	 *
690 	 * If we are ATTACH, it means we just want to catch the current
691 	 * transaction and commit it, so we needn't do sb_start_intwrite().
692 	 */
693 	if (type & __TRANS_FREEZABLE)
694 		sb_start_intwrite(fs_info->sb);
695 
696 	if (may_wait_transaction(fs_info, type))
697 		wait_current_trans(fs_info);
698 
699 	do {
700 		ret = join_transaction(fs_info, type);
701 		if (ret == -EBUSY) {
702 			wait_current_trans(fs_info);
703 			if (unlikely(type == TRANS_ATTACH ||
704 				     type == TRANS_JOIN_NOSTART))
705 				ret = -ENOENT;
706 		}
707 	} while (ret == -EBUSY);
708 
709 	if (ret < 0)
710 		goto join_fail;
711 
712 	cur_trans = fs_info->running_transaction;
713 
714 	h->transid = cur_trans->transid;
715 	h->transaction = cur_trans;
716 	refcount_set(&h->use_count, 1);
717 	h->fs_info = root->fs_info;
718 
719 	h->type = type;
720 	INIT_LIST_HEAD(&h->new_bgs);
721 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
722 
723 	smp_mb();
724 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
725 	    may_wait_transaction(fs_info, type)) {
726 		current->journal_info = h;
727 		btrfs_commit_transaction(h);
728 		goto again;
729 	}
730 
731 	if (num_bytes) {
732 		trace_btrfs_space_reservation(fs_info, "transaction",
733 					      h->transid, num_bytes, 1);
734 		h->block_rsv = trans_rsv;
735 		h->bytes_reserved = num_bytes;
736 		if (delayed_refs_bytes > 0) {
737 			trace_btrfs_space_reservation(fs_info,
738 						      "local_delayed_refs_rsv",
739 						      h->transid,
740 						      delayed_refs_bytes, 1);
741 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
743 			delayed_refs_bytes = 0;
744 		}
745 		h->reloc_reserved = reloc_reserved;
746 	}
747 
748 got_it:
749 	if (!current->journal_info)
750 		current->journal_info = h;
751 
752 	/*
753 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
754 	 * ALLOC_FORCE the first run through, and then we won't allocate for
755 	 * anybody else who races in later.  We don't care about the return
756 	 * value here.
757 	 */
758 	if (do_chunk_alloc && num_bytes) {
759 		u64 flags = h->block_rsv->space_info->flags;
760 
761 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
762 				  CHUNK_ALLOC_NO_FORCE);
763 	}
764 
765 	/*
766 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
767 	 * call btrfs_join_transaction() while we're also starting a
768 	 * transaction.
769 	 *
770 	 * Thus it need to be called after current->journal_info initialized,
771 	 * or we can deadlock.
772 	 */
773 	ret = btrfs_record_root_in_trans(h, root);
774 	if (ret) {
775 		/*
776 		 * The transaction handle is fully initialized and linked with
777 		 * other structures so it needs to be ended in case of errors,
778 		 * not just freed.
779 		 */
780 		btrfs_end_transaction(h);
781 		goto reserve_fail;
782 	}
783 	/*
784 	 * Now that we have found a transaction to be a part of, convert the
785 	 * qgroup reservation from prealloc to pertrans. A different transaction
786 	 * can't race in and free our pertrans out from under us.
787 	 */
788 	if (qgroup_reserved)
789 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
790 
791 	return h;
792 
793 join_fail:
794 	if (type & __TRANS_FREEZABLE)
795 		sb_end_intwrite(fs_info->sb);
796 	kmem_cache_free(btrfs_trans_handle_cachep, h);
797 alloc_fail:
798 	if (num_bytes)
799 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
800 	if (delayed_refs_bytes)
801 		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
802 						    delayed_refs_bytes);
803 reserve_fail:
804 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
805 	return ERR_PTR(ret);
806 }
807 
808 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
809 						   unsigned int num_items)
810 {
811 	return start_transaction(root, num_items, TRANS_START,
812 				 BTRFS_RESERVE_FLUSH_ALL, true);
813 }
814 
815 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
816 					struct btrfs_root *root,
817 					unsigned int num_items)
818 {
819 	return start_transaction(root, num_items, TRANS_START,
820 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
821 }
822 
823 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
824 {
825 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
826 				 true);
827 }
828 
829 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
830 {
831 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
832 				 BTRFS_RESERVE_NO_FLUSH, true);
833 }
834 
835 /*
836  * Similar to regular join but it never starts a transaction when none is
837  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
838  * This is similar to btrfs_attach_transaction() but it allows the join to
839  * happen if the transaction commit already started but it's not yet in the
840  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
841  */
842 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
843 {
844 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
845 				 BTRFS_RESERVE_NO_FLUSH, true);
846 }
847 
848 /*
849  * Catch the running transaction.
850  *
851  * It is used when we want to commit the current the transaction, but
852  * don't want to start a new one.
853  *
854  * Note: If this function return -ENOENT, it just means there is no
855  * running transaction. But it is possible that the inactive transaction
856  * is still in the memory, not fully on disk. If you hope there is no
857  * inactive transaction in the fs when -ENOENT is returned, you should
858  * invoke
859  *     btrfs_attach_transaction_barrier()
860  */
861 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
862 {
863 	return start_transaction(root, 0, TRANS_ATTACH,
864 				 BTRFS_RESERVE_NO_FLUSH, true);
865 }
866 
867 /*
868  * Catch the running transaction.
869  *
870  * It is similar to the above function, the difference is this one
871  * will wait for all the inactive transactions until they fully
872  * complete.
873  */
874 struct btrfs_trans_handle *
875 btrfs_attach_transaction_barrier(struct btrfs_root *root)
876 {
877 	struct btrfs_trans_handle *trans;
878 
879 	trans = start_transaction(root, 0, TRANS_ATTACH,
880 				  BTRFS_RESERVE_NO_FLUSH, true);
881 	if (trans == ERR_PTR(-ENOENT)) {
882 		int ret;
883 
884 		ret = btrfs_wait_for_commit(root->fs_info, 0);
885 		if (ret)
886 			return ERR_PTR(ret);
887 	}
888 
889 	return trans;
890 }
891 
892 /* Wait for a transaction commit to reach at least the given state. */
893 static noinline void wait_for_commit(struct btrfs_transaction *commit,
894 				     const enum btrfs_trans_state min_state)
895 {
896 	struct btrfs_fs_info *fs_info = commit->fs_info;
897 	u64 transid = commit->transid;
898 	bool put = false;
899 
900 	/*
901 	 * At the moment this function is called with min_state either being
902 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
903 	 */
904 	if (min_state == TRANS_STATE_COMPLETED)
905 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
906 	else
907 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
908 
909 	while (1) {
910 		wait_event(commit->commit_wait, commit->state >= min_state);
911 		if (put)
912 			btrfs_put_transaction(commit);
913 
914 		if (min_state < TRANS_STATE_COMPLETED)
915 			break;
916 
917 		/*
918 		 * A transaction isn't really completed until all of the
919 		 * previous transactions are completed, but with fsync we can
920 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
921 		 * transaction. Wait for those.
922 		 */
923 
924 		spin_lock(&fs_info->trans_lock);
925 		commit = list_first_entry_or_null(&fs_info->trans_list,
926 						  struct btrfs_transaction,
927 						  list);
928 		if (!commit || commit->transid > transid) {
929 			spin_unlock(&fs_info->trans_lock);
930 			break;
931 		}
932 		refcount_inc(&commit->use_count);
933 		put = true;
934 		spin_unlock(&fs_info->trans_lock);
935 	}
936 }
937 
938 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
939 {
940 	struct btrfs_transaction *cur_trans = NULL, *t;
941 	int ret = 0;
942 
943 	if (transid) {
944 		if (transid <= btrfs_get_last_trans_committed(fs_info))
945 			goto out;
946 
947 		/* find specified transaction */
948 		spin_lock(&fs_info->trans_lock);
949 		list_for_each_entry(t, &fs_info->trans_list, list) {
950 			if (t->transid == transid) {
951 				cur_trans = t;
952 				refcount_inc(&cur_trans->use_count);
953 				ret = 0;
954 				break;
955 			}
956 			if (t->transid > transid) {
957 				ret = 0;
958 				break;
959 			}
960 		}
961 		spin_unlock(&fs_info->trans_lock);
962 
963 		/*
964 		 * The specified transaction doesn't exist, or we
965 		 * raced with btrfs_commit_transaction
966 		 */
967 		if (!cur_trans) {
968 			if (transid > btrfs_get_last_trans_committed(fs_info))
969 				ret = -EINVAL;
970 			goto out;
971 		}
972 	} else {
973 		/* find newest transaction that is committing | committed */
974 		spin_lock(&fs_info->trans_lock);
975 		list_for_each_entry_reverse(t, &fs_info->trans_list,
976 					    list) {
977 			if (t->state >= TRANS_STATE_COMMIT_START) {
978 				if (t->state == TRANS_STATE_COMPLETED)
979 					break;
980 				cur_trans = t;
981 				refcount_inc(&cur_trans->use_count);
982 				break;
983 			}
984 		}
985 		spin_unlock(&fs_info->trans_lock);
986 		if (!cur_trans)
987 			goto out;  /* nothing committing|committed */
988 	}
989 
990 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
991 	ret = cur_trans->aborted;
992 	btrfs_put_transaction(cur_trans);
993 out:
994 	return ret;
995 }
996 
997 void btrfs_throttle(struct btrfs_fs_info *fs_info)
998 {
999 	wait_current_trans(fs_info);
1000 }
1001 
1002 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1003 {
1004 	struct btrfs_transaction *cur_trans = trans->transaction;
1005 
1006 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1007 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1008 		return true;
1009 
1010 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1011 		return true;
1012 
1013 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1014 }
1015 
1016 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1017 
1018 {
1019 	struct btrfs_fs_info *fs_info = trans->fs_info;
1020 
1021 	if (!trans->block_rsv) {
1022 		ASSERT(!trans->bytes_reserved);
1023 		ASSERT(!trans->delayed_refs_bytes_reserved);
1024 		return;
1025 	}
1026 
1027 	if (!trans->bytes_reserved) {
1028 		ASSERT(!trans->delayed_refs_bytes_reserved);
1029 		return;
1030 	}
1031 
1032 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1033 	trace_btrfs_space_reservation(fs_info, "transaction",
1034 				      trans->transid, trans->bytes_reserved, 0);
1035 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1036 				trans->bytes_reserved, NULL);
1037 	trans->bytes_reserved = 0;
1038 
1039 	if (!trans->delayed_refs_bytes_reserved)
1040 		return;
1041 
1042 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1043 				      trans->transid,
1044 				      trans->delayed_refs_bytes_reserved, 0);
1045 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1046 				trans->delayed_refs_bytes_reserved, NULL);
1047 	trans->delayed_refs_bytes_reserved = 0;
1048 }
1049 
1050 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1051 				   int throttle)
1052 {
1053 	struct btrfs_fs_info *info = trans->fs_info;
1054 	struct btrfs_transaction *cur_trans = trans->transaction;
1055 	int ret = 0;
1056 
1057 	if (refcount_read(&trans->use_count) > 1) {
1058 		refcount_dec(&trans->use_count);
1059 		trans->block_rsv = trans->orig_rsv;
1060 		return 0;
1061 	}
1062 
1063 	btrfs_trans_release_metadata(trans);
1064 	trans->block_rsv = NULL;
1065 
1066 	btrfs_create_pending_block_groups(trans);
1067 
1068 	btrfs_trans_release_chunk_metadata(trans);
1069 
1070 	if (trans->type & __TRANS_FREEZABLE)
1071 		sb_end_intwrite(info->sb);
1072 
1073 	WARN_ON(cur_trans != info->running_transaction);
1074 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1075 	atomic_dec(&cur_trans->num_writers);
1076 	extwriter_counter_dec(cur_trans, trans->type);
1077 
1078 	cond_wake_up(&cur_trans->writer_wait);
1079 
1080 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1081 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1082 
1083 	btrfs_put_transaction(cur_trans);
1084 
1085 	if (current->journal_info == trans)
1086 		current->journal_info = NULL;
1087 
1088 	if (throttle)
1089 		btrfs_run_delayed_iputs(info);
1090 
1091 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1092 		wake_up_process(info->transaction_kthread);
1093 		if (TRANS_ABORTED(trans))
1094 			ret = trans->aborted;
1095 		else
1096 			ret = -EROFS;
1097 	}
1098 
1099 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1100 	return ret;
1101 }
1102 
1103 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1104 {
1105 	return __btrfs_end_transaction(trans, 0);
1106 }
1107 
1108 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1109 {
1110 	return __btrfs_end_transaction(trans, 1);
1111 }
1112 
1113 /*
1114  * when btree blocks are allocated, they have some corresponding bits set for
1115  * them in one of two extent_io trees.  This is used to make sure all of
1116  * those extents are sent to disk but does not wait on them
1117  */
1118 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1119 			       struct extent_io_tree *dirty_pages, int mark)
1120 {
1121 	int ret = 0;
1122 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1123 	struct extent_state *cached_state = NULL;
1124 	u64 start = 0;
1125 	u64 end;
1126 
1127 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1128 				     mark, &cached_state)) {
1129 		bool wait_writeback = false;
1130 
1131 		ret = convert_extent_bit(dirty_pages, start, end,
1132 					 EXTENT_NEED_WAIT,
1133 					 mark, &cached_state);
1134 		/*
1135 		 * convert_extent_bit can return -ENOMEM, which is most of the
1136 		 * time a temporary error. So when it happens, ignore the error
1137 		 * and wait for writeback of this range to finish - because we
1138 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1139 		 * to __btrfs_wait_marked_extents() would not know that
1140 		 * writeback for this range started and therefore wouldn't
1141 		 * wait for it to finish - we don't want to commit a
1142 		 * superblock that points to btree nodes/leafs for which
1143 		 * writeback hasn't finished yet (and without errors).
1144 		 * We cleanup any entries left in the io tree when committing
1145 		 * the transaction (through extent_io_tree_release()).
1146 		 */
1147 		if (ret == -ENOMEM) {
1148 			ret = 0;
1149 			wait_writeback = true;
1150 		}
1151 		if (!ret)
1152 			ret = filemap_fdatawrite_range(mapping, start, end);
1153 		if (!ret && wait_writeback)
1154 			ret = filemap_fdatawait_range(mapping, start, end);
1155 		free_extent_state(cached_state);
1156 		if (ret)
1157 			break;
1158 		cached_state = NULL;
1159 		cond_resched();
1160 		start = end + 1;
1161 	}
1162 	return ret;
1163 }
1164 
1165 /*
1166  * when btree blocks are allocated, they have some corresponding bits set for
1167  * them in one of two extent_io trees.  This is used to make sure all of
1168  * those extents are on disk for transaction or log commit.  We wait
1169  * on all the pages and clear them from the dirty pages state tree
1170  */
1171 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1172 				       struct extent_io_tree *dirty_pages)
1173 {
1174 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1175 	struct extent_state *cached_state = NULL;
1176 	u64 start = 0;
1177 	u64 end;
1178 	int ret = 0;
1179 
1180 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1181 				     EXTENT_NEED_WAIT, &cached_state)) {
1182 		/*
1183 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1184 		 * When committing the transaction, we'll remove any entries
1185 		 * left in the io tree. For a log commit, we don't remove them
1186 		 * after committing the log because the tree can be accessed
1187 		 * concurrently - we do it only at transaction commit time when
1188 		 * it's safe to do it (through extent_io_tree_release()).
1189 		 */
1190 		ret = clear_extent_bit(dirty_pages, start, end,
1191 				       EXTENT_NEED_WAIT, &cached_state);
1192 		if (ret == -ENOMEM)
1193 			ret = 0;
1194 		if (!ret)
1195 			ret = filemap_fdatawait_range(mapping, start, end);
1196 		free_extent_state(cached_state);
1197 		if (ret)
1198 			break;
1199 		cached_state = NULL;
1200 		cond_resched();
1201 		start = end + 1;
1202 	}
1203 	return ret;
1204 }
1205 
1206 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1207 		       struct extent_io_tree *dirty_pages)
1208 {
1209 	bool errors = false;
1210 	int err;
1211 
1212 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1213 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1214 		errors = true;
1215 
1216 	if (errors && !err)
1217 		err = -EIO;
1218 	return err;
1219 }
1220 
1221 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1222 {
1223 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1224 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1225 	bool errors = false;
1226 	int err;
1227 
1228 	ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1229 
1230 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1231 	if ((mark & EXTENT_DIRTY) &&
1232 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1233 		errors = true;
1234 
1235 	if ((mark & EXTENT_NEW) &&
1236 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1237 		errors = true;
1238 
1239 	if (errors && !err)
1240 		err = -EIO;
1241 	return err;
1242 }
1243 
1244 /*
1245  * When btree blocks are allocated the corresponding extents are marked dirty.
1246  * This function ensures such extents are persisted on disk for transaction or
1247  * log commit.
1248  *
1249  * @trans: transaction whose dirty pages we'd like to write
1250  */
1251 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1252 {
1253 	int ret;
1254 	int ret2;
1255 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1256 	struct btrfs_fs_info *fs_info = trans->fs_info;
1257 	struct blk_plug plug;
1258 
1259 	blk_start_plug(&plug);
1260 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1261 	blk_finish_plug(&plug);
1262 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1263 
1264 	extent_io_tree_release(&trans->transaction->dirty_pages);
1265 
1266 	if (ret)
1267 		return ret;
1268 	else if (ret2)
1269 		return ret2;
1270 	else
1271 		return 0;
1272 }
1273 
1274 /*
1275  * this is used to update the root pointer in the tree of tree roots.
1276  *
1277  * But, in the case of the extent allocation tree, updating the root
1278  * pointer may allocate blocks which may change the root of the extent
1279  * allocation tree.
1280  *
1281  * So, this loops and repeats and makes sure the cowonly root didn't
1282  * change while the root pointer was being updated in the metadata.
1283  */
1284 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1285 			       struct btrfs_root *root)
1286 {
1287 	int ret;
1288 	u64 old_root_bytenr;
1289 	u64 old_root_used;
1290 	struct btrfs_fs_info *fs_info = root->fs_info;
1291 	struct btrfs_root *tree_root = fs_info->tree_root;
1292 
1293 	old_root_used = btrfs_root_used(&root->root_item);
1294 
1295 	while (1) {
1296 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1297 		if (old_root_bytenr == root->node->start &&
1298 		    old_root_used == btrfs_root_used(&root->root_item))
1299 			break;
1300 
1301 		btrfs_set_root_node(&root->root_item, root->node);
1302 		ret = btrfs_update_root(trans, tree_root,
1303 					&root->root_key,
1304 					&root->root_item);
1305 		if (ret)
1306 			return ret;
1307 
1308 		old_root_used = btrfs_root_used(&root->root_item);
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * update all the cowonly tree roots on disk
1316  *
1317  * The error handling in this function may not be obvious. Any of the
1318  * failures will cause the file system to go offline. We still need
1319  * to clean up the delayed refs.
1320  */
1321 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1322 {
1323 	struct btrfs_fs_info *fs_info = trans->fs_info;
1324 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1325 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1326 	struct list_head *next;
1327 	struct extent_buffer *eb;
1328 	int ret;
1329 
1330 	/*
1331 	 * At this point no one can be using this transaction to modify any tree
1332 	 * and no one can start another transaction to modify any tree either.
1333 	 */
1334 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1335 
1336 	eb = btrfs_lock_root_node(fs_info->tree_root);
1337 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1338 			      0, &eb, BTRFS_NESTING_COW);
1339 	btrfs_tree_unlock(eb);
1340 	free_extent_buffer(eb);
1341 
1342 	if (ret)
1343 		return ret;
1344 
1345 	ret = btrfs_run_dev_stats(trans);
1346 	if (ret)
1347 		return ret;
1348 	ret = btrfs_run_dev_replace(trans);
1349 	if (ret)
1350 		return ret;
1351 	ret = btrfs_run_qgroups(trans);
1352 	if (ret)
1353 		return ret;
1354 
1355 	ret = btrfs_setup_space_cache(trans);
1356 	if (ret)
1357 		return ret;
1358 
1359 again:
1360 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1361 		struct btrfs_root *root;
1362 		next = fs_info->dirty_cowonly_roots.next;
1363 		list_del_init(next);
1364 		root = list_entry(next, struct btrfs_root, dirty_list);
1365 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1366 
1367 		list_add_tail(&root->dirty_list,
1368 			      &trans->transaction->switch_commits);
1369 		ret = update_cowonly_root(trans, root);
1370 		if (ret)
1371 			return ret;
1372 	}
1373 
1374 	/* Now flush any delayed refs generated by updating all of the roots */
1375 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1376 	if (ret)
1377 		return ret;
1378 
1379 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1380 		ret = btrfs_write_dirty_block_groups(trans);
1381 		if (ret)
1382 			return ret;
1383 
1384 		/*
1385 		 * We're writing the dirty block groups, which could generate
1386 		 * delayed refs, which could generate more dirty block groups,
1387 		 * so we want to keep this flushing in this loop to make sure
1388 		 * everything gets run.
1389 		 */
1390 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1391 		if (ret)
1392 			return ret;
1393 	}
1394 
1395 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1396 		goto again;
1397 
1398 	/* Update dev-replace pointer once everything is committed */
1399 	fs_info->dev_replace.committed_cursor_left =
1400 		fs_info->dev_replace.cursor_left_last_write_of_item;
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * If we had a pending drop we need to see if there are any others left in our
1407  * dead roots list, and if not clear our bit and wake any waiters.
1408  */
1409 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1410 {
1411 	/*
1412 	 * We put the drop in progress roots at the front of the list, so if the
1413 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1414 	 * up.
1415 	 */
1416 	spin_lock(&fs_info->trans_lock);
1417 	if (!list_empty(&fs_info->dead_roots)) {
1418 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1419 							   struct btrfs_root,
1420 							   root_list);
1421 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1422 			spin_unlock(&fs_info->trans_lock);
1423 			return;
1424 		}
1425 	}
1426 	spin_unlock(&fs_info->trans_lock);
1427 
1428 	btrfs_wake_unfinished_drop(fs_info);
1429 }
1430 
1431 /*
1432  * dead roots are old snapshots that need to be deleted.  This allocates
1433  * a dirty root struct and adds it into the list of dead roots that need to
1434  * be deleted
1435  */
1436 void btrfs_add_dead_root(struct btrfs_root *root)
1437 {
1438 	struct btrfs_fs_info *fs_info = root->fs_info;
1439 
1440 	spin_lock(&fs_info->trans_lock);
1441 	if (list_empty(&root->root_list)) {
1442 		btrfs_grab_root(root);
1443 
1444 		/* We want to process the partially complete drops first. */
1445 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1446 			list_add(&root->root_list, &fs_info->dead_roots);
1447 		else
1448 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1449 	}
1450 	spin_unlock(&fs_info->trans_lock);
1451 }
1452 
1453 /*
1454  * Update each subvolume root and its relocation root, if it exists, in the tree
1455  * of tree roots. Also free log roots if they exist.
1456  */
1457 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1458 {
1459 	struct btrfs_fs_info *fs_info = trans->fs_info;
1460 	struct btrfs_root *gang[8];
1461 	int i;
1462 	int ret;
1463 
1464 	/*
1465 	 * At this point no one can be using this transaction to modify any tree
1466 	 * and no one can start another transaction to modify any tree either.
1467 	 */
1468 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1469 
1470 	spin_lock(&fs_info->fs_roots_radix_lock);
1471 	while (1) {
1472 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1473 						 (void **)gang, 0,
1474 						 ARRAY_SIZE(gang),
1475 						 BTRFS_ROOT_TRANS_TAG);
1476 		if (ret == 0)
1477 			break;
1478 		for (i = 0; i < ret; i++) {
1479 			struct btrfs_root *root = gang[i];
1480 			int ret2;
1481 
1482 			/*
1483 			 * At this point we can neither have tasks logging inodes
1484 			 * from a root nor trying to commit a log tree.
1485 			 */
1486 			ASSERT(atomic_read(&root->log_writers) == 0);
1487 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1488 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1489 
1490 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1491 					(unsigned long)btrfs_root_id(root),
1492 					BTRFS_ROOT_TRANS_TAG);
1493 			btrfs_qgroup_free_meta_all_pertrans(root);
1494 			spin_unlock(&fs_info->fs_roots_radix_lock);
1495 
1496 			btrfs_free_log(trans, root);
1497 			ret2 = btrfs_update_reloc_root(trans, root);
1498 			if (ret2)
1499 				return ret2;
1500 
1501 			/* see comments in should_cow_block() */
1502 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1503 			smp_mb__after_atomic();
1504 
1505 			if (root->commit_root != root->node) {
1506 				list_add_tail(&root->dirty_list,
1507 					&trans->transaction->switch_commits);
1508 				btrfs_set_root_node(&root->root_item,
1509 						    root->node);
1510 			}
1511 
1512 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1513 						&root->root_key,
1514 						&root->root_item);
1515 			if (ret2)
1516 				return ret2;
1517 			spin_lock(&fs_info->fs_roots_radix_lock);
1518 		}
1519 	}
1520 	spin_unlock(&fs_info->fs_roots_radix_lock);
1521 	return 0;
1522 }
1523 
1524 /*
1525  * Do all special snapshot related qgroup dirty hack.
1526  *
1527  * Will do all needed qgroup inherit and dirty hack like switch commit
1528  * roots inside one transaction and write all btree into disk, to make
1529  * qgroup works.
1530  */
1531 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1532 				   struct btrfs_root *src,
1533 				   struct btrfs_root *parent,
1534 				   struct btrfs_qgroup_inherit *inherit,
1535 				   u64 dst_objectid)
1536 {
1537 	struct btrfs_fs_info *fs_info = src->fs_info;
1538 	int ret;
1539 
1540 	/*
1541 	 * Save some performance in the case that qgroups are not enabled. If
1542 	 * this check races with the ioctl, rescan will kick in anyway.
1543 	 */
1544 	if (!btrfs_qgroup_full_accounting(fs_info))
1545 		return 0;
1546 
1547 	/*
1548 	 * Ensure dirty @src will be committed.  Or, after coming
1549 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1550 	 * recorded root will never be updated again, causing an outdated root
1551 	 * item.
1552 	 */
1553 	ret = record_root_in_trans(trans, src, 1);
1554 	if (ret)
1555 		return ret;
1556 
1557 	/*
1558 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1559 	 * src root, so we must run the delayed refs here.
1560 	 *
1561 	 * However this isn't particularly fool proof, because there's no
1562 	 * synchronization keeping us from changing the tree after this point
1563 	 * before we do the qgroup_inherit, or even from making changes while
1564 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1565 	 * for now flush the delayed refs to narrow the race window where the
1566 	 * qgroup counters could end up wrong.
1567 	 */
1568 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1569 	if (ret) {
1570 		btrfs_abort_transaction(trans, ret);
1571 		return ret;
1572 	}
1573 
1574 	ret = commit_fs_roots(trans);
1575 	if (ret)
1576 		goto out;
1577 	ret = btrfs_qgroup_account_extents(trans);
1578 	if (ret < 0)
1579 		goto out;
1580 
1581 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1582 	ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1583 				   btrfs_root_id(parent), inherit);
1584 	if (ret < 0)
1585 		goto out;
1586 
1587 	/*
1588 	 * Now we do a simplified commit transaction, which will:
1589 	 * 1) commit all subvolume and extent tree
1590 	 *    To ensure all subvolume and extent tree have a valid
1591 	 *    commit_root to accounting later insert_dir_item()
1592 	 * 2) write all btree blocks onto disk
1593 	 *    This is to make sure later btree modification will be cowed
1594 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1595 	 * In this simplified commit, we don't really care about other trees
1596 	 * like chunk and root tree, as they won't affect qgroup.
1597 	 * And we don't write super to avoid half committed status.
1598 	 */
1599 	ret = commit_cowonly_roots(trans);
1600 	if (ret)
1601 		goto out;
1602 	switch_commit_roots(trans);
1603 	ret = btrfs_write_and_wait_transaction(trans);
1604 	if (ret)
1605 		btrfs_handle_fs_error(fs_info, ret,
1606 			"Error while writing out transaction for qgroup");
1607 
1608 out:
1609 	/*
1610 	 * Force parent root to be updated, as we recorded it before so its
1611 	 * last_trans == cur_transid.
1612 	 * Or it won't be committed again onto disk after later
1613 	 * insert_dir_item()
1614 	 */
1615 	if (!ret)
1616 		ret = record_root_in_trans(trans, parent, 1);
1617 	return ret;
1618 }
1619 
1620 /*
1621  * new snapshots need to be created at a very specific time in the
1622  * transaction commit.  This does the actual creation.
1623  *
1624  * Note:
1625  * If the error which may affect the commitment of the current transaction
1626  * happens, we should return the error number. If the error which just affect
1627  * the creation of the pending snapshots, just return 0.
1628  */
1629 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1630 				   struct btrfs_pending_snapshot *pending)
1631 {
1632 
1633 	struct btrfs_fs_info *fs_info = trans->fs_info;
1634 	struct btrfs_key key;
1635 	struct btrfs_root_item *new_root_item;
1636 	struct btrfs_root *tree_root = fs_info->tree_root;
1637 	struct btrfs_root *root = pending->root;
1638 	struct btrfs_root *parent_root;
1639 	struct btrfs_block_rsv *rsv;
1640 	struct inode *parent_inode = &pending->dir->vfs_inode;
1641 	struct btrfs_path *path;
1642 	struct btrfs_dir_item *dir_item;
1643 	struct extent_buffer *tmp;
1644 	struct extent_buffer *old;
1645 	struct timespec64 cur_time;
1646 	int ret = 0;
1647 	u64 to_reserve = 0;
1648 	u64 index = 0;
1649 	u64 objectid;
1650 	u64 root_flags;
1651 	unsigned int nofs_flags;
1652 	struct fscrypt_name fname;
1653 
1654 	ASSERT(pending->path);
1655 	path = pending->path;
1656 
1657 	ASSERT(pending->root_item);
1658 	new_root_item = pending->root_item;
1659 
1660 	/*
1661 	 * We're inside a transaction and must make sure that any potential
1662 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1663 	 * filesystem.
1664 	 */
1665 	nofs_flags = memalloc_nofs_save();
1666 	pending->error = fscrypt_setup_filename(parent_inode,
1667 						&pending->dentry->d_name, 0,
1668 						&fname);
1669 	memalloc_nofs_restore(nofs_flags);
1670 	if (pending->error)
1671 		goto free_pending;
1672 
1673 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1674 	if (pending->error)
1675 		goto free_fname;
1676 
1677 	/*
1678 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1679 	 * accounted by later btrfs_qgroup_inherit().
1680 	 */
1681 	btrfs_set_skip_qgroup(trans, objectid);
1682 
1683 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1684 
1685 	if (to_reserve > 0) {
1686 		pending->error = btrfs_block_rsv_add(fs_info,
1687 						     &pending->block_rsv,
1688 						     to_reserve,
1689 						     BTRFS_RESERVE_NO_FLUSH);
1690 		if (pending->error)
1691 			goto clear_skip_qgroup;
1692 	}
1693 
1694 	key.objectid = objectid;
1695 	key.offset = (u64)-1;
1696 	key.type = BTRFS_ROOT_ITEM_KEY;
1697 
1698 	rsv = trans->block_rsv;
1699 	trans->block_rsv = &pending->block_rsv;
1700 	trans->bytes_reserved = trans->block_rsv->reserved;
1701 	trace_btrfs_space_reservation(fs_info, "transaction",
1702 				      trans->transid,
1703 				      trans->bytes_reserved, 1);
1704 	parent_root = BTRFS_I(parent_inode)->root;
1705 	ret = record_root_in_trans(trans, parent_root, 0);
1706 	if (ret)
1707 		goto fail;
1708 	cur_time = current_time(parent_inode);
1709 
1710 	/*
1711 	 * insert the directory item
1712 	 */
1713 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1714 	if (ret) {
1715 		btrfs_abort_transaction(trans, ret);
1716 		goto fail;
1717 	}
1718 
1719 	/* check if there is a file/dir which has the same name. */
1720 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1721 					 btrfs_ino(BTRFS_I(parent_inode)),
1722 					 &fname.disk_name, 0);
1723 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1724 		pending->error = -EEXIST;
1725 		goto dir_item_existed;
1726 	} else if (IS_ERR(dir_item)) {
1727 		ret = PTR_ERR(dir_item);
1728 		btrfs_abort_transaction(trans, ret);
1729 		goto fail;
1730 	}
1731 	btrfs_release_path(path);
1732 
1733 	ret = btrfs_create_qgroup(trans, objectid);
1734 	if (ret && ret != -EEXIST) {
1735 		btrfs_abort_transaction(trans, ret);
1736 		goto fail;
1737 	}
1738 
1739 	/*
1740 	 * pull in the delayed directory update
1741 	 * and the delayed inode item
1742 	 * otherwise we corrupt the FS during
1743 	 * snapshot
1744 	 */
1745 	ret = btrfs_run_delayed_items(trans);
1746 	if (ret) {	/* Transaction aborted */
1747 		btrfs_abort_transaction(trans, ret);
1748 		goto fail;
1749 	}
1750 
1751 	ret = record_root_in_trans(trans, root, 0);
1752 	if (ret) {
1753 		btrfs_abort_transaction(trans, ret);
1754 		goto fail;
1755 	}
1756 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1757 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1758 	btrfs_check_and_init_root_item(new_root_item);
1759 
1760 	root_flags = btrfs_root_flags(new_root_item);
1761 	if (pending->readonly)
1762 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1763 	else
1764 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1765 	btrfs_set_root_flags(new_root_item, root_flags);
1766 
1767 	btrfs_set_root_generation_v2(new_root_item,
1768 			trans->transid);
1769 	generate_random_guid(new_root_item->uuid);
1770 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1771 			BTRFS_UUID_SIZE);
1772 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1773 		memset(new_root_item->received_uuid, 0,
1774 		       sizeof(new_root_item->received_uuid));
1775 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1776 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1777 		btrfs_set_root_stransid(new_root_item, 0);
1778 		btrfs_set_root_rtransid(new_root_item, 0);
1779 	}
1780 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1781 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1782 	btrfs_set_root_otransid(new_root_item, trans->transid);
1783 
1784 	old = btrfs_lock_root_node(root);
1785 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1786 			      BTRFS_NESTING_COW);
1787 	if (ret) {
1788 		btrfs_tree_unlock(old);
1789 		free_extent_buffer(old);
1790 		btrfs_abort_transaction(trans, ret);
1791 		goto fail;
1792 	}
1793 
1794 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1795 	/* clean up in any case */
1796 	btrfs_tree_unlock(old);
1797 	free_extent_buffer(old);
1798 	if (ret) {
1799 		btrfs_abort_transaction(trans, ret);
1800 		goto fail;
1801 	}
1802 	/* see comments in should_cow_block() */
1803 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1804 	smp_wmb();
1805 
1806 	btrfs_set_root_node(new_root_item, tmp);
1807 	/* record when the snapshot was created in key.offset */
1808 	key.offset = trans->transid;
1809 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1810 	btrfs_tree_unlock(tmp);
1811 	free_extent_buffer(tmp);
1812 	if (ret) {
1813 		btrfs_abort_transaction(trans, ret);
1814 		goto fail;
1815 	}
1816 
1817 	/*
1818 	 * insert root back/forward references
1819 	 */
1820 	ret = btrfs_add_root_ref(trans, objectid,
1821 				 btrfs_root_id(parent_root),
1822 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1823 				 &fname.disk_name);
1824 	if (ret) {
1825 		btrfs_abort_transaction(trans, ret);
1826 		goto fail;
1827 	}
1828 
1829 	key.offset = (u64)-1;
1830 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1831 	if (IS_ERR(pending->snap)) {
1832 		ret = PTR_ERR(pending->snap);
1833 		pending->snap = NULL;
1834 		btrfs_abort_transaction(trans, ret);
1835 		goto fail;
1836 	}
1837 
1838 	ret = btrfs_reloc_post_snapshot(trans, pending);
1839 	if (ret) {
1840 		btrfs_abort_transaction(trans, ret);
1841 		goto fail;
1842 	}
1843 
1844 	/*
1845 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1846 	 * snapshot hack to do fast snapshot.
1847 	 * To co-operate with that hack, we do hack again.
1848 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1849 	 */
1850 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1851 		ret = qgroup_account_snapshot(trans, root, parent_root,
1852 					      pending->inherit, objectid);
1853 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1854 		ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1855 					   btrfs_root_id(parent_root), pending->inherit);
1856 	if (ret < 0)
1857 		goto fail;
1858 
1859 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1860 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1861 				    index);
1862 	if (ret) {
1863 		btrfs_abort_transaction(trans, ret);
1864 		goto fail;
1865 	}
1866 
1867 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1868 						  fname.disk_name.len * 2);
1869 	inode_set_mtime_to_ts(parent_inode,
1870 			      inode_set_ctime_current(parent_inode));
1871 	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1872 	if (ret) {
1873 		btrfs_abort_transaction(trans, ret);
1874 		goto fail;
1875 	}
1876 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1877 				  BTRFS_UUID_KEY_SUBVOL,
1878 				  objectid);
1879 	if (ret) {
1880 		btrfs_abort_transaction(trans, ret);
1881 		goto fail;
1882 	}
1883 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1884 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1885 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1886 					  objectid);
1887 		if (ret && ret != -EEXIST) {
1888 			btrfs_abort_transaction(trans, ret);
1889 			goto fail;
1890 		}
1891 	}
1892 
1893 fail:
1894 	pending->error = ret;
1895 dir_item_existed:
1896 	trans->block_rsv = rsv;
1897 	trans->bytes_reserved = 0;
1898 clear_skip_qgroup:
1899 	btrfs_clear_skip_qgroup(trans);
1900 free_fname:
1901 	fscrypt_free_filename(&fname);
1902 free_pending:
1903 	kfree(new_root_item);
1904 	pending->root_item = NULL;
1905 	btrfs_free_path(path);
1906 	pending->path = NULL;
1907 
1908 	return ret;
1909 }
1910 
1911 /*
1912  * create all the snapshots we've scheduled for creation
1913  */
1914 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1915 {
1916 	struct btrfs_pending_snapshot *pending, *next;
1917 	struct list_head *head = &trans->transaction->pending_snapshots;
1918 	int ret = 0;
1919 
1920 	list_for_each_entry_safe(pending, next, head, list) {
1921 		list_del(&pending->list);
1922 		ret = create_pending_snapshot(trans, pending);
1923 		if (ret)
1924 			break;
1925 	}
1926 	return ret;
1927 }
1928 
1929 static void update_super_roots(struct btrfs_fs_info *fs_info)
1930 {
1931 	struct btrfs_root_item *root_item;
1932 	struct btrfs_super_block *super;
1933 
1934 	super = fs_info->super_copy;
1935 
1936 	root_item = &fs_info->chunk_root->root_item;
1937 	super->chunk_root = root_item->bytenr;
1938 	super->chunk_root_generation = root_item->generation;
1939 	super->chunk_root_level = root_item->level;
1940 
1941 	root_item = &fs_info->tree_root->root_item;
1942 	super->root = root_item->bytenr;
1943 	super->generation = root_item->generation;
1944 	super->root_level = root_item->level;
1945 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1946 		super->cache_generation = root_item->generation;
1947 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1948 		super->cache_generation = 0;
1949 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1950 		super->uuid_tree_generation = root_item->generation;
1951 }
1952 
1953 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1954 {
1955 	struct btrfs_transaction *trans;
1956 	int ret = 0;
1957 
1958 	spin_lock(&info->trans_lock);
1959 	trans = info->running_transaction;
1960 	if (trans)
1961 		ret = is_transaction_blocked(trans);
1962 	spin_unlock(&info->trans_lock);
1963 	return ret;
1964 }
1965 
1966 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1967 {
1968 	struct btrfs_fs_info *fs_info = trans->fs_info;
1969 	struct btrfs_transaction *cur_trans;
1970 
1971 	/* Kick the transaction kthread. */
1972 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1973 	wake_up_process(fs_info->transaction_kthread);
1974 
1975 	/* take transaction reference */
1976 	cur_trans = trans->transaction;
1977 	refcount_inc(&cur_trans->use_count);
1978 
1979 	btrfs_end_transaction(trans);
1980 
1981 	/*
1982 	 * Wait for the current transaction commit to start and block
1983 	 * subsequent transaction joins
1984 	 */
1985 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1986 	wait_event(fs_info->transaction_blocked_wait,
1987 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1988 		   TRANS_ABORTED(cur_trans));
1989 	btrfs_put_transaction(cur_trans);
1990 }
1991 
1992 /*
1993  * If there is a running transaction commit it or if it's already committing,
1994  * wait for its commit to complete. Does not start and commit a new transaction
1995  * if there isn't any running.
1996  */
1997 int btrfs_commit_current_transaction(struct btrfs_root *root)
1998 {
1999 	struct btrfs_trans_handle *trans;
2000 
2001 	trans = btrfs_attach_transaction_barrier(root);
2002 	if (IS_ERR(trans)) {
2003 		int ret = PTR_ERR(trans);
2004 
2005 		return (ret == -ENOENT) ? 0 : ret;
2006 	}
2007 
2008 	return btrfs_commit_transaction(trans);
2009 }
2010 
2011 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2012 {
2013 	struct btrfs_fs_info *fs_info = trans->fs_info;
2014 	struct btrfs_transaction *cur_trans = trans->transaction;
2015 
2016 	WARN_ON(refcount_read(&trans->use_count) > 1);
2017 
2018 	btrfs_abort_transaction(trans, err);
2019 
2020 	spin_lock(&fs_info->trans_lock);
2021 
2022 	/*
2023 	 * If the transaction is removed from the list, it means this
2024 	 * transaction has been committed successfully, so it is impossible
2025 	 * to call the cleanup function.
2026 	 */
2027 	BUG_ON(list_empty(&cur_trans->list));
2028 
2029 	if (cur_trans == fs_info->running_transaction) {
2030 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2031 		spin_unlock(&fs_info->trans_lock);
2032 
2033 		/*
2034 		 * The thread has already released the lockdep map as reader
2035 		 * already in btrfs_commit_transaction().
2036 		 */
2037 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2038 		wait_event(cur_trans->writer_wait,
2039 			   atomic_read(&cur_trans->num_writers) == 1);
2040 
2041 		spin_lock(&fs_info->trans_lock);
2042 	}
2043 
2044 	/*
2045 	 * Now that we know no one else is still using the transaction we can
2046 	 * remove the transaction from the list of transactions. This avoids
2047 	 * the transaction kthread from cleaning up the transaction while some
2048 	 * other task is still using it, which could result in a use-after-free
2049 	 * on things like log trees, as it forces the transaction kthread to
2050 	 * wait for this transaction to be cleaned up by us.
2051 	 */
2052 	list_del_init(&cur_trans->list);
2053 
2054 	spin_unlock(&fs_info->trans_lock);
2055 
2056 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2057 
2058 	spin_lock(&fs_info->trans_lock);
2059 	if (cur_trans == fs_info->running_transaction)
2060 		fs_info->running_transaction = NULL;
2061 	spin_unlock(&fs_info->trans_lock);
2062 
2063 	if (trans->type & __TRANS_FREEZABLE)
2064 		sb_end_intwrite(fs_info->sb);
2065 	btrfs_put_transaction(cur_trans);
2066 	btrfs_put_transaction(cur_trans);
2067 
2068 	trace_btrfs_transaction_commit(fs_info);
2069 
2070 	if (current->journal_info == trans)
2071 		current->journal_info = NULL;
2072 
2073 	/*
2074 	 * If relocation is running, we can't cancel scrub because that will
2075 	 * result in a deadlock. Before relocating a block group, relocation
2076 	 * pauses scrub, then starts and commits a transaction before unpausing
2077 	 * scrub. If the transaction commit is being done by the relocation
2078 	 * task or triggered by another task and the relocation task is waiting
2079 	 * for the commit, and we end up here due to an error in the commit
2080 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2081 	 * asking for scrub to stop while having it asked to be paused higher
2082 	 * above in relocation code.
2083 	 */
2084 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2085 		btrfs_scrub_cancel(fs_info);
2086 
2087 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2088 }
2089 
2090 /*
2091  * Release reserved delayed ref space of all pending block groups of the
2092  * transaction and remove them from the list
2093  */
2094 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2095 {
2096        struct btrfs_fs_info *fs_info = trans->fs_info;
2097        struct btrfs_block_group *block_group, *tmp;
2098 
2099        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2100                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2101                list_del_init(&block_group->bg_list);
2102        }
2103 }
2104 
2105 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2106 {
2107 	/*
2108 	 * We use try_to_writeback_inodes_sb() here because if we used
2109 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2110 	 * Currently are holding the fs freeze lock, if we do an async flush
2111 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2112 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2113 	 * from already being in a transaction and our join_transaction doesn't
2114 	 * have to re-take the fs freeze lock.
2115 	 *
2116 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2117 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2118 	 * except when the filesystem is being unmounted or being frozen, but in
2119 	 * those cases sync_filesystem() is called, which results in calling
2120 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2121 	 * Note that we don't call writeback_inodes_sb() directly, because it
2122 	 * will emit a warning if sb->s_umount is not locked.
2123 	 */
2124 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2125 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2126 	return 0;
2127 }
2128 
2129 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2130 {
2131 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2132 		btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2133 }
2134 
2135 /*
2136  * Add a pending snapshot associated with the given transaction handle to the
2137  * respective handle. This must be called after the transaction commit started
2138  * and while holding fs_info->trans_lock.
2139  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2140  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2141  * returns an error.
2142  */
2143 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2144 {
2145 	struct btrfs_transaction *cur_trans = trans->transaction;
2146 
2147 	if (!trans->pending_snapshot)
2148 		return;
2149 
2150 	lockdep_assert_held(&trans->fs_info->trans_lock);
2151 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2152 
2153 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2154 }
2155 
2156 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2157 {
2158 	fs_info->commit_stats.commit_count++;
2159 	fs_info->commit_stats.last_commit_dur = interval;
2160 	fs_info->commit_stats.max_commit_dur =
2161 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2162 	fs_info->commit_stats.total_commit_dur += interval;
2163 }
2164 
2165 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2166 {
2167 	struct btrfs_fs_info *fs_info = trans->fs_info;
2168 	struct btrfs_transaction *cur_trans = trans->transaction;
2169 	struct btrfs_transaction *prev_trans = NULL;
2170 	int ret;
2171 	ktime_t start_time;
2172 	ktime_t interval;
2173 
2174 	ASSERT(refcount_read(&trans->use_count) == 1);
2175 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2176 
2177 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2178 
2179 	/* Stop the commit early if ->aborted is set */
2180 	if (TRANS_ABORTED(cur_trans)) {
2181 		ret = cur_trans->aborted;
2182 		goto lockdep_trans_commit_start_release;
2183 	}
2184 
2185 	btrfs_trans_release_metadata(trans);
2186 	trans->block_rsv = NULL;
2187 
2188 	/*
2189 	 * We only want one transaction commit doing the flushing so we do not
2190 	 * waste a bunch of time on lock contention on the extent root node.
2191 	 */
2192 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2193 			      &cur_trans->delayed_refs.flags)) {
2194 		/*
2195 		 * Make a pass through all the delayed refs we have so far.
2196 		 * Any running threads may add more while we are here.
2197 		 */
2198 		ret = btrfs_run_delayed_refs(trans, 0);
2199 		if (ret)
2200 			goto lockdep_trans_commit_start_release;
2201 	}
2202 
2203 	btrfs_create_pending_block_groups(trans);
2204 
2205 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2206 		int run_it = 0;
2207 
2208 		/* this mutex is also taken before trying to set
2209 		 * block groups readonly.  We need to make sure
2210 		 * that nobody has set a block group readonly
2211 		 * after a extents from that block group have been
2212 		 * allocated for cache files.  btrfs_set_block_group_ro
2213 		 * will wait for the transaction to commit if it
2214 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2215 		 *
2216 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2217 		 * only one process starts all the block group IO.  It wouldn't
2218 		 * hurt to have more than one go through, but there's no
2219 		 * real advantage to it either.
2220 		 */
2221 		mutex_lock(&fs_info->ro_block_group_mutex);
2222 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2223 				      &cur_trans->flags))
2224 			run_it = 1;
2225 		mutex_unlock(&fs_info->ro_block_group_mutex);
2226 
2227 		if (run_it) {
2228 			ret = btrfs_start_dirty_block_groups(trans);
2229 			if (ret)
2230 				goto lockdep_trans_commit_start_release;
2231 		}
2232 	}
2233 
2234 	spin_lock(&fs_info->trans_lock);
2235 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2236 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2237 
2238 		add_pending_snapshot(trans);
2239 
2240 		spin_unlock(&fs_info->trans_lock);
2241 		refcount_inc(&cur_trans->use_count);
2242 
2243 		if (trans->in_fsync)
2244 			want_state = TRANS_STATE_SUPER_COMMITTED;
2245 
2246 		btrfs_trans_state_lockdep_release(fs_info,
2247 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2248 		ret = btrfs_end_transaction(trans);
2249 		wait_for_commit(cur_trans, want_state);
2250 
2251 		if (TRANS_ABORTED(cur_trans))
2252 			ret = cur_trans->aborted;
2253 
2254 		btrfs_put_transaction(cur_trans);
2255 
2256 		return ret;
2257 	}
2258 
2259 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2260 	wake_up(&fs_info->transaction_blocked_wait);
2261 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2262 
2263 	if (cur_trans->list.prev != &fs_info->trans_list) {
2264 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2265 
2266 		if (trans->in_fsync)
2267 			want_state = TRANS_STATE_SUPER_COMMITTED;
2268 
2269 		prev_trans = list_entry(cur_trans->list.prev,
2270 					struct btrfs_transaction, list);
2271 		if (prev_trans->state < want_state) {
2272 			refcount_inc(&prev_trans->use_count);
2273 			spin_unlock(&fs_info->trans_lock);
2274 
2275 			wait_for_commit(prev_trans, want_state);
2276 
2277 			ret = READ_ONCE(prev_trans->aborted);
2278 
2279 			btrfs_put_transaction(prev_trans);
2280 			if (ret)
2281 				goto lockdep_release;
2282 			spin_lock(&fs_info->trans_lock);
2283 		}
2284 	} else {
2285 		/*
2286 		 * The previous transaction was aborted and was already removed
2287 		 * from the list of transactions at fs_info->trans_list. So we
2288 		 * abort to prevent writing a new superblock that reflects a
2289 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2290 		 */
2291 		if (BTRFS_FS_ERROR(fs_info)) {
2292 			spin_unlock(&fs_info->trans_lock);
2293 			ret = -EROFS;
2294 			goto lockdep_release;
2295 		}
2296 	}
2297 
2298 	cur_trans->state = TRANS_STATE_COMMIT_START;
2299 	wake_up(&fs_info->transaction_blocked_wait);
2300 	spin_unlock(&fs_info->trans_lock);
2301 
2302 	/*
2303 	 * Get the time spent on the work done by the commit thread and not
2304 	 * the time spent waiting on a previous commit
2305 	 */
2306 	start_time = ktime_get_ns();
2307 
2308 	extwriter_counter_dec(cur_trans, trans->type);
2309 
2310 	ret = btrfs_start_delalloc_flush(fs_info);
2311 	if (ret)
2312 		goto lockdep_release;
2313 
2314 	ret = btrfs_run_delayed_items(trans);
2315 	if (ret)
2316 		goto lockdep_release;
2317 
2318 	/*
2319 	 * The thread has started/joined the transaction thus it holds the
2320 	 * lockdep map as a reader. It has to release it before acquiring the
2321 	 * lockdep map as a writer.
2322 	 */
2323 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2324 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2325 	wait_event(cur_trans->writer_wait,
2326 		   extwriter_counter_read(cur_trans) == 0);
2327 
2328 	/* some pending stuffs might be added after the previous flush. */
2329 	ret = btrfs_run_delayed_items(trans);
2330 	if (ret) {
2331 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2332 		goto cleanup_transaction;
2333 	}
2334 
2335 	btrfs_wait_delalloc_flush(fs_info);
2336 
2337 	/*
2338 	 * Wait for all ordered extents started by a fast fsync that joined this
2339 	 * transaction. Otherwise if this transaction commits before the ordered
2340 	 * extents complete we lose logged data after a power failure.
2341 	 */
2342 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2343 	wait_event(cur_trans->pending_wait,
2344 		   atomic_read(&cur_trans->pending_ordered) == 0);
2345 
2346 	btrfs_scrub_pause(fs_info);
2347 	/*
2348 	 * Ok now we need to make sure to block out any other joins while we
2349 	 * commit the transaction.  We could have started a join before setting
2350 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2351 	 */
2352 	spin_lock(&fs_info->trans_lock);
2353 	add_pending_snapshot(trans);
2354 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2355 	spin_unlock(&fs_info->trans_lock);
2356 
2357 	/*
2358 	 * The thread has started/joined the transaction thus it holds the
2359 	 * lockdep map as a reader. It has to release it before acquiring the
2360 	 * lockdep map as a writer.
2361 	 */
2362 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2363 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2364 	wait_event(cur_trans->writer_wait,
2365 		   atomic_read(&cur_trans->num_writers) == 1);
2366 
2367 	/*
2368 	 * Make lockdep happy by acquiring the state locks after
2369 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2370 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2371 	 * complain because we did not follow the reverse order unlocking rule.
2372 	 */
2373 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2374 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2375 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2376 
2377 	/*
2378 	 * We've started the commit, clear the flag in case we were triggered to
2379 	 * do an async commit but somebody else started before the transaction
2380 	 * kthread could do the work.
2381 	 */
2382 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2383 
2384 	if (TRANS_ABORTED(cur_trans)) {
2385 		ret = cur_trans->aborted;
2386 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2387 		goto scrub_continue;
2388 	}
2389 	/*
2390 	 * the reloc mutex makes sure that we stop
2391 	 * the balancing code from coming in and moving
2392 	 * extents around in the middle of the commit
2393 	 */
2394 	mutex_lock(&fs_info->reloc_mutex);
2395 
2396 	/*
2397 	 * We needn't worry about the delayed items because we will
2398 	 * deal with them in create_pending_snapshot(), which is the
2399 	 * core function of the snapshot creation.
2400 	 */
2401 	ret = create_pending_snapshots(trans);
2402 	if (ret)
2403 		goto unlock_reloc;
2404 
2405 	/*
2406 	 * We insert the dir indexes of the snapshots and update the inode
2407 	 * of the snapshots' parents after the snapshot creation, so there
2408 	 * are some delayed items which are not dealt with. Now deal with
2409 	 * them.
2410 	 *
2411 	 * We needn't worry that this operation will corrupt the snapshots,
2412 	 * because all the tree which are snapshoted will be forced to COW
2413 	 * the nodes and leaves.
2414 	 */
2415 	ret = btrfs_run_delayed_items(trans);
2416 	if (ret)
2417 		goto unlock_reloc;
2418 
2419 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2420 	if (ret)
2421 		goto unlock_reloc;
2422 
2423 	/*
2424 	 * make sure none of the code above managed to slip in a
2425 	 * delayed item
2426 	 */
2427 	btrfs_assert_delayed_root_empty(fs_info);
2428 
2429 	WARN_ON(cur_trans != trans->transaction);
2430 
2431 	ret = commit_fs_roots(trans);
2432 	if (ret)
2433 		goto unlock_reloc;
2434 
2435 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2436 	 * safe to free the root of tree log roots
2437 	 */
2438 	btrfs_free_log_root_tree(trans, fs_info);
2439 
2440 	/*
2441 	 * Since fs roots are all committed, we can get a quite accurate
2442 	 * new_roots. So let's do quota accounting.
2443 	 */
2444 	ret = btrfs_qgroup_account_extents(trans);
2445 	if (ret < 0)
2446 		goto unlock_reloc;
2447 
2448 	ret = commit_cowonly_roots(trans);
2449 	if (ret)
2450 		goto unlock_reloc;
2451 
2452 	/*
2453 	 * The tasks which save the space cache and inode cache may also
2454 	 * update ->aborted, check it.
2455 	 */
2456 	if (TRANS_ABORTED(cur_trans)) {
2457 		ret = cur_trans->aborted;
2458 		goto unlock_reloc;
2459 	}
2460 
2461 	cur_trans = fs_info->running_transaction;
2462 
2463 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2464 			    fs_info->tree_root->node);
2465 	list_add_tail(&fs_info->tree_root->dirty_list,
2466 		      &cur_trans->switch_commits);
2467 
2468 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2469 			    fs_info->chunk_root->node);
2470 	list_add_tail(&fs_info->chunk_root->dirty_list,
2471 		      &cur_trans->switch_commits);
2472 
2473 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2474 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2475 				    fs_info->block_group_root->node);
2476 		list_add_tail(&fs_info->block_group_root->dirty_list,
2477 			      &cur_trans->switch_commits);
2478 	}
2479 
2480 	switch_commit_roots(trans);
2481 
2482 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2483 	ASSERT(list_empty(&cur_trans->io_bgs));
2484 	update_super_roots(fs_info);
2485 
2486 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2487 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2488 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2489 	       sizeof(*fs_info->super_copy));
2490 
2491 	btrfs_commit_device_sizes(cur_trans);
2492 
2493 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2494 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2495 
2496 	btrfs_trans_release_chunk_metadata(trans);
2497 
2498 	/*
2499 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2500 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2501 	 * make sure that before we commit our superblock, no other task can
2502 	 * start a new transaction and commit a log tree before we commit our
2503 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2504 	 * writing its superblock.
2505 	 */
2506 	mutex_lock(&fs_info->tree_log_mutex);
2507 
2508 	spin_lock(&fs_info->trans_lock);
2509 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2510 	fs_info->running_transaction = NULL;
2511 	spin_unlock(&fs_info->trans_lock);
2512 	mutex_unlock(&fs_info->reloc_mutex);
2513 
2514 	wake_up(&fs_info->transaction_wait);
2515 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2516 
2517 	/* If we have features changed, wake up the cleaner to update sysfs. */
2518 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2519 	    fs_info->cleaner_kthread)
2520 		wake_up_process(fs_info->cleaner_kthread);
2521 
2522 	ret = btrfs_write_and_wait_transaction(trans);
2523 	if (ret) {
2524 		btrfs_handle_fs_error(fs_info, ret,
2525 				      "Error while writing out transaction");
2526 		mutex_unlock(&fs_info->tree_log_mutex);
2527 		goto scrub_continue;
2528 	}
2529 
2530 	ret = write_all_supers(fs_info, 0);
2531 	/*
2532 	 * the super is written, we can safely allow the tree-loggers
2533 	 * to go about their business
2534 	 */
2535 	mutex_unlock(&fs_info->tree_log_mutex);
2536 	if (ret)
2537 		goto scrub_continue;
2538 
2539 	/*
2540 	 * We needn't acquire the lock here because there is no other task
2541 	 * which can change it.
2542 	 */
2543 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2544 	wake_up(&cur_trans->commit_wait);
2545 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2546 
2547 	btrfs_finish_extent_commit(trans);
2548 
2549 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2550 		btrfs_clear_space_info_full(fs_info);
2551 
2552 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2553 	/*
2554 	 * We needn't acquire the lock here because there is no other task
2555 	 * which can change it.
2556 	 */
2557 	cur_trans->state = TRANS_STATE_COMPLETED;
2558 	wake_up(&cur_trans->commit_wait);
2559 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2560 
2561 	spin_lock(&fs_info->trans_lock);
2562 	list_del_init(&cur_trans->list);
2563 	spin_unlock(&fs_info->trans_lock);
2564 
2565 	btrfs_put_transaction(cur_trans);
2566 	btrfs_put_transaction(cur_trans);
2567 
2568 	if (trans->type & __TRANS_FREEZABLE)
2569 		sb_end_intwrite(fs_info->sb);
2570 
2571 	trace_btrfs_transaction_commit(fs_info);
2572 
2573 	interval = ktime_get_ns() - start_time;
2574 
2575 	btrfs_scrub_continue(fs_info);
2576 
2577 	if (current->journal_info == trans)
2578 		current->journal_info = NULL;
2579 
2580 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2581 
2582 	update_commit_stats(fs_info, interval);
2583 
2584 	return ret;
2585 
2586 unlock_reloc:
2587 	mutex_unlock(&fs_info->reloc_mutex);
2588 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2589 scrub_continue:
2590 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2591 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2592 	btrfs_scrub_continue(fs_info);
2593 cleanup_transaction:
2594 	btrfs_trans_release_metadata(trans);
2595 	btrfs_cleanup_pending_block_groups(trans);
2596 	btrfs_trans_release_chunk_metadata(trans);
2597 	trans->block_rsv = NULL;
2598 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2599 	if (current->journal_info == trans)
2600 		current->journal_info = NULL;
2601 	cleanup_transaction(trans, ret);
2602 
2603 	return ret;
2604 
2605 lockdep_release:
2606 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2607 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2608 	goto cleanup_transaction;
2609 
2610 lockdep_trans_commit_start_release:
2611 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2612 	btrfs_end_transaction(trans);
2613 	return ret;
2614 }
2615 
2616 /*
2617  * return < 0 if error
2618  * 0 if there are no more dead_roots at the time of call
2619  * 1 there are more to be processed, call me again
2620  *
2621  * The return value indicates there are certainly more snapshots to delete, but
2622  * if there comes a new one during processing, it may return 0. We don't mind,
2623  * because btrfs_commit_super will poke cleaner thread and it will process it a
2624  * few seconds later.
2625  */
2626 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2627 {
2628 	struct btrfs_root *root;
2629 	int ret;
2630 
2631 	spin_lock(&fs_info->trans_lock);
2632 	if (list_empty(&fs_info->dead_roots)) {
2633 		spin_unlock(&fs_info->trans_lock);
2634 		return 0;
2635 	}
2636 	root = list_first_entry(&fs_info->dead_roots,
2637 			struct btrfs_root, root_list);
2638 	list_del_init(&root->root_list);
2639 	spin_unlock(&fs_info->trans_lock);
2640 
2641 	btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2642 
2643 	btrfs_kill_all_delayed_nodes(root);
2644 
2645 	if (btrfs_header_backref_rev(root->node) <
2646 			BTRFS_MIXED_BACKREF_REV)
2647 		ret = btrfs_drop_snapshot(root, 0, 0);
2648 	else
2649 		ret = btrfs_drop_snapshot(root, 1, 0);
2650 
2651 	btrfs_put_root(root);
2652 	return (ret < 0) ? 0 : 1;
2653 }
2654 
2655 /*
2656  * We only mark the transaction aborted and then set the file system read-only.
2657  * This will prevent new transactions from starting or trying to join this
2658  * one.
2659  *
2660  * This means that error recovery at the call site is limited to freeing
2661  * any local memory allocations and passing the error code up without
2662  * further cleanup. The transaction should complete as it normally would
2663  * in the call path but will return -EIO.
2664  *
2665  * We'll complete the cleanup in btrfs_end_transaction and
2666  * btrfs_commit_transaction.
2667  */
2668 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2669 				      const char *function,
2670 				      unsigned int line, int error, bool first_hit)
2671 {
2672 	struct btrfs_fs_info *fs_info = trans->fs_info;
2673 
2674 	WRITE_ONCE(trans->aborted, error);
2675 	WRITE_ONCE(trans->transaction->aborted, error);
2676 	if (first_hit && error == -ENOSPC)
2677 		btrfs_dump_space_info_for_trans_abort(fs_info);
2678 	/* Wake up anybody who may be waiting on this transaction */
2679 	wake_up(&fs_info->transaction_wait);
2680 	wake_up(&fs_info->transaction_blocked_wait);
2681 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2682 }
2683 
2684 int __init btrfs_transaction_init(void)
2685 {
2686 	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2687 	if (!btrfs_trans_handle_cachep)
2688 		return -ENOMEM;
2689 	return 0;
2690 }
2691 
2692 void __cold btrfs_transaction_exit(void)
2693 {
2694 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2695 }
2696