xref: /linux/fs/btrfs/transaction.c (revision 29cbcf401793f4e2c871c846edc2191731df2c41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	/*
166 	 * At this point no one can be using this transaction to modify any tree
167 	 * and no one can start another transaction to modify any tree either.
168 	 */
169 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170 
171 	down_write(&fs_info->commit_root_sem);
172 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
173 				 dirty_list) {
174 		list_del_init(&root->dirty_list);
175 		free_extent_buffer(root->commit_root);
176 		root->commit_root = btrfs_root_node(root);
177 		extent_io_tree_release(&root->dirty_log_pages);
178 		btrfs_qgroup_clean_swapped_blocks(root);
179 	}
180 
181 	/* We can free old roots now. */
182 	spin_lock(&cur_trans->dropped_roots_lock);
183 	while (!list_empty(&cur_trans->dropped_roots)) {
184 		root = list_first_entry(&cur_trans->dropped_roots,
185 					struct btrfs_root, root_list);
186 		list_del_init(&root->root_list);
187 		spin_unlock(&cur_trans->dropped_roots_lock);
188 		btrfs_free_log(trans, root);
189 		btrfs_drop_and_free_fs_root(fs_info, root);
190 		spin_lock(&cur_trans->dropped_roots_lock);
191 	}
192 	spin_unlock(&cur_trans->dropped_roots_lock);
193 
194 	/*
195 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
196 	 * at the same time we swap out the commit roots.
197 	 *
198 	 * This is because we must have a real view of the last spot the caching
199 	 * kthreads were while caching.  Consider the following views of the
200 	 * extent tree for a block group
201 	 *
202 	 * commit root
203 	 * +----+----+----+----+----+----+----+
204 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
205 	 * +----+----+----+----+----+----+----+
206 	 * 0    1    2    3    4    5    6    7
207 	 *
208 	 * new commit root
209 	 * +----+----+----+----+----+----+----+
210 	 * |    |    |    |\\\\|    |    |\\\\|
211 	 * +----+----+----+----+----+----+----+
212 	 * 0    1    2    3    4    5    6    7
213 	 *
214 	 * If the cache_ctl->progress was at 3, then we are only allowed to
215 	 * unpin [0,1) and [2,3], because the caching thread has already
216 	 * processed those extents.  We are not allowed to unpin [5,6), because
217 	 * the caching thread will re-start it's search from 3, and thus find
218 	 * the hole from [4,6) to add to the free space cache.
219 	 */
220 	spin_lock(&fs_info->block_group_cache_lock);
221 	list_for_each_entry_safe(caching_ctl, next,
222 				 &fs_info->caching_block_groups, list) {
223 		struct btrfs_block_group *cache = caching_ctl->block_group;
224 
225 		if (btrfs_block_group_done(cache)) {
226 			cache->last_byte_to_unpin = (u64)-1;
227 			list_del_init(&caching_ctl->list);
228 			btrfs_put_caching_control(caching_ctl);
229 		} else {
230 			cache->last_byte_to_unpin = caching_ctl->progress;
231 		}
232 	}
233 	spin_unlock(&fs_info->block_group_cache_lock);
234 	up_write(&fs_info->commit_root_sem);
235 }
236 
237 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
238 					 unsigned int type)
239 {
240 	if (type & TRANS_EXTWRITERS)
241 		atomic_inc(&trans->num_extwriters);
242 }
243 
244 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
245 					 unsigned int type)
246 {
247 	if (type & TRANS_EXTWRITERS)
248 		atomic_dec(&trans->num_extwriters);
249 }
250 
251 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
252 					  unsigned int type)
253 {
254 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
255 }
256 
257 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
258 {
259 	return atomic_read(&trans->num_extwriters);
260 }
261 
262 /*
263  * To be called after doing the chunk btree updates right after allocating a new
264  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
265  * chunk after all chunk btree updates and after finishing the second phase of
266  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
267  * group had its chunk item insertion delayed to the second phase.
268  */
269 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
270 {
271 	struct btrfs_fs_info *fs_info = trans->fs_info;
272 
273 	if (!trans->chunk_bytes_reserved)
274 		return;
275 
276 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
277 				trans->chunk_bytes_reserved, NULL);
278 	trans->chunk_bytes_reserved = 0;
279 }
280 
281 /*
282  * either allocate a new transaction or hop into the existing one
283  */
284 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
285 				     unsigned int type)
286 {
287 	struct btrfs_transaction *cur_trans;
288 
289 	spin_lock(&fs_info->trans_lock);
290 loop:
291 	/* The file system has been taken offline. No new transactions. */
292 	if (BTRFS_FS_ERROR(fs_info)) {
293 		spin_unlock(&fs_info->trans_lock);
294 		return -EROFS;
295 	}
296 
297 	cur_trans = fs_info->running_transaction;
298 	if (cur_trans) {
299 		if (TRANS_ABORTED(cur_trans)) {
300 			spin_unlock(&fs_info->trans_lock);
301 			return cur_trans->aborted;
302 		}
303 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
304 			spin_unlock(&fs_info->trans_lock);
305 			return -EBUSY;
306 		}
307 		refcount_inc(&cur_trans->use_count);
308 		atomic_inc(&cur_trans->num_writers);
309 		extwriter_counter_inc(cur_trans, type);
310 		spin_unlock(&fs_info->trans_lock);
311 		return 0;
312 	}
313 	spin_unlock(&fs_info->trans_lock);
314 
315 	/*
316 	 * If we are ATTACH, we just want to catch the current transaction,
317 	 * and commit it. If there is no transaction, just return ENOENT.
318 	 */
319 	if (type == TRANS_ATTACH)
320 		return -ENOENT;
321 
322 	/*
323 	 * JOIN_NOLOCK only happens during the transaction commit, so
324 	 * it is impossible that ->running_transaction is NULL
325 	 */
326 	BUG_ON(type == TRANS_JOIN_NOLOCK);
327 
328 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
329 	if (!cur_trans)
330 		return -ENOMEM;
331 
332 	spin_lock(&fs_info->trans_lock);
333 	if (fs_info->running_transaction) {
334 		/*
335 		 * someone started a transaction after we unlocked.  Make sure
336 		 * to redo the checks above
337 		 */
338 		kfree(cur_trans);
339 		goto loop;
340 	} else if (BTRFS_FS_ERROR(fs_info)) {
341 		spin_unlock(&fs_info->trans_lock);
342 		kfree(cur_trans);
343 		return -EROFS;
344 	}
345 
346 	cur_trans->fs_info = fs_info;
347 	atomic_set(&cur_trans->pending_ordered, 0);
348 	init_waitqueue_head(&cur_trans->pending_wait);
349 	atomic_set(&cur_trans->num_writers, 1);
350 	extwriter_counter_init(cur_trans, type);
351 	init_waitqueue_head(&cur_trans->writer_wait);
352 	init_waitqueue_head(&cur_trans->commit_wait);
353 	cur_trans->state = TRANS_STATE_RUNNING;
354 	/*
355 	 * One for this trans handle, one so it will live on until we
356 	 * commit the transaction.
357 	 */
358 	refcount_set(&cur_trans->use_count, 2);
359 	cur_trans->flags = 0;
360 	cur_trans->start_time = ktime_get_seconds();
361 
362 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
363 
364 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
365 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
366 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
367 
368 	/*
369 	 * although the tree mod log is per file system and not per transaction,
370 	 * the log must never go across transaction boundaries.
371 	 */
372 	smp_mb();
373 	if (!list_empty(&fs_info->tree_mod_seq_list))
374 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
375 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
376 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
377 	atomic64_set(&fs_info->tree_mod_seq, 0);
378 
379 	spin_lock_init(&cur_trans->delayed_refs.lock);
380 
381 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
382 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
383 	INIT_LIST_HEAD(&cur_trans->switch_commits);
384 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
385 	INIT_LIST_HEAD(&cur_trans->io_bgs);
386 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
387 	mutex_init(&cur_trans->cache_write_mutex);
388 	spin_lock_init(&cur_trans->dirty_bgs_lock);
389 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
390 	spin_lock_init(&cur_trans->dropped_roots_lock);
391 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
392 	spin_lock_init(&cur_trans->releasing_ebs_lock);
393 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
394 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
395 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
396 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
397 			IO_TREE_FS_PINNED_EXTENTS, NULL);
398 	fs_info->generation++;
399 	cur_trans->transid = fs_info->generation;
400 	fs_info->running_transaction = cur_trans;
401 	cur_trans->aborted = 0;
402 	spin_unlock(&fs_info->trans_lock);
403 
404 	return 0;
405 }
406 
407 /*
408  * This does all the record keeping required to make sure that a shareable root
409  * is properly recorded in a given transaction.  This is required to make sure
410  * the old root from before we joined the transaction is deleted when the
411  * transaction commits.
412  */
413 static int record_root_in_trans(struct btrfs_trans_handle *trans,
414 			       struct btrfs_root *root,
415 			       int force)
416 {
417 	struct btrfs_fs_info *fs_info = root->fs_info;
418 	int ret = 0;
419 
420 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
421 	    root->last_trans < trans->transid) || force) {
422 		WARN_ON(root == fs_info->_extent_root);
423 		WARN_ON(!force && root->commit_root != root->node);
424 
425 		/*
426 		 * see below for IN_TRANS_SETUP usage rules
427 		 * we have the reloc mutex held now, so there
428 		 * is only one writer in this function
429 		 */
430 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
431 
432 		/* make sure readers find IN_TRANS_SETUP before
433 		 * they find our root->last_trans update
434 		 */
435 		smp_wmb();
436 
437 		spin_lock(&fs_info->fs_roots_radix_lock);
438 		if (root->last_trans == trans->transid && !force) {
439 			spin_unlock(&fs_info->fs_roots_radix_lock);
440 			return 0;
441 		}
442 		radix_tree_tag_set(&fs_info->fs_roots_radix,
443 				   (unsigned long)root->root_key.objectid,
444 				   BTRFS_ROOT_TRANS_TAG);
445 		spin_unlock(&fs_info->fs_roots_radix_lock);
446 		root->last_trans = trans->transid;
447 
448 		/* this is pretty tricky.  We don't want to
449 		 * take the relocation lock in btrfs_record_root_in_trans
450 		 * unless we're really doing the first setup for this root in
451 		 * this transaction.
452 		 *
453 		 * Normally we'd use root->last_trans as a flag to decide
454 		 * if we want to take the expensive mutex.
455 		 *
456 		 * But, we have to set root->last_trans before we
457 		 * init the relocation root, otherwise, we trip over warnings
458 		 * in ctree.c.  The solution used here is to flag ourselves
459 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
460 		 * fixing up the reloc trees and everyone must wait.
461 		 *
462 		 * When this is zero, they can trust root->last_trans and fly
463 		 * through btrfs_record_root_in_trans without having to take the
464 		 * lock.  smp_wmb() makes sure that all the writes above are
465 		 * done before we pop in the zero below
466 		 */
467 		ret = btrfs_init_reloc_root(trans, root);
468 		smp_mb__before_atomic();
469 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
470 	}
471 	return ret;
472 }
473 
474 
475 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
476 			    struct btrfs_root *root)
477 {
478 	struct btrfs_fs_info *fs_info = root->fs_info;
479 	struct btrfs_transaction *cur_trans = trans->transaction;
480 
481 	/* Add ourselves to the transaction dropped list */
482 	spin_lock(&cur_trans->dropped_roots_lock);
483 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
484 	spin_unlock(&cur_trans->dropped_roots_lock);
485 
486 	/* Make sure we don't try to update the root at commit time */
487 	spin_lock(&fs_info->fs_roots_radix_lock);
488 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
489 			     (unsigned long)root->root_key.objectid,
490 			     BTRFS_ROOT_TRANS_TAG);
491 	spin_unlock(&fs_info->fs_roots_radix_lock);
492 }
493 
494 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
495 			       struct btrfs_root *root)
496 {
497 	struct btrfs_fs_info *fs_info = root->fs_info;
498 	int ret;
499 
500 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
501 		return 0;
502 
503 	/*
504 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
505 	 * and barriers
506 	 */
507 	smp_rmb();
508 	if (root->last_trans == trans->transid &&
509 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
510 		return 0;
511 
512 	mutex_lock(&fs_info->reloc_mutex);
513 	ret = record_root_in_trans(trans, root, 0);
514 	mutex_unlock(&fs_info->reloc_mutex);
515 
516 	return ret;
517 }
518 
519 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
520 {
521 	return (trans->state >= TRANS_STATE_COMMIT_START &&
522 		trans->state < TRANS_STATE_UNBLOCKED &&
523 		!TRANS_ABORTED(trans));
524 }
525 
526 /* wait for commit against the current transaction to become unblocked
527  * when this is done, it is safe to start a new transaction, but the current
528  * transaction might not be fully on disk.
529  */
530 static void wait_current_trans(struct btrfs_fs_info *fs_info)
531 {
532 	struct btrfs_transaction *cur_trans;
533 
534 	spin_lock(&fs_info->trans_lock);
535 	cur_trans = fs_info->running_transaction;
536 	if (cur_trans && is_transaction_blocked(cur_trans)) {
537 		refcount_inc(&cur_trans->use_count);
538 		spin_unlock(&fs_info->trans_lock);
539 
540 		wait_event(fs_info->transaction_wait,
541 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
542 			   TRANS_ABORTED(cur_trans));
543 		btrfs_put_transaction(cur_trans);
544 	} else {
545 		spin_unlock(&fs_info->trans_lock);
546 	}
547 }
548 
549 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
550 {
551 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
552 		return 0;
553 
554 	if (type == TRANS_START)
555 		return 1;
556 
557 	return 0;
558 }
559 
560 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
561 {
562 	struct btrfs_fs_info *fs_info = root->fs_info;
563 
564 	if (!fs_info->reloc_ctl ||
565 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
566 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
567 	    root->reloc_root)
568 		return false;
569 
570 	return true;
571 }
572 
573 static struct btrfs_trans_handle *
574 start_transaction(struct btrfs_root *root, unsigned int num_items,
575 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
576 		  bool enforce_qgroups)
577 {
578 	struct btrfs_fs_info *fs_info = root->fs_info;
579 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
580 	struct btrfs_trans_handle *h;
581 	struct btrfs_transaction *cur_trans;
582 	u64 num_bytes = 0;
583 	u64 qgroup_reserved = 0;
584 	bool reloc_reserved = false;
585 	bool do_chunk_alloc = false;
586 	int ret;
587 
588 	if (BTRFS_FS_ERROR(fs_info))
589 		return ERR_PTR(-EROFS);
590 
591 	if (current->journal_info) {
592 		WARN_ON(type & TRANS_EXTWRITERS);
593 		h = current->journal_info;
594 		refcount_inc(&h->use_count);
595 		WARN_ON(refcount_read(&h->use_count) > 2);
596 		h->orig_rsv = h->block_rsv;
597 		h->block_rsv = NULL;
598 		goto got_it;
599 	}
600 
601 	/*
602 	 * Do the reservation before we join the transaction so we can do all
603 	 * the appropriate flushing if need be.
604 	 */
605 	if (num_items && root != fs_info->chunk_root) {
606 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
607 		u64 delayed_refs_bytes = 0;
608 
609 		qgroup_reserved = num_items * fs_info->nodesize;
610 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
611 				enforce_qgroups);
612 		if (ret)
613 			return ERR_PTR(ret);
614 
615 		/*
616 		 * We want to reserve all the bytes we may need all at once, so
617 		 * we only do 1 enospc flushing cycle per transaction start.  We
618 		 * accomplish this by simply assuming we'll do 2 x num_items
619 		 * worth of delayed refs updates in this trans handle, and
620 		 * refill that amount for whatever is missing in the reserve.
621 		 */
622 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
623 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
624 		    delayed_refs_rsv->full == 0) {
625 			delayed_refs_bytes = num_bytes;
626 			num_bytes <<= 1;
627 		}
628 
629 		/*
630 		 * Do the reservation for the relocation root creation
631 		 */
632 		if (need_reserve_reloc_root(root)) {
633 			num_bytes += fs_info->nodesize;
634 			reloc_reserved = true;
635 		}
636 
637 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
638 		if (ret)
639 			goto reserve_fail;
640 		if (delayed_refs_bytes) {
641 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
642 							  delayed_refs_bytes);
643 			num_bytes -= delayed_refs_bytes;
644 		}
645 
646 		if (rsv->space_info->force_alloc)
647 			do_chunk_alloc = true;
648 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
649 		   !delayed_refs_rsv->full) {
650 		/*
651 		 * Some people call with btrfs_start_transaction(root, 0)
652 		 * because they can be throttled, but have some other mechanism
653 		 * for reserving space.  We still want these guys to refill the
654 		 * delayed block_rsv so just add 1 items worth of reservation
655 		 * here.
656 		 */
657 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
658 		if (ret)
659 			goto reserve_fail;
660 	}
661 again:
662 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
663 	if (!h) {
664 		ret = -ENOMEM;
665 		goto alloc_fail;
666 	}
667 
668 	/*
669 	 * If we are JOIN_NOLOCK we're already committing a transaction and
670 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
671 	 * because we're already holding a ref.  We need this because we could
672 	 * have raced in and did an fsync() on a file which can kick a commit
673 	 * and then we deadlock with somebody doing a freeze.
674 	 *
675 	 * If we are ATTACH, it means we just want to catch the current
676 	 * transaction and commit it, so we needn't do sb_start_intwrite().
677 	 */
678 	if (type & __TRANS_FREEZABLE)
679 		sb_start_intwrite(fs_info->sb);
680 
681 	if (may_wait_transaction(fs_info, type))
682 		wait_current_trans(fs_info);
683 
684 	do {
685 		ret = join_transaction(fs_info, type);
686 		if (ret == -EBUSY) {
687 			wait_current_trans(fs_info);
688 			if (unlikely(type == TRANS_ATTACH ||
689 				     type == TRANS_JOIN_NOSTART))
690 				ret = -ENOENT;
691 		}
692 	} while (ret == -EBUSY);
693 
694 	if (ret < 0)
695 		goto join_fail;
696 
697 	cur_trans = fs_info->running_transaction;
698 
699 	h->transid = cur_trans->transid;
700 	h->transaction = cur_trans;
701 	refcount_set(&h->use_count, 1);
702 	h->fs_info = root->fs_info;
703 
704 	h->type = type;
705 	INIT_LIST_HEAD(&h->new_bgs);
706 
707 	smp_mb();
708 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
709 	    may_wait_transaction(fs_info, type)) {
710 		current->journal_info = h;
711 		btrfs_commit_transaction(h);
712 		goto again;
713 	}
714 
715 	if (num_bytes) {
716 		trace_btrfs_space_reservation(fs_info, "transaction",
717 					      h->transid, num_bytes, 1);
718 		h->block_rsv = &fs_info->trans_block_rsv;
719 		h->bytes_reserved = num_bytes;
720 		h->reloc_reserved = reloc_reserved;
721 	}
722 
723 got_it:
724 	if (!current->journal_info)
725 		current->journal_info = h;
726 
727 	/*
728 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
729 	 * ALLOC_FORCE the first run through, and then we won't allocate for
730 	 * anybody else who races in later.  We don't care about the return
731 	 * value here.
732 	 */
733 	if (do_chunk_alloc && num_bytes) {
734 		u64 flags = h->block_rsv->space_info->flags;
735 
736 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
737 				  CHUNK_ALLOC_NO_FORCE);
738 	}
739 
740 	/*
741 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
742 	 * call btrfs_join_transaction() while we're also starting a
743 	 * transaction.
744 	 *
745 	 * Thus it need to be called after current->journal_info initialized,
746 	 * or we can deadlock.
747 	 */
748 	ret = btrfs_record_root_in_trans(h, root);
749 	if (ret) {
750 		/*
751 		 * The transaction handle is fully initialized and linked with
752 		 * other structures so it needs to be ended in case of errors,
753 		 * not just freed.
754 		 */
755 		btrfs_end_transaction(h);
756 		return ERR_PTR(ret);
757 	}
758 
759 	return h;
760 
761 join_fail:
762 	if (type & __TRANS_FREEZABLE)
763 		sb_end_intwrite(fs_info->sb);
764 	kmem_cache_free(btrfs_trans_handle_cachep, h);
765 alloc_fail:
766 	if (num_bytes)
767 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
768 					num_bytes, NULL);
769 reserve_fail:
770 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
771 	return ERR_PTR(ret);
772 }
773 
774 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
775 						   unsigned int num_items)
776 {
777 	return start_transaction(root, num_items, TRANS_START,
778 				 BTRFS_RESERVE_FLUSH_ALL, true);
779 }
780 
781 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
782 					struct btrfs_root *root,
783 					unsigned int num_items)
784 {
785 	return start_transaction(root, num_items, TRANS_START,
786 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
787 }
788 
789 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
790 {
791 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
792 				 true);
793 }
794 
795 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
796 {
797 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
798 				 BTRFS_RESERVE_NO_FLUSH, true);
799 }
800 
801 /*
802  * Similar to regular join but it never starts a transaction when none is
803  * running or after waiting for the current one to finish.
804  */
805 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
806 {
807 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
808 				 BTRFS_RESERVE_NO_FLUSH, true);
809 }
810 
811 /*
812  * btrfs_attach_transaction() - catch the running transaction
813  *
814  * It is used when we want to commit the current the transaction, but
815  * don't want to start a new one.
816  *
817  * Note: If this function return -ENOENT, it just means there is no
818  * running transaction. But it is possible that the inactive transaction
819  * is still in the memory, not fully on disk. If you hope there is no
820  * inactive transaction in the fs when -ENOENT is returned, you should
821  * invoke
822  *     btrfs_attach_transaction_barrier()
823  */
824 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
825 {
826 	return start_transaction(root, 0, TRANS_ATTACH,
827 				 BTRFS_RESERVE_NO_FLUSH, true);
828 }
829 
830 /*
831  * btrfs_attach_transaction_barrier() - catch the running transaction
832  *
833  * It is similar to the above function, the difference is this one
834  * will wait for all the inactive transactions until they fully
835  * complete.
836  */
837 struct btrfs_trans_handle *
838 btrfs_attach_transaction_barrier(struct btrfs_root *root)
839 {
840 	struct btrfs_trans_handle *trans;
841 
842 	trans = start_transaction(root, 0, TRANS_ATTACH,
843 				  BTRFS_RESERVE_NO_FLUSH, true);
844 	if (trans == ERR_PTR(-ENOENT))
845 		btrfs_wait_for_commit(root->fs_info, 0);
846 
847 	return trans;
848 }
849 
850 /* Wait for a transaction commit to reach at least the given state. */
851 static noinline void wait_for_commit(struct btrfs_transaction *commit,
852 				     const enum btrfs_trans_state min_state)
853 {
854 	wait_event(commit->commit_wait, commit->state >= min_state);
855 }
856 
857 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
858 {
859 	struct btrfs_transaction *cur_trans = NULL, *t;
860 	int ret = 0;
861 
862 	if (transid) {
863 		if (transid <= fs_info->last_trans_committed)
864 			goto out;
865 
866 		/* find specified transaction */
867 		spin_lock(&fs_info->trans_lock);
868 		list_for_each_entry(t, &fs_info->trans_list, list) {
869 			if (t->transid == transid) {
870 				cur_trans = t;
871 				refcount_inc(&cur_trans->use_count);
872 				ret = 0;
873 				break;
874 			}
875 			if (t->transid > transid) {
876 				ret = 0;
877 				break;
878 			}
879 		}
880 		spin_unlock(&fs_info->trans_lock);
881 
882 		/*
883 		 * The specified transaction doesn't exist, or we
884 		 * raced with btrfs_commit_transaction
885 		 */
886 		if (!cur_trans) {
887 			if (transid > fs_info->last_trans_committed)
888 				ret = -EINVAL;
889 			goto out;
890 		}
891 	} else {
892 		/* find newest transaction that is committing | committed */
893 		spin_lock(&fs_info->trans_lock);
894 		list_for_each_entry_reverse(t, &fs_info->trans_list,
895 					    list) {
896 			if (t->state >= TRANS_STATE_COMMIT_START) {
897 				if (t->state == TRANS_STATE_COMPLETED)
898 					break;
899 				cur_trans = t;
900 				refcount_inc(&cur_trans->use_count);
901 				break;
902 			}
903 		}
904 		spin_unlock(&fs_info->trans_lock);
905 		if (!cur_trans)
906 			goto out;  /* nothing committing|committed */
907 	}
908 
909 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
910 	btrfs_put_transaction(cur_trans);
911 out:
912 	return ret;
913 }
914 
915 void btrfs_throttle(struct btrfs_fs_info *fs_info)
916 {
917 	wait_current_trans(fs_info);
918 }
919 
920 static bool should_end_transaction(struct btrfs_trans_handle *trans)
921 {
922 	struct btrfs_fs_info *fs_info = trans->fs_info;
923 
924 	if (btrfs_check_space_for_delayed_refs(fs_info))
925 		return true;
926 
927 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
928 }
929 
930 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
931 {
932 	struct btrfs_transaction *cur_trans = trans->transaction;
933 
934 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
935 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
936 		return true;
937 
938 	return should_end_transaction(trans);
939 }
940 
941 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
942 
943 {
944 	struct btrfs_fs_info *fs_info = trans->fs_info;
945 
946 	if (!trans->block_rsv) {
947 		ASSERT(!trans->bytes_reserved);
948 		return;
949 	}
950 
951 	if (!trans->bytes_reserved)
952 		return;
953 
954 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
955 	trace_btrfs_space_reservation(fs_info, "transaction",
956 				      trans->transid, trans->bytes_reserved, 0);
957 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
958 				trans->bytes_reserved, NULL);
959 	trans->bytes_reserved = 0;
960 }
961 
962 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
963 				   int throttle)
964 {
965 	struct btrfs_fs_info *info = trans->fs_info;
966 	struct btrfs_transaction *cur_trans = trans->transaction;
967 	int err = 0;
968 
969 	if (refcount_read(&trans->use_count) > 1) {
970 		refcount_dec(&trans->use_count);
971 		trans->block_rsv = trans->orig_rsv;
972 		return 0;
973 	}
974 
975 	btrfs_trans_release_metadata(trans);
976 	trans->block_rsv = NULL;
977 
978 	btrfs_create_pending_block_groups(trans);
979 
980 	btrfs_trans_release_chunk_metadata(trans);
981 
982 	if (trans->type & __TRANS_FREEZABLE)
983 		sb_end_intwrite(info->sb);
984 
985 	WARN_ON(cur_trans != info->running_transaction);
986 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
987 	atomic_dec(&cur_trans->num_writers);
988 	extwriter_counter_dec(cur_trans, trans->type);
989 
990 	cond_wake_up(&cur_trans->writer_wait);
991 	btrfs_put_transaction(cur_trans);
992 
993 	if (current->journal_info == trans)
994 		current->journal_info = NULL;
995 
996 	if (throttle)
997 		btrfs_run_delayed_iputs(info);
998 
999 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1000 		wake_up_process(info->transaction_kthread);
1001 		if (TRANS_ABORTED(trans))
1002 			err = trans->aborted;
1003 		else
1004 			err = -EROFS;
1005 	}
1006 
1007 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1008 	return err;
1009 }
1010 
1011 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1012 {
1013 	return __btrfs_end_transaction(trans, 0);
1014 }
1015 
1016 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1017 {
1018 	return __btrfs_end_transaction(trans, 1);
1019 }
1020 
1021 /*
1022  * when btree blocks are allocated, they have some corresponding bits set for
1023  * them in one of two extent_io trees.  This is used to make sure all of
1024  * those extents are sent to disk but does not wait on them
1025  */
1026 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1027 			       struct extent_io_tree *dirty_pages, int mark)
1028 {
1029 	int err = 0;
1030 	int werr = 0;
1031 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1032 	struct extent_state *cached_state = NULL;
1033 	u64 start = 0;
1034 	u64 end;
1035 
1036 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1037 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1038 				      mark, &cached_state)) {
1039 		bool wait_writeback = false;
1040 
1041 		err = convert_extent_bit(dirty_pages, start, end,
1042 					 EXTENT_NEED_WAIT,
1043 					 mark, &cached_state);
1044 		/*
1045 		 * convert_extent_bit can return -ENOMEM, which is most of the
1046 		 * time a temporary error. So when it happens, ignore the error
1047 		 * and wait for writeback of this range to finish - because we
1048 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1049 		 * to __btrfs_wait_marked_extents() would not know that
1050 		 * writeback for this range started and therefore wouldn't
1051 		 * wait for it to finish - we don't want to commit a
1052 		 * superblock that points to btree nodes/leafs for which
1053 		 * writeback hasn't finished yet (and without errors).
1054 		 * We cleanup any entries left in the io tree when committing
1055 		 * the transaction (through extent_io_tree_release()).
1056 		 */
1057 		if (err == -ENOMEM) {
1058 			err = 0;
1059 			wait_writeback = true;
1060 		}
1061 		if (!err)
1062 			err = filemap_fdatawrite_range(mapping, start, end);
1063 		if (err)
1064 			werr = err;
1065 		else if (wait_writeback)
1066 			werr = filemap_fdatawait_range(mapping, start, end);
1067 		free_extent_state(cached_state);
1068 		cached_state = NULL;
1069 		cond_resched();
1070 		start = end + 1;
1071 	}
1072 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1073 	return werr;
1074 }
1075 
1076 /*
1077  * when btree blocks are allocated, they have some corresponding bits set for
1078  * them in one of two extent_io trees.  This is used to make sure all of
1079  * those extents are on disk for transaction or log commit.  We wait
1080  * on all the pages and clear them from the dirty pages state tree
1081  */
1082 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1083 				       struct extent_io_tree *dirty_pages)
1084 {
1085 	int err = 0;
1086 	int werr = 0;
1087 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1088 	struct extent_state *cached_state = NULL;
1089 	u64 start = 0;
1090 	u64 end;
1091 
1092 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1093 				      EXTENT_NEED_WAIT, &cached_state)) {
1094 		/*
1095 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1096 		 * When committing the transaction, we'll remove any entries
1097 		 * left in the io tree. For a log commit, we don't remove them
1098 		 * after committing the log because the tree can be accessed
1099 		 * concurrently - we do it only at transaction commit time when
1100 		 * it's safe to do it (through extent_io_tree_release()).
1101 		 */
1102 		err = clear_extent_bit(dirty_pages, start, end,
1103 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1104 		if (err == -ENOMEM)
1105 			err = 0;
1106 		if (!err)
1107 			err = filemap_fdatawait_range(mapping, start, end);
1108 		if (err)
1109 			werr = err;
1110 		free_extent_state(cached_state);
1111 		cached_state = NULL;
1112 		cond_resched();
1113 		start = end + 1;
1114 	}
1115 	if (err)
1116 		werr = err;
1117 	return werr;
1118 }
1119 
1120 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1121 		       struct extent_io_tree *dirty_pages)
1122 {
1123 	bool errors = false;
1124 	int err;
1125 
1126 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1127 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1128 		errors = true;
1129 
1130 	if (errors && !err)
1131 		err = -EIO;
1132 	return err;
1133 }
1134 
1135 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1136 {
1137 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1138 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1139 	bool errors = false;
1140 	int err;
1141 
1142 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1143 
1144 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1145 	if ((mark & EXTENT_DIRTY) &&
1146 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1147 		errors = true;
1148 
1149 	if ((mark & EXTENT_NEW) &&
1150 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1151 		errors = true;
1152 
1153 	if (errors && !err)
1154 		err = -EIO;
1155 	return err;
1156 }
1157 
1158 /*
1159  * When btree blocks are allocated the corresponding extents are marked dirty.
1160  * This function ensures such extents are persisted on disk for transaction or
1161  * log commit.
1162  *
1163  * @trans: transaction whose dirty pages we'd like to write
1164  */
1165 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1166 {
1167 	int ret;
1168 	int ret2;
1169 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1170 	struct btrfs_fs_info *fs_info = trans->fs_info;
1171 	struct blk_plug plug;
1172 
1173 	blk_start_plug(&plug);
1174 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1175 	blk_finish_plug(&plug);
1176 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1177 
1178 	extent_io_tree_release(&trans->transaction->dirty_pages);
1179 
1180 	if (ret)
1181 		return ret;
1182 	else if (ret2)
1183 		return ret2;
1184 	else
1185 		return 0;
1186 }
1187 
1188 /*
1189  * this is used to update the root pointer in the tree of tree roots.
1190  *
1191  * But, in the case of the extent allocation tree, updating the root
1192  * pointer may allocate blocks which may change the root of the extent
1193  * allocation tree.
1194  *
1195  * So, this loops and repeats and makes sure the cowonly root didn't
1196  * change while the root pointer was being updated in the metadata.
1197  */
1198 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1199 			       struct btrfs_root *root)
1200 {
1201 	int ret;
1202 	u64 old_root_bytenr;
1203 	u64 old_root_used;
1204 	struct btrfs_fs_info *fs_info = root->fs_info;
1205 	struct btrfs_root *tree_root = fs_info->tree_root;
1206 
1207 	old_root_used = btrfs_root_used(&root->root_item);
1208 
1209 	while (1) {
1210 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1211 		if (old_root_bytenr == root->node->start &&
1212 		    old_root_used == btrfs_root_used(&root->root_item))
1213 			break;
1214 
1215 		btrfs_set_root_node(&root->root_item, root->node);
1216 		ret = btrfs_update_root(trans, tree_root,
1217 					&root->root_key,
1218 					&root->root_item);
1219 		if (ret)
1220 			return ret;
1221 
1222 		old_root_used = btrfs_root_used(&root->root_item);
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * update all the cowonly tree roots on disk
1230  *
1231  * The error handling in this function may not be obvious. Any of the
1232  * failures will cause the file system to go offline. We still need
1233  * to clean up the delayed refs.
1234  */
1235 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1236 {
1237 	struct btrfs_fs_info *fs_info = trans->fs_info;
1238 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1239 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1240 	struct list_head *next;
1241 	struct extent_buffer *eb;
1242 	int ret;
1243 
1244 	/*
1245 	 * At this point no one can be using this transaction to modify any tree
1246 	 * and no one can start another transaction to modify any tree either.
1247 	 */
1248 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1249 
1250 	eb = btrfs_lock_root_node(fs_info->tree_root);
1251 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1252 			      0, &eb, BTRFS_NESTING_COW);
1253 	btrfs_tree_unlock(eb);
1254 	free_extent_buffer(eb);
1255 
1256 	if (ret)
1257 		return ret;
1258 
1259 	ret = btrfs_run_dev_stats(trans);
1260 	if (ret)
1261 		return ret;
1262 	ret = btrfs_run_dev_replace(trans);
1263 	if (ret)
1264 		return ret;
1265 	ret = btrfs_run_qgroups(trans);
1266 	if (ret)
1267 		return ret;
1268 
1269 	ret = btrfs_setup_space_cache(trans);
1270 	if (ret)
1271 		return ret;
1272 
1273 again:
1274 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1275 		struct btrfs_root *root;
1276 		next = fs_info->dirty_cowonly_roots.next;
1277 		list_del_init(next);
1278 		root = list_entry(next, struct btrfs_root, dirty_list);
1279 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1280 
1281 		list_add_tail(&root->dirty_list,
1282 			      &trans->transaction->switch_commits);
1283 		ret = update_cowonly_root(trans, root);
1284 		if (ret)
1285 			return ret;
1286 	}
1287 
1288 	/* Now flush any delayed refs generated by updating all of the roots */
1289 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1290 	if (ret)
1291 		return ret;
1292 
1293 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1294 		ret = btrfs_write_dirty_block_groups(trans);
1295 		if (ret)
1296 			return ret;
1297 
1298 		/*
1299 		 * We're writing the dirty block groups, which could generate
1300 		 * delayed refs, which could generate more dirty block groups,
1301 		 * so we want to keep this flushing in this loop to make sure
1302 		 * everything gets run.
1303 		 */
1304 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1305 		if (ret)
1306 			return ret;
1307 	}
1308 
1309 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1310 		goto again;
1311 
1312 	/* Update dev-replace pointer once everything is committed */
1313 	fs_info->dev_replace.committed_cursor_left =
1314 		fs_info->dev_replace.cursor_left_last_write_of_item;
1315 
1316 	return 0;
1317 }
1318 
1319 /*
1320  * dead roots are old snapshots that need to be deleted.  This allocates
1321  * a dirty root struct and adds it into the list of dead roots that need to
1322  * be deleted
1323  */
1324 void btrfs_add_dead_root(struct btrfs_root *root)
1325 {
1326 	struct btrfs_fs_info *fs_info = root->fs_info;
1327 
1328 	spin_lock(&fs_info->trans_lock);
1329 	if (list_empty(&root->root_list)) {
1330 		btrfs_grab_root(root);
1331 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1332 	}
1333 	spin_unlock(&fs_info->trans_lock);
1334 }
1335 
1336 /*
1337  * Update each subvolume root and its relocation root, if it exists, in the tree
1338  * of tree roots. Also free log roots if they exist.
1339  */
1340 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1341 {
1342 	struct btrfs_fs_info *fs_info = trans->fs_info;
1343 	struct btrfs_root *gang[8];
1344 	int i;
1345 	int ret;
1346 
1347 	/*
1348 	 * At this point no one can be using this transaction to modify any tree
1349 	 * and no one can start another transaction to modify any tree either.
1350 	 */
1351 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1352 
1353 	spin_lock(&fs_info->fs_roots_radix_lock);
1354 	while (1) {
1355 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1356 						 (void **)gang, 0,
1357 						 ARRAY_SIZE(gang),
1358 						 BTRFS_ROOT_TRANS_TAG);
1359 		if (ret == 0)
1360 			break;
1361 		for (i = 0; i < ret; i++) {
1362 			struct btrfs_root *root = gang[i];
1363 			int ret2;
1364 
1365 			/*
1366 			 * At this point we can neither have tasks logging inodes
1367 			 * from a root nor trying to commit a log tree.
1368 			 */
1369 			ASSERT(atomic_read(&root->log_writers) == 0);
1370 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1371 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1372 
1373 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1374 					(unsigned long)root->root_key.objectid,
1375 					BTRFS_ROOT_TRANS_TAG);
1376 			spin_unlock(&fs_info->fs_roots_radix_lock);
1377 
1378 			btrfs_free_log(trans, root);
1379 			ret2 = btrfs_update_reloc_root(trans, root);
1380 			if (ret2)
1381 				return ret2;
1382 
1383 			/* see comments in should_cow_block() */
1384 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1385 			smp_mb__after_atomic();
1386 
1387 			if (root->commit_root != root->node) {
1388 				list_add_tail(&root->dirty_list,
1389 					&trans->transaction->switch_commits);
1390 				btrfs_set_root_node(&root->root_item,
1391 						    root->node);
1392 			}
1393 
1394 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1395 						&root->root_key,
1396 						&root->root_item);
1397 			if (ret2)
1398 				return ret2;
1399 			spin_lock(&fs_info->fs_roots_radix_lock);
1400 			btrfs_qgroup_free_meta_all_pertrans(root);
1401 		}
1402 	}
1403 	spin_unlock(&fs_info->fs_roots_radix_lock);
1404 	return 0;
1405 }
1406 
1407 /*
1408  * defrag a given btree.
1409  * Every leaf in the btree is read and defragged.
1410  */
1411 int btrfs_defrag_root(struct btrfs_root *root)
1412 {
1413 	struct btrfs_fs_info *info = root->fs_info;
1414 	struct btrfs_trans_handle *trans;
1415 	int ret;
1416 
1417 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1418 		return 0;
1419 
1420 	while (1) {
1421 		trans = btrfs_start_transaction(root, 0);
1422 		if (IS_ERR(trans)) {
1423 			ret = PTR_ERR(trans);
1424 			break;
1425 		}
1426 
1427 		ret = btrfs_defrag_leaves(trans, root);
1428 
1429 		btrfs_end_transaction(trans);
1430 		btrfs_btree_balance_dirty(info);
1431 		cond_resched();
1432 
1433 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1434 			break;
1435 
1436 		if (btrfs_defrag_cancelled(info)) {
1437 			btrfs_debug(info, "defrag_root cancelled");
1438 			ret = -EAGAIN;
1439 			break;
1440 		}
1441 	}
1442 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1443 	return ret;
1444 }
1445 
1446 /*
1447  * Do all special snapshot related qgroup dirty hack.
1448  *
1449  * Will do all needed qgroup inherit and dirty hack like switch commit
1450  * roots inside one transaction and write all btree into disk, to make
1451  * qgroup works.
1452  */
1453 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1454 				   struct btrfs_root *src,
1455 				   struct btrfs_root *parent,
1456 				   struct btrfs_qgroup_inherit *inherit,
1457 				   u64 dst_objectid)
1458 {
1459 	struct btrfs_fs_info *fs_info = src->fs_info;
1460 	int ret;
1461 
1462 	/*
1463 	 * Save some performance in the case that qgroups are not
1464 	 * enabled. If this check races with the ioctl, rescan will
1465 	 * kick in anyway.
1466 	 */
1467 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1468 		return 0;
1469 
1470 	/*
1471 	 * Ensure dirty @src will be committed.  Or, after coming
1472 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1473 	 * recorded root will never be updated again, causing an outdated root
1474 	 * item.
1475 	 */
1476 	ret = record_root_in_trans(trans, src, 1);
1477 	if (ret)
1478 		return ret;
1479 
1480 	/*
1481 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1482 	 * src root, so we must run the delayed refs here.
1483 	 *
1484 	 * However this isn't particularly fool proof, because there's no
1485 	 * synchronization keeping us from changing the tree after this point
1486 	 * before we do the qgroup_inherit, or even from making changes while
1487 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1488 	 * for now flush the delayed refs to narrow the race window where the
1489 	 * qgroup counters could end up wrong.
1490 	 */
1491 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1492 	if (ret) {
1493 		btrfs_abort_transaction(trans, ret);
1494 		return ret;
1495 	}
1496 
1497 	ret = commit_fs_roots(trans);
1498 	if (ret)
1499 		goto out;
1500 	ret = btrfs_qgroup_account_extents(trans);
1501 	if (ret < 0)
1502 		goto out;
1503 
1504 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1505 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1506 				   inherit);
1507 	if (ret < 0)
1508 		goto out;
1509 
1510 	/*
1511 	 * Now we do a simplified commit transaction, which will:
1512 	 * 1) commit all subvolume and extent tree
1513 	 *    To ensure all subvolume and extent tree have a valid
1514 	 *    commit_root to accounting later insert_dir_item()
1515 	 * 2) write all btree blocks onto disk
1516 	 *    This is to make sure later btree modification will be cowed
1517 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1518 	 * In this simplified commit, we don't really care about other trees
1519 	 * like chunk and root tree, as they won't affect qgroup.
1520 	 * And we don't write super to avoid half committed status.
1521 	 */
1522 	ret = commit_cowonly_roots(trans);
1523 	if (ret)
1524 		goto out;
1525 	switch_commit_roots(trans);
1526 	ret = btrfs_write_and_wait_transaction(trans);
1527 	if (ret)
1528 		btrfs_handle_fs_error(fs_info, ret,
1529 			"Error while writing out transaction for qgroup");
1530 
1531 out:
1532 	/*
1533 	 * Force parent root to be updated, as we recorded it before so its
1534 	 * last_trans == cur_transid.
1535 	 * Or it won't be committed again onto disk after later
1536 	 * insert_dir_item()
1537 	 */
1538 	if (!ret)
1539 		ret = record_root_in_trans(trans, parent, 1);
1540 	return ret;
1541 }
1542 
1543 /*
1544  * new snapshots need to be created at a very specific time in the
1545  * transaction commit.  This does the actual creation.
1546  *
1547  * Note:
1548  * If the error which may affect the commitment of the current transaction
1549  * happens, we should return the error number. If the error which just affect
1550  * the creation of the pending snapshots, just return 0.
1551  */
1552 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1553 				   struct btrfs_pending_snapshot *pending)
1554 {
1555 
1556 	struct btrfs_fs_info *fs_info = trans->fs_info;
1557 	struct btrfs_key key;
1558 	struct btrfs_root_item *new_root_item;
1559 	struct btrfs_root *tree_root = fs_info->tree_root;
1560 	struct btrfs_root *root = pending->root;
1561 	struct btrfs_root *parent_root;
1562 	struct btrfs_block_rsv *rsv;
1563 	struct inode *parent_inode;
1564 	struct btrfs_path *path;
1565 	struct btrfs_dir_item *dir_item;
1566 	struct dentry *dentry;
1567 	struct extent_buffer *tmp;
1568 	struct extent_buffer *old;
1569 	struct timespec64 cur_time;
1570 	int ret = 0;
1571 	u64 to_reserve = 0;
1572 	u64 index = 0;
1573 	u64 objectid;
1574 	u64 root_flags;
1575 
1576 	ASSERT(pending->path);
1577 	path = pending->path;
1578 
1579 	ASSERT(pending->root_item);
1580 	new_root_item = pending->root_item;
1581 
1582 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1583 	if (pending->error)
1584 		goto no_free_objectid;
1585 
1586 	/*
1587 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1588 	 * accounted by later btrfs_qgroup_inherit().
1589 	 */
1590 	btrfs_set_skip_qgroup(trans, objectid);
1591 
1592 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1593 
1594 	if (to_reserve > 0) {
1595 		pending->error = btrfs_block_rsv_add(fs_info,
1596 						     &pending->block_rsv,
1597 						     to_reserve,
1598 						     BTRFS_RESERVE_NO_FLUSH);
1599 		if (pending->error)
1600 			goto clear_skip_qgroup;
1601 	}
1602 
1603 	key.objectid = objectid;
1604 	key.offset = (u64)-1;
1605 	key.type = BTRFS_ROOT_ITEM_KEY;
1606 
1607 	rsv = trans->block_rsv;
1608 	trans->block_rsv = &pending->block_rsv;
1609 	trans->bytes_reserved = trans->block_rsv->reserved;
1610 	trace_btrfs_space_reservation(fs_info, "transaction",
1611 				      trans->transid,
1612 				      trans->bytes_reserved, 1);
1613 	dentry = pending->dentry;
1614 	parent_inode = pending->dir;
1615 	parent_root = BTRFS_I(parent_inode)->root;
1616 	ret = record_root_in_trans(trans, parent_root, 0);
1617 	if (ret)
1618 		goto fail;
1619 	cur_time = current_time(parent_inode);
1620 
1621 	/*
1622 	 * insert the directory item
1623 	 */
1624 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1625 	BUG_ON(ret); /* -ENOMEM */
1626 
1627 	/* check if there is a file/dir which has the same name. */
1628 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1629 					 btrfs_ino(BTRFS_I(parent_inode)),
1630 					 dentry->d_name.name,
1631 					 dentry->d_name.len, 0);
1632 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1633 		pending->error = -EEXIST;
1634 		goto dir_item_existed;
1635 	} else if (IS_ERR(dir_item)) {
1636 		ret = PTR_ERR(dir_item);
1637 		btrfs_abort_transaction(trans, ret);
1638 		goto fail;
1639 	}
1640 	btrfs_release_path(path);
1641 
1642 	/*
1643 	 * pull in the delayed directory update
1644 	 * and the delayed inode item
1645 	 * otherwise we corrupt the FS during
1646 	 * snapshot
1647 	 */
1648 	ret = btrfs_run_delayed_items(trans);
1649 	if (ret) {	/* Transaction aborted */
1650 		btrfs_abort_transaction(trans, ret);
1651 		goto fail;
1652 	}
1653 
1654 	ret = record_root_in_trans(trans, root, 0);
1655 	if (ret) {
1656 		btrfs_abort_transaction(trans, ret);
1657 		goto fail;
1658 	}
1659 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1660 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1661 	btrfs_check_and_init_root_item(new_root_item);
1662 
1663 	root_flags = btrfs_root_flags(new_root_item);
1664 	if (pending->readonly)
1665 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1666 	else
1667 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1668 	btrfs_set_root_flags(new_root_item, root_flags);
1669 
1670 	btrfs_set_root_generation_v2(new_root_item,
1671 			trans->transid);
1672 	generate_random_guid(new_root_item->uuid);
1673 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1674 			BTRFS_UUID_SIZE);
1675 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1676 		memset(new_root_item->received_uuid, 0,
1677 		       sizeof(new_root_item->received_uuid));
1678 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1679 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1680 		btrfs_set_root_stransid(new_root_item, 0);
1681 		btrfs_set_root_rtransid(new_root_item, 0);
1682 	}
1683 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1684 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1685 	btrfs_set_root_otransid(new_root_item, trans->transid);
1686 
1687 	old = btrfs_lock_root_node(root);
1688 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1689 			      BTRFS_NESTING_COW);
1690 	if (ret) {
1691 		btrfs_tree_unlock(old);
1692 		free_extent_buffer(old);
1693 		btrfs_abort_transaction(trans, ret);
1694 		goto fail;
1695 	}
1696 
1697 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1698 	/* clean up in any case */
1699 	btrfs_tree_unlock(old);
1700 	free_extent_buffer(old);
1701 	if (ret) {
1702 		btrfs_abort_transaction(trans, ret);
1703 		goto fail;
1704 	}
1705 	/* see comments in should_cow_block() */
1706 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1707 	smp_wmb();
1708 
1709 	btrfs_set_root_node(new_root_item, tmp);
1710 	/* record when the snapshot was created in key.offset */
1711 	key.offset = trans->transid;
1712 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1713 	btrfs_tree_unlock(tmp);
1714 	free_extent_buffer(tmp);
1715 	if (ret) {
1716 		btrfs_abort_transaction(trans, ret);
1717 		goto fail;
1718 	}
1719 
1720 	/*
1721 	 * insert root back/forward references
1722 	 */
1723 	ret = btrfs_add_root_ref(trans, objectid,
1724 				 parent_root->root_key.objectid,
1725 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1726 				 dentry->d_name.name, dentry->d_name.len);
1727 	if (ret) {
1728 		btrfs_abort_transaction(trans, ret);
1729 		goto fail;
1730 	}
1731 
1732 	key.offset = (u64)-1;
1733 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1734 	if (IS_ERR(pending->snap)) {
1735 		ret = PTR_ERR(pending->snap);
1736 		pending->snap = NULL;
1737 		btrfs_abort_transaction(trans, ret);
1738 		goto fail;
1739 	}
1740 
1741 	ret = btrfs_reloc_post_snapshot(trans, pending);
1742 	if (ret) {
1743 		btrfs_abort_transaction(trans, ret);
1744 		goto fail;
1745 	}
1746 
1747 	/*
1748 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1749 	 * snapshot hack to do fast snapshot.
1750 	 * To co-operate with that hack, we do hack again.
1751 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1752 	 */
1753 	ret = qgroup_account_snapshot(trans, root, parent_root,
1754 				      pending->inherit, objectid);
1755 	if (ret < 0)
1756 		goto fail;
1757 
1758 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1759 				    dentry->d_name.len, BTRFS_I(parent_inode),
1760 				    &key, BTRFS_FT_DIR, index);
1761 	/* We have check then name at the beginning, so it is impossible. */
1762 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1763 	if (ret) {
1764 		btrfs_abort_transaction(trans, ret);
1765 		goto fail;
1766 	}
1767 
1768 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1769 					 dentry->d_name.len * 2);
1770 	parent_inode->i_mtime = parent_inode->i_ctime =
1771 		current_time(parent_inode);
1772 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1773 	if (ret) {
1774 		btrfs_abort_transaction(trans, ret);
1775 		goto fail;
1776 	}
1777 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1778 				  BTRFS_UUID_KEY_SUBVOL,
1779 				  objectid);
1780 	if (ret) {
1781 		btrfs_abort_transaction(trans, ret);
1782 		goto fail;
1783 	}
1784 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1785 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1786 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1787 					  objectid);
1788 		if (ret && ret != -EEXIST) {
1789 			btrfs_abort_transaction(trans, ret);
1790 			goto fail;
1791 		}
1792 	}
1793 
1794 fail:
1795 	pending->error = ret;
1796 dir_item_existed:
1797 	trans->block_rsv = rsv;
1798 	trans->bytes_reserved = 0;
1799 clear_skip_qgroup:
1800 	btrfs_clear_skip_qgroup(trans);
1801 no_free_objectid:
1802 	kfree(new_root_item);
1803 	pending->root_item = NULL;
1804 	btrfs_free_path(path);
1805 	pending->path = NULL;
1806 
1807 	return ret;
1808 }
1809 
1810 /*
1811  * create all the snapshots we've scheduled for creation
1812  */
1813 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1814 {
1815 	struct btrfs_pending_snapshot *pending, *next;
1816 	struct list_head *head = &trans->transaction->pending_snapshots;
1817 	int ret = 0;
1818 
1819 	list_for_each_entry_safe(pending, next, head, list) {
1820 		list_del(&pending->list);
1821 		ret = create_pending_snapshot(trans, pending);
1822 		if (ret)
1823 			break;
1824 	}
1825 	return ret;
1826 }
1827 
1828 static void update_super_roots(struct btrfs_fs_info *fs_info)
1829 {
1830 	struct btrfs_root_item *root_item;
1831 	struct btrfs_super_block *super;
1832 
1833 	super = fs_info->super_copy;
1834 
1835 	root_item = &fs_info->chunk_root->root_item;
1836 	super->chunk_root = root_item->bytenr;
1837 	super->chunk_root_generation = root_item->generation;
1838 	super->chunk_root_level = root_item->level;
1839 
1840 	root_item = &fs_info->tree_root->root_item;
1841 	super->root = root_item->bytenr;
1842 	super->generation = root_item->generation;
1843 	super->root_level = root_item->level;
1844 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1845 		super->cache_generation = root_item->generation;
1846 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1847 		super->cache_generation = 0;
1848 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1849 		super->uuid_tree_generation = root_item->generation;
1850 }
1851 
1852 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1853 {
1854 	struct btrfs_transaction *trans;
1855 	int ret = 0;
1856 
1857 	spin_lock(&info->trans_lock);
1858 	trans = info->running_transaction;
1859 	if (trans)
1860 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1861 	spin_unlock(&info->trans_lock);
1862 	return ret;
1863 }
1864 
1865 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1866 {
1867 	struct btrfs_transaction *trans;
1868 	int ret = 0;
1869 
1870 	spin_lock(&info->trans_lock);
1871 	trans = info->running_transaction;
1872 	if (trans)
1873 		ret = is_transaction_blocked(trans);
1874 	spin_unlock(&info->trans_lock);
1875 	return ret;
1876 }
1877 
1878 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1879 {
1880 	struct btrfs_fs_info *fs_info = trans->fs_info;
1881 	struct btrfs_transaction *cur_trans;
1882 
1883 	/* Kick the transaction kthread. */
1884 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1885 	wake_up_process(fs_info->transaction_kthread);
1886 
1887 	/* take transaction reference */
1888 	cur_trans = trans->transaction;
1889 	refcount_inc(&cur_trans->use_count);
1890 
1891 	btrfs_end_transaction(trans);
1892 
1893 	/*
1894 	 * Wait for the current transaction commit to start and block
1895 	 * subsequent transaction joins
1896 	 */
1897 	wait_event(fs_info->transaction_blocked_wait,
1898 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1899 		   TRANS_ABORTED(cur_trans));
1900 	btrfs_put_transaction(cur_trans);
1901 }
1902 
1903 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1904 {
1905 	struct btrfs_fs_info *fs_info = trans->fs_info;
1906 	struct btrfs_transaction *cur_trans = trans->transaction;
1907 
1908 	WARN_ON(refcount_read(&trans->use_count) > 1);
1909 
1910 	btrfs_abort_transaction(trans, err);
1911 
1912 	spin_lock(&fs_info->trans_lock);
1913 
1914 	/*
1915 	 * If the transaction is removed from the list, it means this
1916 	 * transaction has been committed successfully, so it is impossible
1917 	 * to call the cleanup function.
1918 	 */
1919 	BUG_ON(list_empty(&cur_trans->list));
1920 
1921 	if (cur_trans == fs_info->running_transaction) {
1922 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1923 		spin_unlock(&fs_info->trans_lock);
1924 		wait_event(cur_trans->writer_wait,
1925 			   atomic_read(&cur_trans->num_writers) == 1);
1926 
1927 		spin_lock(&fs_info->trans_lock);
1928 	}
1929 
1930 	/*
1931 	 * Now that we know no one else is still using the transaction we can
1932 	 * remove the transaction from the list of transactions. This avoids
1933 	 * the transaction kthread from cleaning up the transaction while some
1934 	 * other task is still using it, which could result in a use-after-free
1935 	 * on things like log trees, as it forces the transaction kthread to
1936 	 * wait for this transaction to be cleaned up by us.
1937 	 */
1938 	list_del_init(&cur_trans->list);
1939 
1940 	spin_unlock(&fs_info->trans_lock);
1941 
1942 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1943 
1944 	spin_lock(&fs_info->trans_lock);
1945 	if (cur_trans == fs_info->running_transaction)
1946 		fs_info->running_transaction = NULL;
1947 	spin_unlock(&fs_info->trans_lock);
1948 
1949 	if (trans->type & __TRANS_FREEZABLE)
1950 		sb_end_intwrite(fs_info->sb);
1951 	btrfs_put_transaction(cur_trans);
1952 	btrfs_put_transaction(cur_trans);
1953 
1954 	trace_btrfs_transaction_commit(fs_info);
1955 
1956 	if (current->journal_info == trans)
1957 		current->journal_info = NULL;
1958 	btrfs_scrub_cancel(fs_info);
1959 
1960 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1961 }
1962 
1963 /*
1964  * Release reserved delayed ref space of all pending block groups of the
1965  * transaction and remove them from the list
1966  */
1967 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1968 {
1969        struct btrfs_fs_info *fs_info = trans->fs_info;
1970        struct btrfs_block_group *block_group, *tmp;
1971 
1972        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1973                btrfs_delayed_refs_rsv_release(fs_info, 1);
1974                list_del_init(&block_group->bg_list);
1975        }
1976 }
1977 
1978 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1979 {
1980 	/*
1981 	 * We use writeback_inodes_sb here because if we used
1982 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1983 	 * Currently are holding the fs freeze lock, if we do an async flush
1984 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1985 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1986 	 * from already being in a transaction and our join_transaction doesn't
1987 	 * have to re-take the fs freeze lock.
1988 	 */
1989 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1990 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1991 	return 0;
1992 }
1993 
1994 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1995 {
1996 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1997 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1998 }
1999 
2000 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2001 {
2002 	struct btrfs_fs_info *fs_info = trans->fs_info;
2003 	struct btrfs_transaction *cur_trans = trans->transaction;
2004 	struct btrfs_transaction *prev_trans = NULL;
2005 	int ret;
2006 
2007 	ASSERT(refcount_read(&trans->use_count) == 1);
2008 
2009 	/* Stop the commit early if ->aborted is set */
2010 	if (TRANS_ABORTED(cur_trans)) {
2011 		ret = cur_trans->aborted;
2012 		btrfs_end_transaction(trans);
2013 		return ret;
2014 	}
2015 
2016 	btrfs_trans_release_metadata(trans);
2017 	trans->block_rsv = NULL;
2018 
2019 	/*
2020 	 * We only want one transaction commit doing the flushing so we do not
2021 	 * waste a bunch of time on lock contention on the extent root node.
2022 	 */
2023 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2024 			      &cur_trans->delayed_refs.flags)) {
2025 		/*
2026 		 * Make a pass through all the delayed refs we have so far.
2027 		 * Any running threads may add more while we are here.
2028 		 */
2029 		ret = btrfs_run_delayed_refs(trans, 0);
2030 		if (ret) {
2031 			btrfs_end_transaction(trans);
2032 			return ret;
2033 		}
2034 	}
2035 
2036 	btrfs_create_pending_block_groups(trans);
2037 
2038 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2039 		int run_it = 0;
2040 
2041 		/* this mutex is also taken before trying to set
2042 		 * block groups readonly.  We need to make sure
2043 		 * that nobody has set a block group readonly
2044 		 * after a extents from that block group have been
2045 		 * allocated for cache files.  btrfs_set_block_group_ro
2046 		 * will wait for the transaction to commit if it
2047 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2048 		 *
2049 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2050 		 * only one process starts all the block group IO.  It wouldn't
2051 		 * hurt to have more than one go through, but there's no
2052 		 * real advantage to it either.
2053 		 */
2054 		mutex_lock(&fs_info->ro_block_group_mutex);
2055 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2056 				      &cur_trans->flags))
2057 			run_it = 1;
2058 		mutex_unlock(&fs_info->ro_block_group_mutex);
2059 
2060 		if (run_it) {
2061 			ret = btrfs_start_dirty_block_groups(trans);
2062 			if (ret) {
2063 				btrfs_end_transaction(trans);
2064 				return ret;
2065 			}
2066 		}
2067 	}
2068 
2069 	spin_lock(&fs_info->trans_lock);
2070 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2071 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2072 
2073 		spin_unlock(&fs_info->trans_lock);
2074 		refcount_inc(&cur_trans->use_count);
2075 
2076 		if (trans->in_fsync)
2077 			want_state = TRANS_STATE_SUPER_COMMITTED;
2078 		ret = btrfs_end_transaction(trans);
2079 		wait_for_commit(cur_trans, want_state);
2080 
2081 		if (TRANS_ABORTED(cur_trans))
2082 			ret = cur_trans->aborted;
2083 
2084 		btrfs_put_transaction(cur_trans);
2085 
2086 		return ret;
2087 	}
2088 
2089 	cur_trans->state = TRANS_STATE_COMMIT_START;
2090 	wake_up(&fs_info->transaction_blocked_wait);
2091 
2092 	if (cur_trans->list.prev != &fs_info->trans_list) {
2093 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2094 
2095 		if (trans->in_fsync)
2096 			want_state = TRANS_STATE_SUPER_COMMITTED;
2097 
2098 		prev_trans = list_entry(cur_trans->list.prev,
2099 					struct btrfs_transaction, list);
2100 		if (prev_trans->state < want_state) {
2101 			refcount_inc(&prev_trans->use_count);
2102 			spin_unlock(&fs_info->trans_lock);
2103 
2104 			wait_for_commit(prev_trans, want_state);
2105 
2106 			ret = READ_ONCE(prev_trans->aborted);
2107 
2108 			btrfs_put_transaction(prev_trans);
2109 			if (ret)
2110 				goto cleanup_transaction;
2111 		} else {
2112 			spin_unlock(&fs_info->trans_lock);
2113 		}
2114 	} else {
2115 		spin_unlock(&fs_info->trans_lock);
2116 		/*
2117 		 * The previous transaction was aborted and was already removed
2118 		 * from the list of transactions at fs_info->trans_list. So we
2119 		 * abort to prevent writing a new superblock that reflects a
2120 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2121 		 */
2122 		if (BTRFS_FS_ERROR(fs_info)) {
2123 			ret = -EROFS;
2124 			goto cleanup_transaction;
2125 		}
2126 	}
2127 
2128 	extwriter_counter_dec(cur_trans, trans->type);
2129 
2130 	ret = btrfs_start_delalloc_flush(fs_info);
2131 	if (ret)
2132 		goto cleanup_transaction;
2133 
2134 	ret = btrfs_run_delayed_items(trans);
2135 	if (ret)
2136 		goto cleanup_transaction;
2137 
2138 	wait_event(cur_trans->writer_wait,
2139 		   extwriter_counter_read(cur_trans) == 0);
2140 
2141 	/* some pending stuffs might be added after the previous flush. */
2142 	ret = btrfs_run_delayed_items(trans);
2143 	if (ret)
2144 		goto cleanup_transaction;
2145 
2146 	btrfs_wait_delalloc_flush(fs_info);
2147 
2148 	/*
2149 	 * Wait for all ordered extents started by a fast fsync that joined this
2150 	 * transaction. Otherwise if this transaction commits before the ordered
2151 	 * extents complete we lose logged data after a power failure.
2152 	 */
2153 	wait_event(cur_trans->pending_wait,
2154 		   atomic_read(&cur_trans->pending_ordered) == 0);
2155 
2156 	btrfs_scrub_pause(fs_info);
2157 	/*
2158 	 * Ok now we need to make sure to block out any other joins while we
2159 	 * commit the transaction.  We could have started a join before setting
2160 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2161 	 */
2162 	spin_lock(&fs_info->trans_lock);
2163 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2164 	spin_unlock(&fs_info->trans_lock);
2165 	wait_event(cur_trans->writer_wait,
2166 		   atomic_read(&cur_trans->num_writers) == 1);
2167 
2168 	/*
2169 	 * We've started the commit, clear the flag in case we were triggered to
2170 	 * do an async commit but somebody else started before the transaction
2171 	 * kthread could do the work.
2172 	 */
2173 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2174 
2175 	if (TRANS_ABORTED(cur_trans)) {
2176 		ret = cur_trans->aborted;
2177 		goto scrub_continue;
2178 	}
2179 	/*
2180 	 * the reloc mutex makes sure that we stop
2181 	 * the balancing code from coming in and moving
2182 	 * extents around in the middle of the commit
2183 	 */
2184 	mutex_lock(&fs_info->reloc_mutex);
2185 
2186 	/*
2187 	 * We needn't worry about the delayed items because we will
2188 	 * deal with them in create_pending_snapshot(), which is the
2189 	 * core function of the snapshot creation.
2190 	 */
2191 	ret = create_pending_snapshots(trans);
2192 	if (ret)
2193 		goto unlock_reloc;
2194 
2195 	/*
2196 	 * We insert the dir indexes of the snapshots and update the inode
2197 	 * of the snapshots' parents after the snapshot creation, so there
2198 	 * are some delayed items which are not dealt with. Now deal with
2199 	 * them.
2200 	 *
2201 	 * We needn't worry that this operation will corrupt the snapshots,
2202 	 * because all the tree which are snapshoted will be forced to COW
2203 	 * the nodes and leaves.
2204 	 */
2205 	ret = btrfs_run_delayed_items(trans);
2206 	if (ret)
2207 		goto unlock_reloc;
2208 
2209 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2210 	if (ret)
2211 		goto unlock_reloc;
2212 
2213 	/*
2214 	 * make sure none of the code above managed to slip in a
2215 	 * delayed item
2216 	 */
2217 	btrfs_assert_delayed_root_empty(fs_info);
2218 
2219 	WARN_ON(cur_trans != trans->transaction);
2220 
2221 	ret = commit_fs_roots(trans);
2222 	if (ret)
2223 		goto unlock_reloc;
2224 
2225 	/*
2226 	 * Since the transaction is done, we can apply the pending changes
2227 	 * before the next transaction.
2228 	 */
2229 	btrfs_apply_pending_changes(fs_info);
2230 
2231 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2232 	 * safe to free the root of tree log roots
2233 	 */
2234 	btrfs_free_log_root_tree(trans, fs_info);
2235 
2236 	/*
2237 	 * Since fs roots are all committed, we can get a quite accurate
2238 	 * new_roots. So let's do quota accounting.
2239 	 */
2240 	ret = btrfs_qgroup_account_extents(trans);
2241 	if (ret < 0)
2242 		goto unlock_reloc;
2243 
2244 	ret = commit_cowonly_roots(trans);
2245 	if (ret)
2246 		goto unlock_reloc;
2247 
2248 	/*
2249 	 * The tasks which save the space cache and inode cache may also
2250 	 * update ->aborted, check it.
2251 	 */
2252 	if (TRANS_ABORTED(cur_trans)) {
2253 		ret = cur_trans->aborted;
2254 		goto unlock_reloc;
2255 	}
2256 
2257 	cur_trans = fs_info->running_transaction;
2258 
2259 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2260 			    fs_info->tree_root->node);
2261 	list_add_tail(&fs_info->tree_root->dirty_list,
2262 		      &cur_trans->switch_commits);
2263 
2264 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2265 			    fs_info->chunk_root->node);
2266 	list_add_tail(&fs_info->chunk_root->dirty_list,
2267 		      &cur_trans->switch_commits);
2268 
2269 	switch_commit_roots(trans);
2270 
2271 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2272 	ASSERT(list_empty(&cur_trans->io_bgs));
2273 	update_super_roots(fs_info);
2274 
2275 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2276 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2277 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2278 	       sizeof(*fs_info->super_copy));
2279 
2280 	btrfs_commit_device_sizes(cur_trans);
2281 
2282 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2283 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2284 
2285 	btrfs_trans_release_chunk_metadata(trans);
2286 
2287 	/*
2288 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2289 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2290 	 * make sure that before we commit our superblock, no other task can
2291 	 * start a new transaction and commit a log tree before we commit our
2292 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2293 	 * writing its superblock.
2294 	 */
2295 	mutex_lock(&fs_info->tree_log_mutex);
2296 
2297 	spin_lock(&fs_info->trans_lock);
2298 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2299 	fs_info->running_transaction = NULL;
2300 	spin_unlock(&fs_info->trans_lock);
2301 	mutex_unlock(&fs_info->reloc_mutex);
2302 
2303 	wake_up(&fs_info->transaction_wait);
2304 
2305 	ret = btrfs_write_and_wait_transaction(trans);
2306 	if (ret) {
2307 		btrfs_handle_fs_error(fs_info, ret,
2308 				      "Error while writing out transaction");
2309 		mutex_unlock(&fs_info->tree_log_mutex);
2310 		goto scrub_continue;
2311 	}
2312 
2313 	/*
2314 	 * At this point, we should have written all the tree blocks allocated
2315 	 * in this transaction. So it's now safe to free the redirtyied extent
2316 	 * buffers.
2317 	 */
2318 	btrfs_free_redirty_list(cur_trans);
2319 
2320 	ret = write_all_supers(fs_info, 0);
2321 	/*
2322 	 * the super is written, we can safely allow the tree-loggers
2323 	 * to go about their business
2324 	 */
2325 	mutex_unlock(&fs_info->tree_log_mutex);
2326 	if (ret)
2327 		goto scrub_continue;
2328 
2329 	/*
2330 	 * We needn't acquire the lock here because there is no other task
2331 	 * which can change it.
2332 	 */
2333 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2334 	wake_up(&cur_trans->commit_wait);
2335 
2336 	btrfs_finish_extent_commit(trans);
2337 
2338 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2339 		btrfs_clear_space_info_full(fs_info);
2340 
2341 	fs_info->last_trans_committed = cur_trans->transid;
2342 	/*
2343 	 * We needn't acquire the lock here because there is no other task
2344 	 * which can change it.
2345 	 */
2346 	cur_trans->state = TRANS_STATE_COMPLETED;
2347 	wake_up(&cur_trans->commit_wait);
2348 
2349 	spin_lock(&fs_info->trans_lock);
2350 	list_del_init(&cur_trans->list);
2351 	spin_unlock(&fs_info->trans_lock);
2352 
2353 	btrfs_put_transaction(cur_trans);
2354 	btrfs_put_transaction(cur_trans);
2355 
2356 	if (trans->type & __TRANS_FREEZABLE)
2357 		sb_end_intwrite(fs_info->sb);
2358 
2359 	trace_btrfs_transaction_commit(fs_info);
2360 
2361 	btrfs_scrub_continue(fs_info);
2362 
2363 	if (current->journal_info == trans)
2364 		current->journal_info = NULL;
2365 
2366 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2367 
2368 	return ret;
2369 
2370 unlock_reloc:
2371 	mutex_unlock(&fs_info->reloc_mutex);
2372 scrub_continue:
2373 	btrfs_scrub_continue(fs_info);
2374 cleanup_transaction:
2375 	btrfs_trans_release_metadata(trans);
2376 	btrfs_cleanup_pending_block_groups(trans);
2377 	btrfs_trans_release_chunk_metadata(trans);
2378 	trans->block_rsv = NULL;
2379 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2380 	if (current->journal_info == trans)
2381 		current->journal_info = NULL;
2382 	cleanup_transaction(trans, ret);
2383 
2384 	return ret;
2385 }
2386 
2387 /*
2388  * return < 0 if error
2389  * 0 if there are no more dead_roots at the time of call
2390  * 1 there are more to be processed, call me again
2391  *
2392  * The return value indicates there are certainly more snapshots to delete, but
2393  * if there comes a new one during processing, it may return 0. We don't mind,
2394  * because btrfs_commit_super will poke cleaner thread and it will process it a
2395  * few seconds later.
2396  */
2397 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2398 {
2399 	int ret;
2400 	struct btrfs_fs_info *fs_info = root->fs_info;
2401 
2402 	spin_lock(&fs_info->trans_lock);
2403 	if (list_empty(&fs_info->dead_roots)) {
2404 		spin_unlock(&fs_info->trans_lock);
2405 		return 0;
2406 	}
2407 	root = list_first_entry(&fs_info->dead_roots,
2408 			struct btrfs_root, root_list);
2409 	list_del_init(&root->root_list);
2410 	spin_unlock(&fs_info->trans_lock);
2411 
2412 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2413 
2414 	btrfs_kill_all_delayed_nodes(root);
2415 
2416 	if (btrfs_header_backref_rev(root->node) <
2417 			BTRFS_MIXED_BACKREF_REV)
2418 		ret = btrfs_drop_snapshot(root, 0, 0);
2419 	else
2420 		ret = btrfs_drop_snapshot(root, 1, 0);
2421 
2422 	btrfs_put_root(root);
2423 	return (ret < 0) ? 0 : 1;
2424 }
2425 
2426 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2427 {
2428 	unsigned long prev;
2429 	unsigned long bit;
2430 
2431 	prev = xchg(&fs_info->pending_changes, 0);
2432 	if (!prev)
2433 		return;
2434 
2435 	bit = 1 << BTRFS_PENDING_COMMIT;
2436 	if (prev & bit)
2437 		btrfs_debug(fs_info, "pending commit done");
2438 	prev &= ~bit;
2439 
2440 	if (prev)
2441 		btrfs_warn(fs_info,
2442 			"unknown pending changes left 0x%lx, ignoring", prev);
2443 }
2444