1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include <linux/timekeeping.h> 14 #include "misc.h" 15 #include "ctree.h" 16 #include "disk-io.h" 17 #include "transaction.h" 18 #include "locking.h" 19 #include "tree-log.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 #include "space-info.h" 25 #include "zoned.h" 26 27 #define BTRFS_ROOT_TRANS_TAG 0 28 29 /* 30 * Transaction states and transitions 31 * 32 * No running transaction (fs tree blocks are not modified) 33 * | 34 * | To next stage: 35 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 36 * V 37 * Transaction N [[TRANS_STATE_RUNNING]] 38 * | 39 * | New trans handles can be attached to transaction N by calling all 40 * | start_transaction() variants. 41 * | 42 * | To next stage: 43 * | Call btrfs_commit_transaction() on any trans handle attached to 44 * | transaction N 45 * V 46 * Transaction N [[TRANS_STATE_COMMIT_START]] 47 * | 48 * | Will wait for previous running transaction to completely finish if there 49 * | is one 50 * | 51 * | Then one of the following happes: 52 * | - Wait for all other trans handle holders to release. 53 * | The btrfs_commit_transaction() caller will do the commit work. 54 * | - Wait for current transaction to be committed by others. 55 * | Other btrfs_commit_transaction() caller will do the commit work. 56 * | 57 * | At this stage, only btrfs_join_transaction*() variants can attach 58 * | to this running transaction. 59 * | All other variants will wait for current one to finish and attach to 60 * | transaction N+1. 61 * | 62 * | To next stage: 63 * | Caller is chosen to commit transaction N, and all other trans handle 64 * | haven been released. 65 * V 66 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 67 * | 68 * | The heavy lifting transaction work is started. 69 * | From running delayed refs (modifying extent tree) to creating pending 70 * | snapshots, running qgroups. 71 * | In short, modify supporting trees to reflect modifications of subvolume 72 * | trees. 73 * | 74 * | At this stage, all start_transaction() calls will wait for this 75 * | transaction to finish and attach to transaction N+1. 76 * | 77 * | To next stage: 78 * | Until all supporting trees are updated. 79 * V 80 * Transaction N [[TRANS_STATE_UNBLOCKED]] 81 * | Transaction N+1 82 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 83 * | need to write them back to disk and update | 84 * | super blocks. | 85 * | | 86 * | At this stage, new transaction is allowed to | 87 * | start. | 88 * | All new start_transaction() calls will be | 89 * | attached to transid N+1. | 90 * | | 91 * | To next stage: | 92 * | Until all tree blocks are super blocks are | 93 * | written to block devices | 94 * V | 95 * Transaction N [[TRANS_STATE_COMPLETED]] V 96 * All tree blocks and super blocks are written. Transaction N+1 97 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 98 * data structures will be cleaned up. | Life goes on 99 */ 100 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 101 [TRANS_STATE_RUNNING] = 0U, 102 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 103 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 104 __TRANS_ATTACH | 105 __TRANS_JOIN | 106 __TRANS_JOIN_NOSTART), 107 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 108 __TRANS_ATTACH | 109 __TRANS_JOIN | 110 __TRANS_JOIN_NOLOCK | 111 __TRANS_JOIN_NOSTART), 112 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 113 __TRANS_ATTACH | 114 __TRANS_JOIN | 115 __TRANS_JOIN_NOLOCK | 116 __TRANS_JOIN_NOSTART), 117 [TRANS_STATE_COMPLETED] = (__TRANS_START | 118 __TRANS_ATTACH | 119 __TRANS_JOIN | 120 __TRANS_JOIN_NOLOCK | 121 __TRANS_JOIN_NOSTART), 122 }; 123 124 void btrfs_put_transaction(struct btrfs_transaction *transaction) 125 { 126 WARN_ON(refcount_read(&transaction->use_count) == 0); 127 if (refcount_dec_and_test(&transaction->use_count)) { 128 BUG_ON(!list_empty(&transaction->list)); 129 WARN_ON(!RB_EMPTY_ROOT( 130 &transaction->delayed_refs.href_root.rb_root)); 131 WARN_ON(!RB_EMPTY_ROOT( 132 &transaction->delayed_refs.dirty_extent_root)); 133 if (transaction->delayed_refs.pending_csums) 134 btrfs_err(transaction->fs_info, 135 "pending csums is %llu", 136 transaction->delayed_refs.pending_csums); 137 /* 138 * If any block groups are found in ->deleted_bgs then it's 139 * because the transaction was aborted and a commit did not 140 * happen (things failed before writing the new superblock 141 * and calling btrfs_finish_extent_commit()), so we can not 142 * discard the physical locations of the block groups. 143 */ 144 while (!list_empty(&transaction->deleted_bgs)) { 145 struct btrfs_block_group *cache; 146 147 cache = list_first_entry(&transaction->deleted_bgs, 148 struct btrfs_block_group, 149 bg_list); 150 list_del_init(&cache->bg_list); 151 btrfs_unfreeze_block_group(cache); 152 btrfs_put_block_group(cache); 153 } 154 WARN_ON(!list_empty(&transaction->dev_update_list)); 155 kfree(transaction); 156 } 157 } 158 159 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 160 { 161 struct btrfs_transaction *cur_trans = trans->transaction; 162 struct btrfs_fs_info *fs_info = trans->fs_info; 163 struct btrfs_root *root, *tmp; 164 struct btrfs_caching_control *caching_ctl, *next; 165 166 /* 167 * At this point no one can be using this transaction to modify any tree 168 * and no one can start another transaction to modify any tree either. 169 */ 170 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 171 172 down_write(&fs_info->commit_root_sem); 173 174 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 175 fs_info->last_reloc_trans = trans->transid; 176 177 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 178 dirty_list) { 179 list_del_init(&root->dirty_list); 180 free_extent_buffer(root->commit_root); 181 root->commit_root = btrfs_root_node(root); 182 extent_io_tree_release(&root->dirty_log_pages); 183 btrfs_qgroup_clean_swapped_blocks(root); 184 } 185 186 /* We can free old roots now. */ 187 spin_lock(&cur_trans->dropped_roots_lock); 188 while (!list_empty(&cur_trans->dropped_roots)) { 189 root = list_first_entry(&cur_trans->dropped_roots, 190 struct btrfs_root, root_list); 191 list_del_init(&root->root_list); 192 spin_unlock(&cur_trans->dropped_roots_lock); 193 btrfs_free_log(trans, root); 194 btrfs_drop_and_free_fs_root(fs_info, root); 195 spin_lock(&cur_trans->dropped_roots_lock); 196 } 197 spin_unlock(&cur_trans->dropped_roots_lock); 198 199 /* 200 * We have to update the last_byte_to_unpin under the commit_root_sem, 201 * at the same time we swap out the commit roots. 202 * 203 * This is because we must have a real view of the last spot the caching 204 * kthreads were while caching. Consider the following views of the 205 * extent tree for a block group 206 * 207 * commit root 208 * +----+----+----+----+----+----+----+ 209 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 210 * +----+----+----+----+----+----+----+ 211 * 0 1 2 3 4 5 6 7 212 * 213 * new commit root 214 * +----+----+----+----+----+----+----+ 215 * | | | |\\\\| | |\\\\| 216 * +----+----+----+----+----+----+----+ 217 * 0 1 2 3 4 5 6 7 218 * 219 * If the cache_ctl->progress was at 3, then we are only allowed to 220 * unpin [0,1) and [2,3], because the caching thread has already 221 * processed those extents. We are not allowed to unpin [5,6), because 222 * the caching thread will re-start it's search from 3, and thus find 223 * the hole from [4,6) to add to the free space cache. 224 */ 225 write_lock(&fs_info->block_group_cache_lock); 226 list_for_each_entry_safe(caching_ctl, next, 227 &fs_info->caching_block_groups, list) { 228 struct btrfs_block_group *cache = caching_ctl->block_group; 229 230 if (btrfs_block_group_done(cache)) { 231 cache->last_byte_to_unpin = (u64)-1; 232 list_del_init(&caching_ctl->list); 233 btrfs_put_caching_control(caching_ctl); 234 } else { 235 cache->last_byte_to_unpin = caching_ctl->progress; 236 } 237 } 238 write_unlock(&fs_info->block_group_cache_lock); 239 up_write(&fs_info->commit_root_sem); 240 } 241 242 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 243 unsigned int type) 244 { 245 if (type & TRANS_EXTWRITERS) 246 atomic_inc(&trans->num_extwriters); 247 } 248 249 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 250 unsigned int type) 251 { 252 if (type & TRANS_EXTWRITERS) 253 atomic_dec(&trans->num_extwriters); 254 } 255 256 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 257 unsigned int type) 258 { 259 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 260 } 261 262 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 263 { 264 return atomic_read(&trans->num_extwriters); 265 } 266 267 /* 268 * To be called after doing the chunk btree updates right after allocating a new 269 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 270 * chunk after all chunk btree updates and after finishing the second phase of 271 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 272 * group had its chunk item insertion delayed to the second phase. 273 */ 274 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 275 { 276 struct btrfs_fs_info *fs_info = trans->fs_info; 277 278 if (!trans->chunk_bytes_reserved) 279 return; 280 281 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 282 trans->chunk_bytes_reserved, NULL); 283 trans->chunk_bytes_reserved = 0; 284 } 285 286 /* 287 * either allocate a new transaction or hop into the existing one 288 */ 289 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 290 unsigned int type) 291 { 292 struct btrfs_transaction *cur_trans; 293 294 spin_lock(&fs_info->trans_lock); 295 loop: 296 /* The file system has been taken offline. No new transactions. */ 297 if (BTRFS_FS_ERROR(fs_info)) { 298 spin_unlock(&fs_info->trans_lock); 299 return -EROFS; 300 } 301 302 cur_trans = fs_info->running_transaction; 303 if (cur_trans) { 304 if (TRANS_ABORTED(cur_trans)) { 305 spin_unlock(&fs_info->trans_lock); 306 return cur_trans->aborted; 307 } 308 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 309 spin_unlock(&fs_info->trans_lock); 310 return -EBUSY; 311 } 312 refcount_inc(&cur_trans->use_count); 313 atomic_inc(&cur_trans->num_writers); 314 extwriter_counter_inc(cur_trans, type); 315 spin_unlock(&fs_info->trans_lock); 316 return 0; 317 } 318 spin_unlock(&fs_info->trans_lock); 319 320 /* 321 * If we are ATTACH, we just want to catch the current transaction, 322 * and commit it. If there is no transaction, just return ENOENT. 323 */ 324 if (type == TRANS_ATTACH) 325 return -ENOENT; 326 327 /* 328 * JOIN_NOLOCK only happens during the transaction commit, so 329 * it is impossible that ->running_transaction is NULL 330 */ 331 BUG_ON(type == TRANS_JOIN_NOLOCK); 332 333 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 334 if (!cur_trans) 335 return -ENOMEM; 336 337 spin_lock(&fs_info->trans_lock); 338 if (fs_info->running_transaction) { 339 /* 340 * someone started a transaction after we unlocked. Make sure 341 * to redo the checks above 342 */ 343 kfree(cur_trans); 344 goto loop; 345 } else if (BTRFS_FS_ERROR(fs_info)) { 346 spin_unlock(&fs_info->trans_lock); 347 kfree(cur_trans); 348 return -EROFS; 349 } 350 351 cur_trans->fs_info = fs_info; 352 atomic_set(&cur_trans->pending_ordered, 0); 353 init_waitqueue_head(&cur_trans->pending_wait); 354 atomic_set(&cur_trans->num_writers, 1); 355 extwriter_counter_init(cur_trans, type); 356 init_waitqueue_head(&cur_trans->writer_wait); 357 init_waitqueue_head(&cur_trans->commit_wait); 358 cur_trans->state = TRANS_STATE_RUNNING; 359 /* 360 * One for this trans handle, one so it will live on until we 361 * commit the transaction. 362 */ 363 refcount_set(&cur_trans->use_count, 2); 364 cur_trans->flags = 0; 365 cur_trans->start_time = ktime_get_seconds(); 366 367 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 368 369 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 370 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 371 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 372 373 /* 374 * although the tree mod log is per file system and not per transaction, 375 * the log must never go across transaction boundaries. 376 */ 377 smp_mb(); 378 if (!list_empty(&fs_info->tree_mod_seq_list)) 379 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 380 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 381 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 382 atomic64_set(&fs_info->tree_mod_seq, 0); 383 384 spin_lock_init(&cur_trans->delayed_refs.lock); 385 386 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 387 INIT_LIST_HEAD(&cur_trans->dev_update_list); 388 INIT_LIST_HEAD(&cur_trans->switch_commits); 389 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 390 INIT_LIST_HEAD(&cur_trans->io_bgs); 391 INIT_LIST_HEAD(&cur_trans->dropped_roots); 392 mutex_init(&cur_trans->cache_write_mutex); 393 spin_lock_init(&cur_trans->dirty_bgs_lock); 394 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 395 spin_lock_init(&cur_trans->dropped_roots_lock); 396 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 397 spin_lock_init(&cur_trans->releasing_ebs_lock); 398 list_add_tail(&cur_trans->list, &fs_info->trans_list); 399 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 400 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 401 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 402 IO_TREE_FS_PINNED_EXTENTS, NULL); 403 fs_info->generation++; 404 cur_trans->transid = fs_info->generation; 405 fs_info->running_transaction = cur_trans; 406 cur_trans->aborted = 0; 407 spin_unlock(&fs_info->trans_lock); 408 409 return 0; 410 } 411 412 /* 413 * This does all the record keeping required to make sure that a shareable root 414 * is properly recorded in a given transaction. This is required to make sure 415 * the old root from before we joined the transaction is deleted when the 416 * transaction commits. 417 */ 418 static int record_root_in_trans(struct btrfs_trans_handle *trans, 419 struct btrfs_root *root, 420 int force) 421 { 422 struct btrfs_fs_info *fs_info = root->fs_info; 423 int ret = 0; 424 425 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 426 root->last_trans < trans->transid) || force) { 427 WARN_ON(!force && root->commit_root != root->node); 428 429 /* 430 * see below for IN_TRANS_SETUP usage rules 431 * we have the reloc mutex held now, so there 432 * is only one writer in this function 433 */ 434 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 435 436 /* make sure readers find IN_TRANS_SETUP before 437 * they find our root->last_trans update 438 */ 439 smp_wmb(); 440 441 spin_lock(&fs_info->fs_roots_radix_lock); 442 if (root->last_trans == trans->transid && !force) { 443 spin_unlock(&fs_info->fs_roots_radix_lock); 444 return 0; 445 } 446 radix_tree_tag_set(&fs_info->fs_roots_radix, 447 (unsigned long)root->root_key.objectid, 448 BTRFS_ROOT_TRANS_TAG); 449 spin_unlock(&fs_info->fs_roots_radix_lock); 450 root->last_trans = trans->transid; 451 452 /* this is pretty tricky. We don't want to 453 * take the relocation lock in btrfs_record_root_in_trans 454 * unless we're really doing the first setup for this root in 455 * this transaction. 456 * 457 * Normally we'd use root->last_trans as a flag to decide 458 * if we want to take the expensive mutex. 459 * 460 * But, we have to set root->last_trans before we 461 * init the relocation root, otherwise, we trip over warnings 462 * in ctree.c. The solution used here is to flag ourselves 463 * with root IN_TRANS_SETUP. When this is 1, we're still 464 * fixing up the reloc trees and everyone must wait. 465 * 466 * When this is zero, they can trust root->last_trans and fly 467 * through btrfs_record_root_in_trans without having to take the 468 * lock. smp_wmb() makes sure that all the writes above are 469 * done before we pop in the zero below 470 */ 471 ret = btrfs_init_reloc_root(trans, root); 472 smp_mb__before_atomic(); 473 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 474 } 475 return ret; 476 } 477 478 479 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 480 struct btrfs_root *root) 481 { 482 struct btrfs_fs_info *fs_info = root->fs_info; 483 struct btrfs_transaction *cur_trans = trans->transaction; 484 485 /* Add ourselves to the transaction dropped list */ 486 spin_lock(&cur_trans->dropped_roots_lock); 487 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 488 spin_unlock(&cur_trans->dropped_roots_lock); 489 490 /* Make sure we don't try to update the root at commit time */ 491 spin_lock(&fs_info->fs_roots_radix_lock); 492 radix_tree_tag_clear(&fs_info->fs_roots_radix, 493 (unsigned long)root->root_key.objectid, 494 BTRFS_ROOT_TRANS_TAG); 495 spin_unlock(&fs_info->fs_roots_radix_lock); 496 } 497 498 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 499 struct btrfs_root *root) 500 { 501 struct btrfs_fs_info *fs_info = root->fs_info; 502 int ret; 503 504 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 505 return 0; 506 507 /* 508 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 509 * and barriers 510 */ 511 smp_rmb(); 512 if (root->last_trans == trans->transid && 513 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 514 return 0; 515 516 mutex_lock(&fs_info->reloc_mutex); 517 ret = record_root_in_trans(trans, root, 0); 518 mutex_unlock(&fs_info->reloc_mutex); 519 520 return ret; 521 } 522 523 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 524 { 525 return (trans->state >= TRANS_STATE_COMMIT_START && 526 trans->state < TRANS_STATE_UNBLOCKED && 527 !TRANS_ABORTED(trans)); 528 } 529 530 /* wait for commit against the current transaction to become unblocked 531 * when this is done, it is safe to start a new transaction, but the current 532 * transaction might not be fully on disk. 533 */ 534 static void wait_current_trans(struct btrfs_fs_info *fs_info) 535 { 536 struct btrfs_transaction *cur_trans; 537 538 spin_lock(&fs_info->trans_lock); 539 cur_trans = fs_info->running_transaction; 540 if (cur_trans && is_transaction_blocked(cur_trans)) { 541 refcount_inc(&cur_trans->use_count); 542 spin_unlock(&fs_info->trans_lock); 543 544 wait_event(fs_info->transaction_wait, 545 cur_trans->state >= TRANS_STATE_UNBLOCKED || 546 TRANS_ABORTED(cur_trans)); 547 btrfs_put_transaction(cur_trans); 548 } else { 549 spin_unlock(&fs_info->trans_lock); 550 } 551 } 552 553 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 554 { 555 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 556 return 0; 557 558 if (type == TRANS_START) 559 return 1; 560 561 return 0; 562 } 563 564 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 565 { 566 struct btrfs_fs_info *fs_info = root->fs_info; 567 568 if (!fs_info->reloc_ctl || 569 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 570 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 571 root->reloc_root) 572 return false; 573 574 return true; 575 } 576 577 static struct btrfs_trans_handle * 578 start_transaction(struct btrfs_root *root, unsigned int num_items, 579 unsigned int type, enum btrfs_reserve_flush_enum flush, 580 bool enforce_qgroups) 581 { 582 struct btrfs_fs_info *fs_info = root->fs_info; 583 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 584 struct btrfs_trans_handle *h; 585 struct btrfs_transaction *cur_trans; 586 u64 num_bytes = 0; 587 u64 qgroup_reserved = 0; 588 bool reloc_reserved = false; 589 bool do_chunk_alloc = false; 590 int ret; 591 592 if (BTRFS_FS_ERROR(fs_info)) 593 return ERR_PTR(-EROFS); 594 595 if (current->journal_info) { 596 WARN_ON(type & TRANS_EXTWRITERS); 597 h = current->journal_info; 598 refcount_inc(&h->use_count); 599 WARN_ON(refcount_read(&h->use_count) > 2); 600 h->orig_rsv = h->block_rsv; 601 h->block_rsv = NULL; 602 goto got_it; 603 } 604 605 /* 606 * Do the reservation before we join the transaction so we can do all 607 * the appropriate flushing if need be. 608 */ 609 if (num_items && root != fs_info->chunk_root) { 610 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 611 u64 delayed_refs_bytes = 0; 612 613 qgroup_reserved = num_items * fs_info->nodesize; 614 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 615 enforce_qgroups); 616 if (ret) 617 return ERR_PTR(ret); 618 619 /* 620 * We want to reserve all the bytes we may need all at once, so 621 * we only do 1 enospc flushing cycle per transaction start. We 622 * accomplish this by simply assuming we'll do 2 x num_items 623 * worth of delayed refs updates in this trans handle, and 624 * refill that amount for whatever is missing in the reserve. 625 */ 626 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 627 if (flush == BTRFS_RESERVE_FLUSH_ALL && 628 delayed_refs_rsv->full == 0) { 629 delayed_refs_bytes = num_bytes; 630 num_bytes <<= 1; 631 } 632 633 /* 634 * Do the reservation for the relocation root creation 635 */ 636 if (need_reserve_reloc_root(root)) { 637 num_bytes += fs_info->nodesize; 638 reloc_reserved = true; 639 } 640 641 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush); 642 if (ret) 643 goto reserve_fail; 644 if (delayed_refs_bytes) { 645 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 646 delayed_refs_bytes); 647 num_bytes -= delayed_refs_bytes; 648 } 649 650 if (rsv->space_info->force_alloc) 651 do_chunk_alloc = true; 652 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 653 !delayed_refs_rsv->full) { 654 /* 655 * Some people call with btrfs_start_transaction(root, 0) 656 * because they can be throttled, but have some other mechanism 657 * for reserving space. We still want these guys to refill the 658 * delayed block_rsv so just add 1 items worth of reservation 659 * here. 660 */ 661 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 662 if (ret) 663 goto reserve_fail; 664 } 665 again: 666 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 667 if (!h) { 668 ret = -ENOMEM; 669 goto alloc_fail; 670 } 671 672 /* 673 * If we are JOIN_NOLOCK we're already committing a transaction and 674 * waiting on this guy, so we don't need to do the sb_start_intwrite 675 * because we're already holding a ref. We need this because we could 676 * have raced in and did an fsync() on a file which can kick a commit 677 * and then we deadlock with somebody doing a freeze. 678 * 679 * If we are ATTACH, it means we just want to catch the current 680 * transaction and commit it, so we needn't do sb_start_intwrite(). 681 */ 682 if (type & __TRANS_FREEZABLE) 683 sb_start_intwrite(fs_info->sb); 684 685 if (may_wait_transaction(fs_info, type)) 686 wait_current_trans(fs_info); 687 688 do { 689 ret = join_transaction(fs_info, type); 690 if (ret == -EBUSY) { 691 wait_current_trans(fs_info); 692 if (unlikely(type == TRANS_ATTACH || 693 type == TRANS_JOIN_NOSTART)) 694 ret = -ENOENT; 695 } 696 } while (ret == -EBUSY); 697 698 if (ret < 0) 699 goto join_fail; 700 701 cur_trans = fs_info->running_transaction; 702 703 h->transid = cur_trans->transid; 704 h->transaction = cur_trans; 705 refcount_set(&h->use_count, 1); 706 h->fs_info = root->fs_info; 707 708 h->type = type; 709 INIT_LIST_HEAD(&h->new_bgs); 710 711 smp_mb(); 712 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 713 may_wait_transaction(fs_info, type)) { 714 current->journal_info = h; 715 btrfs_commit_transaction(h); 716 goto again; 717 } 718 719 if (num_bytes) { 720 trace_btrfs_space_reservation(fs_info, "transaction", 721 h->transid, num_bytes, 1); 722 h->block_rsv = &fs_info->trans_block_rsv; 723 h->bytes_reserved = num_bytes; 724 h->reloc_reserved = reloc_reserved; 725 } 726 727 got_it: 728 if (!current->journal_info) 729 current->journal_info = h; 730 731 /* 732 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 733 * ALLOC_FORCE the first run through, and then we won't allocate for 734 * anybody else who races in later. We don't care about the return 735 * value here. 736 */ 737 if (do_chunk_alloc && num_bytes) { 738 u64 flags = h->block_rsv->space_info->flags; 739 740 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 741 CHUNK_ALLOC_NO_FORCE); 742 } 743 744 /* 745 * btrfs_record_root_in_trans() needs to alloc new extents, and may 746 * call btrfs_join_transaction() while we're also starting a 747 * transaction. 748 * 749 * Thus it need to be called after current->journal_info initialized, 750 * or we can deadlock. 751 */ 752 ret = btrfs_record_root_in_trans(h, root); 753 if (ret) { 754 /* 755 * The transaction handle is fully initialized and linked with 756 * other structures so it needs to be ended in case of errors, 757 * not just freed. 758 */ 759 btrfs_end_transaction(h); 760 return ERR_PTR(ret); 761 } 762 763 return h; 764 765 join_fail: 766 if (type & __TRANS_FREEZABLE) 767 sb_end_intwrite(fs_info->sb); 768 kmem_cache_free(btrfs_trans_handle_cachep, h); 769 alloc_fail: 770 if (num_bytes) 771 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 772 num_bytes, NULL); 773 reserve_fail: 774 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 775 return ERR_PTR(ret); 776 } 777 778 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 779 unsigned int num_items) 780 { 781 return start_transaction(root, num_items, TRANS_START, 782 BTRFS_RESERVE_FLUSH_ALL, true); 783 } 784 785 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 786 struct btrfs_root *root, 787 unsigned int num_items) 788 { 789 return start_transaction(root, num_items, TRANS_START, 790 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 791 } 792 793 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 794 { 795 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 796 true); 797 } 798 799 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 800 { 801 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 802 BTRFS_RESERVE_NO_FLUSH, true); 803 } 804 805 /* 806 * Similar to regular join but it never starts a transaction when none is 807 * running or after waiting for the current one to finish. 808 */ 809 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 810 { 811 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 812 BTRFS_RESERVE_NO_FLUSH, true); 813 } 814 815 /* 816 * btrfs_attach_transaction() - catch the running transaction 817 * 818 * It is used when we want to commit the current the transaction, but 819 * don't want to start a new one. 820 * 821 * Note: If this function return -ENOENT, it just means there is no 822 * running transaction. But it is possible that the inactive transaction 823 * is still in the memory, not fully on disk. If you hope there is no 824 * inactive transaction in the fs when -ENOENT is returned, you should 825 * invoke 826 * btrfs_attach_transaction_barrier() 827 */ 828 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 829 { 830 return start_transaction(root, 0, TRANS_ATTACH, 831 BTRFS_RESERVE_NO_FLUSH, true); 832 } 833 834 /* 835 * btrfs_attach_transaction_barrier() - catch the running transaction 836 * 837 * It is similar to the above function, the difference is this one 838 * will wait for all the inactive transactions until they fully 839 * complete. 840 */ 841 struct btrfs_trans_handle * 842 btrfs_attach_transaction_barrier(struct btrfs_root *root) 843 { 844 struct btrfs_trans_handle *trans; 845 846 trans = start_transaction(root, 0, TRANS_ATTACH, 847 BTRFS_RESERVE_NO_FLUSH, true); 848 if (trans == ERR_PTR(-ENOENT)) 849 btrfs_wait_for_commit(root->fs_info, 0); 850 851 return trans; 852 } 853 854 /* Wait for a transaction commit to reach at least the given state. */ 855 static noinline void wait_for_commit(struct btrfs_transaction *commit, 856 const enum btrfs_trans_state min_state) 857 { 858 struct btrfs_fs_info *fs_info = commit->fs_info; 859 u64 transid = commit->transid; 860 bool put = false; 861 862 while (1) { 863 wait_event(commit->commit_wait, commit->state >= min_state); 864 if (put) 865 btrfs_put_transaction(commit); 866 867 if (min_state < TRANS_STATE_COMPLETED) 868 break; 869 870 /* 871 * A transaction isn't really completed until all of the 872 * previous transactions are completed, but with fsync we can 873 * end up with SUPER_COMMITTED transactions before a COMPLETED 874 * transaction. Wait for those. 875 */ 876 877 spin_lock(&fs_info->trans_lock); 878 commit = list_first_entry_or_null(&fs_info->trans_list, 879 struct btrfs_transaction, 880 list); 881 if (!commit || commit->transid > transid) { 882 spin_unlock(&fs_info->trans_lock); 883 break; 884 } 885 refcount_inc(&commit->use_count); 886 put = true; 887 spin_unlock(&fs_info->trans_lock); 888 } 889 } 890 891 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 892 { 893 struct btrfs_transaction *cur_trans = NULL, *t; 894 int ret = 0; 895 896 if (transid) { 897 if (transid <= fs_info->last_trans_committed) 898 goto out; 899 900 /* find specified transaction */ 901 spin_lock(&fs_info->trans_lock); 902 list_for_each_entry(t, &fs_info->trans_list, list) { 903 if (t->transid == transid) { 904 cur_trans = t; 905 refcount_inc(&cur_trans->use_count); 906 ret = 0; 907 break; 908 } 909 if (t->transid > transid) { 910 ret = 0; 911 break; 912 } 913 } 914 spin_unlock(&fs_info->trans_lock); 915 916 /* 917 * The specified transaction doesn't exist, or we 918 * raced with btrfs_commit_transaction 919 */ 920 if (!cur_trans) { 921 if (transid > fs_info->last_trans_committed) 922 ret = -EINVAL; 923 goto out; 924 } 925 } else { 926 /* find newest transaction that is committing | committed */ 927 spin_lock(&fs_info->trans_lock); 928 list_for_each_entry_reverse(t, &fs_info->trans_list, 929 list) { 930 if (t->state >= TRANS_STATE_COMMIT_START) { 931 if (t->state == TRANS_STATE_COMPLETED) 932 break; 933 cur_trans = t; 934 refcount_inc(&cur_trans->use_count); 935 break; 936 } 937 } 938 spin_unlock(&fs_info->trans_lock); 939 if (!cur_trans) 940 goto out; /* nothing committing|committed */ 941 } 942 943 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 944 btrfs_put_transaction(cur_trans); 945 out: 946 return ret; 947 } 948 949 void btrfs_throttle(struct btrfs_fs_info *fs_info) 950 { 951 wait_current_trans(fs_info); 952 } 953 954 static bool should_end_transaction(struct btrfs_trans_handle *trans) 955 { 956 struct btrfs_fs_info *fs_info = trans->fs_info; 957 958 if (btrfs_check_space_for_delayed_refs(fs_info)) 959 return true; 960 961 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 962 } 963 964 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 965 { 966 struct btrfs_transaction *cur_trans = trans->transaction; 967 968 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 969 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 970 return true; 971 972 return should_end_transaction(trans); 973 } 974 975 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 976 977 { 978 struct btrfs_fs_info *fs_info = trans->fs_info; 979 980 if (!trans->block_rsv) { 981 ASSERT(!trans->bytes_reserved); 982 return; 983 } 984 985 if (!trans->bytes_reserved) 986 return; 987 988 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 989 trace_btrfs_space_reservation(fs_info, "transaction", 990 trans->transid, trans->bytes_reserved, 0); 991 btrfs_block_rsv_release(fs_info, trans->block_rsv, 992 trans->bytes_reserved, NULL); 993 trans->bytes_reserved = 0; 994 } 995 996 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 997 int throttle) 998 { 999 struct btrfs_fs_info *info = trans->fs_info; 1000 struct btrfs_transaction *cur_trans = trans->transaction; 1001 int err = 0; 1002 1003 if (refcount_read(&trans->use_count) > 1) { 1004 refcount_dec(&trans->use_count); 1005 trans->block_rsv = trans->orig_rsv; 1006 return 0; 1007 } 1008 1009 btrfs_trans_release_metadata(trans); 1010 trans->block_rsv = NULL; 1011 1012 btrfs_create_pending_block_groups(trans); 1013 1014 btrfs_trans_release_chunk_metadata(trans); 1015 1016 if (trans->type & __TRANS_FREEZABLE) 1017 sb_end_intwrite(info->sb); 1018 1019 WARN_ON(cur_trans != info->running_transaction); 1020 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1021 atomic_dec(&cur_trans->num_writers); 1022 extwriter_counter_dec(cur_trans, trans->type); 1023 1024 cond_wake_up(&cur_trans->writer_wait); 1025 btrfs_put_transaction(cur_trans); 1026 1027 if (current->journal_info == trans) 1028 current->journal_info = NULL; 1029 1030 if (throttle) 1031 btrfs_run_delayed_iputs(info); 1032 1033 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1034 wake_up_process(info->transaction_kthread); 1035 if (TRANS_ABORTED(trans)) 1036 err = trans->aborted; 1037 else 1038 err = -EROFS; 1039 } 1040 1041 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1042 return err; 1043 } 1044 1045 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1046 { 1047 return __btrfs_end_transaction(trans, 0); 1048 } 1049 1050 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1051 { 1052 return __btrfs_end_transaction(trans, 1); 1053 } 1054 1055 /* 1056 * when btree blocks are allocated, they have some corresponding bits set for 1057 * them in one of two extent_io trees. This is used to make sure all of 1058 * those extents are sent to disk but does not wait on them 1059 */ 1060 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1061 struct extent_io_tree *dirty_pages, int mark) 1062 { 1063 int err = 0; 1064 int werr = 0; 1065 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1066 struct extent_state *cached_state = NULL; 1067 u64 start = 0; 1068 u64 end; 1069 1070 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1071 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1072 mark, &cached_state)) { 1073 bool wait_writeback = false; 1074 1075 err = convert_extent_bit(dirty_pages, start, end, 1076 EXTENT_NEED_WAIT, 1077 mark, &cached_state); 1078 /* 1079 * convert_extent_bit can return -ENOMEM, which is most of the 1080 * time a temporary error. So when it happens, ignore the error 1081 * and wait for writeback of this range to finish - because we 1082 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1083 * to __btrfs_wait_marked_extents() would not know that 1084 * writeback for this range started and therefore wouldn't 1085 * wait for it to finish - we don't want to commit a 1086 * superblock that points to btree nodes/leafs for which 1087 * writeback hasn't finished yet (and without errors). 1088 * We cleanup any entries left in the io tree when committing 1089 * the transaction (through extent_io_tree_release()). 1090 */ 1091 if (err == -ENOMEM) { 1092 err = 0; 1093 wait_writeback = true; 1094 } 1095 if (!err) 1096 err = filemap_fdatawrite_range(mapping, start, end); 1097 if (err) 1098 werr = err; 1099 else if (wait_writeback) 1100 werr = filemap_fdatawait_range(mapping, start, end); 1101 free_extent_state(cached_state); 1102 cached_state = NULL; 1103 cond_resched(); 1104 start = end + 1; 1105 } 1106 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1107 return werr; 1108 } 1109 1110 /* 1111 * when btree blocks are allocated, they have some corresponding bits set for 1112 * them in one of two extent_io trees. This is used to make sure all of 1113 * those extents are on disk for transaction or log commit. We wait 1114 * on all the pages and clear them from the dirty pages state tree 1115 */ 1116 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1117 struct extent_io_tree *dirty_pages) 1118 { 1119 int err = 0; 1120 int werr = 0; 1121 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1122 struct extent_state *cached_state = NULL; 1123 u64 start = 0; 1124 u64 end; 1125 1126 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1127 EXTENT_NEED_WAIT, &cached_state)) { 1128 /* 1129 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1130 * When committing the transaction, we'll remove any entries 1131 * left in the io tree. For a log commit, we don't remove them 1132 * after committing the log because the tree can be accessed 1133 * concurrently - we do it only at transaction commit time when 1134 * it's safe to do it (through extent_io_tree_release()). 1135 */ 1136 err = clear_extent_bit(dirty_pages, start, end, 1137 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1138 if (err == -ENOMEM) 1139 err = 0; 1140 if (!err) 1141 err = filemap_fdatawait_range(mapping, start, end); 1142 if (err) 1143 werr = err; 1144 free_extent_state(cached_state); 1145 cached_state = NULL; 1146 cond_resched(); 1147 start = end + 1; 1148 } 1149 if (err) 1150 werr = err; 1151 return werr; 1152 } 1153 1154 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1155 struct extent_io_tree *dirty_pages) 1156 { 1157 bool errors = false; 1158 int err; 1159 1160 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1161 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1162 errors = true; 1163 1164 if (errors && !err) 1165 err = -EIO; 1166 return err; 1167 } 1168 1169 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1170 { 1171 struct btrfs_fs_info *fs_info = log_root->fs_info; 1172 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1173 bool errors = false; 1174 int err; 1175 1176 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1177 1178 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1179 if ((mark & EXTENT_DIRTY) && 1180 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1181 errors = true; 1182 1183 if ((mark & EXTENT_NEW) && 1184 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1185 errors = true; 1186 1187 if (errors && !err) 1188 err = -EIO; 1189 return err; 1190 } 1191 1192 /* 1193 * When btree blocks are allocated the corresponding extents are marked dirty. 1194 * This function ensures such extents are persisted on disk for transaction or 1195 * log commit. 1196 * 1197 * @trans: transaction whose dirty pages we'd like to write 1198 */ 1199 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1200 { 1201 int ret; 1202 int ret2; 1203 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1204 struct btrfs_fs_info *fs_info = trans->fs_info; 1205 struct blk_plug plug; 1206 1207 blk_start_plug(&plug); 1208 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1209 blk_finish_plug(&plug); 1210 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1211 1212 extent_io_tree_release(&trans->transaction->dirty_pages); 1213 1214 if (ret) 1215 return ret; 1216 else if (ret2) 1217 return ret2; 1218 else 1219 return 0; 1220 } 1221 1222 /* 1223 * this is used to update the root pointer in the tree of tree roots. 1224 * 1225 * But, in the case of the extent allocation tree, updating the root 1226 * pointer may allocate blocks which may change the root of the extent 1227 * allocation tree. 1228 * 1229 * So, this loops and repeats and makes sure the cowonly root didn't 1230 * change while the root pointer was being updated in the metadata. 1231 */ 1232 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1233 struct btrfs_root *root) 1234 { 1235 int ret; 1236 u64 old_root_bytenr; 1237 u64 old_root_used; 1238 struct btrfs_fs_info *fs_info = root->fs_info; 1239 struct btrfs_root *tree_root = fs_info->tree_root; 1240 1241 old_root_used = btrfs_root_used(&root->root_item); 1242 1243 while (1) { 1244 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1245 if (old_root_bytenr == root->node->start && 1246 old_root_used == btrfs_root_used(&root->root_item)) 1247 break; 1248 1249 btrfs_set_root_node(&root->root_item, root->node); 1250 ret = btrfs_update_root(trans, tree_root, 1251 &root->root_key, 1252 &root->root_item); 1253 if (ret) 1254 return ret; 1255 1256 old_root_used = btrfs_root_used(&root->root_item); 1257 } 1258 1259 return 0; 1260 } 1261 1262 /* 1263 * update all the cowonly tree roots on disk 1264 * 1265 * The error handling in this function may not be obvious. Any of the 1266 * failures will cause the file system to go offline. We still need 1267 * to clean up the delayed refs. 1268 */ 1269 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1270 { 1271 struct btrfs_fs_info *fs_info = trans->fs_info; 1272 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1273 struct list_head *io_bgs = &trans->transaction->io_bgs; 1274 struct list_head *next; 1275 struct extent_buffer *eb; 1276 int ret; 1277 1278 /* 1279 * At this point no one can be using this transaction to modify any tree 1280 * and no one can start another transaction to modify any tree either. 1281 */ 1282 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1283 1284 eb = btrfs_lock_root_node(fs_info->tree_root); 1285 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1286 0, &eb, BTRFS_NESTING_COW); 1287 btrfs_tree_unlock(eb); 1288 free_extent_buffer(eb); 1289 1290 if (ret) 1291 return ret; 1292 1293 ret = btrfs_run_dev_stats(trans); 1294 if (ret) 1295 return ret; 1296 ret = btrfs_run_dev_replace(trans); 1297 if (ret) 1298 return ret; 1299 ret = btrfs_run_qgroups(trans); 1300 if (ret) 1301 return ret; 1302 1303 ret = btrfs_setup_space_cache(trans); 1304 if (ret) 1305 return ret; 1306 1307 again: 1308 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1309 struct btrfs_root *root; 1310 next = fs_info->dirty_cowonly_roots.next; 1311 list_del_init(next); 1312 root = list_entry(next, struct btrfs_root, dirty_list); 1313 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1314 1315 list_add_tail(&root->dirty_list, 1316 &trans->transaction->switch_commits); 1317 ret = update_cowonly_root(trans, root); 1318 if (ret) 1319 return ret; 1320 } 1321 1322 /* Now flush any delayed refs generated by updating all of the roots */ 1323 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1324 if (ret) 1325 return ret; 1326 1327 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1328 ret = btrfs_write_dirty_block_groups(trans); 1329 if (ret) 1330 return ret; 1331 1332 /* 1333 * We're writing the dirty block groups, which could generate 1334 * delayed refs, which could generate more dirty block groups, 1335 * so we want to keep this flushing in this loop to make sure 1336 * everything gets run. 1337 */ 1338 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1339 if (ret) 1340 return ret; 1341 } 1342 1343 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1344 goto again; 1345 1346 /* Update dev-replace pointer once everything is committed */ 1347 fs_info->dev_replace.committed_cursor_left = 1348 fs_info->dev_replace.cursor_left_last_write_of_item; 1349 1350 return 0; 1351 } 1352 1353 /* 1354 * If we had a pending drop we need to see if there are any others left in our 1355 * dead roots list, and if not clear our bit and wake any waiters. 1356 */ 1357 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1358 { 1359 /* 1360 * We put the drop in progress roots at the front of the list, so if the 1361 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1362 * up. 1363 */ 1364 spin_lock(&fs_info->trans_lock); 1365 if (!list_empty(&fs_info->dead_roots)) { 1366 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1367 struct btrfs_root, 1368 root_list); 1369 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1370 spin_unlock(&fs_info->trans_lock); 1371 return; 1372 } 1373 } 1374 spin_unlock(&fs_info->trans_lock); 1375 1376 btrfs_wake_unfinished_drop(fs_info); 1377 } 1378 1379 /* 1380 * dead roots are old snapshots that need to be deleted. This allocates 1381 * a dirty root struct and adds it into the list of dead roots that need to 1382 * be deleted 1383 */ 1384 void btrfs_add_dead_root(struct btrfs_root *root) 1385 { 1386 struct btrfs_fs_info *fs_info = root->fs_info; 1387 1388 spin_lock(&fs_info->trans_lock); 1389 if (list_empty(&root->root_list)) { 1390 btrfs_grab_root(root); 1391 1392 /* We want to process the partially complete drops first. */ 1393 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1394 list_add(&root->root_list, &fs_info->dead_roots); 1395 else 1396 list_add_tail(&root->root_list, &fs_info->dead_roots); 1397 } 1398 spin_unlock(&fs_info->trans_lock); 1399 } 1400 1401 /* 1402 * Update each subvolume root and its relocation root, if it exists, in the tree 1403 * of tree roots. Also free log roots if they exist. 1404 */ 1405 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1406 { 1407 struct btrfs_fs_info *fs_info = trans->fs_info; 1408 struct btrfs_root *gang[8]; 1409 int i; 1410 int ret; 1411 1412 /* 1413 * At this point no one can be using this transaction to modify any tree 1414 * and no one can start another transaction to modify any tree either. 1415 */ 1416 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1417 1418 spin_lock(&fs_info->fs_roots_radix_lock); 1419 while (1) { 1420 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1421 (void **)gang, 0, 1422 ARRAY_SIZE(gang), 1423 BTRFS_ROOT_TRANS_TAG); 1424 if (ret == 0) 1425 break; 1426 for (i = 0; i < ret; i++) { 1427 struct btrfs_root *root = gang[i]; 1428 int ret2; 1429 1430 /* 1431 * At this point we can neither have tasks logging inodes 1432 * from a root nor trying to commit a log tree. 1433 */ 1434 ASSERT(atomic_read(&root->log_writers) == 0); 1435 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1436 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1437 1438 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1439 (unsigned long)root->root_key.objectid, 1440 BTRFS_ROOT_TRANS_TAG); 1441 spin_unlock(&fs_info->fs_roots_radix_lock); 1442 1443 btrfs_free_log(trans, root); 1444 ret2 = btrfs_update_reloc_root(trans, root); 1445 if (ret2) 1446 return ret2; 1447 1448 /* see comments in should_cow_block() */ 1449 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1450 smp_mb__after_atomic(); 1451 1452 if (root->commit_root != root->node) { 1453 list_add_tail(&root->dirty_list, 1454 &trans->transaction->switch_commits); 1455 btrfs_set_root_node(&root->root_item, 1456 root->node); 1457 } 1458 1459 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1460 &root->root_key, 1461 &root->root_item); 1462 if (ret2) 1463 return ret2; 1464 spin_lock(&fs_info->fs_roots_radix_lock); 1465 btrfs_qgroup_free_meta_all_pertrans(root); 1466 } 1467 } 1468 spin_unlock(&fs_info->fs_roots_radix_lock); 1469 return 0; 1470 } 1471 1472 /* 1473 * defrag a given btree. 1474 * Every leaf in the btree is read and defragged. 1475 */ 1476 int btrfs_defrag_root(struct btrfs_root *root) 1477 { 1478 struct btrfs_fs_info *info = root->fs_info; 1479 struct btrfs_trans_handle *trans; 1480 int ret; 1481 1482 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1483 return 0; 1484 1485 while (1) { 1486 trans = btrfs_start_transaction(root, 0); 1487 if (IS_ERR(trans)) { 1488 ret = PTR_ERR(trans); 1489 break; 1490 } 1491 1492 ret = btrfs_defrag_leaves(trans, root); 1493 1494 btrfs_end_transaction(trans); 1495 btrfs_btree_balance_dirty(info); 1496 cond_resched(); 1497 1498 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1499 break; 1500 1501 if (btrfs_defrag_cancelled(info)) { 1502 btrfs_debug(info, "defrag_root cancelled"); 1503 ret = -EAGAIN; 1504 break; 1505 } 1506 } 1507 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1508 return ret; 1509 } 1510 1511 /* 1512 * Do all special snapshot related qgroup dirty hack. 1513 * 1514 * Will do all needed qgroup inherit and dirty hack like switch commit 1515 * roots inside one transaction and write all btree into disk, to make 1516 * qgroup works. 1517 */ 1518 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1519 struct btrfs_root *src, 1520 struct btrfs_root *parent, 1521 struct btrfs_qgroup_inherit *inherit, 1522 u64 dst_objectid) 1523 { 1524 struct btrfs_fs_info *fs_info = src->fs_info; 1525 int ret; 1526 1527 /* 1528 * Save some performance in the case that qgroups are not 1529 * enabled. If this check races with the ioctl, rescan will 1530 * kick in anyway. 1531 */ 1532 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1533 return 0; 1534 1535 /* 1536 * Ensure dirty @src will be committed. Or, after coming 1537 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1538 * recorded root will never be updated again, causing an outdated root 1539 * item. 1540 */ 1541 ret = record_root_in_trans(trans, src, 1); 1542 if (ret) 1543 return ret; 1544 1545 /* 1546 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1547 * src root, so we must run the delayed refs here. 1548 * 1549 * However this isn't particularly fool proof, because there's no 1550 * synchronization keeping us from changing the tree after this point 1551 * before we do the qgroup_inherit, or even from making changes while 1552 * we're doing the qgroup_inherit. But that's a problem for the future, 1553 * for now flush the delayed refs to narrow the race window where the 1554 * qgroup counters could end up wrong. 1555 */ 1556 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1557 if (ret) { 1558 btrfs_abort_transaction(trans, ret); 1559 return ret; 1560 } 1561 1562 ret = commit_fs_roots(trans); 1563 if (ret) 1564 goto out; 1565 ret = btrfs_qgroup_account_extents(trans); 1566 if (ret < 0) 1567 goto out; 1568 1569 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1570 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1571 inherit); 1572 if (ret < 0) 1573 goto out; 1574 1575 /* 1576 * Now we do a simplified commit transaction, which will: 1577 * 1) commit all subvolume and extent tree 1578 * To ensure all subvolume and extent tree have a valid 1579 * commit_root to accounting later insert_dir_item() 1580 * 2) write all btree blocks onto disk 1581 * This is to make sure later btree modification will be cowed 1582 * Or commit_root can be populated and cause wrong qgroup numbers 1583 * In this simplified commit, we don't really care about other trees 1584 * like chunk and root tree, as they won't affect qgroup. 1585 * And we don't write super to avoid half committed status. 1586 */ 1587 ret = commit_cowonly_roots(trans); 1588 if (ret) 1589 goto out; 1590 switch_commit_roots(trans); 1591 ret = btrfs_write_and_wait_transaction(trans); 1592 if (ret) 1593 btrfs_handle_fs_error(fs_info, ret, 1594 "Error while writing out transaction for qgroup"); 1595 1596 out: 1597 /* 1598 * Force parent root to be updated, as we recorded it before so its 1599 * last_trans == cur_transid. 1600 * Or it won't be committed again onto disk after later 1601 * insert_dir_item() 1602 */ 1603 if (!ret) 1604 ret = record_root_in_trans(trans, parent, 1); 1605 return ret; 1606 } 1607 1608 /* 1609 * new snapshots need to be created at a very specific time in the 1610 * transaction commit. This does the actual creation. 1611 * 1612 * Note: 1613 * If the error which may affect the commitment of the current transaction 1614 * happens, we should return the error number. If the error which just affect 1615 * the creation of the pending snapshots, just return 0. 1616 */ 1617 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1618 struct btrfs_pending_snapshot *pending) 1619 { 1620 1621 struct btrfs_fs_info *fs_info = trans->fs_info; 1622 struct btrfs_key key; 1623 struct btrfs_root_item *new_root_item; 1624 struct btrfs_root *tree_root = fs_info->tree_root; 1625 struct btrfs_root *root = pending->root; 1626 struct btrfs_root *parent_root; 1627 struct btrfs_block_rsv *rsv; 1628 struct inode *parent_inode; 1629 struct btrfs_path *path; 1630 struct btrfs_dir_item *dir_item; 1631 struct dentry *dentry; 1632 struct extent_buffer *tmp; 1633 struct extent_buffer *old; 1634 struct timespec64 cur_time; 1635 int ret = 0; 1636 u64 to_reserve = 0; 1637 u64 index = 0; 1638 u64 objectid; 1639 u64 root_flags; 1640 1641 ASSERT(pending->path); 1642 path = pending->path; 1643 1644 ASSERT(pending->root_item); 1645 new_root_item = pending->root_item; 1646 1647 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1648 if (pending->error) 1649 goto no_free_objectid; 1650 1651 /* 1652 * Make qgroup to skip current new snapshot's qgroupid, as it is 1653 * accounted by later btrfs_qgroup_inherit(). 1654 */ 1655 btrfs_set_skip_qgroup(trans, objectid); 1656 1657 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1658 1659 if (to_reserve > 0) { 1660 pending->error = btrfs_block_rsv_add(fs_info, 1661 &pending->block_rsv, 1662 to_reserve, 1663 BTRFS_RESERVE_NO_FLUSH); 1664 if (pending->error) 1665 goto clear_skip_qgroup; 1666 } 1667 1668 key.objectid = objectid; 1669 key.offset = (u64)-1; 1670 key.type = BTRFS_ROOT_ITEM_KEY; 1671 1672 rsv = trans->block_rsv; 1673 trans->block_rsv = &pending->block_rsv; 1674 trans->bytes_reserved = trans->block_rsv->reserved; 1675 trace_btrfs_space_reservation(fs_info, "transaction", 1676 trans->transid, 1677 trans->bytes_reserved, 1); 1678 dentry = pending->dentry; 1679 parent_inode = pending->dir; 1680 parent_root = BTRFS_I(parent_inode)->root; 1681 ret = record_root_in_trans(trans, parent_root, 0); 1682 if (ret) 1683 goto fail; 1684 cur_time = current_time(parent_inode); 1685 1686 /* 1687 * insert the directory item 1688 */ 1689 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1690 BUG_ON(ret); /* -ENOMEM */ 1691 1692 /* check if there is a file/dir which has the same name. */ 1693 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1694 btrfs_ino(BTRFS_I(parent_inode)), 1695 dentry->d_name.name, 1696 dentry->d_name.len, 0); 1697 if (dir_item != NULL && !IS_ERR(dir_item)) { 1698 pending->error = -EEXIST; 1699 goto dir_item_existed; 1700 } else if (IS_ERR(dir_item)) { 1701 ret = PTR_ERR(dir_item); 1702 btrfs_abort_transaction(trans, ret); 1703 goto fail; 1704 } 1705 btrfs_release_path(path); 1706 1707 /* 1708 * pull in the delayed directory update 1709 * and the delayed inode item 1710 * otherwise we corrupt the FS during 1711 * snapshot 1712 */ 1713 ret = btrfs_run_delayed_items(trans); 1714 if (ret) { /* Transaction aborted */ 1715 btrfs_abort_transaction(trans, ret); 1716 goto fail; 1717 } 1718 1719 ret = record_root_in_trans(trans, root, 0); 1720 if (ret) { 1721 btrfs_abort_transaction(trans, ret); 1722 goto fail; 1723 } 1724 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1725 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1726 btrfs_check_and_init_root_item(new_root_item); 1727 1728 root_flags = btrfs_root_flags(new_root_item); 1729 if (pending->readonly) 1730 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1731 else 1732 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1733 btrfs_set_root_flags(new_root_item, root_flags); 1734 1735 btrfs_set_root_generation_v2(new_root_item, 1736 trans->transid); 1737 generate_random_guid(new_root_item->uuid); 1738 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1739 BTRFS_UUID_SIZE); 1740 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1741 memset(new_root_item->received_uuid, 0, 1742 sizeof(new_root_item->received_uuid)); 1743 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1744 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1745 btrfs_set_root_stransid(new_root_item, 0); 1746 btrfs_set_root_rtransid(new_root_item, 0); 1747 } 1748 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1749 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1750 btrfs_set_root_otransid(new_root_item, trans->transid); 1751 1752 old = btrfs_lock_root_node(root); 1753 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1754 BTRFS_NESTING_COW); 1755 if (ret) { 1756 btrfs_tree_unlock(old); 1757 free_extent_buffer(old); 1758 btrfs_abort_transaction(trans, ret); 1759 goto fail; 1760 } 1761 1762 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1763 /* clean up in any case */ 1764 btrfs_tree_unlock(old); 1765 free_extent_buffer(old); 1766 if (ret) { 1767 btrfs_abort_transaction(trans, ret); 1768 goto fail; 1769 } 1770 /* see comments in should_cow_block() */ 1771 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1772 smp_wmb(); 1773 1774 btrfs_set_root_node(new_root_item, tmp); 1775 /* record when the snapshot was created in key.offset */ 1776 key.offset = trans->transid; 1777 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1778 btrfs_tree_unlock(tmp); 1779 free_extent_buffer(tmp); 1780 if (ret) { 1781 btrfs_abort_transaction(trans, ret); 1782 goto fail; 1783 } 1784 1785 /* 1786 * insert root back/forward references 1787 */ 1788 ret = btrfs_add_root_ref(trans, objectid, 1789 parent_root->root_key.objectid, 1790 btrfs_ino(BTRFS_I(parent_inode)), index, 1791 dentry->d_name.name, dentry->d_name.len); 1792 if (ret) { 1793 btrfs_abort_transaction(trans, ret); 1794 goto fail; 1795 } 1796 1797 key.offset = (u64)-1; 1798 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1799 if (IS_ERR(pending->snap)) { 1800 ret = PTR_ERR(pending->snap); 1801 pending->snap = NULL; 1802 btrfs_abort_transaction(trans, ret); 1803 goto fail; 1804 } 1805 1806 ret = btrfs_reloc_post_snapshot(trans, pending); 1807 if (ret) { 1808 btrfs_abort_transaction(trans, ret); 1809 goto fail; 1810 } 1811 1812 /* 1813 * Do special qgroup accounting for snapshot, as we do some qgroup 1814 * snapshot hack to do fast snapshot. 1815 * To co-operate with that hack, we do hack again. 1816 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1817 */ 1818 ret = qgroup_account_snapshot(trans, root, parent_root, 1819 pending->inherit, objectid); 1820 if (ret < 0) 1821 goto fail; 1822 1823 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1824 dentry->d_name.len, BTRFS_I(parent_inode), 1825 &key, BTRFS_FT_DIR, index); 1826 /* We have check then name at the beginning, so it is impossible. */ 1827 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1828 if (ret) { 1829 btrfs_abort_transaction(trans, ret); 1830 goto fail; 1831 } 1832 1833 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1834 dentry->d_name.len * 2); 1835 parent_inode->i_mtime = current_time(parent_inode); 1836 parent_inode->i_ctime = parent_inode->i_mtime; 1837 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1838 if (ret) { 1839 btrfs_abort_transaction(trans, ret); 1840 goto fail; 1841 } 1842 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1843 BTRFS_UUID_KEY_SUBVOL, 1844 objectid); 1845 if (ret) { 1846 btrfs_abort_transaction(trans, ret); 1847 goto fail; 1848 } 1849 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1850 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1851 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1852 objectid); 1853 if (ret && ret != -EEXIST) { 1854 btrfs_abort_transaction(trans, ret); 1855 goto fail; 1856 } 1857 } 1858 1859 fail: 1860 pending->error = ret; 1861 dir_item_existed: 1862 trans->block_rsv = rsv; 1863 trans->bytes_reserved = 0; 1864 clear_skip_qgroup: 1865 btrfs_clear_skip_qgroup(trans); 1866 no_free_objectid: 1867 kfree(new_root_item); 1868 pending->root_item = NULL; 1869 btrfs_free_path(path); 1870 pending->path = NULL; 1871 1872 return ret; 1873 } 1874 1875 /* 1876 * create all the snapshots we've scheduled for creation 1877 */ 1878 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1879 { 1880 struct btrfs_pending_snapshot *pending, *next; 1881 struct list_head *head = &trans->transaction->pending_snapshots; 1882 int ret = 0; 1883 1884 list_for_each_entry_safe(pending, next, head, list) { 1885 list_del(&pending->list); 1886 ret = create_pending_snapshot(trans, pending); 1887 if (ret) 1888 break; 1889 } 1890 return ret; 1891 } 1892 1893 static void update_super_roots(struct btrfs_fs_info *fs_info) 1894 { 1895 struct btrfs_root_item *root_item; 1896 struct btrfs_super_block *super; 1897 1898 super = fs_info->super_copy; 1899 1900 root_item = &fs_info->chunk_root->root_item; 1901 super->chunk_root = root_item->bytenr; 1902 super->chunk_root_generation = root_item->generation; 1903 super->chunk_root_level = root_item->level; 1904 1905 root_item = &fs_info->tree_root->root_item; 1906 super->root = root_item->bytenr; 1907 super->generation = root_item->generation; 1908 super->root_level = root_item->level; 1909 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1910 super->cache_generation = root_item->generation; 1911 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1912 super->cache_generation = 0; 1913 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1914 super->uuid_tree_generation = root_item->generation; 1915 1916 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 1917 root_item = &fs_info->block_group_root->root_item; 1918 1919 super->block_group_root = root_item->bytenr; 1920 super->block_group_root_generation = root_item->generation; 1921 super->block_group_root_level = root_item->level; 1922 } 1923 } 1924 1925 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1926 { 1927 struct btrfs_transaction *trans; 1928 int ret = 0; 1929 1930 spin_lock(&info->trans_lock); 1931 trans = info->running_transaction; 1932 if (trans) 1933 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1934 spin_unlock(&info->trans_lock); 1935 return ret; 1936 } 1937 1938 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1939 { 1940 struct btrfs_transaction *trans; 1941 int ret = 0; 1942 1943 spin_lock(&info->trans_lock); 1944 trans = info->running_transaction; 1945 if (trans) 1946 ret = is_transaction_blocked(trans); 1947 spin_unlock(&info->trans_lock); 1948 return ret; 1949 } 1950 1951 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1952 { 1953 struct btrfs_fs_info *fs_info = trans->fs_info; 1954 struct btrfs_transaction *cur_trans; 1955 1956 /* Kick the transaction kthread. */ 1957 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1958 wake_up_process(fs_info->transaction_kthread); 1959 1960 /* take transaction reference */ 1961 cur_trans = trans->transaction; 1962 refcount_inc(&cur_trans->use_count); 1963 1964 btrfs_end_transaction(trans); 1965 1966 /* 1967 * Wait for the current transaction commit to start and block 1968 * subsequent transaction joins 1969 */ 1970 wait_event(fs_info->transaction_blocked_wait, 1971 cur_trans->state >= TRANS_STATE_COMMIT_START || 1972 TRANS_ABORTED(cur_trans)); 1973 btrfs_put_transaction(cur_trans); 1974 } 1975 1976 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1977 { 1978 struct btrfs_fs_info *fs_info = trans->fs_info; 1979 struct btrfs_transaction *cur_trans = trans->transaction; 1980 1981 WARN_ON(refcount_read(&trans->use_count) > 1); 1982 1983 btrfs_abort_transaction(trans, err); 1984 1985 spin_lock(&fs_info->trans_lock); 1986 1987 /* 1988 * If the transaction is removed from the list, it means this 1989 * transaction has been committed successfully, so it is impossible 1990 * to call the cleanup function. 1991 */ 1992 BUG_ON(list_empty(&cur_trans->list)); 1993 1994 if (cur_trans == fs_info->running_transaction) { 1995 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1996 spin_unlock(&fs_info->trans_lock); 1997 wait_event(cur_trans->writer_wait, 1998 atomic_read(&cur_trans->num_writers) == 1); 1999 2000 spin_lock(&fs_info->trans_lock); 2001 } 2002 2003 /* 2004 * Now that we know no one else is still using the transaction we can 2005 * remove the transaction from the list of transactions. This avoids 2006 * the transaction kthread from cleaning up the transaction while some 2007 * other task is still using it, which could result in a use-after-free 2008 * on things like log trees, as it forces the transaction kthread to 2009 * wait for this transaction to be cleaned up by us. 2010 */ 2011 list_del_init(&cur_trans->list); 2012 2013 spin_unlock(&fs_info->trans_lock); 2014 2015 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2016 2017 spin_lock(&fs_info->trans_lock); 2018 if (cur_trans == fs_info->running_transaction) 2019 fs_info->running_transaction = NULL; 2020 spin_unlock(&fs_info->trans_lock); 2021 2022 if (trans->type & __TRANS_FREEZABLE) 2023 sb_end_intwrite(fs_info->sb); 2024 btrfs_put_transaction(cur_trans); 2025 btrfs_put_transaction(cur_trans); 2026 2027 trace_btrfs_transaction_commit(fs_info); 2028 2029 if (current->journal_info == trans) 2030 current->journal_info = NULL; 2031 btrfs_scrub_cancel(fs_info); 2032 2033 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2034 } 2035 2036 /* 2037 * Release reserved delayed ref space of all pending block groups of the 2038 * transaction and remove them from the list 2039 */ 2040 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2041 { 2042 struct btrfs_fs_info *fs_info = trans->fs_info; 2043 struct btrfs_block_group *block_group, *tmp; 2044 2045 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2046 btrfs_delayed_refs_rsv_release(fs_info, 1); 2047 list_del_init(&block_group->bg_list); 2048 } 2049 } 2050 2051 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2052 { 2053 /* 2054 * We use try_to_writeback_inodes_sb() here because if we used 2055 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2056 * Currently are holding the fs freeze lock, if we do an async flush 2057 * we'll do btrfs_join_transaction() and deadlock because we need to 2058 * wait for the fs freeze lock. Using the direct flushing we benefit 2059 * from already being in a transaction and our join_transaction doesn't 2060 * have to re-take the fs freeze lock. 2061 * 2062 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2063 * if it can read lock sb->s_umount. It will always be able to lock it, 2064 * except when the filesystem is being unmounted or being frozen, but in 2065 * those cases sync_filesystem() is called, which results in calling 2066 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2067 * Note that we don't call writeback_inodes_sb() directly, because it 2068 * will emit a warning if sb->s_umount is not locked. 2069 */ 2070 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2071 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2072 return 0; 2073 } 2074 2075 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2076 { 2077 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2078 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2079 } 2080 2081 /* 2082 * Add a pending snapshot associated with the given transaction handle to the 2083 * respective handle. This must be called after the transaction commit started 2084 * and while holding fs_info->trans_lock. 2085 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2086 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2087 * returns an error. 2088 */ 2089 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2090 { 2091 struct btrfs_transaction *cur_trans = trans->transaction; 2092 2093 if (!trans->pending_snapshot) 2094 return; 2095 2096 lockdep_assert_held(&trans->fs_info->trans_lock); 2097 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START); 2098 2099 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2100 } 2101 2102 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2103 { 2104 fs_info->commit_stats.commit_count++; 2105 fs_info->commit_stats.last_commit_dur = interval; 2106 fs_info->commit_stats.max_commit_dur = 2107 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2108 fs_info->commit_stats.total_commit_dur += interval; 2109 } 2110 2111 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2112 { 2113 struct btrfs_fs_info *fs_info = trans->fs_info; 2114 struct btrfs_transaction *cur_trans = trans->transaction; 2115 struct btrfs_transaction *prev_trans = NULL; 2116 int ret; 2117 ktime_t start_time; 2118 ktime_t interval; 2119 2120 ASSERT(refcount_read(&trans->use_count) == 1); 2121 2122 /* Stop the commit early if ->aborted is set */ 2123 if (TRANS_ABORTED(cur_trans)) { 2124 ret = cur_trans->aborted; 2125 btrfs_end_transaction(trans); 2126 return ret; 2127 } 2128 2129 btrfs_trans_release_metadata(trans); 2130 trans->block_rsv = NULL; 2131 2132 /* 2133 * We only want one transaction commit doing the flushing so we do not 2134 * waste a bunch of time on lock contention on the extent root node. 2135 */ 2136 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2137 &cur_trans->delayed_refs.flags)) { 2138 /* 2139 * Make a pass through all the delayed refs we have so far. 2140 * Any running threads may add more while we are here. 2141 */ 2142 ret = btrfs_run_delayed_refs(trans, 0); 2143 if (ret) { 2144 btrfs_end_transaction(trans); 2145 return ret; 2146 } 2147 } 2148 2149 btrfs_create_pending_block_groups(trans); 2150 2151 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2152 int run_it = 0; 2153 2154 /* this mutex is also taken before trying to set 2155 * block groups readonly. We need to make sure 2156 * that nobody has set a block group readonly 2157 * after a extents from that block group have been 2158 * allocated for cache files. btrfs_set_block_group_ro 2159 * will wait for the transaction to commit if it 2160 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2161 * 2162 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2163 * only one process starts all the block group IO. It wouldn't 2164 * hurt to have more than one go through, but there's no 2165 * real advantage to it either. 2166 */ 2167 mutex_lock(&fs_info->ro_block_group_mutex); 2168 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2169 &cur_trans->flags)) 2170 run_it = 1; 2171 mutex_unlock(&fs_info->ro_block_group_mutex); 2172 2173 if (run_it) { 2174 ret = btrfs_start_dirty_block_groups(trans); 2175 if (ret) { 2176 btrfs_end_transaction(trans); 2177 return ret; 2178 } 2179 } 2180 } 2181 2182 spin_lock(&fs_info->trans_lock); 2183 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2184 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2185 2186 add_pending_snapshot(trans); 2187 2188 spin_unlock(&fs_info->trans_lock); 2189 refcount_inc(&cur_trans->use_count); 2190 2191 if (trans->in_fsync) 2192 want_state = TRANS_STATE_SUPER_COMMITTED; 2193 ret = btrfs_end_transaction(trans); 2194 wait_for_commit(cur_trans, want_state); 2195 2196 if (TRANS_ABORTED(cur_trans)) 2197 ret = cur_trans->aborted; 2198 2199 btrfs_put_transaction(cur_trans); 2200 2201 return ret; 2202 } 2203 2204 cur_trans->state = TRANS_STATE_COMMIT_START; 2205 wake_up(&fs_info->transaction_blocked_wait); 2206 2207 if (cur_trans->list.prev != &fs_info->trans_list) { 2208 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2209 2210 if (trans->in_fsync) 2211 want_state = TRANS_STATE_SUPER_COMMITTED; 2212 2213 prev_trans = list_entry(cur_trans->list.prev, 2214 struct btrfs_transaction, list); 2215 if (prev_trans->state < want_state) { 2216 refcount_inc(&prev_trans->use_count); 2217 spin_unlock(&fs_info->trans_lock); 2218 2219 wait_for_commit(prev_trans, want_state); 2220 2221 ret = READ_ONCE(prev_trans->aborted); 2222 2223 btrfs_put_transaction(prev_trans); 2224 if (ret) 2225 goto cleanup_transaction; 2226 } else { 2227 spin_unlock(&fs_info->trans_lock); 2228 } 2229 } else { 2230 spin_unlock(&fs_info->trans_lock); 2231 /* 2232 * The previous transaction was aborted and was already removed 2233 * from the list of transactions at fs_info->trans_list. So we 2234 * abort to prevent writing a new superblock that reflects a 2235 * corrupt state (pointing to trees with unwritten nodes/leafs). 2236 */ 2237 if (BTRFS_FS_ERROR(fs_info)) { 2238 ret = -EROFS; 2239 goto cleanup_transaction; 2240 } 2241 } 2242 2243 /* 2244 * Get the time spent on the work done by the commit thread and not 2245 * the time spent waiting on a previous commit 2246 */ 2247 start_time = ktime_get_ns(); 2248 2249 extwriter_counter_dec(cur_trans, trans->type); 2250 2251 ret = btrfs_start_delalloc_flush(fs_info); 2252 if (ret) 2253 goto cleanup_transaction; 2254 2255 ret = btrfs_run_delayed_items(trans); 2256 if (ret) 2257 goto cleanup_transaction; 2258 2259 wait_event(cur_trans->writer_wait, 2260 extwriter_counter_read(cur_trans) == 0); 2261 2262 /* some pending stuffs might be added after the previous flush. */ 2263 ret = btrfs_run_delayed_items(trans); 2264 if (ret) 2265 goto cleanup_transaction; 2266 2267 btrfs_wait_delalloc_flush(fs_info); 2268 2269 /* 2270 * Wait for all ordered extents started by a fast fsync that joined this 2271 * transaction. Otherwise if this transaction commits before the ordered 2272 * extents complete we lose logged data after a power failure. 2273 */ 2274 wait_event(cur_trans->pending_wait, 2275 atomic_read(&cur_trans->pending_ordered) == 0); 2276 2277 btrfs_scrub_pause(fs_info); 2278 /* 2279 * Ok now we need to make sure to block out any other joins while we 2280 * commit the transaction. We could have started a join before setting 2281 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2282 */ 2283 spin_lock(&fs_info->trans_lock); 2284 add_pending_snapshot(trans); 2285 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2286 spin_unlock(&fs_info->trans_lock); 2287 wait_event(cur_trans->writer_wait, 2288 atomic_read(&cur_trans->num_writers) == 1); 2289 2290 /* 2291 * We've started the commit, clear the flag in case we were triggered to 2292 * do an async commit but somebody else started before the transaction 2293 * kthread could do the work. 2294 */ 2295 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2296 2297 if (TRANS_ABORTED(cur_trans)) { 2298 ret = cur_trans->aborted; 2299 goto scrub_continue; 2300 } 2301 /* 2302 * the reloc mutex makes sure that we stop 2303 * the balancing code from coming in and moving 2304 * extents around in the middle of the commit 2305 */ 2306 mutex_lock(&fs_info->reloc_mutex); 2307 2308 /* 2309 * We needn't worry about the delayed items because we will 2310 * deal with them in create_pending_snapshot(), which is the 2311 * core function of the snapshot creation. 2312 */ 2313 ret = create_pending_snapshots(trans); 2314 if (ret) 2315 goto unlock_reloc; 2316 2317 /* 2318 * We insert the dir indexes of the snapshots and update the inode 2319 * of the snapshots' parents after the snapshot creation, so there 2320 * are some delayed items which are not dealt with. Now deal with 2321 * them. 2322 * 2323 * We needn't worry that this operation will corrupt the snapshots, 2324 * because all the tree which are snapshoted will be forced to COW 2325 * the nodes and leaves. 2326 */ 2327 ret = btrfs_run_delayed_items(trans); 2328 if (ret) 2329 goto unlock_reloc; 2330 2331 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2332 if (ret) 2333 goto unlock_reloc; 2334 2335 /* 2336 * make sure none of the code above managed to slip in a 2337 * delayed item 2338 */ 2339 btrfs_assert_delayed_root_empty(fs_info); 2340 2341 WARN_ON(cur_trans != trans->transaction); 2342 2343 ret = commit_fs_roots(trans); 2344 if (ret) 2345 goto unlock_reloc; 2346 2347 /* 2348 * Since the transaction is done, we can apply the pending changes 2349 * before the next transaction. 2350 */ 2351 btrfs_apply_pending_changes(fs_info); 2352 2353 /* commit_fs_roots gets rid of all the tree log roots, it is now 2354 * safe to free the root of tree log roots 2355 */ 2356 btrfs_free_log_root_tree(trans, fs_info); 2357 2358 /* 2359 * Since fs roots are all committed, we can get a quite accurate 2360 * new_roots. So let's do quota accounting. 2361 */ 2362 ret = btrfs_qgroup_account_extents(trans); 2363 if (ret < 0) 2364 goto unlock_reloc; 2365 2366 ret = commit_cowonly_roots(trans); 2367 if (ret) 2368 goto unlock_reloc; 2369 2370 /* 2371 * The tasks which save the space cache and inode cache may also 2372 * update ->aborted, check it. 2373 */ 2374 if (TRANS_ABORTED(cur_trans)) { 2375 ret = cur_trans->aborted; 2376 goto unlock_reloc; 2377 } 2378 2379 cur_trans = fs_info->running_transaction; 2380 2381 btrfs_set_root_node(&fs_info->tree_root->root_item, 2382 fs_info->tree_root->node); 2383 list_add_tail(&fs_info->tree_root->dirty_list, 2384 &cur_trans->switch_commits); 2385 2386 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2387 fs_info->chunk_root->node); 2388 list_add_tail(&fs_info->chunk_root->dirty_list, 2389 &cur_trans->switch_commits); 2390 2391 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2392 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2393 fs_info->block_group_root->node); 2394 list_add_tail(&fs_info->block_group_root->dirty_list, 2395 &cur_trans->switch_commits); 2396 } 2397 2398 switch_commit_roots(trans); 2399 2400 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2401 ASSERT(list_empty(&cur_trans->io_bgs)); 2402 update_super_roots(fs_info); 2403 2404 btrfs_set_super_log_root(fs_info->super_copy, 0); 2405 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2406 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2407 sizeof(*fs_info->super_copy)); 2408 2409 btrfs_commit_device_sizes(cur_trans); 2410 2411 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2412 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2413 2414 btrfs_trans_release_chunk_metadata(trans); 2415 2416 /* 2417 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2418 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2419 * make sure that before we commit our superblock, no other task can 2420 * start a new transaction and commit a log tree before we commit our 2421 * superblock. Anyone trying to commit a log tree locks this mutex before 2422 * writing its superblock. 2423 */ 2424 mutex_lock(&fs_info->tree_log_mutex); 2425 2426 spin_lock(&fs_info->trans_lock); 2427 cur_trans->state = TRANS_STATE_UNBLOCKED; 2428 fs_info->running_transaction = NULL; 2429 spin_unlock(&fs_info->trans_lock); 2430 mutex_unlock(&fs_info->reloc_mutex); 2431 2432 wake_up(&fs_info->transaction_wait); 2433 2434 ret = btrfs_write_and_wait_transaction(trans); 2435 if (ret) { 2436 btrfs_handle_fs_error(fs_info, ret, 2437 "Error while writing out transaction"); 2438 mutex_unlock(&fs_info->tree_log_mutex); 2439 goto scrub_continue; 2440 } 2441 2442 /* 2443 * At this point, we should have written all the tree blocks allocated 2444 * in this transaction. So it's now safe to free the redirtyied extent 2445 * buffers. 2446 */ 2447 btrfs_free_redirty_list(cur_trans); 2448 2449 ret = write_all_supers(fs_info, 0); 2450 /* 2451 * the super is written, we can safely allow the tree-loggers 2452 * to go about their business 2453 */ 2454 mutex_unlock(&fs_info->tree_log_mutex); 2455 if (ret) 2456 goto scrub_continue; 2457 2458 /* 2459 * We needn't acquire the lock here because there is no other task 2460 * which can change it. 2461 */ 2462 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2463 wake_up(&cur_trans->commit_wait); 2464 2465 btrfs_finish_extent_commit(trans); 2466 2467 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2468 btrfs_clear_space_info_full(fs_info); 2469 2470 fs_info->last_trans_committed = cur_trans->transid; 2471 /* 2472 * We needn't acquire the lock here because there is no other task 2473 * which can change it. 2474 */ 2475 cur_trans->state = TRANS_STATE_COMPLETED; 2476 wake_up(&cur_trans->commit_wait); 2477 2478 spin_lock(&fs_info->trans_lock); 2479 list_del_init(&cur_trans->list); 2480 spin_unlock(&fs_info->trans_lock); 2481 2482 btrfs_put_transaction(cur_trans); 2483 btrfs_put_transaction(cur_trans); 2484 2485 if (trans->type & __TRANS_FREEZABLE) 2486 sb_end_intwrite(fs_info->sb); 2487 2488 trace_btrfs_transaction_commit(fs_info); 2489 2490 interval = ktime_get_ns() - start_time; 2491 2492 btrfs_scrub_continue(fs_info); 2493 2494 if (current->journal_info == trans) 2495 current->journal_info = NULL; 2496 2497 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2498 2499 update_commit_stats(fs_info, interval); 2500 2501 return ret; 2502 2503 unlock_reloc: 2504 mutex_unlock(&fs_info->reloc_mutex); 2505 scrub_continue: 2506 btrfs_scrub_continue(fs_info); 2507 cleanup_transaction: 2508 btrfs_trans_release_metadata(trans); 2509 btrfs_cleanup_pending_block_groups(trans); 2510 btrfs_trans_release_chunk_metadata(trans); 2511 trans->block_rsv = NULL; 2512 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2513 if (current->journal_info == trans) 2514 current->journal_info = NULL; 2515 cleanup_transaction(trans, ret); 2516 2517 return ret; 2518 } 2519 2520 /* 2521 * return < 0 if error 2522 * 0 if there are no more dead_roots at the time of call 2523 * 1 there are more to be processed, call me again 2524 * 2525 * The return value indicates there are certainly more snapshots to delete, but 2526 * if there comes a new one during processing, it may return 0. We don't mind, 2527 * because btrfs_commit_super will poke cleaner thread and it will process it a 2528 * few seconds later. 2529 */ 2530 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2531 { 2532 struct btrfs_root *root; 2533 int ret; 2534 2535 spin_lock(&fs_info->trans_lock); 2536 if (list_empty(&fs_info->dead_roots)) { 2537 spin_unlock(&fs_info->trans_lock); 2538 return 0; 2539 } 2540 root = list_first_entry(&fs_info->dead_roots, 2541 struct btrfs_root, root_list); 2542 list_del_init(&root->root_list); 2543 spin_unlock(&fs_info->trans_lock); 2544 2545 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2546 2547 btrfs_kill_all_delayed_nodes(root); 2548 2549 if (btrfs_header_backref_rev(root->node) < 2550 BTRFS_MIXED_BACKREF_REV) 2551 ret = btrfs_drop_snapshot(root, 0, 0); 2552 else 2553 ret = btrfs_drop_snapshot(root, 1, 0); 2554 2555 btrfs_put_root(root); 2556 return (ret < 0) ? 0 : 1; 2557 } 2558 2559 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2560 { 2561 unsigned long prev; 2562 unsigned long bit; 2563 2564 prev = xchg(&fs_info->pending_changes, 0); 2565 if (!prev) 2566 return; 2567 2568 bit = 1 << BTRFS_PENDING_COMMIT; 2569 if (prev & bit) 2570 btrfs_debug(fs_info, "pending commit done"); 2571 prev &= ~bit; 2572 2573 if (prev) 2574 btrfs_warn(fs_info, 2575 "unknown pending changes left 0x%lx, ignoring", prev); 2576 } 2577