xref: /linux/fs/btrfs/transaction.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 
30 #define BTRFS_ROOT_TRANS_TAG 0
31 
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 	WARN_ON(transaction->use_count == 0);
35 	transaction->use_count--;
36 	if (transaction->use_count == 0) {
37 		list_del_init(&transaction->list);
38 		memset(transaction, 0, sizeof(*transaction));
39 		kmem_cache_free(btrfs_transaction_cachep, transaction);
40 	}
41 }
42 
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 	free_extent_buffer(root->commit_root);
46 	root->commit_root = btrfs_root_node(root);
47 }
48 
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54 	struct btrfs_transaction *cur_trans;
55 	cur_trans = root->fs_info->running_transaction;
56 	if (!cur_trans) {
57 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 					     GFP_NOFS);
59 		BUG_ON(!cur_trans);
60 		root->fs_info->generation++;
61 		cur_trans->num_writers = 1;
62 		cur_trans->num_joined = 0;
63 		cur_trans->transid = root->fs_info->generation;
64 		init_waitqueue_head(&cur_trans->writer_wait);
65 		init_waitqueue_head(&cur_trans->commit_wait);
66 		cur_trans->in_commit = 0;
67 		cur_trans->blocked = 0;
68 		cur_trans->use_count = 1;
69 		cur_trans->commit_done = 0;
70 		cur_trans->start_time = get_seconds();
71 
72 		cur_trans->delayed_refs.root.rb_node = NULL;
73 		cur_trans->delayed_refs.num_entries = 0;
74 		cur_trans->delayed_refs.num_heads_ready = 0;
75 		cur_trans->delayed_refs.num_heads = 0;
76 		cur_trans->delayed_refs.flushing = 0;
77 		cur_trans->delayed_refs.run_delayed_start = 0;
78 		spin_lock_init(&cur_trans->delayed_refs.lock);
79 
80 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 		extent_io_tree_init(&cur_trans->dirty_pages,
83 				     root->fs_info->btree_inode->i_mapping,
84 				     GFP_NOFS);
85 		spin_lock(&root->fs_info->new_trans_lock);
86 		root->fs_info->running_transaction = cur_trans;
87 		spin_unlock(&root->fs_info->new_trans_lock);
88 	} else {
89 		cur_trans->num_writers++;
90 		cur_trans->num_joined++;
91 	}
92 
93 	return 0;
94 }
95 
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 					 struct btrfs_root *root)
104 {
105 	if (root->ref_cows && root->last_trans < trans->transid) {
106 		WARN_ON(root == root->fs_info->extent_root);
107 		WARN_ON(root->commit_root != root->node);
108 
109 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 			   (unsigned long)root->root_key.objectid,
111 			   BTRFS_ROOT_TRANS_TAG);
112 		root->last_trans = trans->transid;
113 		btrfs_init_reloc_root(trans, root);
114 	}
115 	return 0;
116 }
117 
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 			       struct btrfs_root *root)
120 {
121 	if (!root->ref_cows)
122 		return 0;
123 
124 	mutex_lock(&root->fs_info->trans_mutex);
125 	if (root->last_trans == trans->transid) {
126 		mutex_unlock(&root->fs_info->trans_mutex);
127 		return 0;
128 	}
129 
130 	record_root_in_trans(trans, root);
131 	mutex_unlock(&root->fs_info->trans_mutex);
132 	return 0;
133 }
134 
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 	struct btrfs_transaction *cur_trans;
142 
143 	cur_trans = root->fs_info->running_transaction;
144 	if (cur_trans && cur_trans->blocked) {
145 		DEFINE_WAIT(wait);
146 		cur_trans->use_count++;
147 		while (1) {
148 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 					TASK_UNINTERRUPTIBLE);
150 			if (cur_trans->blocked) {
151 				mutex_unlock(&root->fs_info->trans_mutex);
152 				schedule();
153 				mutex_lock(&root->fs_info->trans_mutex);
154 				finish_wait(&root->fs_info->transaction_wait,
155 					    &wait);
156 			} else {
157 				finish_wait(&root->fs_info->transaction_wait,
158 					    &wait);
159 				break;
160 			}
161 		}
162 		put_transaction(cur_trans);
163 	}
164 }
165 
166 enum btrfs_trans_type {
167 	TRANS_START,
168 	TRANS_JOIN,
169 	TRANS_USERSPACE,
170 };
171 
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173 					     int num_blocks, int type)
174 {
175 	struct btrfs_trans_handle *h =
176 		kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177 	int ret;
178 
179 	mutex_lock(&root->fs_info->trans_mutex);
180 	if (!root->fs_info->log_root_recovering &&
181 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182 	     type == TRANS_USERSPACE))
183 		wait_current_trans(root);
184 	ret = join_transaction(root);
185 	BUG_ON(ret);
186 
187 	h->transid = root->fs_info->running_transaction->transid;
188 	h->transaction = root->fs_info->running_transaction;
189 	h->blocks_reserved = num_blocks;
190 	h->blocks_used = 0;
191 	h->block_group = 0;
192 	h->alloc_exclude_nr = 0;
193 	h->alloc_exclude_start = 0;
194 	h->delayed_ref_updates = 0;
195 
196 	if (!current->journal_info && type != TRANS_USERSPACE)
197 		current->journal_info = h;
198 
199 	root->fs_info->running_transaction->use_count++;
200 	record_root_in_trans(h, root);
201 	mutex_unlock(&root->fs_info->trans_mutex);
202 	return h;
203 }
204 
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206 						   int num_blocks)
207 {
208 	return start_transaction(root, num_blocks, TRANS_START);
209 }
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211 						   int num_blocks)
212 {
213 	return start_transaction(root, num_blocks, TRANS_JOIN);
214 }
215 
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217 							 int num_blocks)
218 {
219 	return start_transaction(r, num_blocks, TRANS_USERSPACE);
220 }
221 
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224 				    struct btrfs_transaction *commit)
225 {
226 	DEFINE_WAIT(wait);
227 	mutex_lock(&root->fs_info->trans_mutex);
228 	while (!commit->commit_done) {
229 		prepare_to_wait(&commit->commit_wait, &wait,
230 				TASK_UNINTERRUPTIBLE);
231 		if (commit->commit_done)
232 			break;
233 		mutex_unlock(&root->fs_info->trans_mutex);
234 		schedule();
235 		mutex_lock(&root->fs_info->trans_mutex);
236 	}
237 	mutex_unlock(&root->fs_info->trans_mutex);
238 	finish_wait(&commit->commit_wait, &wait);
239 	return 0;
240 }
241 
242 #if 0
243 /*
244  * rate limit against the drop_snapshot code.  This helps to slow down new
245  * operations if the drop_snapshot code isn't able to keep up.
246  */
247 static void throttle_on_drops(struct btrfs_root *root)
248 {
249 	struct btrfs_fs_info *info = root->fs_info;
250 	int harder_count = 0;
251 
252 harder:
253 	if (atomic_read(&info->throttles)) {
254 		DEFINE_WAIT(wait);
255 		int thr;
256 		thr = atomic_read(&info->throttle_gen);
257 
258 		do {
259 			prepare_to_wait(&info->transaction_throttle,
260 					&wait, TASK_UNINTERRUPTIBLE);
261 			if (!atomic_read(&info->throttles)) {
262 				finish_wait(&info->transaction_throttle, &wait);
263 				break;
264 			}
265 			schedule();
266 			finish_wait(&info->transaction_throttle, &wait);
267 		} while (thr == atomic_read(&info->throttle_gen));
268 		harder_count++;
269 
270 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271 		    harder_count < 2)
272 			goto harder;
273 
274 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275 		    harder_count < 10)
276 			goto harder;
277 
278 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279 		    harder_count < 20)
280 			goto harder;
281 	}
282 }
283 #endif
284 
285 void btrfs_throttle(struct btrfs_root *root)
286 {
287 	mutex_lock(&root->fs_info->trans_mutex);
288 	if (!root->fs_info->open_ioctl_trans)
289 		wait_current_trans(root);
290 	mutex_unlock(&root->fs_info->trans_mutex);
291 }
292 
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294 			  struct btrfs_root *root, int throttle)
295 {
296 	struct btrfs_transaction *cur_trans;
297 	struct btrfs_fs_info *info = root->fs_info;
298 	int count = 0;
299 
300 	while (count < 4) {
301 		unsigned long cur = trans->delayed_ref_updates;
302 		trans->delayed_ref_updates = 0;
303 		if (cur &&
304 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
305 			trans->delayed_ref_updates = 0;
306 
307 			/*
308 			 * do a full flush if the transaction is trying
309 			 * to close
310 			 */
311 			if (trans->transaction->delayed_refs.flushing)
312 				cur = 0;
313 			btrfs_run_delayed_refs(trans, root, cur);
314 		} else {
315 			break;
316 		}
317 		count++;
318 	}
319 
320 	mutex_lock(&info->trans_mutex);
321 	cur_trans = info->running_transaction;
322 	WARN_ON(cur_trans != trans->transaction);
323 	WARN_ON(cur_trans->num_writers < 1);
324 	cur_trans->num_writers--;
325 
326 	if (waitqueue_active(&cur_trans->writer_wait))
327 		wake_up(&cur_trans->writer_wait);
328 	put_transaction(cur_trans);
329 	mutex_unlock(&info->trans_mutex);
330 
331 	if (current->journal_info == trans)
332 		current->journal_info = NULL;
333 	memset(trans, 0, sizeof(*trans));
334 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
335 
336 	return 0;
337 }
338 
339 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
340 			  struct btrfs_root *root)
341 {
342 	return __btrfs_end_transaction(trans, root, 0);
343 }
344 
345 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
346 				   struct btrfs_root *root)
347 {
348 	return __btrfs_end_transaction(trans, root, 1);
349 }
350 
351 /*
352  * when btree blocks are allocated, they have some corresponding bits set for
353  * them in one of two extent_io trees.  This is used to make sure all of
354  * those extents are sent to disk but does not wait on them
355  */
356 int btrfs_write_marked_extents(struct btrfs_root *root,
357 			       struct extent_io_tree *dirty_pages)
358 {
359 	int ret;
360 	int err = 0;
361 	int werr = 0;
362 	struct page *page;
363 	struct inode *btree_inode = root->fs_info->btree_inode;
364 	u64 start = 0;
365 	u64 end;
366 	unsigned long index;
367 
368 	while (1) {
369 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
370 					    EXTENT_DIRTY);
371 		if (ret)
372 			break;
373 		while (start <= end) {
374 			cond_resched();
375 
376 			index = start >> PAGE_CACHE_SHIFT;
377 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
378 			page = find_get_page(btree_inode->i_mapping, index);
379 			if (!page)
380 				continue;
381 
382 			btree_lock_page_hook(page);
383 			if (!page->mapping) {
384 				unlock_page(page);
385 				page_cache_release(page);
386 				continue;
387 			}
388 
389 			if (PageWriteback(page)) {
390 				if (PageDirty(page))
391 					wait_on_page_writeback(page);
392 				else {
393 					unlock_page(page);
394 					page_cache_release(page);
395 					continue;
396 				}
397 			}
398 			err = write_one_page(page, 0);
399 			if (err)
400 				werr = err;
401 			page_cache_release(page);
402 		}
403 	}
404 	if (err)
405 		werr = err;
406 	return werr;
407 }
408 
409 /*
410  * when btree blocks are allocated, they have some corresponding bits set for
411  * them in one of two extent_io trees.  This is used to make sure all of
412  * those extents are on disk for transaction or log commit.  We wait
413  * on all the pages and clear them from the dirty pages state tree
414  */
415 int btrfs_wait_marked_extents(struct btrfs_root *root,
416 			      struct extent_io_tree *dirty_pages)
417 {
418 	int ret;
419 	int err = 0;
420 	int werr = 0;
421 	struct page *page;
422 	struct inode *btree_inode = root->fs_info->btree_inode;
423 	u64 start = 0;
424 	u64 end;
425 	unsigned long index;
426 
427 	while (1) {
428 		ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
429 					    EXTENT_DIRTY);
430 		if (ret)
431 			break;
432 
433 		clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
434 		while (start <= end) {
435 			index = start >> PAGE_CACHE_SHIFT;
436 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
437 			page = find_get_page(btree_inode->i_mapping, index);
438 			if (!page)
439 				continue;
440 			if (PageDirty(page)) {
441 				btree_lock_page_hook(page);
442 				wait_on_page_writeback(page);
443 				err = write_one_page(page, 0);
444 				if (err)
445 					werr = err;
446 			}
447 			wait_on_page_writeback(page);
448 			page_cache_release(page);
449 			cond_resched();
450 		}
451 	}
452 	if (err)
453 		werr = err;
454 	return werr;
455 }
456 
457 /*
458  * when btree blocks are allocated, they have some corresponding bits set for
459  * them in one of two extent_io trees.  This is used to make sure all of
460  * those extents are on disk for transaction or log commit
461  */
462 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
463 					struct extent_io_tree *dirty_pages)
464 {
465 	int ret;
466 	int ret2;
467 
468 	ret = btrfs_write_marked_extents(root, dirty_pages);
469 	ret2 = btrfs_wait_marked_extents(root, dirty_pages);
470 	return ret || ret2;
471 }
472 
473 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
474 				     struct btrfs_root *root)
475 {
476 	if (!trans || !trans->transaction) {
477 		struct inode *btree_inode;
478 		btree_inode = root->fs_info->btree_inode;
479 		return filemap_write_and_wait(btree_inode->i_mapping);
480 	}
481 	return btrfs_write_and_wait_marked_extents(root,
482 					   &trans->transaction->dirty_pages);
483 }
484 
485 /*
486  * this is used to update the root pointer in the tree of tree roots.
487  *
488  * But, in the case of the extent allocation tree, updating the root
489  * pointer may allocate blocks which may change the root of the extent
490  * allocation tree.
491  *
492  * So, this loops and repeats and makes sure the cowonly root didn't
493  * change while the root pointer was being updated in the metadata.
494  */
495 static int update_cowonly_root(struct btrfs_trans_handle *trans,
496 			       struct btrfs_root *root)
497 {
498 	int ret;
499 	u64 old_root_bytenr;
500 	struct btrfs_root *tree_root = root->fs_info->tree_root;
501 
502 	btrfs_write_dirty_block_groups(trans, root);
503 
504 	while (1) {
505 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
506 		if (old_root_bytenr == root->node->start)
507 			break;
508 
509 		btrfs_set_root_node(&root->root_item, root->node);
510 		ret = btrfs_update_root(trans, tree_root,
511 					&root->root_key,
512 					&root->root_item);
513 		BUG_ON(ret);
514 
515 		ret = btrfs_write_dirty_block_groups(trans, root);
516 		BUG_ON(ret);
517 	}
518 
519 	if (root != root->fs_info->extent_root)
520 		switch_commit_root(root);
521 
522 	return 0;
523 }
524 
525 /*
526  * update all the cowonly tree roots on disk
527  */
528 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
529 					 struct btrfs_root *root)
530 {
531 	struct btrfs_fs_info *fs_info = root->fs_info;
532 	struct list_head *next;
533 	struct extent_buffer *eb;
534 	int ret;
535 
536 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
537 	BUG_ON(ret);
538 
539 	eb = btrfs_lock_root_node(fs_info->tree_root);
540 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
541 	btrfs_tree_unlock(eb);
542 	free_extent_buffer(eb);
543 
544 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
545 	BUG_ON(ret);
546 
547 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
548 		next = fs_info->dirty_cowonly_roots.next;
549 		list_del_init(next);
550 		root = list_entry(next, struct btrfs_root, dirty_list);
551 
552 		update_cowonly_root(trans, root);
553 	}
554 
555 	down_write(&fs_info->extent_commit_sem);
556 	switch_commit_root(fs_info->extent_root);
557 	up_write(&fs_info->extent_commit_sem);
558 
559 	return 0;
560 }
561 
562 /*
563  * dead roots are old snapshots that need to be deleted.  This allocates
564  * a dirty root struct and adds it into the list of dead roots that need to
565  * be deleted
566  */
567 int btrfs_add_dead_root(struct btrfs_root *root)
568 {
569 	mutex_lock(&root->fs_info->trans_mutex);
570 	list_add(&root->root_list, &root->fs_info->dead_roots);
571 	mutex_unlock(&root->fs_info->trans_mutex);
572 	return 0;
573 }
574 
575 /*
576  * update all the cowonly tree roots on disk
577  */
578 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
579 				    struct btrfs_root *root)
580 {
581 	struct btrfs_root *gang[8];
582 	struct btrfs_fs_info *fs_info = root->fs_info;
583 	int i;
584 	int ret;
585 	int err = 0;
586 
587 	while (1) {
588 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
589 						 (void **)gang, 0,
590 						 ARRAY_SIZE(gang),
591 						 BTRFS_ROOT_TRANS_TAG);
592 		if (ret == 0)
593 			break;
594 		for (i = 0; i < ret; i++) {
595 			root = gang[i];
596 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
597 					(unsigned long)root->root_key.objectid,
598 					BTRFS_ROOT_TRANS_TAG);
599 
600 			btrfs_free_log(trans, root);
601 			btrfs_update_reloc_root(trans, root);
602 
603 			if (root->commit_root != root->node) {
604 				switch_commit_root(root);
605 				btrfs_set_root_node(&root->root_item,
606 						    root->node);
607 			}
608 
609 			err = btrfs_update_root(trans, fs_info->tree_root,
610 						&root->root_key,
611 						&root->root_item);
612 			if (err)
613 				break;
614 		}
615 	}
616 	return err;
617 }
618 
619 /*
620  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
621  * otherwise every leaf in the btree is read and defragged.
622  */
623 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
624 {
625 	struct btrfs_fs_info *info = root->fs_info;
626 	int ret;
627 	struct btrfs_trans_handle *trans;
628 	unsigned long nr;
629 
630 	smp_mb();
631 	if (root->defrag_running)
632 		return 0;
633 	trans = btrfs_start_transaction(root, 1);
634 	while (1) {
635 		root->defrag_running = 1;
636 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
637 		nr = trans->blocks_used;
638 		btrfs_end_transaction(trans, root);
639 		btrfs_btree_balance_dirty(info->tree_root, nr);
640 		cond_resched();
641 
642 		trans = btrfs_start_transaction(root, 1);
643 		if (root->fs_info->closing || ret != -EAGAIN)
644 			break;
645 	}
646 	root->defrag_running = 0;
647 	smp_mb();
648 	btrfs_end_transaction(trans, root);
649 	return 0;
650 }
651 
652 #if 0
653 /*
654  * when dropping snapshots, we generate a ton of delayed refs, and it makes
655  * sense not to join the transaction while it is trying to flush the current
656  * queue of delayed refs out.
657  *
658  * This is used by the drop snapshot code only
659  */
660 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
661 {
662 	DEFINE_WAIT(wait);
663 
664 	mutex_lock(&info->trans_mutex);
665 	while (info->running_transaction &&
666 	       info->running_transaction->delayed_refs.flushing) {
667 		prepare_to_wait(&info->transaction_wait, &wait,
668 				TASK_UNINTERRUPTIBLE);
669 		mutex_unlock(&info->trans_mutex);
670 
671 		schedule();
672 
673 		mutex_lock(&info->trans_mutex);
674 		finish_wait(&info->transaction_wait, &wait);
675 	}
676 	mutex_unlock(&info->trans_mutex);
677 	return 0;
678 }
679 
680 /*
681  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
682  * all of them
683  */
684 int btrfs_drop_dead_root(struct btrfs_root *root)
685 {
686 	struct btrfs_trans_handle *trans;
687 	struct btrfs_root *tree_root = root->fs_info->tree_root;
688 	unsigned long nr;
689 	int ret;
690 
691 	while (1) {
692 		/*
693 		 * we don't want to jump in and create a bunch of
694 		 * delayed refs if the transaction is starting to close
695 		 */
696 		wait_transaction_pre_flush(tree_root->fs_info);
697 		trans = btrfs_start_transaction(tree_root, 1);
698 
699 		/*
700 		 * we've joined a transaction, make sure it isn't
701 		 * closing right now
702 		 */
703 		if (trans->transaction->delayed_refs.flushing) {
704 			btrfs_end_transaction(trans, tree_root);
705 			continue;
706 		}
707 
708 		ret = btrfs_drop_snapshot(trans, root);
709 		if (ret != -EAGAIN)
710 			break;
711 
712 		ret = btrfs_update_root(trans, tree_root,
713 					&root->root_key,
714 					&root->root_item);
715 		if (ret)
716 			break;
717 
718 		nr = trans->blocks_used;
719 		ret = btrfs_end_transaction(trans, tree_root);
720 		BUG_ON(ret);
721 
722 		btrfs_btree_balance_dirty(tree_root, nr);
723 		cond_resched();
724 	}
725 	BUG_ON(ret);
726 
727 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
728 	BUG_ON(ret);
729 
730 	nr = trans->blocks_used;
731 	ret = btrfs_end_transaction(trans, tree_root);
732 	BUG_ON(ret);
733 
734 	free_extent_buffer(root->node);
735 	free_extent_buffer(root->commit_root);
736 	kfree(root);
737 
738 	btrfs_btree_balance_dirty(tree_root, nr);
739 	return ret;
740 }
741 #endif
742 
743 /*
744  * new snapshots need to be created at a very specific time in the
745  * transaction commit.  This does the actual creation
746  */
747 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
748 				   struct btrfs_fs_info *fs_info,
749 				   struct btrfs_pending_snapshot *pending)
750 {
751 	struct btrfs_key key;
752 	struct btrfs_root_item *new_root_item;
753 	struct btrfs_root *tree_root = fs_info->tree_root;
754 	struct btrfs_root *root = pending->root;
755 	struct extent_buffer *tmp;
756 	struct extent_buffer *old;
757 	int ret;
758 	u64 objectid;
759 
760 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
761 	if (!new_root_item) {
762 		ret = -ENOMEM;
763 		goto fail;
764 	}
765 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
766 	if (ret)
767 		goto fail;
768 
769 	record_root_in_trans(trans, root);
770 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
771 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
772 
773 	key.objectid = objectid;
774 	/* record when the snapshot was created in key.offset */
775 	key.offset = trans->transid;
776 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
777 
778 	old = btrfs_lock_root_node(root);
779 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
780 	btrfs_set_lock_blocking(old);
781 
782 	btrfs_copy_root(trans, root, old, &tmp, objectid);
783 	btrfs_tree_unlock(old);
784 	free_extent_buffer(old);
785 
786 	btrfs_set_root_node(new_root_item, tmp);
787 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
788 				new_root_item);
789 	btrfs_tree_unlock(tmp);
790 	free_extent_buffer(tmp);
791 	if (ret)
792 		goto fail;
793 
794 	key.offset = (u64)-1;
795 	memcpy(&pending->root_key, &key, sizeof(key));
796 fail:
797 	kfree(new_root_item);
798 	btrfs_unreserve_metadata_space(root, 6);
799 	return ret;
800 }
801 
802 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
803 				   struct btrfs_pending_snapshot *pending)
804 {
805 	int ret;
806 	int namelen;
807 	u64 index = 0;
808 	struct btrfs_trans_handle *trans;
809 	struct inode *parent_inode;
810 	struct inode *inode;
811 	struct btrfs_root *parent_root;
812 
813 	parent_inode = pending->dentry->d_parent->d_inode;
814 	parent_root = BTRFS_I(parent_inode)->root;
815 	trans = btrfs_join_transaction(parent_root, 1);
816 
817 	/*
818 	 * insert the directory item
819 	 */
820 	namelen = strlen(pending->name);
821 	ret = btrfs_set_inode_index(parent_inode, &index);
822 	ret = btrfs_insert_dir_item(trans, parent_root,
823 			    pending->name, namelen,
824 			    parent_inode->i_ino,
825 			    &pending->root_key, BTRFS_FT_DIR, index);
826 
827 	if (ret)
828 		goto fail;
829 
830 	btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
831 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
832 	BUG_ON(ret);
833 
834 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
835 				 pending->root_key.objectid,
836 				 parent_root->root_key.objectid,
837 				 parent_inode->i_ino, index, pending->name,
838 				 namelen);
839 
840 	BUG_ON(ret);
841 
842 	inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
843 	d_instantiate(pending->dentry, inode);
844 fail:
845 	btrfs_end_transaction(trans, fs_info->fs_root);
846 	return ret;
847 }
848 
849 /*
850  * create all the snapshots we've scheduled for creation
851  */
852 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
853 					     struct btrfs_fs_info *fs_info)
854 {
855 	struct btrfs_pending_snapshot *pending;
856 	struct list_head *head = &trans->transaction->pending_snapshots;
857 	int ret;
858 
859 	list_for_each_entry(pending, head, list) {
860 		ret = create_pending_snapshot(trans, fs_info, pending);
861 		BUG_ON(ret);
862 	}
863 	return 0;
864 }
865 
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867 					     struct btrfs_fs_info *fs_info)
868 {
869 	struct btrfs_pending_snapshot *pending;
870 	struct list_head *head = &trans->transaction->pending_snapshots;
871 	int ret;
872 
873 	while (!list_empty(head)) {
874 		pending = list_entry(head->next,
875 				     struct btrfs_pending_snapshot, list);
876 		ret = finish_pending_snapshot(fs_info, pending);
877 		BUG_ON(ret);
878 		list_del(&pending->list);
879 		kfree(pending->name);
880 		kfree(pending);
881 	}
882 	return 0;
883 }
884 
885 static void update_super_roots(struct btrfs_root *root)
886 {
887 	struct btrfs_root_item *root_item;
888 	struct btrfs_super_block *super;
889 
890 	super = &root->fs_info->super_copy;
891 
892 	root_item = &root->fs_info->chunk_root->root_item;
893 	super->chunk_root = root_item->bytenr;
894 	super->chunk_root_generation = root_item->generation;
895 	super->chunk_root_level = root_item->level;
896 
897 	root_item = &root->fs_info->tree_root->root_item;
898 	super->root = root_item->bytenr;
899 	super->generation = root_item->generation;
900 	super->root_level = root_item->level;
901 }
902 
903 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
904 {
905 	int ret = 0;
906 	spin_lock(&info->new_trans_lock);
907 	if (info->running_transaction)
908 		ret = info->running_transaction->in_commit;
909 	spin_unlock(&info->new_trans_lock);
910 	return ret;
911 }
912 
913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
914 			     struct btrfs_root *root)
915 {
916 	unsigned long joined = 0;
917 	unsigned long timeout = 1;
918 	struct btrfs_transaction *cur_trans;
919 	struct btrfs_transaction *prev_trans = NULL;
920 	DEFINE_WAIT(wait);
921 	int ret;
922 	int should_grow = 0;
923 	unsigned long now = get_seconds();
924 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
925 
926 	btrfs_run_ordered_operations(root, 0);
927 
928 	/* make a pass through all the delayed refs we have so far
929 	 * any runnings procs may add more while we are here
930 	 */
931 	ret = btrfs_run_delayed_refs(trans, root, 0);
932 	BUG_ON(ret);
933 
934 	cur_trans = trans->transaction;
935 	/*
936 	 * set the flushing flag so procs in this transaction have to
937 	 * start sending their work down.
938 	 */
939 	cur_trans->delayed_refs.flushing = 1;
940 
941 	ret = btrfs_run_delayed_refs(trans, root, 0);
942 	BUG_ON(ret);
943 
944 	mutex_lock(&root->fs_info->trans_mutex);
945 	if (cur_trans->in_commit) {
946 		cur_trans->use_count++;
947 		mutex_unlock(&root->fs_info->trans_mutex);
948 		btrfs_end_transaction(trans, root);
949 
950 		ret = wait_for_commit(root, cur_trans);
951 		BUG_ON(ret);
952 
953 		mutex_lock(&root->fs_info->trans_mutex);
954 		put_transaction(cur_trans);
955 		mutex_unlock(&root->fs_info->trans_mutex);
956 
957 		return 0;
958 	}
959 
960 	trans->transaction->in_commit = 1;
961 	trans->transaction->blocked = 1;
962 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
963 		prev_trans = list_entry(cur_trans->list.prev,
964 					struct btrfs_transaction, list);
965 		if (!prev_trans->commit_done) {
966 			prev_trans->use_count++;
967 			mutex_unlock(&root->fs_info->trans_mutex);
968 
969 			wait_for_commit(root, prev_trans);
970 
971 			mutex_lock(&root->fs_info->trans_mutex);
972 			put_transaction(prev_trans);
973 		}
974 	}
975 
976 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
977 		should_grow = 1;
978 
979 	do {
980 		int snap_pending = 0;
981 		joined = cur_trans->num_joined;
982 		if (!list_empty(&trans->transaction->pending_snapshots))
983 			snap_pending = 1;
984 
985 		WARN_ON(cur_trans != trans->transaction);
986 		prepare_to_wait(&cur_trans->writer_wait, &wait,
987 				TASK_UNINTERRUPTIBLE);
988 
989 		if (cur_trans->num_writers > 1)
990 			timeout = MAX_SCHEDULE_TIMEOUT;
991 		else if (should_grow)
992 			timeout = 1;
993 
994 		mutex_unlock(&root->fs_info->trans_mutex);
995 
996 		if (flush_on_commit) {
997 			btrfs_start_delalloc_inodes(root);
998 			ret = btrfs_wait_ordered_extents(root, 0);
999 			BUG_ON(ret);
1000 		} else if (snap_pending) {
1001 			ret = btrfs_wait_ordered_extents(root, 1);
1002 			BUG_ON(ret);
1003 		}
1004 
1005 		/*
1006 		 * rename don't use btrfs_join_transaction, so, once we
1007 		 * set the transaction to blocked above, we aren't going
1008 		 * to get any new ordered operations.  We can safely run
1009 		 * it here and no for sure that nothing new will be added
1010 		 * to the list
1011 		 */
1012 		btrfs_run_ordered_operations(root, 1);
1013 
1014 		smp_mb();
1015 		if (cur_trans->num_writers > 1 || should_grow)
1016 			schedule_timeout(timeout);
1017 
1018 		mutex_lock(&root->fs_info->trans_mutex);
1019 		finish_wait(&cur_trans->writer_wait, &wait);
1020 	} while (cur_trans->num_writers > 1 ||
1021 		 (should_grow && cur_trans->num_joined != joined));
1022 
1023 	ret = create_pending_snapshots(trans, root->fs_info);
1024 	BUG_ON(ret);
1025 
1026 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1027 	BUG_ON(ret);
1028 
1029 	WARN_ON(cur_trans != trans->transaction);
1030 
1031 	/* btrfs_commit_tree_roots is responsible for getting the
1032 	 * various roots consistent with each other.  Every pointer
1033 	 * in the tree of tree roots has to point to the most up to date
1034 	 * root for every subvolume and other tree.  So, we have to keep
1035 	 * the tree logging code from jumping in and changing any
1036 	 * of the trees.
1037 	 *
1038 	 * At this point in the commit, there can't be any tree-log
1039 	 * writers, but a little lower down we drop the trans mutex
1040 	 * and let new people in.  By holding the tree_log_mutex
1041 	 * from now until after the super is written, we avoid races
1042 	 * with the tree-log code.
1043 	 */
1044 	mutex_lock(&root->fs_info->tree_log_mutex);
1045 
1046 	ret = commit_fs_roots(trans, root);
1047 	BUG_ON(ret);
1048 
1049 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1050 	 * safe to free the root of tree log roots
1051 	 */
1052 	btrfs_free_log_root_tree(trans, root->fs_info);
1053 
1054 	ret = commit_cowonly_roots(trans, root);
1055 	BUG_ON(ret);
1056 
1057 	btrfs_prepare_extent_commit(trans, root);
1058 
1059 	cur_trans = root->fs_info->running_transaction;
1060 	spin_lock(&root->fs_info->new_trans_lock);
1061 	root->fs_info->running_transaction = NULL;
1062 	spin_unlock(&root->fs_info->new_trans_lock);
1063 
1064 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1065 			    root->fs_info->tree_root->node);
1066 	switch_commit_root(root->fs_info->tree_root);
1067 
1068 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1069 			    root->fs_info->chunk_root->node);
1070 	switch_commit_root(root->fs_info->chunk_root);
1071 
1072 	update_super_roots(root);
1073 
1074 	if (!root->fs_info->log_root_recovering) {
1075 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1076 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1077 	}
1078 
1079 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1080 	       sizeof(root->fs_info->super_copy));
1081 
1082 	trans->transaction->blocked = 0;
1083 
1084 	wake_up(&root->fs_info->transaction_wait);
1085 
1086 	mutex_unlock(&root->fs_info->trans_mutex);
1087 	ret = btrfs_write_and_wait_transaction(trans, root);
1088 	BUG_ON(ret);
1089 	write_ctree_super(trans, root, 0);
1090 
1091 	/*
1092 	 * the super is written, we can safely allow the tree-loggers
1093 	 * to go about their business
1094 	 */
1095 	mutex_unlock(&root->fs_info->tree_log_mutex);
1096 
1097 	btrfs_finish_extent_commit(trans, root);
1098 
1099 	/* do the directory inserts of any pending snapshot creations */
1100 	finish_pending_snapshots(trans, root->fs_info);
1101 
1102 	mutex_lock(&root->fs_info->trans_mutex);
1103 
1104 	cur_trans->commit_done = 1;
1105 
1106 	root->fs_info->last_trans_committed = cur_trans->transid;
1107 
1108 	wake_up(&cur_trans->commit_wait);
1109 
1110 	put_transaction(cur_trans);
1111 	put_transaction(cur_trans);
1112 
1113 	mutex_unlock(&root->fs_info->trans_mutex);
1114 
1115 	if (current->journal_info == trans)
1116 		current->journal_info = NULL;
1117 
1118 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1119 	return ret;
1120 }
1121 
1122 /*
1123  * interface function to delete all the snapshots we have scheduled for deletion
1124  */
1125 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1126 {
1127 	LIST_HEAD(list);
1128 	struct btrfs_fs_info *fs_info = root->fs_info;
1129 
1130 	mutex_lock(&fs_info->trans_mutex);
1131 	list_splice_init(&fs_info->dead_roots, &list);
1132 	mutex_unlock(&fs_info->trans_mutex);
1133 
1134 	while (!list_empty(&list)) {
1135 		root = list_entry(list.next, struct btrfs_root, root_list);
1136 		list_del(&root->root_list);
1137 
1138 		if (btrfs_header_backref_rev(root->node) <
1139 		    BTRFS_MIXED_BACKREF_REV)
1140 			btrfs_drop_snapshot(root, 0);
1141 		else
1142 			btrfs_drop_snapshot(root, 1);
1143 	}
1144 	return 0;
1145 }
1146