1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "fs.h" 27 #include "accessors.h" 28 #include "extent-tree.h" 29 #include "root-tree.h" 30 #include "dir-item.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 36 static struct kmem_cache *btrfs_trans_handle_cachep; 37 38 /* 39 * Transaction states and transitions 40 * 41 * No running transaction (fs tree blocks are not modified) 42 * | 43 * | To next stage: 44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 45 * V 46 * Transaction N [[TRANS_STATE_RUNNING]] 47 * | 48 * | New trans handles can be attached to transaction N by calling all 49 * | start_transaction() variants. 50 * | 51 * | To next stage: 52 * | Call btrfs_commit_transaction() on any trans handle attached to 53 * | transaction N 54 * V 55 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 56 * | 57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 58 * | the race and the rest will wait for the winner to commit the transaction. 59 * | 60 * | The winner will wait for previous running transaction to completely finish 61 * | if there is one. 62 * | 63 * Transaction N [[TRANS_STATE_COMMIT_START]] 64 * | 65 * | Then one of the following happens: 66 * | - Wait for all other trans handle holders to release. 67 * | The btrfs_commit_transaction() caller will do the commit work. 68 * | - Wait for current transaction to be committed by others. 69 * | Other btrfs_commit_transaction() caller will do the commit work. 70 * | 71 * | At this stage, only btrfs_join_transaction*() variants can attach 72 * | to this running transaction. 73 * | All other variants will wait for current one to finish and attach to 74 * | transaction N+1. 75 * | 76 * | To next stage: 77 * | Caller is chosen to commit transaction N, and all other trans handle 78 * | haven been released. 79 * V 80 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 81 * | 82 * | The heavy lifting transaction work is started. 83 * | From running delayed refs (modifying extent tree) to creating pending 84 * | snapshots, running qgroups. 85 * | In short, modify supporting trees to reflect modifications of subvolume 86 * | trees. 87 * | 88 * | At this stage, all start_transaction() calls will wait for this 89 * | transaction to finish and attach to transaction N+1. 90 * | 91 * | To next stage: 92 * | Until all supporting trees are updated. 93 * V 94 * Transaction N [[TRANS_STATE_UNBLOCKED]] 95 * | Transaction N+1 96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 97 * | need to write them back to disk and update | 98 * | super blocks. | 99 * | | 100 * | At this stage, new transaction is allowed to | 101 * | start. | 102 * | All new start_transaction() calls will be | 103 * | attached to transid N+1. | 104 * | | 105 * | To next stage: | 106 * | Until all tree blocks are super blocks are | 107 * | written to block devices | 108 * V | 109 * Transaction N [[TRANS_STATE_COMPLETED]] V 110 * All tree blocks and super blocks are written. Transaction N+1 111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 112 * data structures will be cleaned up. | Life goes on 113 */ 114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 115 [TRANS_STATE_RUNNING] = 0U, 116 [TRANS_STATE_COMMIT_PREP] = 0U, 117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 119 __TRANS_ATTACH | 120 __TRANS_JOIN | 121 __TRANS_JOIN_NOSTART), 122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 123 __TRANS_ATTACH | 124 __TRANS_JOIN | 125 __TRANS_JOIN_NOLOCK | 126 __TRANS_JOIN_NOSTART), 127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 128 __TRANS_ATTACH | 129 __TRANS_JOIN | 130 __TRANS_JOIN_NOLOCK | 131 __TRANS_JOIN_NOSTART), 132 [TRANS_STATE_COMPLETED] = (__TRANS_START | 133 __TRANS_ATTACH | 134 __TRANS_JOIN | 135 __TRANS_JOIN_NOLOCK | 136 __TRANS_JOIN_NOSTART), 137 }; 138 139 void btrfs_put_transaction(struct btrfs_transaction *transaction) 140 { 141 WARN_ON(refcount_read(&transaction->use_count) == 0); 142 if (refcount_dec_and_test(&transaction->use_count)) { 143 BUG_ON(!list_empty(&transaction->list)); 144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs)); 145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents)); 146 if (transaction->delayed_refs.pending_csums) 147 btrfs_err(transaction->fs_info, 148 "pending csums is %llu", 149 transaction->delayed_refs.pending_csums); 150 /* 151 * If any block groups are found in ->deleted_bgs then it's 152 * because the transaction was aborted and a commit did not 153 * happen (things failed before writing the new superblock 154 * and calling btrfs_finish_extent_commit()), so we can not 155 * discard the physical locations of the block groups. 156 */ 157 while (!list_empty(&transaction->deleted_bgs)) { 158 struct btrfs_block_group *cache; 159 160 cache = list_first_entry(&transaction->deleted_bgs, 161 struct btrfs_block_group, 162 bg_list); 163 /* 164 * Not strictly necessary to lock, as no other task will be using a 165 * block_group on the deleted_bgs list during a transaction abort. 166 */ 167 spin_lock(&transaction->fs_info->unused_bgs_lock); 168 list_del_init(&cache->bg_list); 169 spin_unlock(&transaction->fs_info->unused_bgs_lock); 170 btrfs_unfreeze_block_group(cache); 171 btrfs_put_block_group(cache); 172 } 173 WARN_ON(!list_empty(&transaction->dev_update_list)); 174 kfree(transaction); 175 } 176 } 177 178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 179 { 180 struct btrfs_transaction *cur_trans = trans->transaction; 181 struct btrfs_fs_info *fs_info = trans->fs_info; 182 struct btrfs_root *root, *tmp; 183 184 /* 185 * At this point no one can be using this transaction to modify any tree 186 * and no one can start another transaction to modify any tree either. 187 */ 188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 189 190 down_write(&fs_info->commit_root_sem); 191 192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 193 fs_info->last_reloc_trans = trans->transid; 194 195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 196 dirty_list) { 197 list_del_init(&root->dirty_list); 198 free_extent_buffer(root->commit_root); 199 root->commit_root = btrfs_root_node(root); 200 btrfs_extent_io_tree_release(&root->dirty_log_pages); 201 btrfs_qgroup_clean_swapped_blocks(root); 202 } 203 204 /* We can free old roots now. */ 205 spin_lock(&cur_trans->dropped_roots_lock); 206 while (!list_empty(&cur_trans->dropped_roots)) { 207 root = list_first_entry(&cur_trans->dropped_roots, 208 struct btrfs_root, root_list); 209 list_del_init(&root->root_list); 210 spin_unlock(&cur_trans->dropped_roots_lock); 211 btrfs_free_log(trans, root); 212 btrfs_drop_and_free_fs_root(fs_info, root); 213 spin_lock(&cur_trans->dropped_roots_lock); 214 } 215 spin_unlock(&cur_trans->dropped_roots_lock); 216 217 up_write(&fs_info->commit_root_sem); 218 } 219 220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 221 unsigned int type) 222 { 223 if (type & TRANS_EXTWRITERS) 224 atomic_inc(&trans->num_extwriters); 225 } 226 227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 228 unsigned int type) 229 { 230 if (type & TRANS_EXTWRITERS) 231 atomic_dec(&trans->num_extwriters); 232 } 233 234 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 235 unsigned int type) 236 { 237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 238 } 239 240 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 241 { 242 return atomic_read(&trans->num_extwriters); 243 } 244 245 /* 246 * To be called after doing the chunk btree updates right after allocating a new 247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 248 * chunk after all chunk btree updates and after finishing the second phase of 249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 250 * group had its chunk item insertion delayed to the second phase. 251 */ 252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 253 { 254 struct btrfs_fs_info *fs_info = trans->fs_info; 255 256 if (!trans->chunk_bytes_reserved) 257 return; 258 259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 260 trans->chunk_bytes_reserved, NULL); 261 trans->chunk_bytes_reserved = 0; 262 } 263 264 /* 265 * either allocate a new transaction or hop into the existing one 266 */ 267 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 268 unsigned int type) 269 { 270 struct btrfs_transaction *cur_trans; 271 272 spin_lock(&fs_info->trans_lock); 273 loop: 274 /* The file system has been taken offline. No new transactions. */ 275 if (BTRFS_FS_ERROR(fs_info)) { 276 spin_unlock(&fs_info->trans_lock); 277 return -EROFS; 278 } 279 280 cur_trans = fs_info->running_transaction; 281 if (cur_trans) { 282 if (TRANS_ABORTED(cur_trans)) { 283 const int abort_error = cur_trans->aborted; 284 285 spin_unlock(&fs_info->trans_lock); 286 return abort_error; 287 } 288 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 289 spin_unlock(&fs_info->trans_lock); 290 return -EBUSY; 291 } 292 refcount_inc(&cur_trans->use_count); 293 atomic_inc(&cur_trans->num_writers); 294 extwriter_counter_inc(cur_trans, type); 295 spin_unlock(&fs_info->trans_lock); 296 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 297 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 298 return 0; 299 } 300 spin_unlock(&fs_info->trans_lock); 301 302 /* 303 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 304 * current transaction, and commit it. If there is no transaction, just 305 * return ENOENT. 306 */ 307 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 308 return -ENOENT; 309 310 /* 311 * JOIN_NOLOCK only happens during the transaction commit, so 312 * it is impossible that ->running_transaction is NULL 313 */ 314 BUG_ON(type == TRANS_JOIN_NOLOCK); 315 316 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 317 if (!cur_trans) 318 return -ENOMEM; 319 320 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 321 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 322 323 spin_lock(&fs_info->trans_lock); 324 if (fs_info->running_transaction) { 325 /* 326 * someone started a transaction after we unlocked. Make sure 327 * to redo the checks above 328 */ 329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 331 kfree(cur_trans); 332 goto loop; 333 } else if (BTRFS_FS_ERROR(fs_info)) { 334 spin_unlock(&fs_info->trans_lock); 335 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 336 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 337 kfree(cur_trans); 338 return -EROFS; 339 } 340 341 cur_trans->fs_info = fs_info; 342 atomic_set(&cur_trans->pending_ordered, 0); 343 init_waitqueue_head(&cur_trans->pending_wait); 344 atomic_set(&cur_trans->num_writers, 1); 345 extwriter_counter_init(cur_trans, type); 346 init_waitqueue_head(&cur_trans->writer_wait); 347 init_waitqueue_head(&cur_trans->commit_wait); 348 cur_trans->state = TRANS_STATE_RUNNING; 349 /* 350 * One for this trans handle, one so it will live on until we 351 * commit the transaction. 352 */ 353 refcount_set(&cur_trans->use_count, 2); 354 cur_trans->flags = 0; 355 cur_trans->start_time = ktime_get_seconds(); 356 357 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 358 359 xa_init(&cur_trans->delayed_refs.head_refs); 360 xa_init(&cur_trans->delayed_refs.dirty_extents); 361 362 /* 363 * although the tree mod log is per file system and not per transaction, 364 * the log must never go across transaction boundaries. 365 */ 366 smp_mb(); 367 if (!list_empty(&fs_info->tree_mod_seq_list)) 368 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 369 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 370 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 371 atomic64_set(&fs_info->tree_mod_seq, 0); 372 373 spin_lock_init(&cur_trans->delayed_refs.lock); 374 375 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 376 INIT_LIST_HEAD(&cur_trans->dev_update_list); 377 INIT_LIST_HEAD(&cur_trans->switch_commits); 378 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 379 INIT_LIST_HEAD(&cur_trans->io_bgs); 380 INIT_LIST_HEAD(&cur_trans->dropped_roots); 381 mutex_init(&cur_trans->cache_write_mutex); 382 spin_lock_init(&cur_trans->dirty_bgs_lock); 383 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 384 spin_lock_init(&cur_trans->dropped_roots_lock); 385 list_add_tail(&cur_trans->list, &fs_info->trans_list); 386 btrfs_extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 387 IO_TREE_TRANS_DIRTY_PAGES); 388 btrfs_extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 389 IO_TREE_FS_PINNED_EXTENTS); 390 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 391 cur_trans->transid = fs_info->generation; 392 fs_info->running_transaction = cur_trans; 393 cur_trans->aborted = 0; 394 spin_unlock(&fs_info->trans_lock); 395 396 return 0; 397 } 398 399 /* 400 * This does all the record keeping required to make sure that a shareable root 401 * is properly recorded in a given transaction. This is required to make sure 402 * the old root from before we joined the transaction is deleted when the 403 * transaction commits. 404 */ 405 static int record_root_in_trans(struct btrfs_trans_handle *trans, 406 struct btrfs_root *root, 407 int force) 408 { 409 struct btrfs_fs_info *fs_info = root->fs_info; 410 int ret = 0; 411 412 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 413 btrfs_get_root_last_trans(root) < trans->transid) || force) { 414 WARN_ON(!force && root->commit_root != root->node); 415 416 /* 417 * see below for IN_TRANS_SETUP usage rules 418 * we have the reloc mutex held now, so there 419 * is only one writer in this function 420 */ 421 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 422 423 /* make sure readers find IN_TRANS_SETUP before 424 * they find our root->last_trans update 425 */ 426 smp_wmb(); 427 428 spin_lock(&fs_info->fs_roots_radix_lock); 429 if (btrfs_get_root_last_trans(root) == trans->transid && !force) { 430 spin_unlock(&fs_info->fs_roots_radix_lock); 431 return 0; 432 } 433 radix_tree_tag_set(&fs_info->fs_roots_radix, 434 (unsigned long)btrfs_root_id(root), 435 BTRFS_ROOT_TRANS_TAG); 436 spin_unlock(&fs_info->fs_roots_radix_lock); 437 btrfs_set_root_last_trans(root, trans->transid); 438 439 /* this is pretty tricky. We don't want to 440 * take the relocation lock in btrfs_record_root_in_trans 441 * unless we're really doing the first setup for this root in 442 * this transaction. 443 * 444 * Normally we'd use root->last_trans as a flag to decide 445 * if we want to take the expensive mutex. 446 * 447 * But, we have to set root->last_trans before we 448 * init the relocation root, otherwise, we trip over warnings 449 * in ctree.c. The solution used here is to flag ourselves 450 * with root IN_TRANS_SETUP. When this is 1, we're still 451 * fixing up the reloc trees and everyone must wait. 452 * 453 * When this is zero, they can trust root->last_trans and fly 454 * through btrfs_record_root_in_trans without having to take the 455 * lock. smp_wmb() makes sure that all the writes above are 456 * done before we pop in the zero below 457 */ 458 ret = btrfs_init_reloc_root(trans, root); 459 smp_mb__before_atomic(); 460 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 461 } 462 return ret; 463 } 464 465 466 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 467 struct btrfs_root *root) 468 { 469 struct btrfs_fs_info *fs_info = root->fs_info; 470 struct btrfs_transaction *cur_trans = trans->transaction; 471 472 /* Add ourselves to the transaction dropped list */ 473 spin_lock(&cur_trans->dropped_roots_lock); 474 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 475 spin_unlock(&cur_trans->dropped_roots_lock); 476 477 /* Make sure we don't try to update the root at commit time */ 478 spin_lock(&fs_info->fs_roots_radix_lock); 479 radix_tree_tag_clear(&fs_info->fs_roots_radix, 480 (unsigned long)btrfs_root_id(root), 481 BTRFS_ROOT_TRANS_TAG); 482 spin_unlock(&fs_info->fs_roots_radix_lock); 483 } 484 485 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 486 struct btrfs_root *root) 487 { 488 struct btrfs_fs_info *fs_info = root->fs_info; 489 int ret; 490 491 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 492 return 0; 493 494 /* 495 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 496 * and barriers 497 */ 498 smp_rmb(); 499 if (btrfs_get_root_last_trans(root) == trans->transid && 500 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 501 return 0; 502 503 mutex_lock(&fs_info->reloc_mutex); 504 ret = record_root_in_trans(trans, root, 0); 505 mutex_unlock(&fs_info->reloc_mutex); 506 507 return ret; 508 } 509 510 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 511 { 512 return (trans->state >= TRANS_STATE_COMMIT_START && 513 trans->state < TRANS_STATE_UNBLOCKED && 514 !TRANS_ABORTED(trans)); 515 } 516 517 /* wait for commit against the current transaction to become unblocked 518 * when this is done, it is safe to start a new transaction, but the current 519 * transaction might not be fully on disk. 520 */ 521 static void wait_current_trans(struct btrfs_fs_info *fs_info) 522 { 523 struct btrfs_transaction *cur_trans; 524 525 spin_lock(&fs_info->trans_lock); 526 cur_trans = fs_info->running_transaction; 527 if (cur_trans && is_transaction_blocked(cur_trans)) { 528 refcount_inc(&cur_trans->use_count); 529 spin_unlock(&fs_info->trans_lock); 530 531 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 532 wait_event(fs_info->transaction_wait, 533 cur_trans->state >= TRANS_STATE_UNBLOCKED || 534 TRANS_ABORTED(cur_trans)); 535 btrfs_put_transaction(cur_trans); 536 } else { 537 spin_unlock(&fs_info->trans_lock); 538 } 539 } 540 541 static bool may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 542 { 543 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 544 return false; 545 546 if (type == TRANS_START) 547 return true; 548 549 return false; 550 } 551 552 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 553 { 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 556 if (!fs_info->reloc_ctl || 557 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 558 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 559 root->reloc_root) 560 return false; 561 562 return true; 563 } 564 565 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 566 enum btrfs_reserve_flush_enum flush, 567 u64 num_bytes, 568 u64 *delayed_refs_bytes) 569 { 570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 571 u64 bytes = num_bytes + *delayed_refs_bytes; 572 int ret; 573 574 /* 575 * We want to reserve all the bytes we may need all at once, so we only 576 * do 1 enospc flushing cycle per transaction start. 577 */ 578 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 579 580 /* 581 * If we are an emergency flush, which can steal from the global block 582 * reserve, then attempt to not reserve space for the delayed refs, as 583 * we will consume space for them from the global block reserve. 584 */ 585 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 586 bytes -= *delayed_refs_bytes; 587 *delayed_refs_bytes = 0; 588 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 589 } 590 591 return ret; 592 } 593 594 static struct btrfs_trans_handle * 595 start_transaction(struct btrfs_root *root, unsigned int num_items, 596 unsigned int type, enum btrfs_reserve_flush_enum flush, 597 bool enforce_qgroups) 598 { 599 struct btrfs_fs_info *fs_info = root->fs_info; 600 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 601 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 602 struct btrfs_trans_handle *h; 603 struct btrfs_transaction *cur_trans; 604 u64 num_bytes = 0; 605 u64 qgroup_reserved = 0; 606 u64 delayed_refs_bytes = 0; 607 bool reloc_reserved = false; 608 bool do_chunk_alloc = false; 609 int ret; 610 611 if (BTRFS_FS_ERROR(fs_info)) 612 return ERR_PTR(-EROFS); 613 614 if (current->journal_info) { 615 WARN_ON(type & TRANS_EXTWRITERS); 616 h = current->journal_info; 617 refcount_inc(&h->use_count); 618 WARN_ON(refcount_read(&h->use_count) > 2); 619 h->orig_rsv = h->block_rsv; 620 h->block_rsv = NULL; 621 goto got_it; 622 } 623 624 /* 625 * Do the reservation before we join the transaction so we can do all 626 * the appropriate flushing if need be. 627 */ 628 if (num_items && root != fs_info->chunk_root) { 629 qgroup_reserved = num_items * fs_info->nodesize; 630 /* 631 * Use prealloc for now, as there might be a currently running 632 * transaction that could free this reserved space prematurely 633 * by committing. 634 */ 635 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 636 enforce_qgroups, false); 637 if (ret) 638 return ERR_PTR(ret); 639 640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 641 /* 642 * If we plan to insert/update/delete "num_items" from a btree, 643 * we will also generate delayed refs for extent buffers in the 644 * respective btree paths, so reserve space for the delayed refs 645 * that will be generated by the caller as it modifies btrees. 646 * Try to reserve them to avoid excessive use of the global 647 * block reserve. 648 */ 649 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 650 651 /* 652 * Do the reservation for the relocation root creation 653 */ 654 if (need_reserve_reloc_root(root)) { 655 num_bytes += fs_info->nodesize; 656 reloc_reserved = true; 657 } 658 659 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 660 &delayed_refs_bytes); 661 if (ret) 662 goto reserve_fail; 663 664 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 665 666 if (trans_rsv->space_info->force_alloc) 667 do_chunk_alloc = true; 668 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 669 !btrfs_block_rsv_full(delayed_refs_rsv)) { 670 /* 671 * Some people call with btrfs_start_transaction(root, 0) 672 * because they can be throttled, but have some other mechanism 673 * for reserving space. We still want these guys to refill the 674 * delayed block_rsv so just add 1 items worth of reservation 675 * here. 676 */ 677 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 678 if (ret) 679 goto reserve_fail; 680 } 681 again: 682 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 683 if (!h) { 684 ret = -ENOMEM; 685 goto alloc_fail; 686 } 687 688 /* 689 * If we are JOIN_NOLOCK we're already committing a transaction and 690 * waiting on this guy, so we don't need to do the sb_start_intwrite 691 * because we're already holding a ref. We need this because we could 692 * have raced in and did an fsync() on a file which can kick a commit 693 * and then we deadlock with somebody doing a freeze. 694 * 695 * If we are ATTACH, it means we just want to catch the current 696 * transaction and commit it, so we needn't do sb_start_intwrite(). 697 */ 698 if (type & __TRANS_FREEZABLE) 699 sb_start_intwrite(fs_info->sb); 700 701 if (may_wait_transaction(fs_info, type)) 702 wait_current_trans(fs_info); 703 704 do { 705 ret = join_transaction(fs_info, type); 706 if (ret == -EBUSY) { 707 wait_current_trans(fs_info); 708 if (unlikely(type == TRANS_ATTACH || 709 type == TRANS_JOIN_NOSTART)) 710 ret = -ENOENT; 711 } 712 } while (ret == -EBUSY); 713 714 if (ret < 0) 715 goto join_fail; 716 717 cur_trans = fs_info->running_transaction; 718 719 h->transid = cur_trans->transid; 720 h->transaction = cur_trans; 721 refcount_set(&h->use_count, 1); 722 h->fs_info = root->fs_info; 723 724 h->type = type; 725 INIT_LIST_HEAD(&h->new_bgs); 726 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 727 728 smp_mb(); 729 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 730 may_wait_transaction(fs_info, type)) { 731 current->journal_info = h; 732 btrfs_commit_transaction(h); 733 goto again; 734 } 735 736 if (num_bytes) { 737 trace_btrfs_space_reservation(fs_info, "transaction", 738 h->transid, num_bytes, 1); 739 h->block_rsv = trans_rsv; 740 h->bytes_reserved = num_bytes; 741 if (delayed_refs_bytes > 0) { 742 trace_btrfs_space_reservation(fs_info, 743 "local_delayed_refs_rsv", 744 h->transid, 745 delayed_refs_bytes, 1); 746 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 747 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 748 delayed_refs_bytes = 0; 749 } 750 h->reloc_reserved = reloc_reserved; 751 } 752 753 got_it: 754 if (!current->journal_info) 755 current->journal_info = h; 756 757 /* 758 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 759 * ALLOC_FORCE the first run through, and then we won't allocate for 760 * anybody else who races in later. We don't care about the return 761 * value here. 762 */ 763 if (do_chunk_alloc && num_bytes) { 764 struct btrfs_space_info *space_info = h->block_rsv->space_info; 765 u64 flags = space_info->flags; 766 767 btrfs_chunk_alloc(h, space_info, btrfs_get_alloc_profile(fs_info, flags), 768 CHUNK_ALLOC_NO_FORCE); 769 } 770 771 /* 772 * btrfs_record_root_in_trans() needs to alloc new extents, and may 773 * call btrfs_join_transaction() while we're also starting a 774 * transaction. 775 * 776 * Thus it need to be called after current->journal_info initialized, 777 * or we can deadlock. 778 */ 779 ret = btrfs_record_root_in_trans(h, root); 780 if (ret) { 781 /* 782 * The transaction handle is fully initialized and linked with 783 * other structures so it needs to be ended in case of errors, 784 * not just freed. 785 */ 786 btrfs_end_transaction(h); 787 goto reserve_fail; 788 } 789 /* 790 * Now that we have found a transaction to be a part of, convert the 791 * qgroup reservation from prealloc to pertrans. A different transaction 792 * can't race in and free our pertrans out from under us. 793 */ 794 if (qgroup_reserved) 795 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 796 797 return h; 798 799 join_fail: 800 if (type & __TRANS_FREEZABLE) 801 sb_end_intwrite(fs_info->sb); 802 kmem_cache_free(btrfs_trans_handle_cachep, h); 803 alloc_fail: 804 if (num_bytes) 805 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 806 if (delayed_refs_bytes) 807 btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes); 808 reserve_fail: 809 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 810 return ERR_PTR(ret); 811 } 812 813 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 814 unsigned int num_items) 815 { 816 return start_transaction(root, num_items, TRANS_START, 817 BTRFS_RESERVE_FLUSH_ALL, true); 818 } 819 820 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 821 struct btrfs_root *root, 822 unsigned int num_items) 823 { 824 return start_transaction(root, num_items, TRANS_START, 825 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 826 } 827 828 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 829 { 830 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 831 true); 832 } 833 834 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 835 { 836 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 837 BTRFS_RESERVE_NO_FLUSH, true); 838 } 839 840 /* 841 * Similar to regular join but it never starts a transaction when none is 842 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 843 * This is similar to btrfs_attach_transaction() but it allows the join to 844 * happen if the transaction commit already started but it's not yet in the 845 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 846 */ 847 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 848 { 849 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 850 BTRFS_RESERVE_NO_FLUSH, true); 851 } 852 853 /* 854 * Catch the running transaction. 855 * 856 * It is used when we want to commit the current the transaction, but 857 * don't want to start a new one. 858 * 859 * Note: If this function return -ENOENT, it just means there is no 860 * running transaction. But it is possible that the inactive transaction 861 * is still in the memory, not fully on disk. If you hope there is no 862 * inactive transaction in the fs when -ENOENT is returned, you should 863 * invoke 864 * btrfs_attach_transaction_barrier() 865 */ 866 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 867 { 868 return start_transaction(root, 0, TRANS_ATTACH, 869 BTRFS_RESERVE_NO_FLUSH, true); 870 } 871 872 /* 873 * Catch the running transaction. 874 * 875 * It is similar to the above function, the difference is this one 876 * will wait for all the inactive transactions until they fully 877 * complete. 878 */ 879 struct btrfs_trans_handle * 880 btrfs_attach_transaction_barrier(struct btrfs_root *root) 881 { 882 struct btrfs_trans_handle *trans; 883 884 trans = start_transaction(root, 0, TRANS_ATTACH, 885 BTRFS_RESERVE_NO_FLUSH, true); 886 if (trans == ERR_PTR(-ENOENT)) { 887 int ret; 888 889 ret = btrfs_wait_for_commit(root->fs_info, 0); 890 if (ret) 891 return ERR_PTR(ret); 892 } 893 894 return trans; 895 } 896 897 /* Wait for a transaction commit to reach at least the given state. */ 898 static noinline void wait_for_commit(struct btrfs_transaction *commit, 899 const enum btrfs_trans_state min_state) 900 { 901 struct btrfs_fs_info *fs_info = commit->fs_info; 902 u64 transid = commit->transid; 903 bool put = false; 904 905 /* 906 * At the moment this function is called with min_state either being 907 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 908 */ 909 if (min_state == TRANS_STATE_COMPLETED) 910 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 911 else 912 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 913 914 while (1) { 915 wait_event(commit->commit_wait, commit->state >= min_state); 916 if (put) 917 btrfs_put_transaction(commit); 918 919 if (min_state < TRANS_STATE_COMPLETED) 920 break; 921 922 /* 923 * A transaction isn't really completed until all of the 924 * previous transactions are completed, but with fsync we can 925 * end up with SUPER_COMMITTED transactions before a COMPLETED 926 * transaction. Wait for those. 927 */ 928 929 spin_lock(&fs_info->trans_lock); 930 commit = list_first_entry_or_null(&fs_info->trans_list, 931 struct btrfs_transaction, 932 list); 933 if (!commit || commit->transid > transid) { 934 spin_unlock(&fs_info->trans_lock); 935 break; 936 } 937 refcount_inc(&commit->use_count); 938 put = true; 939 spin_unlock(&fs_info->trans_lock); 940 } 941 } 942 943 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 944 { 945 struct btrfs_transaction *cur_trans = NULL, *t; 946 int ret = 0; 947 948 if (transid) { 949 if (transid <= btrfs_get_last_trans_committed(fs_info)) 950 goto out; 951 952 /* find specified transaction */ 953 spin_lock(&fs_info->trans_lock); 954 list_for_each_entry(t, &fs_info->trans_list, list) { 955 if (t->transid == transid) { 956 cur_trans = t; 957 refcount_inc(&cur_trans->use_count); 958 ret = 0; 959 break; 960 } 961 if (t->transid > transid) { 962 ret = 0; 963 break; 964 } 965 } 966 spin_unlock(&fs_info->trans_lock); 967 968 /* 969 * The specified transaction doesn't exist, or we 970 * raced with btrfs_commit_transaction 971 */ 972 if (!cur_trans) { 973 if (transid > btrfs_get_last_trans_committed(fs_info)) 974 ret = -EINVAL; 975 goto out; 976 } 977 } else { 978 /* find newest transaction that is committing | committed */ 979 spin_lock(&fs_info->trans_lock); 980 list_for_each_entry_reverse(t, &fs_info->trans_list, 981 list) { 982 if (t->state >= TRANS_STATE_COMMIT_START) { 983 if (t->state == TRANS_STATE_COMPLETED) 984 break; 985 cur_trans = t; 986 refcount_inc(&cur_trans->use_count); 987 break; 988 } 989 } 990 spin_unlock(&fs_info->trans_lock); 991 if (!cur_trans) 992 goto out; /* nothing committing|committed */ 993 } 994 995 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 996 ret = cur_trans->aborted; 997 btrfs_put_transaction(cur_trans); 998 out: 999 return ret; 1000 } 1001 1002 void btrfs_throttle(struct btrfs_fs_info *fs_info) 1003 { 1004 wait_current_trans(fs_info); 1005 } 1006 1007 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1008 { 1009 struct btrfs_transaction *cur_trans = trans->transaction; 1010 1011 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1012 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1013 return true; 1014 1015 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1016 return true; 1017 1018 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1019 } 1020 1021 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1022 1023 { 1024 struct btrfs_fs_info *fs_info = trans->fs_info; 1025 1026 if (!trans->block_rsv) { 1027 ASSERT(!trans->bytes_reserved); 1028 ASSERT(!trans->delayed_refs_bytes_reserved); 1029 return; 1030 } 1031 1032 if (!trans->bytes_reserved) { 1033 ASSERT(!trans->delayed_refs_bytes_reserved); 1034 return; 1035 } 1036 1037 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1038 trace_btrfs_space_reservation(fs_info, "transaction", 1039 trans->transid, trans->bytes_reserved, 0); 1040 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1041 trans->bytes_reserved, NULL); 1042 trans->bytes_reserved = 0; 1043 1044 if (!trans->delayed_refs_bytes_reserved) 1045 return; 1046 1047 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1048 trans->transid, 1049 trans->delayed_refs_bytes_reserved, 0); 1050 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1051 trans->delayed_refs_bytes_reserved, NULL); 1052 trans->delayed_refs_bytes_reserved = 0; 1053 } 1054 1055 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1056 int throttle) 1057 { 1058 struct btrfs_fs_info *info = trans->fs_info; 1059 struct btrfs_transaction *cur_trans = trans->transaction; 1060 int ret = 0; 1061 1062 if (refcount_read(&trans->use_count) > 1) { 1063 refcount_dec(&trans->use_count); 1064 trans->block_rsv = trans->orig_rsv; 1065 return 0; 1066 } 1067 1068 btrfs_trans_release_metadata(trans); 1069 trans->block_rsv = NULL; 1070 1071 btrfs_create_pending_block_groups(trans); 1072 1073 btrfs_trans_release_chunk_metadata(trans); 1074 1075 if (trans->type & __TRANS_FREEZABLE) 1076 sb_end_intwrite(info->sb); 1077 1078 WARN_ON(cur_trans != info->running_transaction); 1079 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1080 atomic_dec(&cur_trans->num_writers); 1081 extwriter_counter_dec(cur_trans, trans->type); 1082 1083 cond_wake_up(&cur_trans->writer_wait); 1084 1085 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1086 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1087 1088 btrfs_put_transaction(cur_trans); 1089 1090 if (current->journal_info == trans) 1091 current->journal_info = NULL; 1092 1093 if (throttle) 1094 btrfs_run_delayed_iputs(info); 1095 1096 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1097 wake_up_process(info->transaction_kthread); 1098 if (TRANS_ABORTED(trans)) 1099 ret = trans->aborted; 1100 else 1101 ret = -EROFS; 1102 } 1103 1104 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1105 return ret; 1106 } 1107 1108 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1109 { 1110 return __btrfs_end_transaction(trans, 0); 1111 } 1112 1113 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1114 { 1115 return __btrfs_end_transaction(trans, 1); 1116 } 1117 1118 /* 1119 * when btree blocks are allocated, they have some corresponding bits set for 1120 * them in one of two extent_io trees. This is used to make sure all of 1121 * those extents are sent to disk but does not wait on them 1122 */ 1123 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1124 struct extent_io_tree *dirty_pages, int mark) 1125 { 1126 int ret = 0; 1127 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1128 struct extent_state *cached_state = NULL; 1129 u64 start = 0; 1130 u64 end; 1131 1132 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 1133 mark, &cached_state)) { 1134 bool wait_writeback = false; 1135 1136 ret = btrfs_convert_extent_bit(dirty_pages, start, end, 1137 EXTENT_NEED_WAIT, 1138 mark, &cached_state); 1139 /* 1140 * convert_extent_bit can return -ENOMEM, which is most of the 1141 * time a temporary error. So when it happens, ignore the error 1142 * and wait for writeback of this range to finish - because we 1143 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1144 * to __btrfs_wait_marked_extents() would not know that 1145 * writeback for this range started and therefore wouldn't 1146 * wait for it to finish - we don't want to commit a 1147 * superblock that points to btree nodes/leafs for which 1148 * writeback hasn't finished yet (and without errors). 1149 * We cleanup any entries left in the io tree when committing 1150 * the transaction (through extent_io_tree_release()). 1151 */ 1152 if (ret == -ENOMEM) { 1153 ret = 0; 1154 wait_writeback = true; 1155 } 1156 if (!ret) 1157 ret = filemap_fdatawrite_range(mapping, start, end); 1158 if (!ret && wait_writeback) 1159 btrfs_btree_wait_writeback_range(fs_info, start, end); 1160 btrfs_free_extent_state(cached_state); 1161 if (ret) 1162 break; 1163 cached_state = NULL; 1164 cond_resched(); 1165 start = end + 1; 1166 } 1167 return ret; 1168 } 1169 1170 /* 1171 * when btree blocks are allocated, they have some corresponding bits set for 1172 * them in one of two extent_io trees. This is used to make sure all of 1173 * those extents are on disk for transaction or log commit. We wait 1174 * on all the pages and clear them from the dirty pages state tree 1175 */ 1176 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1177 struct extent_io_tree *dirty_pages) 1178 { 1179 struct extent_state *cached_state = NULL; 1180 u64 start = 0; 1181 u64 end; 1182 int ret = 0; 1183 1184 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 1185 EXTENT_NEED_WAIT, &cached_state)) { 1186 /* 1187 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1188 * When committing the transaction, we'll remove any entries 1189 * left in the io tree. For a log commit, we don't remove them 1190 * after committing the log because the tree can be accessed 1191 * concurrently - we do it only at transaction commit time when 1192 * it's safe to do it (through extent_io_tree_release()). 1193 */ 1194 ret = btrfs_clear_extent_bit(dirty_pages, start, end, 1195 EXTENT_NEED_WAIT, &cached_state); 1196 if (ret == -ENOMEM) 1197 ret = 0; 1198 if (!ret) 1199 btrfs_btree_wait_writeback_range(fs_info, start, end); 1200 btrfs_free_extent_state(cached_state); 1201 if (ret) 1202 break; 1203 cached_state = NULL; 1204 cond_resched(); 1205 start = end + 1; 1206 } 1207 return ret; 1208 } 1209 1210 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1211 struct extent_io_tree *dirty_pages) 1212 { 1213 bool errors = false; 1214 int ret; 1215 1216 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1217 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1218 errors = true; 1219 1220 if (errors && !ret) 1221 ret = -EIO; 1222 return ret; 1223 } 1224 1225 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1226 { 1227 struct btrfs_fs_info *fs_info = log_root->fs_info; 1228 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1229 bool errors = false; 1230 int ret; 1231 1232 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID); 1233 1234 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1235 if ((mark & EXTENT_DIRTY_LOG1) && 1236 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1237 errors = true; 1238 1239 if ((mark & EXTENT_DIRTY_LOG2) && 1240 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1241 errors = true; 1242 1243 if (errors && !ret) 1244 ret = -EIO; 1245 return ret; 1246 } 1247 1248 /* 1249 * When btree blocks are allocated the corresponding extents are marked dirty. 1250 * This function ensures such extents are persisted on disk for transaction or 1251 * log commit. 1252 * 1253 * @trans: transaction whose dirty pages we'd like to write 1254 */ 1255 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1256 { 1257 int ret; 1258 int ret2; 1259 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1260 struct btrfs_fs_info *fs_info = trans->fs_info; 1261 struct blk_plug plug; 1262 1263 blk_start_plug(&plug); 1264 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1265 blk_finish_plug(&plug); 1266 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1267 1268 btrfs_extent_io_tree_release(&trans->transaction->dirty_pages); 1269 1270 if (ret) 1271 return ret; 1272 else if (ret2) 1273 return ret2; 1274 else 1275 return 0; 1276 } 1277 1278 /* 1279 * this is used to update the root pointer in the tree of tree roots. 1280 * 1281 * But, in the case of the extent allocation tree, updating the root 1282 * pointer may allocate blocks which may change the root of the extent 1283 * allocation tree. 1284 * 1285 * So, this loops and repeats and makes sure the cowonly root didn't 1286 * change while the root pointer was being updated in the metadata. 1287 */ 1288 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1289 struct btrfs_root *root) 1290 { 1291 int ret; 1292 u64 old_root_bytenr; 1293 u64 old_root_used; 1294 struct btrfs_fs_info *fs_info = root->fs_info; 1295 struct btrfs_root *tree_root = fs_info->tree_root; 1296 1297 old_root_used = btrfs_root_used(&root->root_item); 1298 1299 while (1) { 1300 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1301 if (old_root_bytenr == root->node->start && 1302 old_root_used == btrfs_root_used(&root->root_item)) 1303 break; 1304 1305 btrfs_set_root_node(&root->root_item, root->node); 1306 ret = btrfs_update_root(trans, tree_root, 1307 &root->root_key, 1308 &root->root_item); 1309 if (ret) 1310 return ret; 1311 1312 old_root_used = btrfs_root_used(&root->root_item); 1313 } 1314 1315 return 0; 1316 } 1317 1318 /* 1319 * update all the cowonly tree roots on disk 1320 * 1321 * The error handling in this function may not be obvious. Any of the 1322 * failures will cause the file system to go offline. We still need 1323 * to clean up the delayed refs. 1324 */ 1325 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1326 { 1327 struct btrfs_fs_info *fs_info = trans->fs_info; 1328 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1329 struct list_head *io_bgs = &trans->transaction->io_bgs; 1330 struct extent_buffer *eb; 1331 int ret; 1332 1333 /* 1334 * At this point no one can be using this transaction to modify any tree 1335 * and no one can start another transaction to modify any tree either. 1336 */ 1337 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1338 1339 eb = btrfs_lock_root_node(fs_info->tree_root); 1340 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1341 0, &eb, BTRFS_NESTING_COW); 1342 btrfs_tree_unlock(eb); 1343 free_extent_buffer(eb); 1344 1345 if (ret) 1346 return ret; 1347 1348 ret = btrfs_run_dev_stats(trans); 1349 if (ret) 1350 return ret; 1351 ret = btrfs_run_dev_replace(trans); 1352 if (ret) 1353 return ret; 1354 ret = btrfs_run_qgroups(trans); 1355 if (ret) 1356 return ret; 1357 1358 ret = btrfs_setup_space_cache(trans); 1359 if (ret) 1360 return ret; 1361 1362 again: 1363 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1364 struct btrfs_root *root; 1365 1366 root = list_first_entry(&fs_info->dirty_cowonly_roots, 1367 struct btrfs_root, dirty_list); 1368 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1369 list_move_tail(&root->dirty_list, 1370 &trans->transaction->switch_commits); 1371 1372 ret = update_cowonly_root(trans, root); 1373 if (ret) 1374 return ret; 1375 } 1376 1377 /* Now flush any delayed refs generated by updating all of the roots */ 1378 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1379 if (ret) 1380 return ret; 1381 1382 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1383 ret = btrfs_write_dirty_block_groups(trans); 1384 if (ret) 1385 return ret; 1386 1387 /* 1388 * We're writing the dirty block groups, which could generate 1389 * delayed refs, which could generate more dirty block groups, 1390 * so we want to keep this flushing in this loop to make sure 1391 * everything gets run. 1392 */ 1393 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1394 if (ret) 1395 return ret; 1396 } 1397 1398 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1399 goto again; 1400 1401 /* Update dev-replace pointer once everything is committed */ 1402 fs_info->dev_replace.committed_cursor_left = 1403 fs_info->dev_replace.cursor_left_last_write_of_item; 1404 1405 return 0; 1406 } 1407 1408 /* 1409 * If we had a pending drop we need to see if there are any others left in our 1410 * dead roots list, and if not clear our bit and wake any waiters. 1411 */ 1412 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1413 { 1414 /* 1415 * We put the drop in progress roots at the front of the list, so if the 1416 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1417 * up. 1418 */ 1419 spin_lock(&fs_info->trans_lock); 1420 if (!list_empty(&fs_info->dead_roots)) { 1421 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1422 struct btrfs_root, 1423 root_list); 1424 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1425 spin_unlock(&fs_info->trans_lock); 1426 return; 1427 } 1428 } 1429 spin_unlock(&fs_info->trans_lock); 1430 1431 btrfs_wake_unfinished_drop(fs_info); 1432 } 1433 1434 /* 1435 * dead roots are old snapshots that need to be deleted. This allocates 1436 * a dirty root struct and adds it into the list of dead roots that need to 1437 * be deleted 1438 */ 1439 void btrfs_add_dead_root(struct btrfs_root *root) 1440 { 1441 struct btrfs_fs_info *fs_info = root->fs_info; 1442 1443 spin_lock(&fs_info->trans_lock); 1444 if (list_empty(&root->root_list)) { 1445 btrfs_grab_root(root); 1446 1447 /* We want to process the partially complete drops first. */ 1448 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1449 list_add(&root->root_list, &fs_info->dead_roots); 1450 else 1451 list_add_tail(&root->root_list, &fs_info->dead_roots); 1452 } 1453 spin_unlock(&fs_info->trans_lock); 1454 } 1455 1456 /* 1457 * Update each subvolume root and its relocation root, if it exists, in the tree 1458 * of tree roots. Also free log roots if they exist. 1459 */ 1460 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1461 { 1462 struct btrfs_fs_info *fs_info = trans->fs_info; 1463 struct btrfs_root *gang[8]; 1464 int i; 1465 int ret; 1466 1467 /* 1468 * At this point no one can be using this transaction to modify any tree 1469 * and no one can start another transaction to modify any tree either. 1470 */ 1471 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1472 1473 spin_lock(&fs_info->fs_roots_radix_lock); 1474 while (1) { 1475 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1476 (void **)gang, 0, 1477 ARRAY_SIZE(gang), 1478 BTRFS_ROOT_TRANS_TAG); 1479 if (ret == 0) 1480 break; 1481 for (i = 0; i < ret; i++) { 1482 struct btrfs_root *root = gang[i]; 1483 int ret2; 1484 1485 /* 1486 * At this point we can neither have tasks logging inodes 1487 * from a root nor trying to commit a log tree. 1488 */ 1489 ASSERT(atomic_read(&root->log_writers) == 0); 1490 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1491 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1492 1493 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1494 (unsigned long)btrfs_root_id(root), 1495 BTRFS_ROOT_TRANS_TAG); 1496 btrfs_qgroup_free_meta_all_pertrans(root); 1497 spin_unlock(&fs_info->fs_roots_radix_lock); 1498 1499 btrfs_free_log(trans, root); 1500 ret2 = btrfs_update_reloc_root(trans, root); 1501 if (ret2) 1502 return ret2; 1503 1504 /* see comments in should_cow_block() */ 1505 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1506 smp_mb__after_atomic(); 1507 1508 if (root->commit_root != root->node) { 1509 list_add_tail(&root->dirty_list, 1510 &trans->transaction->switch_commits); 1511 btrfs_set_root_node(&root->root_item, 1512 root->node); 1513 } 1514 1515 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1516 &root->root_key, 1517 &root->root_item); 1518 if (ret2) 1519 return ret2; 1520 spin_lock(&fs_info->fs_roots_radix_lock); 1521 } 1522 } 1523 spin_unlock(&fs_info->fs_roots_radix_lock); 1524 return 0; 1525 } 1526 1527 /* 1528 * Do all special snapshot related qgroup dirty hack. 1529 * 1530 * Will do all needed qgroup inherit and dirty hack like switch commit 1531 * roots inside one transaction and write all btree into disk, to make 1532 * qgroup works. 1533 */ 1534 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1535 struct btrfs_root *src, 1536 struct btrfs_root *parent, 1537 struct btrfs_qgroup_inherit *inherit, 1538 u64 dst_objectid) 1539 { 1540 struct btrfs_fs_info *fs_info = src->fs_info; 1541 int ret; 1542 1543 /* 1544 * Save some performance in the case that qgroups are not enabled. If 1545 * this check races with the ioctl, rescan will kick in anyway. 1546 */ 1547 if (!btrfs_qgroup_full_accounting(fs_info)) 1548 return 0; 1549 1550 /* 1551 * Ensure dirty @src will be committed. Or, after coming 1552 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1553 * recorded root will never be updated again, causing an outdated root 1554 * item. 1555 */ 1556 ret = record_root_in_trans(trans, src, 1); 1557 if (ret) 1558 return ret; 1559 1560 /* 1561 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1562 * src root, so we must run the delayed refs here. 1563 * 1564 * However this isn't particularly fool proof, because there's no 1565 * synchronization keeping us from changing the tree after this point 1566 * before we do the qgroup_inherit, or even from making changes while 1567 * we're doing the qgroup_inherit. But that's a problem for the future, 1568 * for now flush the delayed refs to narrow the race window where the 1569 * qgroup counters could end up wrong. 1570 */ 1571 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1572 if (ret) { 1573 btrfs_abort_transaction(trans, ret); 1574 return ret; 1575 } 1576 1577 ret = commit_fs_roots(trans); 1578 if (ret) 1579 goto out; 1580 ret = btrfs_qgroup_account_extents(trans); 1581 if (ret < 0) 1582 goto out; 1583 1584 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1585 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid, 1586 btrfs_root_id(parent), inherit); 1587 if (ret < 0) 1588 goto out; 1589 1590 /* 1591 * Now we do a simplified commit transaction, which will: 1592 * 1) commit all subvolume and extent tree 1593 * To ensure all subvolume and extent tree have a valid 1594 * commit_root to accounting later insert_dir_item() 1595 * 2) write all btree blocks onto disk 1596 * This is to make sure later btree modification will be cowed 1597 * Or commit_root can be populated and cause wrong qgroup numbers 1598 * In this simplified commit, we don't really care about other trees 1599 * like chunk and root tree, as they won't affect qgroup. 1600 * And we don't write super to avoid half committed status. 1601 */ 1602 ret = commit_cowonly_roots(trans); 1603 if (ret) 1604 goto out; 1605 switch_commit_roots(trans); 1606 ret = btrfs_write_and_wait_transaction(trans); 1607 if (ret) 1608 btrfs_handle_fs_error(fs_info, ret, 1609 "Error while writing out transaction for qgroup"); 1610 1611 out: 1612 /* 1613 * Force parent root to be updated, as we recorded it before so its 1614 * last_trans == cur_transid. 1615 * Or it won't be committed again onto disk after later 1616 * insert_dir_item() 1617 */ 1618 if (!ret) 1619 ret = record_root_in_trans(trans, parent, 1); 1620 return ret; 1621 } 1622 1623 /* 1624 * new snapshots need to be created at a very specific time in the 1625 * transaction commit. This does the actual creation. 1626 * 1627 * Note: 1628 * If the error which may affect the commitment of the current transaction 1629 * happens, we should return the error number. If the error which just affect 1630 * the creation of the pending snapshots, just return 0. 1631 */ 1632 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1633 struct btrfs_pending_snapshot *pending) 1634 { 1635 1636 struct btrfs_fs_info *fs_info = trans->fs_info; 1637 struct btrfs_key key; 1638 struct btrfs_root_item *new_root_item; 1639 struct btrfs_root *tree_root = fs_info->tree_root; 1640 struct btrfs_root *root = pending->root; 1641 struct btrfs_root *parent_root; 1642 struct btrfs_block_rsv *rsv; 1643 struct btrfs_inode *parent_inode = pending->dir; 1644 struct btrfs_path *path; 1645 struct btrfs_dir_item *dir_item; 1646 struct extent_buffer *tmp; 1647 struct extent_buffer *old; 1648 struct timespec64 cur_time; 1649 int ret = 0; 1650 u64 to_reserve = 0; 1651 u64 index = 0; 1652 u64 objectid; 1653 u64 root_flags; 1654 unsigned int nofs_flags; 1655 struct fscrypt_name fname; 1656 1657 ASSERT(pending->path); 1658 path = pending->path; 1659 1660 ASSERT(pending->root_item); 1661 new_root_item = pending->root_item; 1662 1663 /* 1664 * We're inside a transaction and must make sure that any potential 1665 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1666 * filesystem. 1667 */ 1668 nofs_flags = memalloc_nofs_save(); 1669 pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode, 1670 &pending->dentry->d_name, 0, 1671 &fname); 1672 memalloc_nofs_restore(nofs_flags); 1673 if (pending->error) 1674 goto free_pending; 1675 1676 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1677 if (pending->error) 1678 goto free_fname; 1679 1680 /* 1681 * Make qgroup to skip current new snapshot's qgroupid, as it is 1682 * accounted by later btrfs_qgroup_inherit(). 1683 */ 1684 btrfs_set_skip_qgroup(trans, objectid); 1685 1686 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1687 1688 if (to_reserve > 0) { 1689 pending->error = btrfs_block_rsv_add(fs_info, 1690 &pending->block_rsv, 1691 to_reserve, 1692 BTRFS_RESERVE_NO_FLUSH); 1693 if (pending->error) 1694 goto clear_skip_qgroup; 1695 } 1696 1697 key.objectid = objectid; 1698 key.type = BTRFS_ROOT_ITEM_KEY; 1699 key.offset = (u64)-1; 1700 1701 rsv = trans->block_rsv; 1702 trans->block_rsv = &pending->block_rsv; 1703 trans->bytes_reserved = trans->block_rsv->reserved; 1704 trace_btrfs_space_reservation(fs_info, "transaction", 1705 trans->transid, 1706 trans->bytes_reserved, 1); 1707 parent_root = parent_inode->root; 1708 ret = record_root_in_trans(trans, parent_root, 0); 1709 if (ret) 1710 goto fail; 1711 cur_time = current_time(&parent_inode->vfs_inode); 1712 1713 /* 1714 * insert the directory item 1715 */ 1716 ret = btrfs_set_inode_index(parent_inode, &index); 1717 if (ret) { 1718 btrfs_abort_transaction(trans, ret); 1719 goto fail; 1720 } 1721 1722 /* check if there is a file/dir which has the same name. */ 1723 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1724 btrfs_ino(parent_inode), 1725 &fname.disk_name, 0); 1726 if (dir_item != NULL && !IS_ERR(dir_item)) { 1727 pending->error = -EEXIST; 1728 goto dir_item_existed; 1729 } else if (IS_ERR(dir_item)) { 1730 ret = PTR_ERR(dir_item); 1731 btrfs_abort_transaction(trans, ret); 1732 goto fail; 1733 } 1734 btrfs_release_path(path); 1735 1736 ret = btrfs_create_qgroup(trans, objectid); 1737 if (ret && ret != -EEXIST) { 1738 if (ret != -ENOTCONN || btrfs_qgroup_enabled(fs_info)) { 1739 btrfs_abort_transaction(trans, ret); 1740 goto fail; 1741 } 1742 } 1743 1744 /* 1745 * pull in the delayed directory update 1746 * and the delayed inode item 1747 * otherwise we corrupt the FS during 1748 * snapshot 1749 */ 1750 ret = btrfs_run_delayed_items(trans); 1751 if (ret) { /* Transaction aborted */ 1752 btrfs_abort_transaction(trans, ret); 1753 goto fail; 1754 } 1755 1756 ret = record_root_in_trans(trans, root, 0); 1757 if (ret) { 1758 btrfs_abort_transaction(trans, ret); 1759 goto fail; 1760 } 1761 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1762 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1763 btrfs_check_and_init_root_item(new_root_item); 1764 1765 root_flags = btrfs_root_flags(new_root_item); 1766 if (pending->readonly) 1767 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1768 else 1769 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1770 btrfs_set_root_flags(new_root_item, root_flags); 1771 1772 btrfs_set_root_generation_v2(new_root_item, 1773 trans->transid); 1774 generate_random_guid(new_root_item->uuid); 1775 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1776 BTRFS_UUID_SIZE); 1777 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1778 memset(new_root_item->received_uuid, 0, 1779 sizeof(new_root_item->received_uuid)); 1780 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1781 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1782 btrfs_set_root_stransid(new_root_item, 0); 1783 btrfs_set_root_rtransid(new_root_item, 0); 1784 } 1785 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1786 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1787 btrfs_set_root_otransid(new_root_item, trans->transid); 1788 1789 old = btrfs_lock_root_node(root); 1790 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1791 BTRFS_NESTING_COW); 1792 if (ret) { 1793 btrfs_tree_unlock(old); 1794 free_extent_buffer(old); 1795 btrfs_abort_transaction(trans, ret); 1796 goto fail; 1797 } 1798 1799 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1800 /* clean up in any case */ 1801 btrfs_tree_unlock(old); 1802 free_extent_buffer(old); 1803 if (ret) { 1804 btrfs_abort_transaction(trans, ret); 1805 goto fail; 1806 } 1807 /* see comments in should_cow_block() */ 1808 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1809 smp_wmb(); 1810 1811 btrfs_set_root_node(new_root_item, tmp); 1812 /* record when the snapshot was created in key.offset */ 1813 key.offset = trans->transid; 1814 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1815 btrfs_tree_unlock(tmp); 1816 free_extent_buffer(tmp); 1817 if (ret) { 1818 btrfs_abort_transaction(trans, ret); 1819 goto fail; 1820 } 1821 1822 /* 1823 * insert root back/forward references 1824 */ 1825 ret = btrfs_add_root_ref(trans, objectid, 1826 btrfs_root_id(parent_root), 1827 btrfs_ino(parent_inode), index, 1828 &fname.disk_name); 1829 if (ret) { 1830 btrfs_abort_transaction(trans, ret); 1831 goto fail; 1832 } 1833 1834 key.offset = (u64)-1; 1835 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1836 if (IS_ERR(pending->snap)) { 1837 ret = PTR_ERR(pending->snap); 1838 pending->snap = NULL; 1839 btrfs_abort_transaction(trans, ret); 1840 goto fail; 1841 } 1842 1843 ret = btrfs_reloc_post_snapshot(trans, pending); 1844 if (ret) { 1845 btrfs_abort_transaction(trans, ret); 1846 goto fail; 1847 } 1848 1849 /* 1850 * Do special qgroup accounting for snapshot, as we do some qgroup 1851 * snapshot hack to do fast snapshot. 1852 * To co-operate with that hack, we do hack again. 1853 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1854 */ 1855 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1856 ret = qgroup_account_snapshot(trans, root, parent_root, 1857 pending->inherit, objectid); 1858 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1859 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid, 1860 btrfs_root_id(parent_root), pending->inherit); 1861 if (ret < 0) 1862 goto fail; 1863 1864 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1865 parent_inode, &key, BTRFS_FT_DIR, 1866 index); 1867 if (ret) { 1868 btrfs_abort_transaction(trans, ret); 1869 goto fail; 1870 } 1871 1872 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 1873 fname.disk_name.len * 2); 1874 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 1875 inode_set_ctime_current(&parent_inode->vfs_inode)); 1876 ret = btrfs_update_inode_fallback(trans, parent_inode); 1877 if (ret) { 1878 btrfs_abort_transaction(trans, ret); 1879 goto fail; 1880 } 1881 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1882 BTRFS_UUID_KEY_SUBVOL, 1883 objectid); 1884 if (ret) { 1885 btrfs_abort_transaction(trans, ret); 1886 goto fail; 1887 } 1888 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1889 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1890 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1891 objectid); 1892 if (ret && ret != -EEXIST) { 1893 btrfs_abort_transaction(trans, ret); 1894 goto fail; 1895 } 1896 } 1897 1898 fail: 1899 pending->error = ret; 1900 dir_item_existed: 1901 trans->block_rsv = rsv; 1902 trans->bytes_reserved = 0; 1903 clear_skip_qgroup: 1904 btrfs_clear_skip_qgroup(trans); 1905 free_fname: 1906 fscrypt_free_filename(&fname); 1907 free_pending: 1908 kfree(new_root_item); 1909 pending->root_item = NULL; 1910 btrfs_free_path(path); 1911 pending->path = NULL; 1912 1913 return ret; 1914 } 1915 1916 /* 1917 * create all the snapshots we've scheduled for creation 1918 */ 1919 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1920 { 1921 struct btrfs_pending_snapshot *pending, *next; 1922 struct list_head *head = &trans->transaction->pending_snapshots; 1923 int ret = 0; 1924 1925 list_for_each_entry_safe(pending, next, head, list) { 1926 list_del(&pending->list); 1927 ret = create_pending_snapshot(trans, pending); 1928 if (ret) 1929 break; 1930 } 1931 return ret; 1932 } 1933 1934 static void update_super_roots(struct btrfs_fs_info *fs_info) 1935 { 1936 struct btrfs_root_item *root_item; 1937 struct btrfs_super_block *super; 1938 1939 super = fs_info->super_copy; 1940 1941 root_item = &fs_info->chunk_root->root_item; 1942 super->chunk_root = root_item->bytenr; 1943 super->chunk_root_generation = root_item->generation; 1944 super->chunk_root_level = root_item->level; 1945 1946 root_item = &fs_info->tree_root->root_item; 1947 super->root = root_item->bytenr; 1948 super->generation = root_item->generation; 1949 super->root_level = root_item->level; 1950 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1951 super->cache_generation = root_item->generation; 1952 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1953 super->cache_generation = 0; 1954 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1955 super->uuid_tree_generation = root_item->generation; 1956 } 1957 1958 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1959 { 1960 struct btrfs_transaction *trans; 1961 int ret = 0; 1962 1963 spin_lock(&info->trans_lock); 1964 trans = info->running_transaction; 1965 if (trans) 1966 ret = is_transaction_blocked(trans); 1967 spin_unlock(&info->trans_lock); 1968 return ret; 1969 } 1970 1971 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1972 { 1973 struct btrfs_fs_info *fs_info = trans->fs_info; 1974 struct btrfs_transaction *cur_trans; 1975 1976 /* Kick the transaction kthread. */ 1977 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1978 wake_up_process(fs_info->transaction_kthread); 1979 1980 /* take transaction reference */ 1981 cur_trans = trans->transaction; 1982 refcount_inc(&cur_trans->use_count); 1983 1984 btrfs_end_transaction(trans); 1985 1986 /* 1987 * Wait for the current transaction commit to start and block 1988 * subsequent transaction joins 1989 */ 1990 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1991 wait_event(fs_info->transaction_blocked_wait, 1992 cur_trans->state >= TRANS_STATE_COMMIT_START || 1993 TRANS_ABORTED(cur_trans)); 1994 btrfs_put_transaction(cur_trans); 1995 } 1996 1997 /* 1998 * If there is a running transaction commit it or if it's already committing, 1999 * wait for its commit to complete. Does not start and commit a new transaction 2000 * if there isn't any running. 2001 */ 2002 int btrfs_commit_current_transaction(struct btrfs_root *root) 2003 { 2004 struct btrfs_trans_handle *trans; 2005 2006 trans = btrfs_attach_transaction_barrier(root); 2007 if (IS_ERR(trans)) { 2008 int ret = PTR_ERR(trans); 2009 2010 return (ret == -ENOENT) ? 0 : ret; 2011 } 2012 2013 return btrfs_commit_transaction(trans); 2014 } 2015 2016 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2017 { 2018 struct btrfs_fs_info *fs_info = trans->fs_info; 2019 struct btrfs_transaction *cur_trans = trans->transaction; 2020 2021 WARN_ON(refcount_read(&trans->use_count) > 1); 2022 2023 btrfs_abort_transaction(trans, err); 2024 2025 spin_lock(&fs_info->trans_lock); 2026 2027 /* 2028 * If the transaction is removed from the list, it means this 2029 * transaction has been committed successfully, so it is impossible 2030 * to call the cleanup function. 2031 */ 2032 BUG_ON(list_empty(&cur_trans->list)); 2033 2034 if (cur_trans == fs_info->running_transaction) { 2035 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2036 spin_unlock(&fs_info->trans_lock); 2037 2038 /* 2039 * The thread has already released the lockdep map as reader 2040 * already in btrfs_commit_transaction(). 2041 */ 2042 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2043 wait_event(cur_trans->writer_wait, 2044 atomic_read(&cur_trans->num_writers) == 1); 2045 2046 spin_lock(&fs_info->trans_lock); 2047 } 2048 2049 /* 2050 * Now that we know no one else is still using the transaction we can 2051 * remove the transaction from the list of transactions. This avoids 2052 * the transaction kthread from cleaning up the transaction while some 2053 * other task is still using it, which could result in a use-after-free 2054 * on things like log trees, as it forces the transaction kthread to 2055 * wait for this transaction to be cleaned up by us. 2056 */ 2057 list_del_init(&cur_trans->list); 2058 2059 spin_unlock(&fs_info->trans_lock); 2060 2061 btrfs_cleanup_one_transaction(trans->transaction); 2062 2063 spin_lock(&fs_info->trans_lock); 2064 if (cur_trans == fs_info->running_transaction) 2065 fs_info->running_transaction = NULL; 2066 spin_unlock(&fs_info->trans_lock); 2067 2068 if (trans->type & __TRANS_FREEZABLE) 2069 sb_end_intwrite(fs_info->sb); 2070 btrfs_put_transaction(cur_trans); 2071 btrfs_put_transaction(cur_trans); 2072 2073 trace_btrfs_transaction_commit(fs_info); 2074 2075 if (current->journal_info == trans) 2076 current->journal_info = NULL; 2077 2078 /* 2079 * If relocation is running, we can't cancel scrub because that will 2080 * result in a deadlock. Before relocating a block group, relocation 2081 * pauses scrub, then starts and commits a transaction before unpausing 2082 * scrub. If the transaction commit is being done by the relocation 2083 * task or triggered by another task and the relocation task is waiting 2084 * for the commit, and we end up here due to an error in the commit 2085 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2086 * asking for scrub to stop while having it asked to be paused higher 2087 * above in relocation code. 2088 */ 2089 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2090 btrfs_scrub_cancel(fs_info); 2091 2092 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2093 } 2094 2095 /* 2096 * Release reserved delayed ref space of all pending block groups of the 2097 * transaction and remove them from the list 2098 */ 2099 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2100 { 2101 struct btrfs_fs_info *fs_info = trans->fs_info; 2102 struct btrfs_block_group *block_group, *tmp; 2103 2104 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2105 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2106 /* 2107 * Not strictly necessary to lock, as no other task will be using a 2108 * block_group on the new_bgs list during a transaction abort. 2109 */ 2110 spin_lock(&fs_info->unused_bgs_lock); 2111 list_del_init(&block_group->bg_list); 2112 btrfs_put_block_group(block_group); 2113 spin_unlock(&fs_info->unused_bgs_lock); 2114 } 2115 } 2116 2117 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2118 { 2119 /* 2120 * We use try_to_writeback_inodes_sb() here because if we used 2121 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2122 * Currently are holding the fs freeze lock, if we do an async flush 2123 * we'll do btrfs_join_transaction() and deadlock because we need to 2124 * wait for the fs freeze lock. Using the direct flushing we benefit 2125 * from already being in a transaction and our join_transaction doesn't 2126 * have to re-take the fs freeze lock. 2127 * 2128 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2129 * if it can read lock sb->s_umount. It will always be able to lock it, 2130 * except when the filesystem is being unmounted or being frozen, but in 2131 * those cases sync_filesystem() is called, which results in calling 2132 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2133 * Note that we don't call writeback_inodes_sb() directly, because it 2134 * will emit a warning if sb->s_umount is not locked. 2135 */ 2136 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2137 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2138 return 0; 2139 } 2140 2141 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2142 { 2143 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2144 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 2145 } 2146 2147 /* 2148 * Add a pending snapshot associated with the given transaction handle to the 2149 * respective handle. This must be called after the transaction commit started 2150 * and while holding fs_info->trans_lock. 2151 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2152 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2153 * returns an error. 2154 */ 2155 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2156 { 2157 struct btrfs_transaction *cur_trans = trans->transaction; 2158 2159 if (!trans->pending_snapshot) 2160 return; 2161 2162 lockdep_assert_held(&trans->fs_info->trans_lock); 2163 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2164 2165 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2166 } 2167 2168 static void update_commit_stats(struct btrfs_fs_info *fs_info) 2169 { 2170 ktime_t now = ktime_get_ns(); 2171 ktime_t interval = now - fs_info->commit_stats.critical_section_start_time; 2172 2173 ASSERT(fs_info->commit_stats.critical_section_start_time); 2174 2175 fs_info->commit_stats.commit_count++; 2176 fs_info->commit_stats.last_commit_dur = interval; 2177 fs_info->commit_stats.max_commit_dur = 2178 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2179 fs_info->commit_stats.total_commit_dur += interval; 2180 fs_info->commit_stats.critical_section_start_time = 0; 2181 } 2182 2183 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2184 { 2185 struct btrfs_fs_info *fs_info = trans->fs_info; 2186 struct btrfs_transaction *cur_trans = trans->transaction; 2187 struct btrfs_transaction *prev_trans = NULL; 2188 int ret; 2189 2190 ASSERT(refcount_read(&trans->use_count) == 1); 2191 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2192 2193 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2194 2195 /* Stop the commit early if ->aborted is set */ 2196 if (TRANS_ABORTED(cur_trans)) { 2197 ret = cur_trans->aborted; 2198 goto lockdep_trans_commit_start_release; 2199 } 2200 2201 btrfs_trans_release_metadata(trans); 2202 trans->block_rsv = NULL; 2203 2204 /* 2205 * We only want one transaction commit doing the flushing so we do not 2206 * waste a bunch of time on lock contention on the extent root node. 2207 */ 2208 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2209 &cur_trans->delayed_refs.flags)) { 2210 /* 2211 * Make a pass through all the delayed refs we have so far. 2212 * Any running threads may add more while we are here. 2213 */ 2214 ret = btrfs_run_delayed_refs(trans, 0); 2215 if (ret) 2216 goto lockdep_trans_commit_start_release; 2217 } 2218 2219 btrfs_create_pending_block_groups(trans); 2220 2221 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2222 int run_it = 0; 2223 2224 /* this mutex is also taken before trying to set 2225 * block groups readonly. We need to make sure 2226 * that nobody has set a block group readonly 2227 * after a extents from that block group have been 2228 * allocated for cache files. btrfs_set_block_group_ro 2229 * will wait for the transaction to commit if it 2230 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2231 * 2232 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2233 * only one process starts all the block group IO. It wouldn't 2234 * hurt to have more than one go through, but there's no 2235 * real advantage to it either. 2236 */ 2237 mutex_lock(&fs_info->ro_block_group_mutex); 2238 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2239 &cur_trans->flags)) 2240 run_it = 1; 2241 mutex_unlock(&fs_info->ro_block_group_mutex); 2242 2243 if (run_it) { 2244 ret = btrfs_start_dirty_block_groups(trans); 2245 if (ret) 2246 goto lockdep_trans_commit_start_release; 2247 } 2248 } 2249 2250 spin_lock(&fs_info->trans_lock); 2251 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2252 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2253 2254 add_pending_snapshot(trans); 2255 2256 spin_unlock(&fs_info->trans_lock); 2257 refcount_inc(&cur_trans->use_count); 2258 2259 if (trans->in_fsync) 2260 want_state = TRANS_STATE_SUPER_COMMITTED; 2261 2262 btrfs_trans_state_lockdep_release(fs_info, 2263 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2264 ret = btrfs_end_transaction(trans); 2265 wait_for_commit(cur_trans, want_state); 2266 2267 if (TRANS_ABORTED(cur_trans)) 2268 ret = cur_trans->aborted; 2269 2270 btrfs_put_transaction(cur_trans); 2271 2272 return ret; 2273 } 2274 2275 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2276 wake_up(&fs_info->transaction_blocked_wait); 2277 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2278 2279 if (!list_is_first(&cur_trans->list, &fs_info->trans_list)) { 2280 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2281 2282 if (trans->in_fsync) 2283 want_state = TRANS_STATE_SUPER_COMMITTED; 2284 2285 prev_trans = list_prev_entry(cur_trans, list); 2286 if (prev_trans->state < want_state) { 2287 refcount_inc(&prev_trans->use_count); 2288 spin_unlock(&fs_info->trans_lock); 2289 2290 wait_for_commit(prev_trans, want_state); 2291 2292 ret = READ_ONCE(prev_trans->aborted); 2293 2294 btrfs_put_transaction(prev_trans); 2295 if (ret) 2296 goto lockdep_release; 2297 spin_lock(&fs_info->trans_lock); 2298 } 2299 } else { 2300 /* 2301 * The previous transaction was aborted and was already removed 2302 * from the list of transactions at fs_info->trans_list. So we 2303 * abort to prevent writing a new superblock that reflects a 2304 * corrupt state (pointing to trees with unwritten nodes/leafs). 2305 */ 2306 if (BTRFS_FS_ERROR(fs_info)) { 2307 spin_unlock(&fs_info->trans_lock); 2308 ret = -EROFS; 2309 goto lockdep_release; 2310 } 2311 } 2312 2313 cur_trans->state = TRANS_STATE_COMMIT_START; 2314 wake_up(&fs_info->transaction_blocked_wait); 2315 spin_unlock(&fs_info->trans_lock); 2316 2317 /* 2318 * Get the time spent on the work done by the commit thread and not 2319 * the time spent waiting on a previous commit 2320 */ 2321 fs_info->commit_stats.critical_section_start_time = ktime_get_ns(); 2322 extwriter_counter_dec(cur_trans, trans->type); 2323 2324 ret = btrfs_start_delalloc_flush(fs_info); 2325 if (ret) 2326 goto lockdep_release; 2327 2328 ret = btrfs_run_delayed_items(trans); 2329 if (ret) 2330 goto lockdep_release; 2331 2332 /* 2333 * The thread has started/joined the transaction thus it holds the 2334 * lockdep map as a reader. It has to release it before acquiring the 2335 * lockdep map as a writer. 2336 */ 2337 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2338 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2339 wait_event(cur_trans->writer_wait, 2340 extwriter_counter_read(cur_trans) == 0); 2341 2342 /* some pending stuffs might be added after the previous flush. */ 2343 ret = btrfs_run_delayed_items(trans); 2344 if (ret) { 2345 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2346 goto cleanup_transaction; 2347 } 2348 2349 btrfs_wait_delalloc_flush(fs_info); 2350 2351 /* 2352 * Wait for all ordered extents started by a fast fsync that joined this 2353 * transaction. Otherwise if this transaction commits before the ordered 2354 * extents complete we lose logged data after a power failure. 2355 */ 2356 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2357 wait_event(cur_trans->pending_wait, 2358 atomic_read(&cur_trans->pending_ordered) == 0); 2359 2360 btrfs_scrub_pause(fs_info); 2361 /* 2362 * Ok now we need to make sure to block out any other joins while we 2363 * commit the transaction. We could have started a join before setting 2364 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2365 */ 2366 spin_lock(&fs_info->trans_lock); 2367 add_pending_snapshot(trans); 2368 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2369 spin_unlock(&fs_info->trans_lock); 2370 2371 /* 2372 * The thread has started/joined the transaction thus it holds the 2373 * lockdep map as a reader. It has to release it before acquiring the 2374 * lockdep map as a writer. 2375 */ 2376 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2377 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2378 wait_event(cur_trans->writer_wait, 2379 atomic_read(&cur_trans->num_writers) == 1); 2380 2381 /* 2382 * Make lockdep happy by acquiring the state locks after 2383 * btrfs_trans_num_writers is released. If we acquired the state locks 2384 * before releasing the btrfs_trans_num_writers lock then lockdep would 2385 * complain because we did not follow the reverse order unlocking rule. 2386 */ 2387 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2388 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2389 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2390 2391 /* 2392 * We've started the commit, clear the flag in case we were triggered to 2393 * do an async commit but somebody else started before the transaction 2394 * kthread could do the work. 2395 */ 2396 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2397 2398 if (TRANS_ABORTED(cur_trans)) { 2399 ret = cur_trans->aborted; 2400 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2401 goto scrub_continue; 2402 } 2403 /* 2404 * the reloc mutex makes sure that we stop 2405 * the balancing code from coming in and moving 2406 * extents around in the middle of the commit 2407 */ 2408 mutex_lock(&fs_info->reloc_mutex); 2409 2410 /* 2411 * We needn't worry about the delayed items because we will 2412 * deal with them in create_pending_snapshot(), which is the 2413 * core function of the snapshot creation. 2414 */ 2415 ret = create_pending_snapshots(trans); 2416 if (ret) 2417 goto unlock_reloc; 2418 2419 /* 2420 * We insert the dir indexes of the snapshots and update the inode 2421 * of the snapshots' parents after the snapshot creation, so there 2422 * are some delayed items which are not dealt with. Now deal with 2423 * them. 2424 * 2425 * We needn't worry that this operation will corrupt the snapshots, 2426 * because all the tree which are snapshoted will be forced to COW 2427 * the nodes and leaves. 2428 */ 2429 ret = btrfs_run_delayed_items(trans); 2430 if (ret) 2431 goto unlock_reloc; 2432 2433 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2434 if (ret) 2435 goto unlock_reloc; 2436 2437 /* 2438 * make sure none of the code above managed to slip in a 2439 * delayed item 2440 */ 2441 btrfs_assert_delayed_root_empty(fs_info); 2442 2443 WARN_ON(cur_trans != trans->transaction); 2444 2445 ret = commit_fs_roots(trans); 2446 if (ret) 2447 goto unlock_reloc; 2448 2449 /* commit_fs_roots gets rid of all the tree log roots, it is now 2450 * safe to free the root of tree log roots 2451 */ 2452 btrfs_free_log_root_tree(trans, fs_info); 2453 2454 /* 2455 * Since fs roots are all committed, we can get a quite accurate 2456 * new_roots. So let's do quota accounting. 2457 */ 2458 ret = btrfs_qgroup_account_extents(trans); 2459 if (ret < 0) 2460 goto unlock_reloc; 2461 2462 ret = commit_cowonly_roots(trans); 2463 if (ret) 2464 goto unlock_reloc; 2465 2466 /* 2467 * The tasks which save the space cache and inode cache may also 2468 * update ->aborted, check it. 2469 */ 2470 if (TRANS_ABORTED(cur_trans)) { 2471 ret = cur_trans->aborted; 2472 goto unlock_reloc; 2473 } 2474 2475 cur_trans = fs_info->running_transaction; 2476 2477 btrfs_set_root_node(&fs_info->tree_root->root_item, 2478 fs_info->tree_root->node); 2479 list_add_tail(&fs_info->tree_root->dirty_list, 2480 &cur_trans->switch_commits); 2481 2482 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2483 fs_info->chunk_root->node); 2484 list_add_tail(&fs_info->chunk_root->dirty_list, 2485 &cur_trans->switch_commits); 2486 2487 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2488 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2489 fs_info->block_group_root->node); 2490 list_add_tail(&fs_info->block_group_root->dirty_list, 2491 &cur_trans->switch_commits); 2492 } 2493 2494 switch_commit_roots(trans); 2495 2496 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2497 ASSERT(list_empty(&cur_trans->io_bgs)); 2498 update_super_roots(fs_info); 2499 2500 btrfs_set_super_log_root(fs_info->super_copy, 0); 2501 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2502 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2503 sizeof(*fs_info->super_copy)); 2504 2505 btrfs_commit_device_sizes(cur_trans); 2506 2507 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2508 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2509 2510 btrfs_trans_release_chunk_metadata(trans); 2511 2512 /* 2513 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2514 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2515 * make sure that before we commit our superblock, no other task can 2516 * start a new transaction and commit a log tree before we commit our 2517 * superblock. Anyone trying to commit a log tree locks this mutex before 2518 * writing its superblock. 2519 */ 2520 mutex_lock(&fs_info->tree_log_mutex); 2521 2522 spin_lock(&fs_info->trans_lock); 2523 cur_trans->state = TRANS_STATE_UNBLOCKED; 2524 fs_info->running_transaction = NULL; 2525 spin_unlock(&fs_info->trans_lock); 2526 mutex_unlock(&fs_info->reloc_mutex); 2527 2528 wake_up(&fs_info->transaction_wait); 2529 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2530 2531 /* If we have features changed, wake up the cleaner to update sysfs. */ 2532 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2533 fs_info->cleaner_kthread) 2534 wake_up_process(fs_info->cleaner_kthread); 2535 2536 ret = btrfs_write_and_wait_transaction(trans); 2537 if (ret) { 2538 btrfs_handle_fs_error(fs_info, ret, 2539 "Error while writing out transaction"); 2540 mutex_unlock(&fs_info->tree_log_mutex); 2541 goto scrub_continue; 2542 } 2543 2544 ret = write_all_supers(fs_info, 0); 2545 /* 2546 * the super is written, we can safely allow the tree-loggers 2547 * to go about their business 2548 */ 2549 mutex_unlock(&fs_info->tree_log_mutex); 2550 if (ret) 2551 goto scrub_continue; 2552 2553 update_commit_stats(fs_info); 2554 /* 2555 * We needn't acquire the lock here because there is no other task 2556 * which can change it. 2557 */ 2558 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2559 wake_up(&cur_trans->commit_wait); 2560 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2561 2562 ret = btrfs_finish_extent_commit(trans); 2563 if (ret) 2564 goto scrub_continue; 2565 2566 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2567 btrfs_clear_space_info_full(fs_info); 2568 2569 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2570 /* 2571 * We needn't acquire the lock here because there is no other task 2572 * which can change it. 2573 */ 2574 cur_trans->state = TRANS_STATE_COMPLETED; 2575 wake_up(&cur_trans->commit_wait); 2576 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2577 2578 spin_lock(&fs_info->trans_lock); 2579 list_del_init(&cur_trans->list); 2580 spin_unlock(&fs_info->trans_lock); 2581 2582 btrfs_put_transaction(cur_trans); 2583 btrfs_put_transaction(cur_trans); 2584 2585 if (trans->type & __TRANS_FREEZABLE) 2586 sb_end_intwrite(fs_info->sb); 2587 2588 trace_btrfs_transaction_commit(fs_info); 2589 2590 btrfs_scrub_continue(fs_info); 2591 2592 if (current->journal_info == trans) 2593 current->journal_info = NULL; 2594 2595 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2596 2597 return ret; 2598 2599 unlock_reloc: 2600 mutex_unlock(&fs_info->reloc_mutex); 2601 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2602 scrub_continue: 2603 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2604 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2605 btrfs_scrub_continue(fs_info); 2606 cleanup_transaction: 2607 btrfs_trans_release_metadata(trans); 2608 btrfs_cleanup_pending_block_groups(trans); 2609 btrfs_trans_release_chunk_metadata(trans); 2610 trans->block_rsv = NULL; 2611 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2612 if (current->journal_info == trans) 2613 current->journal_info = NULL; 2614 cleanup_transaction(trans, ret); 2615 2616 return ret; 2617 2618 lockdep_release: 2619 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2620 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2621 goto cleanup_transaction; 2622 2623 lockdep_trans_commit_start_release: 2624 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2625 btrfs_end_transaction(trans); 2626 return ret; 2627 } 2628 2629 /* 2630 * return < 0 if error 2631 * 0 if there are no more dead_roots at the time of call 2632 * 1 there are more to be processed, call me again 2633 * 2634 * The return value indicates there are certainly more snapshots to delete, but 2635 * if there comes a new one during processing, it may return 0. We don't mind, 2636 * because btrfs_commit_super will poke cleaner thread and it will process it a 2637 * few seconds later. 2638 */ 2639 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2640 { 2641 struct btrfs_root *root; 2642 int ret; 2643 2644 spin_lock(&fs_info->trans_lock); 2645 if (list_empty(&fs_info->dead_roots)) { 2646 spin_unlock(&fs_info->trans_lock); 2647 return 0; 2648 } 2649 root = list_first_entry(&fs_info->dead_roots, 2650 struct btrfs_root, root_list); 2651 list_del_init(&root->root_list); 2652 spin_unlock(&fs_info->trans_lock); 2653 2654 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root)); 2655 2656 btrfs_kill_all_delayed_nodes(root); 2657 2658 if (btrfs_header_backref_rev(root->node) < 2659 BTRFS_MIXED_BACKREF_REV) 2660 ret = btrfs_drop_snapshot(root, 0, 0); 2661 else 2662 ret = btrfs_drop_snapshot(root, 1, 0); 2663 2664 btrfs_put_root(root); 2665 return (ret < 0) ? 0 : 1; 2666 } 2667 2668 /* 2669 * We only mark the transaction aborted and then set the file system read-only. 2670 * This will prevent new transactions from starting or trying to join this 2671 * one. 2672 * 2673 * This means that error recovery at the call site is limited to freeing 2674 * any local memory allocations and passing the error code up without 2675 * further cleanup. The transaction should complete as it normally would 2676 * in the call path but will return -EIO. 2677 * 2678 * We'll complete the cleanup in btrfs_end_transaction and 2679 * btrfs_commit_transaction. 2680 */ 2681 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2682 const char *function, 2683 unsigned int line, int error, bool first_hit) 2684 { 2685 struct btrfs_fs_info *fs_info = trans->fs_info; 2686 2687 WRITE_ONCE(trans->aborted, error); 2688 WRITE_ONCE(trans->transaction->aborted, error); 2689 if (first_hit && error == -ENOSPC) 2690 btrfs_dump_space_info_for_trans_abort(fs_info); 2691 /* Wake up anybody who may be waiting on this transaction */ 2692 wake_up(&fs_info->transaction_wait); 2693 wake_up(&fs_info->transaction_blocked_wait); 2694 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2695 } 2696 2697 int __init btrfs_transaction_init(void) 2698 { 2699 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY); 2700 if (!btrfs_trans_handle_cachep) 2701 return -ENOMEM; 2702 return 0; 2703 } 2704 2705 void __cold btrfs_transaction_exit(void) 2706 { 2707 kmem_cache_destroy(btrfs_trans_handle_cachep); 2708 } 2709