xref: /linux/fs/btrfs/transaction.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 
30 #define BTRFS_ROOT_TRANS_TAG 0
31 
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 	WARN_ON(transaction->use_count == 0);
35 	transaction->use_count--;
36 	if (transaction->use_count == 0) {
37 		list_del_init(&transaction->list);
38 		memset(transaction, 0, sizeof(*transaction));
39 		kmem_cache_free(btrfs_transaction_cachep, transaction);
40 	}
41 }
42 
43 /*
44  * either allocate a new transaction or hop into the existing one
45  */
46 static noinline int join_transaction(struct btrfs_root *root)
47 {
48 	struct btrfs_transaction *cur_trans;
49 	cur_trans = root->fs_info->running_transaction;
50 	if (!cur_trans) {
51 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
52 					     GFP_NOFS);
53 		BUG_ON(!cur_trans);
54 		root->fs_info->generation++;
55 		cur_trans->num_writers = 1;
56 		cur_trans->num_joined = 0;
57 		cur_trans->transid = root->fs_info->generation;
58 		init_waitqueue_head(&cur_trans->writer_wait);
59 		init_waitqueue_head(&cur_trans->commit_wait);
60 		cur_trans->in_commit = 0;
61 		cur_trans->blocked = 0;
62 		cur_trans->use_count = 1;
63 		cur_trans->commit_done = 0;
64 		cur_trans->start_time = get_seconds();
65 
66 		cur_trans->delayed_refs.root.rb_node = NULL;
67 		cur_trans->delayed_refs.num_entries = 0;
68 		cur_trans->delayed_refs.num_heads_ready = 0;
69 		cur_trans->delayed_refs.num_heads = 0;
70 		cur_trans->delayed_refs.flushing = 0;
71 		cur_trans->delayed_refs.run_delayed_start = 0;
72 		spin_lock_init(&cur_trans->delayed_refs.lock);
73 
74 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76 		extent_io_tree_init(&cur_trans->dirty_pages,
77 				     root->fs_info->btree_inode->i_mapping,
78 				     GFP_NOFS);
79 		spin_lock(&root->fs_info->new_trans_lock);
80 		root->fs_info->running_transaction = cur_trans;
81 		spin_unlock(&root->fs_info->new_trans_lock);
82 	} else {
83 		cur_trans->num_writers++;
84 		cur_trans->num_joined++;
85 	}
86 
87 	return 0;
88 }
89 
90 /*
91  * this does all the record keeping required to make sure that a reference
92  * counted root is properly recorded in a given transaction.  This is required
93  * to make sure the old root from before we joined the transaction is deleted
94  * when the transaction commits
95  */
96 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
97 					 struct btrfs_root *root)
98 {
99 	if (root->ref_cows && root->last_trans < trans->transid) {
100 		WARN_ON(root == root->fs_info->extent_root);
101 		WARN_ON(root->root_item.refs == 0);
102 		WARN_ON(root->commit_root != root->node);
103 
104 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105 			   (unsigned long)root->root_key.objectid,
106 			   BTRFS_ROOT_TRANS_TAG);
107 		root->last_trans = trans->transid;
108 		btrfs_init_reloc_root(trans, root);
109 	}
110 	return 0;
111 }
112 
113 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
114 			       struct btrfs_root *root)
115 {
116 	if (!root->ref_cows)
117 		return 0;
118 
119 	mutex_lock(&root->fs_info->trans_mutex);
120 	if (root->last_trans == trans->transid) {
121 		mutex_unlock(&root->fs_info->trans_mutex);
122 		return 0;
123 	}
124 
125 	record_root_in_trans(trans, root);
126 	mutex_unlock(&root->fs_info->trans_mutex);
127 	return 0;
128 }
129 
130 /* wait for commit against the current transaction to become unblocked
131  * when this is done, it is safe to start a new transaction, but the current
132  * transaction might not be fully on disk.
133  */
134 static void wait_current_trans(struct btrfs_root *root)
135 {
136 	struct btrfs_transaction *cur_trans;
137 
138 	cur_trans = root->fs_info->running_transaction;
139 	if (cur_trans && cur_trans->blocked) {
140 		DEFINE_WAIT(wait);
141 		cur_trans->use_count++;
142 		while (1) {
143 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
144 					TASK_UNINTERRUPTIBLE);
145 			if (cur_trans->blocked) {
146 				mutex_unlock(&root->fs_info->trans_mutex);
147 				schedule();
148 				mutex_lock(&root->fs_info->trans_mutex);
149 				finish_wait(&root->fs_info->transaction_wait,
150 					    &wait);
151 			} else {
152 				finish_wait(&root->fs_info->transaction_wait,
153 					    &wait);
154 				break;
155 			}
156 		}
157 		put_transaction(cur_trans);
158 	}
159 }
160 
161 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
162 					     int num_blocks, int wait)
163 {
164 	struct btrfs_trans_handle *h =
165 		kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
166 	int ret;
167 
168 	mutex_lock(&root->fs_info->trans_mutex);
169 	if (!root->fs_info->log_root_recovering &&
170 	    ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
171 		wait_current_trans(root);
172 	ret = join_transaction(root);
173 	BUG_ON(ret);
174 
175 	h->transid = root->fs_info->running_transaction->transid;
176 	h->transaction = root->fs_info->running_transaction;
177 	h->blocks_reserved = num_blocks;
178 	h->blocks_used = 0;
179 	h->block_group = 0;
180 	h->alloc_exclude_nr = 0;
181 	h->alloc_exclude_start = 0;
182 	h->delayed_ref_updates = 0;
183 
184 	root->fs_info->running_transaction->use_count++;
185 	record_root_in_trans(h, root);
186 	mutex_unlock(&root->fs_info->trans_mutex);
187 	return h;
188 }
189 
190 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
191 						   int num_blocks)
192 {
193 	return start_transaction(root, num_blocks, 1);
194 }
195 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
196 						   int num_blocks)
197 {
198 	return start_transaction(root, num_blocks, 0);
199 }
200 
201 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
202 							 int num_blocks)
203 {
204 	return start_transaction(r, num_blocks, 2);
205 }
206 
207 /* wait for a transaction commit to be fully complete */
208 static noinline int wait_for_commit(struct btrfs_root *root,
209 				    struct btrfs_transaction *commit)
210 {
211 	DEFINE_WAIT(wait);
212 	mutex_lock(&root->fs_info->trans_mutex);
213 	while (!commit->commit_done) {
214 		prepare_to_wait(&commit->commit_wait, &wait,
215 				TASK_UNINTERRUPTIBLE);
216 		if (commit->commit_done)
217 			break;
218 		mutex_unlock(&root->fs_info->trans_mutex);
219 		schedule();
220 		mutex_lock(&root->fs_info->trans_mutex);
221 	}
222 	mutex_unlock(&root->fs_info->trans_mutex);
223 	finish_wait(&commit->commit_wait, &wait);
224 	return 0;
225 }
226 
227 #if 0
228 /*
229  * rate limit against the drop_snapshot code.  This helps to slow down new
230  * operations if the drop_snapshot code isn't able to keep up.
231  */
232 static void throttle_on_drops(struct btrfs_root *root)
233 {
234 	struct btrfs_fs_info *info = root->fs_info;
235 	int harder_count = 0;
236 
237 harder:
238 	if (atomic_read(&info->throttles)) {
239 		DEFINE_WAIT(wait);
240 		int thr;
241 		thr = atomic_read(&info->throttle_gen);
242 
243 		do {
244 			prepare_to_wait(&info->transaction_throttle,
245 					&wait, TASK_UNINTERRUPTIBLE);
246 			if (!atomic_read(&info->throttles)) {
247 				finish_wait(&info->transaction_throttle, &wait);
248 				break;
249 			}
250 			schedule();
251 			finish_wait(&info->transaction_throttle, &wait);
252 		} while (thr == atomic_read(&info->throttle_gen));
253 		harder_count++;
254 
255 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
256 		    harder_count < 2)
257 			goto harder;
258 
259 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
260 		    harder_count < 10)
261 			goto harder;
262 
263 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
264 		    harder_count < 20)
265 			goto harder;
266 	}
267 }
268 #endif
269 
270 void btrfs_throttle(struct btrfs_root *root)
271 {
272 	mutex_lock(&root->fs_info->trans_mutex);
273 	if (!root->fs_info->open_ioctl_trans)
274 		wait_current_trans(root);
275 	mutex_unlock(&root->fs_info->trans_mutex);
276 }
277 
278 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
279 			  struct btrfs_root *root, int throttle)
280 {
281 	struct btrfs_transaction *cur_trans;
282 	struct btrfs_fs_info *info = root->fs_info;
283 	int count = 0;
284 
285 	while (count < 4) {
286 		unsigned long cur = trans->delayed_ref_updates;
287 		trans->delayed_ref_updates = 0;
288 		if (cur &&
289 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
290 			trans->delayed_ref_updates = 0;
291 
292 			/*
293 			 * do a full flush if the transaction is trying
294 			 * to close
295 			 */
296 			if (trans->transaction->delayed_refs.flushing)
297 				cur = 0;
298 			btrfs_run_delayed_refs(trans, root, cur);
299 		} else {
300 			break;
301 		}
302 		count++;
303 	}
304 
305 	mutex_lock(&info->trans_mutex);
306 	cur_trans = info->running_transaction;
307 	WARN_ON(cur_trans != trans->transaction);
308 	WARN_ON(cur_trans->num_writers < 1);
309 	cur_trans->num_writers--;
310 
311 	if (waitqueue_active(&cur_trans->writer_wait))
312 		wake_up(&cur_trans->writer_wait);
313 	put_transaction(cur_trans);
314 	mutex_unlock(&info->trans_mutex);
315 	memset(trans, 0, sizeof(*trans));
316 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
317 
318 	return 0;
319 }
320 
321 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
322 			  struct btrfs_root *root)
323 {
324 	return __btrfs_end_transaction(trans, root, 0);
325 }
326 
327 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
328 				   struct btrfs_root *root)
329 {
330 	return __btrfs_end_transaction(trans, root, 1);
331 }
332 
333 /*
334  * when btree blocks are allocated, they have some corresponding bits set for
335  * them in one of two extent_io trees.  This is used to make sure all of
336  * those extents are on disk for transaction or log commit
337  */
338 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
339 					struct extent_io_tree *dirty_pages)
340 {
341 	int ret;
342 	int err = 0;
343 	int werr = 0;
344 	struct page *page;
345 	struct inode *btree_inode = root->fs_info->btree_inode;
346 	u64 start = 0;
347 	u64 end;
348 	unsigned long index;
349 
350 	while (1) {
351 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
352 					    EXTENT_DIRTY);
353 		if (ret)
354 			break;
355 		while (start <= end) {
356 			cond_resched();
357 
358 			index = start >> PAGE_CACHE_SHIFT;
359 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
360 			page = find_get_page(btree_inode->i_mapping, index);
361 			if (!page)
362 				continue;
363 
364 			btree_lock_page_hook(page);
365 			if (!page->mapping) {
366 				unlock_page(page);
367 				page_cache_release(page);
368 				continue;
369 			}
370 
371 			if (PageWriteback(page)) {
372 				if (PageDirty(page))
373 					wait_on_page_writeback(page);
374 				else {
375 					unlock_page(page);
376 					page_cache_release(page);
377 					continue;
378 				}
379 			}
380 			err = write_one_page(page, 0);
381 			if (err)
382 				werr = err;
383 			page_cache_release(page);
384 		}
385 	}
386 	while (1) {
387 		ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
388 					    EXTENT_DIRTY);
389 		if (ret)
390 			break;
391 
392 		clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
393 		while (start <= end) {
394 			index = start >> PAGE_CACHE_SHIFT;
395 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
396 			page = find_get_page(btree_inode->i_mapping, index);
397 			if (!page)
398 				continue;
399 			if (PageDirty(page)) {
400 				btree_lock_page_hook(page);
401 				wait_on_page_writeback(page);
402 				err = write_one_page(page, 0);
403 				if (err)
404 					werr = err;
405 			}
406 			wait_on_page_writeback(page);
407 			page_cache_release(page);
408 			cond_resched();
409 		}
410 	}
411 	if (err)
412 		werr = err;
413 	return werr;
414 }
415 
416 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
417 				     struct btrfs_root *root)
418 {
419 	if (!trans || !trans->transaction) {
420 		struct inode *btree_inode;
421 		btree_inode = root->fs_info->btree_inode;
422 		return filemap_write_and_wait(btree_inode->i_mapping);
423 	}
424 	return btrfs_write_and_wait_marked_extents(root,
425 					   &trans->transaction->dirty_pages);
426 }
427 
428 /*
429  * this is used to update the root pointer in the tree of tree roots.
430  *
431  * But, in the case of the extent allocation tree, updating the root
432  * pointer may allocate blocks which may change the root of the extent
433  * allocation tree.
434  *
435  * So, this loops and repeats and makes sure the cowonly root didn't
436  * change while the root pointer was being updated in the metadata.
437  */
438 static int update_cowonly_root(struct btrfs_trans_handle *trans,
439 			       struct btrfs_root *root)
440 {
441 	int ret;
442 	u64 old_root_bytenr;
443 	struct btrfs_root *tree_root = root->fs_info->tree_root;
444 
445 	btrfs_write_dirty_block_groups(trans, root);
446 
447 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
448 	BUG_ON(ret);
449 
450 	while (1) {
451 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
452 		if (old_root_bytenr == root->node->start)
453 			break;
454 
455 		btrfs_set_root_node(&root->root_item, root->node);
456 		ret = btrfs_update_root(trans, tree_root,
457 					&root->root_key,
458 					&root->root_item);
459 		BUG_ON(ret);
460 		btrfs_write_dirty_block_groups(trans, root);
461 
462 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
463 		BUG_ON(ret);
464 	}
465 	free_extent_buffer(root->commit_root);
466 	root->commit_root = btrfs_root_node(root);
467 	return 0;
468 }
469 
470 /*
471  * update all the cowonly tree roots on disk
472  */
473 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
474 					 struct btrfs_root *root)
475 {
476 	struct btrfs_fs_info *fs_info = root->fs_info;
477 	struct list_head *next;
478 	struct extent_buffer *eb;
479 	int ret;
480 
481 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
482 	BUG_ON(ret);
483 
484 	eb = btrfs_lock_root_node(fs_info->tree_root);
485 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
486 	btrfs_tree_unlock(eb);
487 	free_extent_buffer(eb);
488 
489 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
490 	BUG_ON(ret);
491 
492 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
493 		next = fs_info->dirty_cowonly_roots.next;
494 		list_del_init(next);
495 		root = list_entry(next, struct btrfs_root, dirty_list);
496 
497 		update_cowonly_root(trans, root);
498 
499 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
500 		BUG_ON(ret);
501 	}
502 	return 0;
503 }
504 
505 /*
506  * dead roots are old snapshots that need to be deleted.  This allocates
507  * a dirty root struct and adds it into the list of dead roots that need to
508  * be deleted
509  */
510 int btrfs_add_dead_root(struct btrfs_root *root)
511 {
512 	mutex_lock(&root->fs_info->trans_mutex);
513 	list_add(&root->root_list, &root->fs_info->dead_roots);
514 	mutex_unlock(&root->fs_info->trans_mutex);
515 	return 0;
516 }
517 
518 /*
519  * update all the cowonly tree roots on disk
520  */
521 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
522 				    struct btrfs_root *root)
523 {
524 	struct btrfs_root *gang[8];
525 	struct btrfs_fs_info *fs_info = root->fs_info;
526 	int i;
527 	int ret;
528 	int err = 0;
529 
530 	while (1) {
531 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
532 						 (void **)gang, 0,
533 						 ARRAY_SIZE(gang),
534 						 BTRFS_ROOT_TRANS_TAG);
535 		if (ret == 0)
536 			break;
537 		for (i = 0; i < ret; i++) {
538 			root = gang[i];
539 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
540 					(unsigned long)root->root_key.objectid,
541 					BTRFS_ROOT_TRANS_TAG);
542 
543 			btrfs_free_log(trans, root);
544 			btrfs_update_reloc_root(trans, root);
545 
546 			if (root->commit_root != root->node) {
547 				free_extent_buffer(root->commit_root);
548 				root->commit_root = btrfs_root_node(root);
549 				btrfs_set_root_node(&root->root_item,
550 						    root->node);
551 			}
552 
553 			err = btrfs_update_root(trans, fs_info->tree_root,
554 						&root->root_key,
555 						&root->root_item);
556 			if (err)
557 				break;
558 		}
559 	}
560 	return err;
561 }
562 
563 /*
564  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
565  * otherwise every leaf in the btree is read and defragged.
566  */
567 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
568 {
569 	struct btrfs_fs_info *info = root->fs_info;
570 	int ret;
571 	struct btrfs_trans_handle *trans;
572 	unsigned long nr;
573 
574 	smp_mb();
575 	if (root->defrag_running)
576 		return 0;
577 	trans = btrfs_start_transaction(root, 1);
578 	while (1) {
579 		root->defrag_running = 1;
580 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
581 		nr = trans->blocks_used;
582 		btrfs_end_transaction(trans, root);
583 		btrfs_btree_balance_dirty(info->tree_root, nr);
584 		cond_resched();
585 
586 		trans = btrfs_start_transaction(root, 1);
587 		if (root->fs_info->closing || ret != -EAGAIN)
588 			break;
589 	}
590 	root->defrag_running = 0;
591 	smp_mb();
592 	btrfs_end_transaction(trans, root);
593 	return 0;
594 }
595 
596 #if 0
597 /*
598  * when dropping snapshots, we generate a ton of delayed refs, and it makes
599  * sense not to join the transaction while it is trying to flush the current
600  * queue of delayed refs out.
601  *
602  * This is used by the drop snapshot code only
603  */
604 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
605 {
606 	DEFINE_WAIT(wait);
607 
608 	mutex_lock(&info->trans_mutex);
609 	while (info->running_transaction &&
610 	       info->running_transaction->delayed_refs.flushing) {
611 		prepare_to_wait(&info->transaction_wait, &wait,
612 				TASK_UNINTERRUPTIBLE);
613 		mutex_unlock(&info->trans_mutex);
614 
615 		schedule();
616 
617 		mutex_lock(&info->trans_mutex);
618 		finish_wait(&info->transaction_wait, &wait);
619 	}
620 	mutex_unlock(&info->trans_mutex);
621 	return 0;
622 }
623 
624 /*
625  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
626  * all of them
627  */
628 int btrfs_drop_dead_root(struct btrfs_root *root)
629 {
630 	struct btrfs_trans_handle *trans;
631 	struct btrfs_root *tree_root = root->fs_info->tree_root;
632 	unsigned long nr;
633 	int ret;
634 
635 	while (1) {
636 		/*
637 		 * we don't want to jump in and create a bunch of
638 		 * delayed refs if the transaction is starting to close
639 		 */
640 		wait_transaction_pre_flush(tree_root->fs_info);
641 		trans = btrfs_start_transaction(tree_root, 1);
642 
643 		/*
644 		 * we've joined a transaction, make sure it isn't
645 		 * closing right now
646 		 */
647 		if (trans->transaction->delayed_refs.flushing) {
648 			btrfs_end_transaction(trans, tree_root);
649 			continue;
650 		}
651 
652 		ret = btrfs_drop_snapshot(trans, root);
653 		if (ret != -EAGAIN)
654 			break;
655 
656 		ret = btrfs_update_root(trans, tree_root,
657 					&root->root_key,
658 					&root->root_item);
659 		if (ret)
660 			break;
661 
662 		nr = trans->blocks_used;
663 		ret = btrfs_end_transaction(trans, tree_root);
664 		BUG_ON(ret);
665 
666 		btrfs_btree_balance_dirty(tree_root, nr);
667 		cond_resched();
668 	}
669 	BUG_ON(ret);
670 
671 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
672 	BUG_ON(ret);
673 
674 	nr = trans->blocks_used;
675 	ret = btrfs_end_transaction(trans, tree_root);
676 	BUG_ON(ret);
677 
678 	free_extent_buffer(root->node);
679 	free_extent_buffer(root->commit_root);
680 	kfree(root);
681 
682 	btrfs_btree_balance_dirty(tree_root, nr);
683 	return ret;
684 }
685 #endif
686 
687 /*
688  * new snapshots need to be created at a very specific time in the
689  * transaction commit.  This does the actual creation
690  */
691 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
692 				   struct btrfs_fs_info *fs_info,
693 				   struct btrfs_pending_snapshot *pending)
694 {
695 	struct btrfs_key key;
696 	struct btrfs_root_item *new_root_item;
697 	struct btrfs_root *tree_root = fs_info->tree_root;
698 	struct btrfs_root *root = pending->root;
699 	struct extent_buffer *tmp;
700 	struct extent_buffer *old;
701 	int ret;
702 	u64 objectid;
703 
704 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
705 	if (!new_root_item) {
706 		ret = -ENOMEM;
707 		goto fail;
708 	}
709 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
710 	if (ret)
711 		goto fail;
712 
713 	record_root_in_trans(trans, root);
714 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
715 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
716 
717 	key.objectid = objectid;
718 	key.offset = 0;
719 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
720 
721 	old = btrfs_lock_root_node(root);
722 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
723 	btrfs_set_lock_blocking(old);
724 
725 	btrfs_copy_root(trans, root, old, &tmp, objectid);
726 	btrfs_tree_unlock(old);
727 	free_extent_buffer(old);
728 
729 	btrfs_set_root_node(new_root_item, tmp);
730 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
731 				new_root_item);
732 	btrfs_tree_unlock(tmp);
733 	free_extent_buffer(tmp);
734 	if (ret)
735 		goto fail;
736 
737 	key.offset = (u64)-1;
738 	memcpy(&pending->root_key, &key, sizeof(key));
739 fail:
740 	kfree(new_root_item);
741 	return ret;
742 }
743 
744 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
745 				   struct btrfs_pending_snapshot *pending)
746 {
747 	int ret;
748 	int namelen;
749 	u64 index = 0;
750 	struct btrfs_trans_handle *trans;
751 	struct inode *parent_inode;
752 	struct inode *inode;
753 	struct btrfs_root *parent_root;
754 
755 	parent_inode = pending->dentry->d_parent->d_inode;
756 	parent_root = BTRFS_I(parent_inode)->root;
757 	trans = btrfs_join_transaction(parent_root, 1);
758 
759 	/*
760 	 * insert the directory item
761 	 */
762 	namelen = strlen(pending->name);
763 	ret = btrfs_set_inode_index(parent_inode, &index);
764 	ret = btrfs_insert_dir_item(trans, parent_root,
765 			    pending->name, namelen,
766 			    parent_inode->i_ino,
767 			    &pending->root_key, BTRFS_FT_DIR, index);
768 
769 	if (ret)
770 		goto fail;
771 
772 	btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
773 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
774 	BUG_ON(ret);
775 
776 	/* add the backref first */
777 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
778 				 pending->root_key.objectid,
779 				 BTRFS_ROOT_BACKREF_KEY,
780 				 parent_root->root_key.objectid,
781 				 parent_inode->i_ino, index, pending->name,
782 				 namelen);
783 
784 	BUG_ON(ret);
785 
786 	/* now add the forward ref */
787 	ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
788 				 parent_root->root_key.objectid,
789 				 BTRFS_ROOT_REF_KEY,
790 				 pending->root_key.objectid,
791 				 parent_inode->i_ino, index, pending->name,
792 				 namelen);
793 
794 	inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
795 	d_instantiate(pending->dentry, inode);
796 fail:
797 	btrfs_end_transaction(trans, fs_info->fs_root);
798 	return ret;
799 }
800 
801 /*
802  * create all the snapshots we've scheduled for creation
803  */
804 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
805 					     struct btrfs_fs_info *fs_info)
806 {
807 	struct btrfs_pending_snapshot *pending;
808 	struct list_head *head = &trans->transaction->pending_snapshots;
809 	int ret;
810 
811 	list_for_each_entry(pending, head, list) {
812 		ret = create_pending_snapshot(trans, fs_info, pending);
813 		BUG_ON(ret);
814 	}
815 	return 0;
816 }
817 
818 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
819 					     struct btrfs_fs_info *fs_info)
820 {
821 	struct btrfs_pending_snapshot *pending;
822 	struct list_head *head = &trans->transaction->pending_snapshots;
823 	int ret;
824 
825 	while (!list_empty(head)) {
826 		pending = list_entry(head->next,
827 				     struct btrfs_pending_snapshot, list);
828 		ret = finish_pending_snapshot(fs_info, pending);
829 		BUG_ON(ret);
830 		list_del(&pending->list);
831 		kfree(pending->name);
832 		kfree(pending);
833 	}
834 	return 0;
835 }
836 
837 static void update_super_roots(struct btrfs_root *root)
838 {
839 	struct btrfs_root_item *root_item;
840 	struct btrfs_super_block *super;
841 
842 	super = &root->fs_info->super_copy;
843 
844 	root_item = &root->fs_info->chunk_root->root_item;
845 	super->chunk_root = root_item->bytenr;
846 	super->chunk_root_generation = root_item->generation;
847 	super->chunk_root_level = root_item->level;
848 
849 	root_item = &root->fs_info->tree_root->root_item;
850 	super->root = root_item->bytenr;
851 	super->generation = root_item->generation;
852 	super->root_level = root_item->level;
853 }
854 
855 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
856 			     struct btrfs_root *root)
857 {
858 	unsigned long joined = 0;
859 	unsigned long timeout = 1;
860 	struct btrfs_transaction *cur_trans;
861 	struct btrfs_transaction *prev_trans = NULL;
862 	struct extent_io_tree *pinned_copy;
863 	DEFINE_WAIT(wait);
864 	int ret;
865 	int should_grow = 0;
866 	unsigned long now = get_seconds();
867 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
868 
869 	btrfs_run_ordered_operations(root, 0);
870 
871 	/* make a pass through all the delayed refs we have so far
872 	 * any runnings procs may add more while we are here
873 	 */
874 	ret = btrfs_run_delayed_refs(trans, root, 0);
875 	BUG_ON(ret);
876 
877 	cur_trans = trans->transaction;
878 	/*
879 	 * set the flushing flag so procs in this transaction have to
880 	 * start sending their work down.
881 	 */
882 	cur_trans->delayed_refs.flushing = 1;
883 
884 	ret = btrfs_run_delayed_refs(trans, root, 0);
885 	BUG_ON(ret);
886 
887 	mutex_lock(&root->fs_info->trans_mutex);
888 	if (cur_trans->in_commit) {
889 		cur_trans->use_count++;
890 		mutex_unlock(&root->fs_info->trans_mutex);
891 		btrfs_end_transaction(trans, root);
892 
893 		ret = wait_for_commit(root, cur_trans);
894 		BUG_ON(ret);
895 
896 		mutex_lock(&root->fs_info->trans_mutex);
897 		put_transaction(cur_trans);
898 		mutex_unlock(&root->fs_info->trans_mutex);
899 
900 		return 0;
901 	}
902 
903 	pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
904 	if (!pinned_copy)
905 		return -ENOMEM;
906 
907 	extent_io_tree_init(pinned_copy,
908 			     root->fs_info->btree_inode->i_mapping, GFP_NOFS);
909 
910 	trans->transaction->in_commit = 1;
911 	trans->transaction->blocked = 1;
912 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
913 		prev_trans = list_entry(cur_trans->list.prev,
914 					struct btrfs_transaction, list);
915 		if (!prev_trans->commit_done) {
916 			prev_trans->use_count++;
917 			mutex_unlock(&root->fs_info->trans_mutex);
918 
919 			wait_for_commit(root, prev_trans);
920 
921 			mutex_lock(&root->fs_info->trans_mutex);
922 			put_transaction(prev_trans);
923 		}
924 	}
925 
926 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
927 		should_grow = 1;
928 
929 	do {
930 		int snap_pending = 0;
931 		joined = cur_trans->num_joined;
932 		if (!list_empty(&trans->transaction->pending_snapshots))
933 			snap_pending = 1;
934 
935 		WARN_ON(cur_trans != trans->transaction);
936 		prepare_to_wait(&cur_trans->writer_wait, &wait,
937 				TASK_UNINTERRUPTIBLE);
938 
939 		if (cur_trans->num_writers > 1)
940 			timeout = MAX_SCHEDULE_TIMEOUT;
941 		else if (should_grow)
942 			timeout = 1;
943 
944 		mutex_unlock(&root->fs_info->trans_mutex);
945 
946 		if (flush_on_commit || snap_pending) {
947 			if (flush_on_commit)
948 				btrfs_start_delalloc_inodes(root);
949 			ret = btrfs_wait_ordered_extents(root, 1);
950 			BUG_ON(ret);
951 		}
952 
953 		/*
954 		 * rename don't use btrfs_join_transaction, so, once we
955 		 * set the transaction to blocked above, we aren't going
956 		 * to get any new ordered operations.  We can safely run
957 		 * it here and no for sure that nothing new will be added
958 		 * to the list
959 		 */
960 		btrfs_run_ordered_operations(root, 1);
961 
962 		smp_mb();
963 		if (cur_trans->num_writers > 1 || should_grow)
964 			schedule_timeout(timeout);
965 
966 		mutex_lock(&root->fs_info->trans_mutex);
967 		finish_wait(&cur_trans->writer_wait, &wait);
968 	} while (cur_trans->num_writers > 1 ||
969 		 (should_grow && cur_trans->num_joined != joined));
970 
971 	ret = create_pending_snapshots(trans, root->fs_info);
972 	BUG_ON(ret);
973 
974 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
975 	BUG_ON(ret);
976 
977 	WARN_ON(cur_trans != trans->transaction);
978 
979 	/* btrfs_commit_tree_roots is responsible for getting the
980 	 * various roots consistent with each other.  Every pointer
981 	 * in the tree of tree roots has to point to the most up to date
982 	 * root for every subvolume and other tree.  So, we have to keep
983 	 * the tree logging code from jumping in and changing any
984 	 * of the trees.
985 	 *
986 	 * At this point in the commit, there can't be any tree-log
987 	 * writers, but a little lower down we drop the trans mutex
988 	 * and let new people in.  By holding the tree_log_mutex
989 	 * from now until after the super is written, we avoid races
990 	 * with the tree-log code.
991 	 */
992 	mutex_lock(&root->fs_info->tree_log_mutex);
993 
994 	ret = commit_fs_roots(trans, root);
995 	BUG_ON(ret);
996 
997 	/* commit_fs_roots gets rid of all the tree log roots, it is now
998 	 * safe to free the root of tree log roots
999 	 */
1000 	btrfs_free_log_root_tree(trans, root->fs_info);
1001 
1002 	ret = commit_cowonly_roots(trans, root);
1003 	BUG_ON(ret);
1004 
1005 	cur_trans = root->fs_info->running_transaction;
1006 	spin_lock(&root->fs_info->new_trans_lock);
1007 	root->fs_info->running_transaction = NULL;
1008 	spin_unlock(&root->fs_info->new_trans_lock);
1009 
1010 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1011 			    root->fs_info->tree_root->node);
1012 	free_extent_buffer(root->fs_info->tree_root->commit_root);
1013 	root->fs_info->tree_root->commit_root =
1014 				btrfs_root_node(root->fs_info->tree_root);
1015 
1016 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1017 			    root->fs_info->chunk_root->node);
1018 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
1019 	root->fs_info->chunk_root->commit_root =
1020 				btrfs_root_node(root->fs_info->chunk_root);
1021 
1022 	update_super_roots(root);
1023 
1024 	if (!root->fs_info->log_root_recovering) {
1025 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1026 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1027 	}
1028 
1029 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1030 	       sizeof(root->fs_info->super_copy));
1031 
1032 	btrfs_copy_pinned(root, pinned_copy);
1033 
1034 	trans->transaction->blocked = 0;
1035 
1036 	wake_up(&root->fs_info->transaction_wait);
1037 
1038 	mutex_unlock(&root->fs_info->trans_mutex);
1039 	ret = btrfs_write_and_wait_transaction(trans, root);
1040 	BUG_ON(ret);
1041 	write_ctree_super(trans, root, 0);
1042 
1043 	/*
1044 	 * the super is written, we can safely allow the tree-loggers
1045 	 * to go about their business
1046 	 */
1047 	mutex_unlock(&root->fs_info->tree_log_mutex);
1048 
1049 	btrfs_finish_extent_commit(trans, root, pinned_copy);
1050 	kfree(pinned_copy);
1051 
1052 	/* do the directory inserts of any pending snapshot creations */
1053 	finish_pending_snapshots(trans, root->fs_info);
1054 
1055 	mutex_lock(&root->fs_info->trans_mutex);
1056 
1057 	cur_trans->commit_done = 1;
1058 
1059 	root->fs_info->last_trans_committed = cur_trans->transid;
1060 	wake_up(&cur_trans->commit_wait);
1061 
1062 	put_transaction(cur_trans);
1063 	put_transaction(cur_trans);
1064 
1065 	mutex_unlock(&root->fs_info->trans_mutex);
1066 
1067 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1068 	return ret;
1069 }
1070 
1071 /*
1072  * interface function to delete all the snapshots we have scheduled for deletion
1073  */
1074 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1075 {
1076 	LIST_HEAD(list);
1077 	struct btrfs_fs_info *fs_info = root->fs_info;
1078 
1079 	mutex_lock(&fs_info->trans_mutex);
1080 	list_splice_init(&fs_info->dead_roots, &list);
1081 	mutex_unlock(&fs_info->trans_mutex);
1082 
1083 	while (!list_empty(&list)) {
1084 		root = list_entry(list.next, struct btrfs_root, root_list);
1085 		list_del_init(&root->root_list);
1086 		btrfs_drop_snapshot(root, 0);
1087 	}
1088 	return 0;
1089 }
1090