xref: /linux/fs/btrfs/transaction.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 
25 #define BTRFS_ROOT_TRANS_TAG 0
26 
27 /*
28  * Transaction states and transitions
29  *
30  * No running transaction (fs tree blocks are not modified)
31  * |
32  * | To next stage:
33  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34  * V
35  * Transaction N [[TRANS_STATE_RUNNING]]
36  * |
37  * | New trans handles can be attached to transaction N by calling all
38  * | start_transaction() variants.
39  * |
40  * | To next stage:
41  * |  Call btrfs_commit_transaction() on any trans handle attached to
42  * |  transaction N
43  * V
44  * Transaction N [[TRANS_STATE_COMMIT_START]]
45  * |
46  * | Will wait for previous running transaction to completely finish if there
47  * | is one
48  * |
49  * | Then one of the following happes:
50  * | - Wait for all other trans handle holders to release.
51  * |   The btrfs_commit_transaction() caller will do the commit work.
52  * | - Wait for current transaction to be committed by others.
53  * |   Other btrfs_commit_transaction() caller will do the commit work.
54  * |
55  * | At this stage, only btrfs_join_transaction*() variants can attach
56  * | to this running transaction.
57  * | All other variants will wait for current one to finish and attach to
58  * | transaction N+1.
59  * |
60  * | To next stage:
61  * |  Caller is chosen to commit transaction N, and all other trans handle
62  * |  haven been released.
63  * V
64  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65  * |
66  * | The heavy lifting transaction work is started.
67  * | From running delayed refs (modifying extent tree) to creating pending
68  * | snapshots, running qgroups.
69  * | In short, modify supporting trees to reflect modifications of subvolume
70  * | trees.
71  * |
72  * | At this stage, all start_transaction() calls will wait for this
73  * | transaction to finish and attach to transaction N+1.
74  * |
75  * | To next stage:
76  * |  Until all supporting trees are updated.
77  * V
78  * Transaction N [[TRANS_STATE_UNBLOCKED]]
79  * |						    Transaction N+1
80  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
81  * | need to write them back to disk and update	    |
82  * | super blocks.				    |
83  * |						    |
84  * | At this stage, new transaction is allowed to   |
85  * | start.					    |
86  * | All new start_transaction() calls will be	    |
87  * | attached to transid N+1.			    |
88  * |						    |
89  * | To next stage:				    |
90  * |  Until all tree blocks are super blocks are    |
91  * |  written to block devices			    |
92  * V						    |
93  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
94  *   All tree blocks and super blocks are written.  Transaction N+1
95  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
96  *   data structures will be cleaned up.	    | Life goes on
97  */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 	[TRANS_STATE_RUNNING]		= 0U,
100 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
101 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
102 					   __TRANS_ATTACH |
103 					   __TRANS_JOIN |
104 					   __TRANS_JOIN_NOSTART),
105 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
106 					   __TRANS_ATTACH |
107 					   __TRANS_JOIN |
108 					   __TRANS_JOIN_NOLOCK |
109 					   __TRANS_JOIN_NOSTART),
110 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
111 					   __TRANS_ATTACH |
112 					   __TRANS_JOIN |
113 					   __TRANS_JOIN_NOLOCK |
114 					   __TRANS_JOIN_NOSTART),
115 };
116 
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119 	WARN_ON(refcount_read(&transaction->use_count) == 0);
120 	if (refcount_dec_and_test(&transaction->use_count)) {
121 		BUG_ON(!list_empty(&transaction->list));
122 		WARN_ON(!RB_EMPTY_ROOT(
123 				&transaction->delayed_refs.href_root.rb_root));
124 		if (transaction->delayed_refs.pending_csums)
125 			btrfs_err(transaction->fs_info,
126 				  "pending csums is %llu",
127 				  transaction->delayed_refs.pending_csums);
128 		/*
129 		 * If any block groups are found in ->deleted_bgs then it's
130 		 * because the transaction was aborted and a commit did not
131 		 * happen (things failed before writing the new superblock
132 		 * and calling btrfs_finish_extent_commit()), so we can not
133 		 * discard the physical locations of the block groups.
134 		 */
135 		while (!list_empty(&transaction->deleted_bgs)) {
136 			struct btrfs_block_group *cache;
137 
138 			cache = list_first_entry(&transaction->deleted_bgs,
139 						 struct btrfs_block_group,
140 						 bg_list);
141 			list_del_init(&cache->bg_list);
142 			btrfs_put_block_group_trimming(cache);
143 			btrfs_put_block_group(cache);
144 		}
145 		WARN_ON(!list_empty(&transaction->dev_update_list));
146 		kfree(transaction);
147 	}
148 }
149 
150 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
151 {
152 	struct btrfs_transaction *cur_trans = trans->transaction;
153 	struct btrfs_fs_info *fs_info = trans->fs_info;
154 	struct btrfs_root *root, *tmp;
155 
156 	down_write(&fs_info->commit_root_sem);
157 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
158 				 dirty_list) {
159 		list_del_init(&root->dirty_list);
160 		free_extent_buffer(root->commit_root);
161 		root->commit_root = btrfs_root_node(root);
162 		if (is_fstree(root->root_key.objectid))
163 			btrfs_unpin_free_ino(root);
164 		extent_io_tree_release(&root->dirty_log_pages);
165 		btrfs_qgroup_clean_swapped_blocks(root);
166 	}
167 
168 	/* We can free old roots now. */
169 	spin_lock(&cur_trans->dropped_roots_lock);
170 	while (!list_empty(&cur_trans->dropped_roots)) {
171 		root = list_first_entry(&cur_trans->dropped_roots,
172 					struct btrfs_root, root_list);
173 		list_del_init(&root->root_list);
174 		spin_unlock(&cur_trans->dropped_roots_lock);
175 		btrfs_free_log(trans, root);
176 		btrfs_drop_and_free_fs_root(fs_info, root);
177 		spin_lock(&cur_trans->dropped_roots_lock);
178 	}
179 	spin_unlock(&cur_trans->dropped_roots_lock);
180 	up_write(&fs_info->commit_root_sem);
181 }
182 
183 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
184 					 unsigned int type)
185 {
186 	if (type & TRANS_EXTWRITERS)
187 		atomic_inc(&trans->num_extwriters);
188 }
189 
190 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
191 					 unsigned int type)
192 {
193 	if (type & TRANS_EXTWRITERS)
194 		atomic_dec(&trans->num_extwriters);
195 }
196 
197 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
198 					  unsigned int type)
199 {
200 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
201 }
202 
203 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
204 {
205 	return atomic_read(&trans->num_extwriters);
206 }
207 
208 /*
209  * To be called after all the new block groups attached to the transaction
210  * handle have been created (btrfs_create_pending_block_groups()).
211  */
212 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
213 {
214 	struct btrfs_fs_info *fs_info = trans->fs_info;
215 
216 	if (!trans->chunk_bytes_reserved)
217 		return;
218 
219 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
220 
221 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
222 				trans->chunk_bytes_reserved);
223 	trans->chunk_bytes_reserved = 0;
224 }
225 
226 /*
227  * either allocate a new transaction or hop into the existing one
228  */
229 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
230 				     unsigned int type)
231 {
232 	struct btrfs_transaction *cur_trans;
233 
234 	spin_lock(&fs_info->trans_lock);
235 loop:
236 	/* The file system has been taken offline. No new transactions. */
237 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
238 		spin_unlock(&fs_info->trans_lock);
239 		return -EROFS;
240 	}
241 
242 	cur_trans = fs_info->running_transaction;
243 	if (cur_trans) {
244 		if (cur_trans->aborted) {
245 			spin_unlock(&fs_info->trans_lock);
246 			return cur_trans->aborted;
247 		}
248 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
249 			spin_unlock(&fs_info->trans_lock);
250 			return -EBUSY;
251 		}
252 		refcount_inc(&cur_trans->use_count);
253 		atomic_inc(&cur_trans->num_writers);
254 		extwriter_counter_inc(cur_trans, type);
255 		spin_unlock(&fs_info->trans_lock);
256 		return 0;
257 	}
258 	spin_unlock(&fs_info->trans_lock);
259 
260 	/*
261 	 * If we are ATTACH, we just want to catch the current transaction,
262 	 * and commit it. If there is no transaction, just return ENOENT.
263 	 */
264 	if (type == TRANS_ATTACH)
265 		return -ENOENT;
266 
267 	/*
268 	 * JOIN_NOLOCK only happens during the transaction commit, so
269 	 * it is impossible that ->running_transaction is NULL
270 	 */
271 	BUG_ON(type == TRANS_JOIN_NOLOCK);
272 
273 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
274 	if (!cur_trans)
275 		return -ENOMEM;
276 
277 	spin_lock(&fs_info->trans_lock);
278 	if (fs_info->running_transaction) {
279 		/*
280 		 * someone started a transaction after we unlocked.  Make sure
281 		 * to redo the checks above
282 		 */
283 		kfree(cur_trans);
284 		goto loop;
285 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
286 		spin_unlock(&fs_info->trans_lock);
287 		kfree(cur_trans);
288 		return -EROFS;
289 	}
290 
291 	cur_trans->fs_info = fs_info;
292 	atomic_set(&cur_trans->num_writers, 1);
293 	extwriter_counter_init(cur_trans, type);
294 	init_waitqueue_head(&cur_trans->writer_wait);
295 	init_waitqueue_head(&cur_trans->commit_wait);
296 	cur_trans->state = TRANS_STATE_RUNNING;
297 	/*
298 	 * One for this trans handle, one so it will live on until we
299 	 * commit the transaction.
300 	 */
301 	refcount_set(&cur_trans->use_count, 2);
302 	cur_trans->flags = 0;
303 	cur_trans->start_time = ktime_get_seconds();
304 
305 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
306 
307 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
308 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
309 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
310 
311 	/*
312 	 * although the tree mod log is per file system and not per transaction,
313 	 * the log must never go across transaction boundaries.
314 	 */
315 	smp_mb();
316 	if (!list_empty(&fs_info->tree_mod_seq_list))
317 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
318 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
319 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
320 	atomic64_set(&fs_info->tree_mod_seq, 0);
321 
322 	spin_lock_init(&cur_trans->delayed_refs.lock);
323 
324 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
325 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
326 	INIT_LIST_HEAD(&cur_trans->switch_commits);
327 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
328 	INIT_LIST_HEAD(&cur_trans->io_bgs);
329 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
330 	mutex_init(&cur_trans->cache_write_mutex);
331 	spin_lock_init(&cur_trans->dirty_bgs_lock);
332 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
333 	spin_lock_init(&cur_trans->dropped_roots_lock);
334 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
335 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
336 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
337 	fs_info->generation++;
338 	cur_trans->transid = fs_info->generation;
339 	fs_info->running_transaction = cur_trans;
340 	cur_trans->aborted = 0;
341 	spin_unlock(&fs_info->trans_lock);
342 
343 	return 0;
344 }
345 
346 /*
347  * this does all the record keeping required to make sure that a reference
348  * counted root is properly recorded in a given transaction.  This is required
349  * to make sure the old root from before we joined the transaction is deleted
350  * when the transaction commits
351  */
352 static int record_root_in_trans(struct btrfs_trans_handle *trans,
353 			       struct btrfs_root *root,
354 			       int force)
355 {
356 	struct btrfs_fs_info *fs_info = root->fs_info;
357 
358 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
359 	    root->last_trans < trans->transid) || force) {
360 		WARN_ON(root == fs_info->extent_root);
361 		WARN_ON(!force && root->commit_root != root->node);
362 
363 		/*
364 		 * see below for IN_TRANS_SETUP usage rules
365 		 * we have the reloc mutex held now, so there
366 		 * is only one writer in this function
367 		 */
368 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 
370 		/* make sure readers find IN_TRANS_SETUP before
371 		 * they find our root->last_trans update
372 		 */
373 		smp_wmb();
374 
375 		spin_lock(&fs_info->fs_roots_radix_lock);
376 		if (root->last_trans == trans->transid && !force) {
377 			spin_unlock(&fs_info->fs_roots_radix_lock);
378 			return 0;
379 		}
380 		radix_tree_tag_set(&fs_info->fs_roots_radix,
381 				   (unsigned long)root->root_key.objectid,
382 				   BTRFS_ROOT_TRANS_TAG);
383 		spin_unlock(&fs_info->fs_roots_radix_lock);
384 		root->last_trans = trans->transid;
385 
386 		/* this is pretty tricky.  We don't want to
387 		 * take the relocation lock in btrfs_record_root_in_trans
388 		 * unless we're really doing the first setup for this root in
389 		 * this transaction.
390 		 *
391 		 * Normally we'd use root->last_trans as a flag to decide
392 		 * if we want to take the expensive mutex.
393 		 *
394 		 * But, we have to set root->last_trans before we
395 		 * init the relocation root, otherwise, we trip over warnings
396 		 * in ctree.c.  The solution used here is to flag ourselves
397 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
398 		 * fixing up the reloc trees and everyone must wait.
399 		 *
400 		 * When this is zero, they can trust root->last_trans and fly
401 		 * through btrfs_record_root_in_trans without having to take the
402 		 * lock.  smp_wmb() makes sure that all the writes above are
403 		 * done before we pop in the zero below
404 		 */
405 		btrfs_init_reloc_root(trans, root);
406 		smp_mb__before_atomic();
407 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
408 	}
409 	return 0;
410 }
411 
412 
413 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
414 			    struct btrfs_root *root)
415 {
416 	struct btrfs_fs_info *fs_info = root->fs_info;
417 	struct btrfs_transaction *cur_trans = trans->transaction;
418 
419 	/* Add ourselves to the transaction dropped list */
420 	spin_lock(&cur_trans->dropped_roots_lock);
421 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
422 	spin_unlock(&cur_trans->dropped_roots_lock);
423 
424 	/* Make sure we don't try to update the root at commit time */
425 	spin_lock(&fs_info->fs_roots_radix_lock);
426 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
427 			     (unsigned long)root->root_key.objectid,
428 			     BTRFS_ROOT_TRANS_TAG);
429 	spin_unlock(&fs_info->fs_roots_radix_lock);
430 }
431 
432 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
433 			       struct btrfs_root *root)
434 {
435 	struct btrfs_fs_info *fs_info = root->fs_info;
436 
437 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
438 		return 0;
439 
440 	/*
441 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
442 	 * and barriers
443 	 */
444 	smp_rmb();
445 	if (root->last_trans == trans->transid &&
446 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
447 		return 0;
448 
449 	mutex_lock(&fs_info->reloc_mutex);
450 	record_root_in_trans(trans, root, 0);
451 	mutex_unlock(&fs_info->reloc_mutex);
452 
453 	return 0;
454 }
455 
456 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
457 {
458 	return (trans->state >= TRANS_STATE_COMMIT_START &&
459 		trans->state < TRANS_STATE_UNBLOCKED &&
460 		!trans->aborted);
461 }
462 
463 /* wait for commit against the current transaction to become unblocked
464  * when this is done, it is safe to start a new transaction, but the current
465  * transaction might not be fully on disk.
466  */
467 static void wait_current_trans(struct btrfs_fs_info *fs_info)
468 {
469 	struct btrfs_transaction *cur_trans;
470 
471 	spin_lock(&fs_info->trans_lock);
472 	cur_trans = fs_info->running_transaction;
473 	if (cur_trans && is_transaction_blocked(cur_trans)) {
474 		refcount_inc(&cur_trans->use_count);
475 		spin_unlock(&fs_info->trans_lock);
476 
477 		wait_event(fs_info->transaction_wait,
478 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
479 			   cur_trans->aborted);
480 		btrfs_put_transaction(cur_trans);
481 	} else {
482 		spin_unlock(&fs_info->trans_lock);
483 	}
484 }
485 
486 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
487 {
488 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
489 		return 0;
490 
491 	if (type == TRANS_START)
492 		return 1;
493 
494 	return 0;
495 }
496 
497 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
498 {
499 	struct btrfs_fs_info *fs_info = root->fs_info;
500 
501 	if (!fs_info->reloc_ctl ||
502 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
503 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
504 	    root->reloc_root)
505 		return false;
506 
507 	return true;
508 }
509 
510 static struct btrfs_trans_handle *
511 start_transaction(struct btrfs_root *root, unsigned int num_items,
512 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
513 		  bool enforce_qgroups)
514 {
515 	struct btrfs_fs_info *fs_info = root->fs_info;
516 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
517 	struct btrfs_trans_handle *h;
518 	struct btrfs_transaction *cur_trans;
519 	u64 num_bytes = 0;
520 	u64 qgroup_reserved = 0;
521 	bool reloc_reserved = false;
522 	int ret;
523 
524 	/* Send isn't supposed to start transactions. */
525 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
526 
527 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
528 		return ERR_PTR(-EROFS);
529 
530 	if (current->journal_info) {
531 		WARN_ON(type & TRANS_EXTWRITERS);
532 		h = current->journal_info;
533 		refcount_inc(&h->use_count);
534 		WARN_ON(refcount_read(&h->use_count) > 2);
535 		h->orig_rsv = h->block_rsv;
536 		h->block_rsv = NULL;
537 		goto got_it;
538 	}
539 
540 	/*
541 	 * Do the reservation before we join the transaction so we can do all
542 	 * the appropriate flushing if need be.
543 	 */
544 	if (num_items && root != fs_info->chunk_root) {
545 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
546 		u64 delayed_refs_bytes = 0;
547 
548 		qgroup_reserved = num_items * fs_info->nodesize;
549 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
550 				enforce_qgroups);
551 		if (ret)
552 			return ERR_PTR(ret);
553 
554 		/*
555 		 * We want to reserve all the bytes we may need all at once, so
556 		 * we only do 1 enospc flushing cycle per transaction start.  We
557 		 * accomplish this by simply assuming we'll do 2 x num_items
558 		 * worth of delayed refs updates in this trans handle, and
559 		 * refill that amount for whatever is missing in the reserve.
560 		 */
561 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
562 		if (delayed_refs_rsv->full == 0) {
563 			delayed_refs_bytes = num_bytes;
564 			num_bytes <<= 1;
565 		}
566 
567 		/*
568 		 * Do the reservation for the relocation root creation
569 		 */
570 		if (need_reserve_reloc_root(root)) {
571 			num_bytes += fs_info->nodesize;
572 			reloc_reserved = true;
573 		}
574 
575 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
576 		if (ret)
577 			goto reserve_fail;
578 		if (delayed_refs_bytes) {
579 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
580 							  delayed_refs_bytes);
581 			num_bytes -= delayed_refs_bytes;
582 		}
583 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
584 		   !delayed_refs_rsv->full) {
585 		/*
586 		 * Some people call with btrfs_start_transaction(root, 0)
587 		 * because they can be throttled, but have some other mechanism
588 		 * for reserving space.  We still want these guys to refill the
589 		 * delayed block_rsv so just add 1 items worth of reservation
590 		 * here.
591 		 */
592 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
593 		if (ret)
594 			goto reserve_fail;
595 	}
596 again:
597 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
598 	if (!h) {
599 		ret = -ENOMEM;
600 		goto alloc_fail;
601 	}
602 
603 	/*
604 	 * If we are JOIN_NOLOCK we're already committing a transaction and
605 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
606 	 * because we're already holding a ref.  We need this because we could
607 	 * have raced in and did an fsync() on a file which can kick a commit
608 	 * and then we deadlock with somebody doing a freeze.
609 	 *
610 	 * If we are ATTACH, it means we just want to catch the current
611 	 * transaction and commit it, so we needn't do sb_start_intwrite().
612 	 */
613 	if (type & __TRANS_FREEZABLE)
614 		sb_start_intwrite(fs_info->sb);
615 
616 	if (may_wait_transaction(fs_info, type))
617 		wait_current_trans(fs_info);
618 
619 	do {
620 		ret = join_transaction(fs_info, type);
621 		if (ret == -EBUSY) {
622 			wait_current_trans(fs_info);
623 			if (unlikely(type == TRANS_ATTACH ||
624 				     type == TRANS_JOIN_NOSTART))
625 				ret = -ENOENT;
626 		}
627 	} while (ret == -EBUSY);
628 
629 	if (ret < 0)
630 		goto join_fail;
631 
632 	cur_trans = fs_info->running_transaction;
633 
634 	h->transid = cur_trans->transid;
635 	h->transaction = cur_trans;
636 	h->root = root;
637 	refcount_set(&h->use_count, 1);
638 	h->fs_info = root->fs_info;
639 
640 	h->type = type;
641 	h->can_flush_pending_bgs = true;
642 	INIT_LIST_HEAD(&h->new_bgs);
643 
644 	smp_mb();
645 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
646 	    may_wait_transaction(fs_info, type)) {
647 		current->journal_info = h;
648 		btrfs_commit_transaction(h);
649 		goto again;
650 	}
651 
652 	if (num_bytes) {
653 		trace_btrfs_space_reservation(fs_info, "transaction",
654 					      h->transid, num_bytes, 1);
655 		h->block_rsv = &fs_info->trans_block_rsv;
656 		h->bytes_reserved = num_bytes;
657 		h->reloc_reserved = reloc_reserved;
658 	}
659 
660 got_it:
661 	btrfs_record_root_in_trans(h, root);
662 
663 	if (!current->journal_info)
664 		current->journal_info = h;
665 	return h;
666 
667 join_fail:
668 	if (type & __TRANS_FREEZABLE)
669 		sb_end_intwrite(fs_info->sb);
670 	kmem_cache_free(btrfs_trans_handle_cachep, h);
671 alloc_fail:
672 	if (num_bytes)
673 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
674 					num_bytes);
675 reserve_fail:
676 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
677 	return ERR_PTR(ret);
678 }
679 
680 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
681 						   unsigned int num_items)
682 {
683 	return start_transaction(root, num_items, TRANS_START,
684 				 BTRFS_RESERVE_FLUSH_ALL, true);
685 }
686 
687 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
688 					struct btrfs_root *root,
689 					unsigned int num_items,
690 					int min_factor)
691 {
692 	struct btrfs_fs_info *fs_info = root->fs_info;
693 	struct btrfs_trans_handle *trans;
694 	u64 num_bytes;
695 	int ret;
696 
697 	/*
698 	 * We have two callers: unlink and block group removal.  The
699 	 * former should succeed even if we will temporarily exceed
700 	 * quota and the latter operates on the extent root so
701 	 * qgroup enforcement is ignored anyway.
702 	 */
703 	trans = start_transaction(root, num_items, TRANS_START,
704 				  BTRFS_RESERVE_FLUSH_ALL, false);
705 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
706 		return trans;
707 
708 	trans = btrfs_start_transaction(root, 0);
709 	if (IS_ERR(trans))
710 		return trans;
711 
712 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
713 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
714 				       num_bytes, min_factor);
715 	if (ret) {
716 		btrfs_end_transaction(trans);
717 		return ERR_PTR(ret);
718 	}
719 
720 	trans->block_rsv = &fs_info->trans_block_rsv;
721 	trans->bytes_reserved = num_bytes;
722 	trace_btrfs_space_reservation(fs_info, "transaction",
723 				      trans->transid, num_bytes, 1);
724 
725 	return trans;
726 }
727 
728 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
729 {
730 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
731 				 true);
732 }
733 
734 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
735 {
736 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
737 				 BTRFS_RESERVE_NO_FLUSH, true);
738 }
739 
740 /*
741  * Similar to regular join but it never starts a transaction when none is
742  * running or after waiting for the current one to finish.
743  */
744 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
745 {
746 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
747 				 BTRFS_RESERVE_NO_FLUSH, true);
748 }
749 
750 /*
751  * btrfs_attach_transaction() - catch the running transaction
752  *
753  * It is used when we want to commit the current the transaction, but
754  * don't want to start a new one.
755  *
756  * Note: If this function return -ENOENT, it just means there is no
757  * running transaction. But it is possible that the inactive transaction
758  * is still in the memory, not fully on disk. If you hope there is no
759  * inactive transaction in the fs when -ENOENT is returned, you should
760  * invoke
761  *     btrfs_attach_transaction_barrier()
762  */
763 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
764 {
765 	return start_transaction(root, 0, TRANS_ATTACH,
766 				 BTRFS_RESERVE_NO_FLUSH, true);
767 }
768 
769 /*
770  * btrfs_attach_transaction_barrier() - catch the running transaction
771  *
772  * It is similar to the above function, the difference is this one
773  * will wait for all the inactive transactions until they fully
774  * complete.
775  */
776 struct btrfs_trans_handle *
777 btrfs_attach_transaction_barrier(struct btrfs_root *root)
778 {
779 	struct btrfs_trans_handle *trans;
780 
781 	trans = start_transaction(root, 0, TRANS_ATTACH,
782 				  BTRFS_RESERVE_NO_FLUSH, true);
783 	if (trans == ERR_PTR(-ENOENT))
784 		btrfs_wait_for_commit(root->fs_info, 0);
785 
786 	return trans;
787 }
788 
789 /* wait for a transaction commit to be fully complete */
790 static noinline void wait_for_commit(struct btrfs_transaction *commit)
791 {
792 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
793 }
794 
795 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
796 {
797 	struct btrfs_transaction *cur_trans = NULL, *t;
798 	int ret = 0;
799 
800 	if (transid) {
801 		if (transid <= fs_info->last_trans_committed)
802 			goto out;
803 
804 		/* find specified transaction */
805 		spin_lock(&fs_info->trans_lock);
806 		list_for_each_entry(t, &fs_info->trans_list, list) {
807 			if (t->transid == transid) {
808 				cur_trans = t;
809 				refcount_inc(&cur_trans->use_count);
810 				ret = 0;
811 				break;
812 			}
813 			if (t->transid > transid) {
814 				ret = 0;
815 				break;
816 			}
817 		}
818 		spin_unlock(&fs_info->trans_lock);
819 
820 		/*
821 		 * The specified transaction doesn't exist, or we
822 		 * raced with btrfs_commit_transaction
823 		 */
824 		if (!cur_trans) {
825 			if (transid > fs_info->last_trans_committed)
826 				ret = -EINVAL;
827 			goto out;
828 		}
829 	} else {
830 		/* find newest transaction that is committing | committed */
831 		spin_lock(&fs_info->trans_lock);
832 		list_for_each_entry_reverse(t, &fs_info->trans_list,
833 					    list) {
834 			if (t->state >= TRANS_STATE_COMMIT_START) {
835 				if (t->state == TRANS_STATE_COMPLETED)
836 					break;
837 				cur_trans = t;
838 				refcount_inc(&cur_trans->use_count);
839 				break;
840 			}
841 		}
842 		spin_unlock(&fs_info->trans_lock);
843 		if (!cur_trans)
844 			goto out;  /* nothing committing|committed */
845 	}
846 
847 	wait_for_commit(cur_trans);
848 	btrfs_put_transaction(cur_trans);
849 out:
850 	return ret;
851 }
852 
853 void btrfs_throttle(struct btrfs_fs_info *fs_info)
854 {
855 	wait_current_trans(fs_info);
856 }
857 
858 static int should_end_transaction(struct btrfs_trans_handle *trans)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 
862 	if (btrfs_check_space_for_delayed_refs(fs_info))
863 		return 1;
864 
865 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
866 }
867 
868 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
869 {
870 	struct btrfs_transaction *cur_trans = trans->transaction;
871 
872 	smp_mb();
873 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
874 	    cur_trans->delayed_refs.flushing)
875 		return 1;
876 
877 	return should_end_transaction(trans);
878 }
879 
880 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
881 
882 {
883 	struct btrfs_fs_info *fs_info = trans->fs_info;
884 
885 	if (!trans->block_rsv) {
886 		ASSERT(!trans->bytes_reserved);
887 		return;
888 	}
889 
890 	if (!trans->bytes_reserved)
891 		return;
892 
893 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
894 	trace_btrfs_space_reservation(fs_info, "transaction",
895 				      trans->transid, trans->bytes_reserved, 0);
896 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
897 				trans->bytes_reserved);
898 	trans->bytes_reserved = 0;
899 }
900 
901 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
902 				   int throttle)
903 {
904 	struct btrfs_fs_info *info = trans->fs_info;
905 	struct btrfs_transaction *cur_trans = trans->transaction;
906 	int err = 0;
907 
908 	if (refcount_read(&trans->use_count) > 1) {
909 		refcount_dec(&trans->use_count);
910 		trans->block_rsv = trans->orig_rsv;
911 		return 0;
912 	}
913 
914 	btrfs_trans_release_metadata(trans);
915 	trans->block_rsv = NULL;
916 
917 	btrfs_create_pending_block_groups(trans);
918 
919 	btrfs_trans_release_chunk_metadata(trans);
920 
921 	if (trans->type & __TRANS_FREEZABLE)
922 		sb_end_intwrite(info->sb);
923 
924 	WARN_ON(cur_trans != info->running_transaction);
925 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
926 	atomic_dec(&cur_trans->num_writers);
927 	extwriter_counter_dec(cur_trans, trans->type);
928 
929 	cond_wake_up(&cur_trans->writer_wait);
930 	btrfs_put_transaction(cur_trans);
931 
932 	if (current->journal_info == trans)
933 		current->journal_info = NULL;
934 
935 	if (throttle)
936 		btrfs_run_delayed_iputs(info);
937 
938 	if (trans->aborted ||
939 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
940 		wake_up_process(info->transaction_kthread);
941 		err = -EIO;
942 	}
943 
944 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
945 	return err;
946 }
947 
948 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
949 {
950 	return __btrfs_end_transaction(trans, 0);
951 }
952 
953 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
954 {
955 	return __btrfs_end_transaction(trans, 1);
956 }
957 
958 /*
959  * when btree blocks are allocated, they have some corresponding bits set for
960  * them in one of two extent_io trees.  This is used to make sure all of
961  * those extents are sent to disk but does not wait on them
962  */
963 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
964 			       struct extent_io_tree *dirty_pages, int mark)
965 {
966 	int err = 0;
967 	int werr = 0;
968 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
969 	struct extent_state *cached_state = NULL;
970 	u64 start = 0;
971 	u64 end;
972 
973 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
974 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
975 				      mark, &cached_state)) {
976 		bool wait_writeback = false;
977 
978 		err = convert_extent_bit(dirty_pages, start, end,
979 					 EXTENT_NEED_WAIT,
980 					 mark, &cached_state);
981 		/*
982 		 * convert_extent_bit can return -ENOMEM, which is most of the
983 		 * time a temporary error. So when it happens, ignore the error
984 		 * and wait for writeback of this range to finish - because we
985 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
986 		 * to __btrfs_wait_marked_extents() would not know that
987 		 * writeback for this range started and therefore wouldn't
988 		 * wait for it to finish - we don't want to commit a
989 		 * superblock that points to btree nodes/leafs for which
990 		 * writeback hasn't finished yet (and without errors).
991 		 * We cleanup any entries left in the io tree when committing
992 		 * the transaction (through extent_io_tree_release()).
993 		 */
994 		if (err == -ENOMEM) {
995 			err = 0;
996 			wait_writeback = true;
997 		}
998 		if (!err)
999 			err = filemap_fdatawrite_range(mapping, start, end);
1000 		if (err)
1001 			werr = err;
1002 		else if (wait_writeback)
1003 			werr = filemap_fdatawait_range(mapping, start, end);
1004 		free_extent_state(cached_state);
1005 		cached_state = NULL;
1006 		cond_resched();
1007 		start = end + 1;
1008 	}
1009 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1010 	return werr;
1011 }
1012 
1013 /*
1014  * when btree blocks are allocated, they have some corresponding bits set for
1015  * them in one of two extent_io trees.  This is used to make sure all of
1016  * those extents are on disk for transaction or log commit.  We wait
1017  * on all the pages and clear them from the dirty pages state tree
1018  */
1019 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1020 				       struct extent_io_tree *dirty_pages)
1021 {
1022 	int err = 0;
1023 	int werr = 0;
1024 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1025 	struct extent_state *cached_state = NULL;
1026 	u64 start = 0;
1027 	u64 end;
1028 
1029 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1030 				      EXTENT_NEED_WAIT, &cached_state)) {
1031 		/*
1032 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1033 		 * When committing the transaction, we'll remove any entries
1034 		 * left in the io tree. For a log commit, we don't remove them
1035 		 * after committing the log because the tree can be accessed
1036 		 * concurrently - we do it only at transaction commit time when
1037 		 * it's safe to do it (through extent_io_tree_release()).
1038 		 */
1039 		err = clear_extent_bit(dirty_pages, start, end,
1040 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1041 		if (err == -ENOMEM)
1042 			err = 0;
1043 		if (!err)
1044 			err = filemap_fdatawait_range(mapping, start, end);
1045 		if (err)
1046 			werr = err;
1047 		free_extent_state(cached_state);
1048 		cached_state = NULL;
1049 		cond_resched();
1050 		start = end + 1;
1051 	}
1052 	if (err)
1053 		werr = err;
1054 	return werr;
1055 }
1056 
1057 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1058 		       struct extent_io_tree *dirty_pages)
1059 {
1060 	bool errors = false;
1061 	int err;
1062 
1063 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1064 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1065 		errors = true;
1066 
1067 	if (errors && !err)
1068 		err = -EIO;
1069 	return err;
1070 }
1071 
1072 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1073 {
1074 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1075 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1076 	bool errors = false;
1077 	int err;
1078 
1079 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1080 
1081 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1082 	if ((mark & EXTENT_DIRTY) &&
1083 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1084 		errors = true;
1085 
1086 	if ((mark & EXTENT_NEW) &&
1087 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1088 		errors = true;
1089 
1090 	if (errors && !err)
1091 		err = -EIO;
1092 	return err;
1093 }
1094 
1095 /*
1096  * When btree blocks are allocated the corresponding extents are marked dirty.
1097  * This function ensures such extents are persisted on disk for transaction or
1098  * log commit.
1099  *
1100  * @trans: transaction whose dirty pages we'd like to write
1101  */
1102 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1103 {
1104 	int ret;
1105 	int ret2;
1106 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1107 	struct btrfs_fs_info *fs_info = trans->fs_info;
1108 	struct blk_plug plug;
1109 
1110 	blk_start_plug(&plug);
1111 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1112 	blk_finish_plug(&plug);
1113 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1114 
1115 	extent_io_tree_release(&trans->transaction->dirty_pages);
1116 
1117 	if (ret)
1118 		return ret;
1119 	else if (ret2)
1120 		return ret2;
1121 	else
1122 		return 0;
1123 }
1124 
1125 /*
1126  * this is used to update the root pointer in the tree of tree roots.
1127  *
1128  * But, in the case of the extent allocation tree, updating the root
1129  * pointer may allocate blocks which may change the root of the extent
1130  * allocation tree.
1131  *
1132  * So, this loops and repeats and makes sure the cowonly root didn't
1133  * change while the root pointer was being updated in the metadata.
1134  */
1135 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1136 			       struct btrfs_root *root)
1137 {
1138 	int ret;
1139 	u64 old_root_bytenr;
1140 	u64 old_root_used;
1141 	struct btrfs_fs_info *fs_info = root->fs_info;
1142 	struct btrfs_root *tree_root = fs_info->tree_root;
1143 
1144 	old_root_used = btrfs_root_used(&root->root_item);
1145 
1146 	while (1) {
1147 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1148 		if (old_root_bytenr == root->node->start &&
1149 		    old_root_used == btrfs_root_used(&root->root_item))
1150 			break;
1151 
1152 		btrfs_set_root_node(&root->root_item, root->node);
1153 		ret = btrfs_update_root(trans, tree_root,
1154 					&root->root_key,
1155 					&root->root_item);
1156 		if (ret)
1157 			return ret;
1158 
1159 		old_root_used = btrfs_root_used(&root->root_item);
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 /*
1166  * update all the cowonly tree roots on disk
1167  *
1168  * The error handling in this function may not be obvious. Any of the
1169  * failures will cause the file system to go offline. We still need
1170  * to clean up the delayed refs.
1171  */
1172 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1173 {
1174 	struct btrfs_fs_info *fs_info = trans->fs_info;
1175 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1176 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1177 	struct list_head *next;
1178 	struct extent_buffer *eb;
1179 	int ret;
1180 
1181 	eb = btrfs_lock_root_node(fs_info->tree_root);
1182 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1183 			      0, &eb);
1184 	btrfs_tree_unlock(eb);
1185 	free_extent_buffer(eb);
1186 
1187 	if (ret)
1188 		return ret;
1189 
1190 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = btrfs_run_dev_stats(trans);
1195 	if (ret)
1196 		return ret;
1197 	ret = btrfs_run_dev_replace(trans);
1198 	if (ret)
1199 		return ret;
1200 	ret = btrfs_run_qgroups(trans);
1201 	if (ret)
1202 		return ret;
1203 
1204 	ret = btrfs_setup_space_cache(trans);
1205 	if (ret)
1206 		return ret;
1207 
1208 	/* run_qgroups might have added some more refs */
1209 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1210 	if (ret)
1211 		return ret;
1212 again:
1213 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1214 		struct btrfs_root *root;
1215 		next = fs_info->dirty_cowonly_roots.next;
1216 		list_del_init(next);
1217 		root = list_entry(next, struct btrfs_root, dirty_list);
1218 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1219 
1220 		if (root != fs_info->extent_root)
1221 			list_add_tail(&root->dirty_list,
1222 				      &trans->transaction->switch_commits);
1223 		ret = update_cowonly_root(trans, root);
1224 		if (ret)
1225 			return ret;
1226 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1227 		if (ret)
1228 			return ret;
1229 	}
1230 
1231 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1232 		ret = btrfs_write_dirty_block_groups(trans);
1233 		if (ret)
1234 			return ret;
1235 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1236 		if (ret)
1237 			return ret;
1238 	}
1239 
1240 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1241 		goto again;
1242 
1243 	list_add_tail(&fs_info->extent_root->dirty_list,
1244 		      &trans->transaction->switch_commits);
1245 
1246 	/* Update dev-replace pointer once everything is committed */
1247 	fs_info->dev_replace.committed_cursor_left =
1248 		fs_info->dev_replace.cursor_left_last_write_of_item;
1249 
1250 	return 0;
1251 }
1252 
1253 /*
1254  * dead roots are old snapshots that need to be deleted.  This allocates
1255  * a dirty root struct and adds it into the list of dead roots that need to
1256  * be deleted
1257  */
1258 void btrfs_add_dead_root(struct btrfs_root *root)
1259 {
1260 	struct btrfs_fs_info *fs_info = root->fs_info;
1261 
1262 	spin_lock(&fs_info->trans_lock);
1263 	if (list_empty(&root->root_list))
1264 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1265 	spin_unlock(&fs_info->trans_lock);
1266 }
1267 
1268 /*
1269  * update all the cowonly tree roots on disk
1270  */
1271 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1272 {
1273 	struct btrfs_fs_info *fs_info = trans->fs_info;
1274 	struct btrfs_root *gang[8];
1275 	int i;
1276 	int ret;
1277 	int err = 0;
1278 
1279 	spin_lock(&fs_info->fs_roots_radix_lock);
1280 	while (1) {
1281 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1282 						 (void **)gang, 0,
1283 						 ARRAY_SIZE(gang),
1284 						 BTRFS_ROOT_TRANS_TAG);
1285 		if (ret == 0)
1286 			break;
1287 		for (i = 0; i < ret; i++) {
1288 			struct btrfs_root *root = gang[i];
1289 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1290 					(unsigned long)root->root_key.objectid,
1291 					BTRFS_ROOT_TRANS_TAG);
1292 			spin_unlock(&fs_info->fs_roots_radix_lock);
1293 
1294 			btrfs_free_log(trans, root);
1295 			btrfs_update_reloc_root(trans, root);
1296 
1297 			btrfs_save_ino_cache(root, trans);
1298 
1299 			/* see comments in should_cow_block() */
1300 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1301 			smp_mb__after_atomic();
1302 
1303 			if (root->commit_root != root->node) {
1304 				list_add_tail(&root->dirty_list,
1305 					&trans->transaction->switch_commits);
1306 				btrfs_set_root_node(&root->root_item,
1307 						    root->node);
1308 			}
1309 
1310 			err = btrfs_update_root(trans, fs_info->tree_root,
1311 						&root->root_key,
1312 						&root->root_item);
1313 			spin_lock(&fs_info->fs_roots_radix_lock);
1314 			if (err)
1315 				break;
1316 			btrfs_qgroup_free_meta_all_pertrans(root);
1317 		}
1318 	}
1319 	spin_unlock(&fs_info->fs_roots_radix_lock);
1320 	return err;
1321 }
1322 
1323 /*
1324  * defrag a given btree.
1325  * Every leaf in the btree is read and defragged.
1326  */
1327 int btrfs_defrag_root(struct btrfs_root *root)
1328 {
1329 	struct btrfs_fs_info *info = root->fs_info;
1330 	struct btrfs_trans_handle *trans;
1331 	int ret;
1332 
1333 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1334 		return 0;
1335 
1336 	while (1) {
1337 		trans = btrfs_start_transaction(root, 0);
1338 		if (IS_ERR(trans))
1339 			return PTR_ERR(trans);
1340 
1341 		ret = btrfs_defrag_leaves(trans, root);
1342 
1343 		btrfs_end_transaction(trans);
1344 		btrfs_btree_balance_dirty(info);
1345 		cond_resched();
1346 
1347 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1348 			break;
1349 
1350 		if (btrfs_defrag_cancelled(info)) {
1351 			btrfs_debug(info, "defrag_root cancelled");
1352 			ret = -EAGAIN;
1353 			break;
1354 		}
1355 	}
1356 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * Do all special snapshot related qgroup dirty hack.
1362  *
1363  * Will do all needed qgroup inherit and dirty hack like switch commit
1364  * roots inside one transaction and write all btree into disk, to make
1365  * qgroup works.
1366  */
1367 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1368 				   struct btrfs_root *src,
1369 				   struct btrfs_root *parent,
1370 				   struct btrfs_qgroup_inherit *inherit,
1371 				   u64 dst_objectid)
1372 {
1373 	struct btrfs_fs_info *fs_info = src->fs_info;
1374 	int ret;
1375 
1376 	/*
1377 	 * Save some performance in the case that qgroups are not
1378 	 * enabled. If this check races with the ioctl, rescan will
1379 	 * kick in anyway.
1380 	 */
1381 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1382 		return 0;
1383 
1384 	/*
1385 	 * Ensure dirty @src will be committed.  Or, after coming
1386 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1387 	 * recorded root will never be updated again, causing an outdated root
1388 	 * item.
1389 	 */
1390 	record_root_in_trans(trans, src, 1);
1391 
1392 	/*
1393 	 * We are going to commit transaction, see btrfs_commit_transaction()
1394 	 * comment for reason locking tree_log_mutex
1395 	 */
1396 	mutex_lock(&fs_info->tree_log_mutex);
1397 
1398 	ret = commit_fs_roots(trans);
1399 	if (ret)
1400 		goto out;
1401 	ret = btrfs_qgroup_account_extents(trans);
1402 	if (ret < 0)
1403 		goto out;
1404 
1405 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1406 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1407 				   inherit);
1408 	if (ret < 0)
1409 		goto out;
1410 
1411 	/*
1412 	 * Now we do a simplified commit transaction, which will:
1413 	 * 1) commit all subvolume and extent tree
1414 	 *    To ensure all subvolume and extent tree have a valid
1415 	 *    commit_root to accounting later insert_dir_item()
1416 	 * 2) write all btree blocks onto disk
1417 	 *    This is to make sure later btree modification will be cowed
1418 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1419 	 * In this simplified commit, we don't really care about other trees
1420 	 * like chunk and root tree, as they won't affect qgroup.
1421 	 * And we don't write super to avoid half committed status.
1422 	 */
1423 	ret = commit_cowonly_roots(trans);
1424 	if (ret)
1425 		goto out;
1426 	switch_commit_roots(trans);
1427 	ret = btrfs_write_and_wait_transaction(trans);
1428 	if (ret)
1429 		btrfs_handle_fs_error(fs_info, ret,
1430 			"Error while writing out transaction for qgroup");
1431 
1432 out:
1433 	mutex_unlock(&fs_info->tree_log_mutex);
1434 
1435 	/*
1436 	 * Force parent root to be updated, as we recorded it before so its
1437 	 * last_trans == cur_transid.
1438 	 * Or it won't be committed again onto disk after later
1439 	 * insert_dir_item()
1440 	 */
1441 	if (!ret)
1442 		record_root_in_trans(trans, parent, 1);
1443 	return ret;
1444 }
1445 
1446 /*
1447  * new snapshots need to be created at a very specific time in the
1448  * transaction commit.  This does the actual creation.
1449  *
1450  * Note:
1451  * If the error which may affect the commitment of the current transaction
1452  * happens, we should return the error number. If the error which just affect
1453  * the creation of the pending snapshots, just return 0.
1454  */
1455 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1456 				   struct btrfs_pending_snapshot *pending)
1457 {
1458 
1459 	struct btrfs_fs_info *fs_info = trans->fs_info;
1460 	struct btrfs_key key;
1461 	struct btrfs_root_item *new_root_item;
1462 	struct btrfs_root *tree_root = fs_info->tree_root;
1463 	struct btrfs_root *root = pending->root;
1464 	struct btrfs_root *parent_root;
1465 	struct btrfs_block_rsv *rsv;
1466 	struct inode *parent_inode;
1467 	struct btrfs_path *path;
1468 	struct btrfs_dir_item *dir_item;
1469 	struct dentry *dentry;
1470 	struct extent_buffer *tmp;
1471 	struct extent_buffer *old;
1472 	struct timespec64 cur_time;
1473 	int ret = 0;
1474 	u64 to_reserve = 0;
1475 	u64 index = 0;
1476 	u64 objectid;
1477 	u64 root_flags;
1478 	uuid_le new_uuid;
1479 
1480 	ASSERT(pending->path);
1481 	path = pending->path;
1482 
1483 	ASSERT(pending->root_item);
1484 	new_root_item = pending->root_item;
1485 
1486 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1487 	if (pending->error)
1488 		goto no_free_objectid;
1489 
1490 	/*
1491 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1492 	 * accounted by later btrfs_qgroup_inherit().
1493 	 */
1494 	btrfs_set_skip_qgroup(trans, objectid);
1495 
1496 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1497 
1498 	if (to_reserve > 0) {
1499 		pending->error = btrfs_block_rsv_add(root,
1500 						     &pending->block_rsv,
1501 						     to_reserve,
1502 						     BTRFS_RESERVE_NO_FLUSH);
1503 		if (pending->error)
1504 			goto clear_skip_qgroup;
1505 	}
1506 
1507 	key.objectid = objectid;
1508 	key.offset = (u64)-1;
1509 	key.type = BTRFS_ROOT_ITEM_KEY;
1510 
1511 	rsv = trans->block_rsv;
1512 	trans->block_rsv = &pending->block_rsv;
1513 	trans->bytes_reserved = trans->block_rsv->reserved;
1514 	trace_btrfs_space_reservation(fs_info, "transaction",
1515 				      trans->transid,
1516 				      trans->bytes_reserved, 1);
1517 	dentry = pending->dentry;
1518 	parent_inode = pending->dir;
1519 	parent_root = BTRFS_I(parent_inode)->root;
1520 	record_root_in_trans(trans, parent_root, 0);
1521 
1522 	cur_time = current_time(parent_inode);
1523 
1524 	/*
1525 	 * insert the directory item
1526 	 */
1527 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1528 	BUG_ON(ret); /* -ENOMEM */
1529 
1530 	/* check if there is a file/dir which has the same name. */
1531 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1532 					 btrfs_ino(BTRFS_I(parent_inode)),
1533 					 dentry->d_name.name,
1534 					 dentry->d_name.len, 0);
1535 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1536 		pending->error = -EEXIST;
1537 		goto dir_item_existed;
1538 	} else if (IS_ERR(dir_item)) {
1539 		ret = PTR_ERR(dir_item);
1540 		btrfs_abort_transaction(trans, ret);
1541 		goto fail;
1542 	}
1543 	btrfs_release_path(path);
1544 
1545 	/*
1546 	 * pull in the delayed directory update
1547 	 * and the delayed inode item
1548 	 * otherwise we corrupt the FS during
1549 	 * snapshot
1550 	 */
1551 	ret = btrfs_run_delayed_items(trans);
1552 	if (ret) {	/* Transaction aborted */
1553 		btrfs_abort_transaction(trans, ret);
1554 		goto fail;
1555 	}
1556 
1557 	record_root_in_trans(trans, root, 0);
1558 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1559 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1560 	btrfs_check_and_init_root_item(new_root_item);
1561 
1562 	root_flags = btrfs_root_flags(new_root_item);
1563 	if (pending->readonly)
1564 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1565 	else
1566 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1567 	btrfs_set_root_flags(new_root_item, root_flags);
1568 
1569 	btrfs_set_root_generation_v2(new_root_item,
1570 			trans->transid);
1571 	uuid_le_gen(&new_uuid);
1572 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1573 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1574 			BTRFS_UUID_SIZE);
1575 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1576 		memset(new_root_item->received_uuid, 0,
1577 		       sizeof(new_root_item->received_uuid));
1578 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1579 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1580 		btrfs_set_root_stransid(new_root_item, 0);
1581 		btrfs_set_root_rtransid(new_root_item, 0);
1582 	}
1583 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1584 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1585 	btrfs_set_root_otransid(new_root_item, trans->transid);
1586 
1587 	old = btrfs_lock_root_node(root);
1588 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1589 	if (ret) {
1590 		btrfs_tree_unlock(old);
1591 		free_extent_buffer(old);
1592 		btrfs_abort_transaction(trans, ret);
1593 		goto fail;
1594 	}
1595 
1596 	btrfs_set_lock_blocking_write(old);
1597 
1598 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1599 	/* clean up in any case */
1600 	btrfs_tree_unlock(old);
1601 	free_extent_buffer(old);
1602 	if (ret) {
1603 		btrfs_abort_transaction(trans, ret);
1604 		goto fail;
1605 	}
1606 	/* see comments in should_cow_block() */
1607 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1608 	smp_wmb();
1609 
1610 	btrfs_set_root_node(new_root_item, tmp);
1611 	/* record when the snapshot was created in key.offset */
1612 	key.offset = trans->transid;
1613 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1614 	btrfs_tree_unlock(tmp);
1615 	free_extent_buffer(tmp);
1616 	if (ret) {
1617 		btrfs_abort_transaction(trans, ret);
1618 		goto fail;
1619 	}
1620 
1621 	/*
1622 	 * insert root back/forward references
1623 	 */
1624 	ret = btrfs_add_root_ref(trans, objectid,
1625 				 parent_root->root_key.objectid,
1626 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1627 				 dentry->d_name.name, dentry->d_name.len);
1628 	if (ret) {
1629 		btrfs_abort_transaction(trans, ret);
1630 		goto fail;
1631 	}
1632 
1633 	key.offset = (u64)-1;
1634 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1635 	if (IS_ERR(pending->snap)) {
1636 		ret = PTR_ERR(pending->snap);
1637 		btrfs_abort_transaction(trans, ret);
1638 		goto fail;
1639 	}
1640 
1641 	ret = btrfs_reloc_post_snapshot(trans, pending);
1642 	if (ret) {
1643 		btrfs_abort_transaction(trans, ret);
1644 		goto fail;
1645 	}
1646 
1647 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1648 	if (ret) {
1649 		btrfs_abort_transaction(trans, ret);
1650 		goto fail;
1651 	}
1652 
1653 	/*
1654 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1655 	 * snapshot hack to do fast snapshot.
1656 	 * To co-operate with that hack, we do hack again.
1657 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1658 	 */
1659 	ret = qgroup_account_snapshot(trans, root, parent_root,
1660 				      pending->inherit, objectid);
1661 	if (ret < 0)
1662 		goto fail;
1663 
1664 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1665 				    dentry->d_name.len, BTRFS_I(parent_inode),
1666 				    &key, BTRFS_FT_DIR, index);
1667 	/* We have check then name at the beginning, so it is impossible. */
1668 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1669 	if (ret) {
1670 		btrfs_abort_transaction(trans, ret);
1671 		goto fail;
1672 	}
1673 
1674 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1675 					 dentry->d_name.len * 2);
1676 	parent_inode->i_mtime = parent_inode->i_ctime =
1677 		current_time(parent_inode);
1678 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1679 	if (ret) {
1680 		btrfs_abort_transaction(trans, ret);
1681 		goto fail;
1682 	}
1683 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1684 				  objectid);
1685 	if (ret) {
1686 		btrfs_abort_transaction(trans, ret);
1687 		goto fail;
1688 	}
1689 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1690 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1691 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1692 					  objectid);
1693 		if (ret && ret != -EEXIST) {
1694 			btrfs_abort_transaction(trans, ret);
1695 			goto fail;
1696 		}
1697 	}
1698 
1699 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1700 	if (ret) {
1701 		btrfs_abort_transaction(trans, ret);
1702 		goto fail;
1703 	}
1704 
1705 fail:
1706 	pending->error = ret;
1707 dir_item_existed:
1708 	trans->block_rsv = rsv;
1709 	trans->bytes_reserved = 0;
1710 clear_skip_qgroup:
1711 	btrfs_clear_skip_qgroup(trans);
1712 no_free_objectid:
1713 	kfree(new_root_item);
1714 	pending->root_item = NULL;
1715 	btrfs_free_path(path);
1716 	pending->path = NULL;
1717 
1718 	return ret;
1719 }
1720 
1721 /*
1722  * create all the snapshots we've scheduled for creation
1723  */
1724 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1725 {
1726 	struct btrfs_pending_snapshot *pending, *next;
1727 	struct list_head *head = &trans->transaction->pending_snapshots;
1728 	int ret = 0;
1729 
1730 	list_for_each_entry_safe(pending, next, head, list) {
1731 		list_del(&pending->list);
1732 		ret = create_pending_snapshot(trans, pending);
1733 		if (ret)
1734 			break;
1735 	}
1736 	return ret;
1737 }
1738 
1739 static void update_super_roots(struct btrfs_fs_info *fs_info)
1740 {
1741 	struct btrfs_root_item *root_item;
1742 	struct btrfs_super_block *super;
1743 
1744 	super = fs_info->super_copy;
1745 
1746 	root_item = &fs_info->chunk_root->root_item;
1747 	super->chunk_root = root_item->bytenr;
1748 	super->chunk_root_generation = root_item->generation;
1749 	super->chunk_root_level = root_item->level;
1750 
1751 	root_item = &fs_info->tree_root->root_item;
1752 	super->root = root_item->bytenr;
1753 	super->generation = root_item->generation;
1754 	super->root_level = root_item->level;
1755 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1756 		super->cache_generation = root_item->generation;
1757 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1758 		super->uuid_tree_generation = root_item->generation;
1759 }
1760 
1761 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1762 {
1763 	struct btrfs_transaction *trans;
1764 	int ret = 0;
1765 
1766 	spin_lock(&info->trans_lock);
1767 	trans = info->running_transaction;
1768 	if (trans)
1769 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1770 	spin_unlock(&info->trans_lock);
1771 	return ret;
1772 }
1773 
1774 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1775 {
1776 	struct btrfs_transaction *trans;
1777 	int ret = 0;
1778 
1779 	spin_lock(&info->trans_lock);
1780 	trans = info->running_transaction;
1781 	if (trans)
1782 		ret = is_transaction_blocked(trans);
1783 	spin_unlock(&info->trans_lock);
1784 	return ret;
1785 }
1786 
1787 /*
1788  * wait for the current transaction commit to start and block subsequent
1789  * transaction joins
1790  */
1791 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1792 					    struct btrfs_transaction *trans)
1793 {
1794 	wait_event(fs_info->transaction_blocked_wait,
1795 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1796 }
1797 
1798 /*
1799  * wait for the current transaction to start and then become unblocked.
1800  * caller holds ref.
1801  */
1802 static void wait_current_trans_commit_start_and_unblock(
1803 					struct btrfs_fs_info *fs_info,
1804 					struct btrfs_transaction *trans)
1805 {
1806 	wait_event(fs_info->transaction_wait,
1807 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1808 }
1809 
1810 /*
1811  * commit transactions asynchronously. once btrfs_commit_transaction_async
1812  * returns, any subsequent transaction will not be allowed to join.
1813  */
1814 struct btrfs_async_commit {
1815 	struct btrfs_trans_handle *newtrans;
1816 	struct work_struct work;
1817 };
1818 
1819 static void do_async_commit(struct work_struct *work)
1820 {
1821 	struct btrfs_async_commit *ac =
1822 		container_of(work, struct btrfs_async_commit, work);
1823 
1824 	/*
1825 	 * We've got freeze protection passed with the transaction.
1826 	 * Tell lockdep about it.
1827 	 */
1828 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1829 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1830 
1831 	current->journal_info = ac->newtrans;
1832 
1833 	btrfs_commit_transaction(ac->newtrans);
1834 	kfree(ac);
1835 }
1836 
1837 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1838 				   int wait_for_unblock)
1839 {
1840 	struct btrfs_fs_info *fs_info = trans->fs_info;
1841 	struct btrfs_async_commit *ac;
1842 	struct btrfs_transaction *cur_trans;
1843 
1844 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1845 	if (!ac)
1846 		return -ENOMEM;
1847 
1848 	INIT_WORK(&ac->work, do_async_commit);
1849 	ac->newtrans = btrfs_join_transaction(trans->root);
1850 	if (IS_ERR(ac->newtrans)) {
1851 		int err = PTR_ERR(ac->newtrans);
1852 		kfree(ac);
1853 		return err;
1854 	}
1855 
1856 	/* take transaction reference */
1857 	cur_trans = trans->transaction;
1858 	refcount_inc(&cur_trans->use_count);
1859 
1860 	btrfs_end_transaction(trans);
1861 
1862 	/*
1863 	 * Tell lockdep we've released the freeze rwsem, since the
1864 	 * async commit thread will be the one to unlock it.
1865 	 */
1866 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1867 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1868 
1869 	schedule_work(&ac->work);
1870 
1871 	/* wait for transaction to start and unblock */
1872 	if (wait_for_unblock)
1873 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1874 	else
1875 		wait_current_trans_commit_start(fs_info, cur_trans);
1876 
1877 	if (current->journal_info == trans)
1878 		current->journal_info = NULL;
1879 
1880 	btrfs_put_transaction(cur_trans);
1881 	return 0;
1882 }
1883 
1884 
1885 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1886 {
1887 	struct btrfs_fs_info *fs_info = trans->fs_info;
1888 	struct btrfs_transaction *cur_trans = trans->transaction;
1889 
1890 	WARN_ON(refcount_read(&trans->use_count) > 1);
1891 
1892 	btrfs_abort_transaction(trans, err);
1893 
1894 	spin_lock(&fs_info->trans_lock);
1895 
1896 	/*
1897 	 * If the transaction is removed from the list, it means this
1898 	 * transaction has been committed successfully, so it is impossible
1899 	 * to call the cleanup function.
1900 	 */
1901 	BUG_ON(list_empty(&cur_trans->list));
1902 
1903 	list_del_init(&cur_trans->list);
1904 	if (cur_trans == fs_info->running_transaction) {
1905 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1906 		spin_unlock(&fs_info->trans_lock);
1907 		wait_event(cur_trans->writer_wait,
1908 			   atomic_read(&cur_trans->num_writers) == 1);
1909 
1910 		spin_lock(&fs_info->trans_lock);
1911 	}
1912 	spin_unlock(&fs_info->trans_lock);
1913 
1914 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1915 
1916 	spin_lock(&fs_info->trans_lock);
1917 	if (cur_trans == fs_info->running_transaction)
1918 		fs_info->running_transaction = NULL;
1919 	spin_unlock(&fs_info->trans_lock);
1920 
1921 	if (trans->type & __TRANS_FREEZABLE)
1922 		sb_end_intwrite(fs_info->sb);
1923 	btrfs_put_transaction(cur_trans);
1924 	btrfs_put_transaction(cur_trans);
1925 
1926 	trace_btrfs_transaction_commit(trans->root);
1927 
1928 	if (current->journal_info == trans)
1929 		current->journal_info = NULL;
1930 	btrfs_scrub_cancel(fs_info);
1931 
1932 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1933 }
1934 
1935 /*
1936  * Release reserved delayed ref space of all pending block groups of the
1937  * transaction and remove them from the list
1938  */
1939 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1940 {
1941        struct btrfs_fs_info *fs_info = trans->fs_info;
1942        struct btrfs_block_group *block_group, *tmp;
1943 
1944        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1945                btrfs_delayed_refs_rsv_release(fs_info, 1);
1946                list_del_init(&block_group->bg_list);
1947        }
1948 }
1949 
1950 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1951 {
1952 	struct btrfs_fs_info *fs_info = trans->fs_info;
1953 
1954 	/*
1955 	 * We use writeback_inodes_sb here because if we used
1956 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1957 	 * Currently are holding the fs freeze lock, if we do an async flush
1958 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1959 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1960 	 * from already being in a transaction and our join_transaction doesn't
1961 	 * have to re-take the fs freeze lock.
1962 	 */
1963 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1964 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1965 	} else {
1966 		struct btrfs_pending_snapshot *pending;
1967 		struct list_head *head = &trans->transaction->pending_snapshots;
1968 
1969 		/*
1970 		 * Flush dellaloc for any root that is going to be snapshotted.
1971 		 * This is done to avoid a corrupted version of files, in the
1972 		 * snapshots, that had both buffered and direct IO writes (even
1973 		 * if they were done sequentially) due to an unordered update of
1974 		 * the inode's size on disk.
1975 		 */
1976 		list_for_each_entry(pending, head, list) {
1977 			int ret;
1978 
1979 			ret = btrfs_start_delalloc_snapshot(pending->root);
1980 			if (ret)
1981 				return ret;
1982 		}
1983 	}
1984 	return 0;
1985 }
1986 
1987 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1988 {
1989 	struct btrfs_fs_info *fs_info = trans->fs_info;
1990 
1991 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1992 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1993 	} else {
1994 		struct btrfs_pending_snapshot *pending;
1995 		struct list_head *head = &trans->transaction->pending_snapshots;
1996 
1997 		/*
1998 		 * Wait for any dellaloc that we started previously for the roots
1999 		 * that are going to be snapshotted. This is to avoid a corrupted
2000 		 * version of files in the snapshots that had both buffered and
2001 		 * direct IO writes (even if they were done sequentially).
2002 		 */
2003 		list_for_each_entry(pending, head, list)
2004 			btrfs_wait_ordered_extents(pending->root,
2005 						   U64_MAX, 0, U64_MAX);
2006 	}
2007 }
2008 
2009 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2010 {
2011 	struct btrfs_fs_info *fs_info = trans->fs_info;
2012 	struct btrfs_transaction *cur_trans = trans->transaction;
2013 	struct btrfs_transaction *prev_trans = NULL;
2014 	int ret;
2015 
2016 	ASSERT(refcount_read(&trans->use_count) == 1);
2017 
2018 	/*
2019 	 * Some places just start a transaction to commit it.  We need to make
2020 	 * sure that if this commit fails that the abort code actually marks the
2021 	 * transaction as failed, so set trans->dirty to make the abort code do
2022 	 * the right thing.
2023 	 */
2024 	trans->dirty = true;
2025 
2026 	/* Stop the commit early if ->aborted is set */
2027 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2028 		ret = cur_trans->aborted;
2029 		btrfs_end_transaction(trans);
2030 		return ret;
2031 	}
2032 
2033 	btrfs_trans_release_metadata(trans);
2034 	trans->block_rsv = NULL;
2035 
2036 	/* make a pass through all the delayed refs we have so far
2037 	 * any runnings procs may add more while we are here
2038 	 */
2039 	ret = btrfs_run_delayed_refs(trans, 0);
2040 	if (ret) {
2041 		btrfs_end_transaction(trans);
2042 		return ret;
2043 	}
2044 
2045 	cur_trans = trans->transaction;
2046 
2047 	/*
2048 	 * set the flushing flag so procs in this transaction have to
2049 	 * start sending their work down.
2050 	 */
2051 	cur_trans->delayed_refs.flushing = 1;
2052 	smp_wmb();
2053 
2054 	btrfs_create_pending_block_groups(trans);
2055 
2056 	ret = btrfs_run_delayed_refs(trans, 0);
2057 	if (ret) {
2058 		btrfs_end_transaction(trans);
2059 		return ret;
2060 	}
2061 
2062 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2063 		int run_it = 0;
2064 
2065 		/* this mutex is also taken before trying to set
2066 		 * block groups readonly.  We need to make sure
2067 		 * that nobody has set a block group readonly
2068 		 * after a extents from that block group have been
2069 		 * allocated for cache files.  btrfs_set_block_group_ro
2070 		 * will wait for the transaction to commit if it
2071 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2072 		 *
2073 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2074 		 * only one process starts all the block group IO.  It wouldn't
2075 		 * hurt to have more than one go through, but there's no
2076 		 * real advantage to it either.
2077 		 */
2078 		mutex_lock(&fs_info->ro_block_group_mutex);
2079 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2080 				      &cur_trans->flags))
2081 			run_it = 1;
2082 		mutex_unlock(&fs_info->ro_block_group_mutex);
2083 
2084 		if (run_it) {
2085 			ret = btrfs_start_dirty_block_groups(trans);
2086 			if (ret) {
2087 				btrfs_end_transaction(trans);
2088 				return ret;
2089 			}
2090 		}
2091 	}
2092 
2093 	spin_lock(&fs_info->trans_lock);
2094 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2095 		spin_unlock(&fs_info->trans_lock);
2096 		refcount_inc(&cur_trans->use_count);
2097 		ret = btrfs_end_transaction(trans);
2098 
2099 		wait_for_commit(cur_trans);
2100 
2101 		if (unlikely(cur_trans->aborted))
2102 			ret = cur_trans->aborted;
2103 
2104 		btrfs_put_transaction(cur_trans);
2105 
2106 		return ret;
2107 	}
2108 
2109 	cur_trans->state = TRANS_STATE_COMMIT_START;
2110 	wake_up(&fs_info->transaction_blocked_wait);
2111 
2112 	if (cur_trans->list.prev != &fs_info->trans_list) {
2113 		prev_trans = list_entry(cur_trans->list.prev,
2114 					struct btrfs_transaction, list);
2115 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2116 			refcount_inc(&prev_trans->use_count);
2117 			spin_unlock(&fs_info->trans_lock);
2118 
2119 			wait_for_commit(prev_trans);
2120 			ret = prev_trans->aborted;
2121 
2122 			btrfs_put_transaction(prev_trans);
2123 			if (ret)
2124 				goto cleanup_transaction;
2125 		} else {
2126 			spin_unlock(&fs_info->trans_lock);
2127 		}
2128 	} else {
2129 		spin_unlock(&fs_info->trans_lock);
2130 		/*
2131 		 * The previous transaction was aborted and was already removed
2132 		 * from the list of transactions at fs_info->trans_list. So we
2133 		 * abort to prevent writing a new superblock that reflects a
2134 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2135 		 */
2136 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2137 			ret = -EROFS;
2138 			goto cleanup_transaction;
2139 		}
2140 	}
2141 
2142 	extwriter_counter_dec(cur_trans, trans->type);
2143 
2144 	ret = btrfs_start_delalloc_flush(trans);
2145 	if (ret)
2146 		goto cleanup_transaction;
2147 
2148 	ret = btrfs_run_delayed_items(trans);
2149 	if (ret)
2150 		goto cleanup_transaction;
2151 
2152 	wait_event(cur_trans->writer_wait,
2153 		   extwriter_counter_read(cur_trans) == 0);
2154 
2155 	/* some pending stuffs might be added after the previous flush. */
2156 	ret = btrfs_run_delayed_items(trans);
2157 	if (ret)
2158 		goto cleanup_transaction;
2159 
2160 	btrfs_wait_delalloc_flush(trans);
2161 
2162 	btrfs_scrub_pause(fs_info);
2163 	/*
2164 	 * Ok now we need to make sure to block out any other joins while we
2165 	 * commit the transaction.  We could have started a join before setting
2166 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2167 	 */
2168 	spin_lock(&fs_info->trans_lock);
2169 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2170 	spin_unlock(&fs_info->trans_lock);
2171 	wait_event(cur_trans->writer_wait,
2172 		   atomic_read(&cur_trans->num_writers) == 1);
2173 
2174 	/* ->aborted might be set after the previous check, so check it */
2175 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2176 		ret = cur_trans->aborted;
2177 		goto scrub_continue;
2178 	}
2179 	/*
2180 	 * the reloc mutex makes sure that we stop
2181 	 * the balancing code from coming in and moving
2182 	 * extents around in the middle of the commit
2183 	 */
2184 	mutex_lock(&fs_info->reloc_mutex);
2185 
2186 	/*
2187 	 * We needn't worry about the delayed items because we will
2188 	 * deal with them in create_pending_snapshot(), which is the
2189 	 * core function of the snapshot creation.
2190 	 */
2191 	ret = create_pending_snapshots(trans);
2192 	if (ret) {
2193 		mutex_unlock(&fs_info->reloc_mutex);
2194 		goto scrub_continue;
2195 	}
2196 
2197 	/*
2198 	 * We insert the dir indexes of the snapshots and update the inode
2199 	 * of the snapshots' parents after the snapshot creation, so there
2200 	 * are some delayed items which are not dealt with. Now deal with
2201 	 * them.
2202 	 *
2203 	 * We needn't worry that this operation will corrupt the snapshots,
2204 	 * because all the tree which are snapshoted will be forced to COW
2205 	 * the nodes and leaves.
2206 	 */
2207 	ret = btrfs_run_delayed_items(trans);
2208 	if (ret) {
2209 		mutex_unlock(&fs_info->reloc_mutex);
2210 		goto scrub_continue;
2211 	}
2212 
2213 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2214 	if (ret) {
2215 		mutex_unlock(&fs_info->reloc_mutex);
2216 		goto scrub_continue;
2217 	}
2218 
2219 	/*
2220 	 * make sure none of the code above managed to slip in a
2221 	 * delayed item
2222 	 */
2223 	btrfs_assert_delayed_root_empty(fs_info);
2224 
2225 	WARN_ON(cur_trans != trans->transaction);
2226 
2227 	/* btrfs_commit_tree_roots is responsible for getting the
2228 	 * various roots consistent with each other.  Every pointer
2229 	 * in the tree of tree roots has to point to the most up to date
2230 	 * root for every subvolume and other tree.  So, we have to keep
2231 	 * the tree logging code from jumping in and changing any
2232 	 * of the trees.
2233 	 *
2234 	 * At this point in the commit, there can't be any tree-log
2235 	 * writers, but a little lower down we drop the trans mutex
2236 	 * and let new people in.  By holding the tree_log_mutex
2237 	 * from now until after the super is written, we avoid races
2238 	 * with the tree-log code.
2239 	 */
2240 	mutex_lock(&fs_info->tree_log_mutex);
2241 
2242 	ret = commit_fs_roots(trans);
2243 	if (ret) {
2244 		mutex_unlock(&fs_info->tree_log_mutex);
2245 		mutex_unlock(&fs_info->reloc_mutex);
2246 		goto scrub_continue;
2247 	}
2248 
2249 	/*
2250 	 * Since the transaction is done, we can apply the pending changes
2251 	 * before the next transaction.
2252 	 */
2253 	btrfs_apply_pending_changes(fs_info);
2254 
2255 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2256 	 * safe to free the root of tree log roots
2257 	 */
2258 	btrfs_free_log_root_tree(trans, fs_info);
2259 
2260 	/*
2261 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2262 	 * new delayed refs. Must handle them or qgroup can be wrong.
2263 	 */
2264 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2265 	if (ret) {
2266 		mutex_unlock(&fs_info->tree_log_mutex);
2267 		mutex_unlock(&fs_info->reloc_mutex);
2268 		goto scrub_continue;
2269 	}
2270 
2271 	/*
2272 	 * Since fs roots are all committed, we can get a quite accurate
2273 	 * new_roots. So let's do quota accounting.
2274 	 */
2275 	ret = btrfs_qgroup_account_extents(trans);
2276 	if (ret < 0) {
2277 		mutex_unlock(&fs_info->tree_log_mutex);
2278 		mutex_unlock(&fs_info->reloc_mutex);
2279 		goto scrub_continue;
2280 	}
2281 
2282 	ret = commit_cowonly_roots(trans);
2283 	if (ret) {
2284 		mutex_unlock(&fs_info->tree_log_mutex);
2285 		mutex_unlock(&fs_info->reloc_mutex);
2286 		goto scrub_continue;
2287 	}
2288 
2289 	/*
2290 	 * The tasks which save the space cache and inode cache may also
2291 	 * update ->aborted, check it.
2292 	 */
2293 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2294 		ret = cur_trans->aborted;
2295 		mutex_unlock(&fs_info->tree_log_mutex);
2296 		mutex_unlock(&fs_info->reloc_mutex);
2297 		goto scrub_continue;
2298 	}
2299 
2300 	btrfs_prepare_extent_commit(fs_info);
2301 
2302 	cur_trans = fs_info->running_transaction;
2303 
2304 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2305 			    fs_info->tree_root->node);
2306 	list_add_tail(&fs_info->tree_root->dirty_list,
2307 		      &cur_trans->switch_commits);
2308 
2309 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2310 			    fs_info->chunk_root->node);
2311 	list_add_tail(&fs_info->chunk_root->dirty_list,
2312 		      &cur_trans->switch_commits);
2313 
2314 	switch_commit_roots(trans);
2315 
2316 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2317 	ASSERT(list_empty(&cur_trans->io_bgs));
2318 	update_super_roots(fs_info);
2319 
2320 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2321 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2322 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2323 	       sizeof(*fs_info->super_copy));
2324 
2325 	btrfs_commit_device_sizes(cur_trans);
2326 
2327 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2328 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2329 
2330 	btrfs_trans_release_chunk_metadata(trans);
2331 
2332 	spin_lock(&fs_info->trans_lock);
2333 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2334 	fs_info->running_transaction = NULL;
2335 	spin_unlock(&fs_info->trans_lock);
2336 	mutex_unlock(&fs_info->reloc_mutex);
2337 
2338 	wake_up(&fs_info->transaction_wait);
2339 
2340 	ret = btrfs_write_and_wait_transaction(trans);
2341 	if (ret) {
2342 		btrfs_handle_fs_error(fs_info, ret,
2343 				      "Error while writing out transaction");
2344 		mutex_unlock(&fs_info->tree_log_mutex);
2345 		goto scrub_continue;
2346 	}
2347 
2348 	ret = write_all_supers(fs_info, 0);
2349 	/*
2350 	 * the super is written, we can safely allow the tree-loggers
2351 	 * to go about their business
2352 	 */
2353 	mutex_unlock(&fs_info->tree_log_mutex);
2354 	if (ret)
2355 		goto scrub_continue;
2356 
2357 	btrfs_finish_extent_commit(trans);
2358 
2359 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2360 		btrfs_clear_space_info_full(fs_info);
2361 
2362 	fs_info->last_trans_committed = cur_trans->transid;
2363 	/*
2364 	 * We needn't acquire the lock here because there is no other task
2365 	 * which can change it.
2366 	 */
2367 	cur_trans->state = TRANS_STATE_COMPLETED;
2368 	wake_up(&cur_trans->commit_wait);
2369 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2370 
2371 	spin_lock(&fs_info->trans_lock);
2372 	list_del_init(&cur_trans->list);
2373 	spin_unlock(&fs_info->trans_lock);
2374 
2375 	btrfs_put_transaction(cur_trans);
2376 	btrfs_put_transaction(cur_trans);
2377 
2378 	if (trans->type & __TRANS_FREEZABLE)
2379 		sb_end_intwrite(fs_info->sb);
2380 
2381 	trace_btrfs_transaction_commit(trans->root);
2382 
2383 	btrfs_scrub_continue(fs_info);
2384 
2385 	if (current->journal_info == trans)
2386 		current->journal_info = NULL;
2387 
2388 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2389 
2390 	return ret;
2391 
2392 scrub_continue:
2393 	btrfs_scrub_continue(fs_info);
2394 cleanup_transaction:
2395 	btrfs_trans_release_metadata(trans);
2396 	btrfs_cleanup_pending_block_groups(trans);
2397 	btrfs_trans_release_chunk_metadata(trans);
2398 	trans->block_rsv = NULL;
2399 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2400 	if (current->journal_info == trans)
2401 		current->journal_info = NULL;
2402 	cleanup_transaction(trans, ret);
2403 
2404 	return ret;
2405 }
2406 
2407 /*
2408  * return < 0 if error
2409  * 0 if there are no more dead_roots at the time of call
2410  * 1 there are more to be processed, call me again
2411  *
2412  * The return value indicates there are certainly more snapshots to delete, but
2413  * if there comes a new one during processing, it may return 0. We don't mind,
2414  * because btrfs_commit_super will poke cleaner thread and it will process it a
2415  * few seconds later.
2416  */
2417 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2418 {
2419 	int ret;
2420 	struct btrfs_fs_info *fs_info = root->fs_info;
2421 
2422 	spin_lock(&fs_info->trans_lock);
2423 	if (list_empty(&fs_info->dead_roots)) {
2424 		spin_unlock(&fs_info->trans_lock);
2425 		return 0;
2426 	}
2427 	root = list_first_entry(&fs_info->dead_roots,
2428 			struct btrfs_root, root_list);
2429 	list_del_init(&root->root_list);
2430 	spin_unlock(&fs_info->trans_lock);
2431 
2432 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2433 
2434 	btrfs_kill_all_delayed_nodes(root);
2435 
2436 	if (btrfs_header_backref_rev(root->node) <
2437 			BTRFS_MIXED_BACKREF_REV)
2438 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2439 	else
2440 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2441 
2442 	return (ret < 0) ? 0 : 1;
2443 }
2444 
2445 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2446 {
2447 	unsigned long prev;
2448 	unsigned long bit;
2449 
2450 	prev = xchg(&fs_info->pending_changes, 0);
2451 	if (!prev)
2452 		return;
2453 
2454 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2455 	if (prev & bit)
2456 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2457 	prev &= ~bit;
2458 
2459 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2460 	if (prev & bit)
2461 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2462 	prev &= ~bit;
2463 
2464 	bit = 1 << BTRFS_PENDING_COMMIT;
2465 	if (prev & bit)
2466 		btrfs_debug(fs_info, "pending commit done");
2467 	prev &= ~bit;
2468 
2469 	if (prev)
2470 		btrfs_warn(fs_info,
2471 			"unknown pending changes left 0x%lx, ignoring", prev);
2472 }
2473