xref: /linux/fs/btrfs/transaction.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55 	struct btrfs_transaction *cur_trans;
56 
57 	spin_lock(&root->fs_info->trans_lock);
58 	if (root->fs_info->trans_no_join) {
59 		if (!nofail) {
60 			spin_unlock(&root->fs_info->trans_lock);
61 			return -EBUSY;
62 		}
63 	}
64 
65 	cur_trans = root->fs_info->running_transaction;
66 	if (cur_trans) {
67 		atomic_inc(&cur_trans->use_count);
68 		atomic_inc(&cur_trans->num_writers);
69 		cur_trans->num_joined++;
70 		spin_unlock(&root->fs_info->trans_lock);
71 		return 0;
72 	}
73 	spin_unlock(&root->fs_info->trans_lock);
74 
75 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 	if (!cur_trans)
77 		return -ENOMEM;
78 	spin_lock(&root->fs_info->trans_lock);
79 	if (root->fs_info->running_transaction) {
80 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 		cur_trans = root->fs_info->running_transaction;
82 		atomic_inc(&cur_trans->use_count);
83 		atomic_inc(&cur_trans->num_writers);
84 		cur_trans->num_joined++;
85 		spin_unlock(&root->fs_info->trans_lock);
86 		return 0;
87 	}
88 	atomic_set(&cur_trans->num_writers, 1);
89 	cur_trans->num_joined = 0;
90 	init_waitqueue_head(&cur_trans->writer_wait);
91 	init_waitqueue_head(&cur_trans->commit_wait);
92 	cur_trans->in_commit = 0;
93 	cur_trans->blocked = 0;
94 	/*
95 	 * One for this trans handle, one so it will live on until we
96 	 * commit the transaction.
97 	 */
98 	atomic_set(&cur_trans->use_count, 2);
99 	cur_trans->commit_done = 0;
100 	cur_trans->start_time = get_seconds();
101 
102 	cur_trans->delayed_refs.root = RB_ROOT;
103 	cur_trans->delayed_refs.num_entries = 0;
104 	cur_trans->delayed_refs.num_heads_ready = 0;
105 	cur_trans->delayed_refs.num_heads = 0;
106 	cur_trans->delayed_refs.flushing = 0;
107 	cur_trans->delayed_refs.run_delayed_start = 0;
108 	spin_lock_init(&cur_trans->commit_lock);
109 	spin_lock_init(&cur_trans->delayed_refs.lock);
110 
111 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 	extent_io_tree_init(&cur_trans->dirty_pages,
114 			     root->fs_info->btree_inode->i_mapping);
115 	root->fs_info->generation++;
116 	cur_trans->transid = root->fs_info->generation;
117 	root->fs_info->running_transaction = cur_trans;
118 	spin_unlock(&root->fs_info->trans_lock);
119 
120 	return 0;
121 }
122 
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
130 			       struct btrfs_root *root)
131 {
132 	if (root->ref_cows && root->last_trans < trans->transid) {
133 		WARN_ON(root == root->fs_info->extent_root);
134 		WARN_ON(root->commit_root != root->node);
135 
136 		spin_lock(&root->fs_info->fs_roots_radix_lock);
137 		if (root->last_trans == trans->transid) {
138 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
139 			return 0;
140 		}
141 		root->last_trans = trans->transid;
142 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
143 			   (unsigned long)root->root_key.objectid,
144 			   BTRFS_ROOT_TRANS_TAG);
145 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
146 		btrfs_init_reloc_root(trans, root);
147 	}
148 	return 0;
149 }
150 
151 /* wait for commit against the current transaction to become unblocked
152  * when this is done, it is safe to start a new transaction, but the current
153  * transaction might not be fully on disk.
154  */
155 static void wait_current_trans(struct btrfs_root *root)
156 {
157 	struct btrfs_transaction *cur_trans;
158 
159 	spin_lock(&root->fs_info->trans_lock);
160 	cur_trans = root->fs_info->running_transaction;
161 	if (cur_trans && cur_trans->blocked) {
162 		DEFINE_WAIT(wait);
163 		atomic_inc(&cur_trans->use_count);
164 		spin_unlock(&root->fs_info->trans_lock);
165 		while (1) {
166 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
167 					TASK_UNINTERRUPTIBLE);
168 			if (!cur_trans->blocked)
169 				break;
170 			schedule();
171 		}
172 		finish_wait(&root->fs_info->transaction_wait, &wait);
173 		put_transaction(cur_trans);
174 	} else {
175 		spin_unlock(&root->fs_info->trans_lock);
176 	}
177 }
178 
179 enum btrfs_trans_type {
180 	TRANS_START,
181 	TRANS_JOIN,
182 	TRANS_USERSPACE,
183 	TRANS_JOIN_NOLOCK,
184 };
185 
186 static int may_wait_transaction(struct btrfs_root *root, int type)
187 {
188 	if (root->fs_info->log_root_recovering)
189 		return 0;
190 
191 	if (type == TRANS_USERSPACE)
192 		return 1;
193 
194 	if (type == TRANS_START &&
195 	    !atomic_read(&root->fs_info->open_ioctl_trans))
196 		return 1;
197 
198 	return 0;
199 }
200 
201 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
202 						    u64 num_items, int type)
203 {
204 	struct btrfs_trans_handle *h;
205 	struct btrfs_transaction *cur_trans;
206 	int retries = 0;
207 	int ret;
208 
209 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
210 		return ERR_PTR(-EROFS);
211 
212 	if (current->journal_info) {
213 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
214 		h = current->journal_info;
215 		h->use_count++;
216 		h->orig_rsv = h->block_rsv;
217 		h->block_rsv = NULL;
218 		goto got_it;
219 	}
220 again:
221 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
222 	if (!h)
223 		return ERR_PTR(-ENOMEM);
224 
225 	if (may_wait_transaction(root, type))
226 		wait_current_trans(root);
227 
228 	do {
229 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
230 		if (ret == -EBUSY)
231 			wait_current_trans(root);
232 	} while (ret == -EBUSY);
233 
234 	if (ret < 0) {
235 		kmem_cache_free(btrfs_trans_handle_cachep, h);
236 		return ERR_PTR(ret);
237 	}
238 
239 	cur_trans = root->fs_info->running_transaction;
240 
241 	h->transid = cur_trans->transid;
242 	h->transaction = cur_trans;
243 	h->blocks_used = 0;
244 	h->bytes_reserved = 0;
245 	h->delayed_ref_updates = 0;
246 	h->use_count = 1;
247 	h->block_rsv = NULL;
248 	h->orig_rsv = NULL;
249 
250 	smp_mb();
251 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
252 		btrfs_commit_transaction(h, root);
253 		goto again;
254 	}
255 
256 	if (num_items > 0) {
257 		ret = btrfs_trans_reserve_metadata(h, root, num_items);
258 		if (ret == -EAGAIN && !retries) {
259 			retries++;
260 			btrfs_commit_transaction(h, root);
261 			goto again;
262 		} else if (ret == -EAGAIN) {
263 			/*
264 			 * We have already retried and got EAGAIN, so really we
265 			 * don't have space, so set ret to -ENOSPC.
266 			 */
267 			ret = -ENOSPC;
268 		}
269 
270 		if (ret < 0) {
271 			btrfs_end_transaction(h, root);
272 			return ERR_PTR(ret);
273 		}
274 	}
275 
276 got_it:
277 	btrfs_record_root_in_trans(h, root);
278 
279 	if (!current->journal_info && type != TRANS_USERSPACE)
280 		current->journal_info = h;
281 	return h;
282 }
283 
284 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
285 						   int num_items)
286 {
287 	return start_transaction(root, num_items, TRANS_START);
288 }
289 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
290 {
291 	return start_transaction(root, 0, TRANS_JOIN);
292 }
293 
294 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
295 {
296 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
297 }
298 
299 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
300 {
301 	return start_transaction(root, 0, TRANS_USERSPACE);
302 }
303 
304 /* wait for a transaction commit to be fully complete */
305 static noinline int wait_for_commit(struct btrfs_root *root,
306 				    struct btrfs_transaction *commit)
307 {
308 	DEFINE_WAIT(wait);
309 	while (!commit->commit_done) {
310 		prepare_to_wait(&commit->commit_wait, &wait,
311 				TASK_UNINTERRUPTIBLE);
312 		if (commit->commit_done)
313 			break;
314 		schedule();
315 	}
316 	finish_wait(&commit->commit_wait, &wait);
317 	return 0;
318 }
319 
320 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
321 {
322 	struct btrfs_transaction *cur_trans = NULL, *t;
323 	int ret;
324 
325 	ret = 0;
326 	if (transid) {
327 		if (transid <= root->fs_info->last_trans_committed)
328 			goto out;
329 
330 		/* find specified transaction */
331 		spin_lock(&root->fs_info->trans_lock);
332 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
333 			if (t->transid == transid) {
334 				cur_trans = t;
335 				atomic_inc(&cur_trans->use_count);
336 				break;
337 			}
338 			if (t->transid > transid)
339 				break;
340 		}
341 		spin_unlock(&root->fs_info->trans_lock);
342 		ret = -EINVAL;
343 		if (!cur_trans)
344 			goto out;  /* bad transid */
345 	} else {
346 		/* find newest transaction that is committing | committed */
347 		spin_lock(&root->fs_info->trans_lock);
348 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
349 					    list) {
350 			if (t->in_commit) {
351 				if (t->commit_done)
352 					goto out;
353 				cur_trans = t;
354 				atomic_inc(&cur_trans->use_count);
355 				break;
356 			}
357 		}
358 		spin_unlock(&root->fs_info->trans_lock);
359 		if (!cur_trans)
360 			goto out;  /* nothing committing|committed */
361 	}
362 
363 	wait_for_commit(root, cur_trans);
364 
365 	put_transaction(cur_trans);
366 	ret = 0;
367 out:
368 	return ret;
369 }
370 
371 void btrfs_throttle(struct btrfs_root *root)
372 {
373 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
374 		wait_current_trans(root);
375 }
376 
377 static int should_end_transaction(struct btrfs_trans_handle *trans,
378 				  struct btrfs_root *root)
379 {
380 	int ret;
381 	ret = btrfs_block_rsv_check(trans, root,
382 				    &root->fs_info->global_block_rsv, 0, 5);
383 	return ret ? 1 : 0;
384 }
385 
386 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
387 				 struct btrfs_root *root)
388 {
389 	struct btrfs_transaction *cur_trans = trans->transaction;
390 	int updates;
391 
392 	smp_mb();
393 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
394 		return 1;
395 
396 	updates = trans->delayed_ref_updates;
397 	trans->delayed_ref_updates = 0;
398 	if (updates)
399 		btrfs_run_delayed_refs(trans, root, updates);
400 
401 	return should_end_transaction(trans, root);
402 }
403 
404 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
405 			  struct btrfs_root *root, int throttle, int lock)
406 {
407 	struct btrfs_transaction *cur_trans = trans->transaction;
408 	struct btrfs_fs_info *info = root->fs_info;
409 	int count = 0;
410 
411 	if (--trans->use_count) {
412 		trans->block_rsv = trans->orig_rsv;
413 		return 0;
414 	}
415 
416 	while (count < 4) {
417 		unsigned long cur = trans->delayed_ref_updates;
418 		trans->delayed_ref_updates = 0;
419 		if (cur &&
420 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
421 			trans->delayed_ref_updates = 0;
422 
423 			/*
424 			 * do a full flush if the transaction is trying
425 			 * to close
426 			 */
427 			if (trans->transaction->delayed_refs.flushing)
428 				cur = 0;
429 			btrfs_run_delayed_refs(trans, root, cur);
430 		} else {
431 			break;
432 		}
433 		count++;
434 	}
435 
436 	btrfs_trans_release_metadata(trans, root);
437 
438 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
439 	    should_end_transaction(trans, root)) {
440 		trans->transaction->blocked = 1;
441 		smp_wmb();
442 	}
443 
444 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
445 		if (throttle)
446 			return btrfs_commit_transaction(trans, root);
447 		else
448 			wake_up_process(info->transaction_kthread);
449 	}
450 
451 	WARN_ON(cur_trans != info->running_transaction);
452 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
453 	atomic_dec(&cur_trans->num_writers);
454 
455 	smp_mb();
456 	if (waitqueue_active(&cur_trans->writer_wait))
457 		wake_up(&cur_trans->writer_wait);
458 	put_transaction(cur_trans);
459 
460 	if (current->journal_info == trans)
461 		current->journal_info = NULL;
462 	memset(trans, 0, sizeof(*trans));
463 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
464 
465 	if (throttle)
466 		btrfs_run_delayed_iputs(root);
467 
468 	return 0;
469 }
470 
471 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
472 			  struct btrfs_root *root)
473 {
474 	int ret;
475 
476 	ret = __btrfs_end_transaction(trans, root, 0, 1);
477 	if (ret)
478 		return ret;
479 	return 0;
480 }
481 
482 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
483 				   struct btrfs_root *root)
484 {
485 	int ret;
486 
487 	ret = __btrfs_end_transaction(trans, root, 1, 1);
488 	if (ret)
489 		return ret;
490 	return 0;
491 }
492 
493 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
494 				 struct btrfs_root *root)
495 {
496 	int ret;
497 
498 	ret = __btrfs_end_transaction(trans, root, 0, 0);
499 	if (ret)
500 		return ret;
501 	return 0;
502 }
503 
504 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
505 				struct btrfs_root *root)
506 {
507 	return __btrfs_end_transaction(trans, root, 1, 1);
508 }
509 
510 /*
511  * when btree blocks are allocated, they have some corresponding bits set for
512  * them in one of two extent_io trees.  This is used to make sure all of
513  * those extents are sent to disk but does not wait on them
514  */
515 int btrfs_write_marked_extents(struct btrfs_root *root,
516 			       struct extent_io_tree *dirty_pages, int mark)
517 {
518 	int ret;
519 	int err = 0;
520 	int werr = 0;
521 	struct page *page;
522 	struct inode *btree_inode = root->fs_info->btree_inode;
523 	u64 start = 0;
524 	u64 end;
525 	unsigned long index;
526 
527 	while (1) {
528 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
529 					    mark);
530 		if (ret)
531 			break;
532 		while (start <= end) {
533 			cond_resched();
534 
535 			index = start >> PAGE_CACHE_SHIFT;
536 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
537 			page = find_get_page(btree_inode->i_mapping, index);
538 			if (!page)
539 				continue;
540 
541 			btree_lock_page_hook(page);
542 			if (!page->mapping) {
543 				unlock_page(page);
544 				page_cache_release(page);
545 				continue;
546 			}
547 
548 			if (PageWriteback(page)) {
549 				if (PageDirty(page))
550 					wait_on_page_writeback(page);
551 				else {
552 					unlock_page(page);
553 					page_cache_release(page);
554 					continue;
555 				}
556 			}
557 			err = write_one_page(page, 0);
558 			if (err)
559 				werr = err;
560 			page_cache_release(page);
561 		}
562 	}
563 	if (err)
564 		werr = err;
565 	return werr;
566 }
567 
568 /*
569  * when btree blocks are allocated, they have some corresponding bits set for
570  * them in one of two extent_io trees.  This is used to make sure all of
571  * those extents are on disk for transaction or log commit.  We wait
572  * on all the pages and clear them from the dirty pages state tree
573  */
574 int btrfs_wait_marked_extents(struct btrfs_root *root,
575 			      struct extent_io_tree *dirty_pages, int mark)
576 {
577 	int ret;
578 	int err = 0;
579 	int werr = 0;
580 	struct page *page;
581 	struct inode *btree_inode = root->fs_info->btree_inode;
582 	u64 start = 0;
583 	u64 end;
584 	unsigned long index;
585 
586 	while (1) {
587 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
588 					    mark);
589 		if (ret)
590 			break;
591 
592 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
593 		while (start <= end) {
594 			index = start >> PAGE_CACHE_SHIFT;
595 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
596 			page = find_get_page(btree_inode->i_mapping, index);
597 			if (!page)
598 				continue;
599 			if (PageDirty(page)) {
600 				btree_lock_page_hook(page);
601 				wait_on_page_writeback(page);
602 				err = write_one_page(page, 0);
603 				if (err)
604 					werr = err;
605 			}
606 			wait_on_page_writeback(page);
607 			page_cache_release(page);
608 			cond_resched();
609 		}
610 	}
611 	if (err)
612 		werr = err;
613 	return werr;
614 }
615 
616 /*
617  * when btree blocks are allocated, they have some corresponding bits set for
618  * them in one of two extent_io trees.  This is used to make sure all of
619  * those extents are on disk for transaction or log commit
620  */
621 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
622 				struct extent_io_tree *dirty_pages, int mark)
623 {
624 	int ret;
625 	int ret2;
626 
627 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
628 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
629 	return ret || ret2;
630 }
631 
632 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
633 				     struct btrfs_root *root)
634 {
635 	if (!trans || !trans->transaction) {
636 		struct inode *btree_inode;
637 		btree_inode = root->fs_info->btree_inode;
638 		return filemap_write_and_wait(btree_inode->i_mapping);
639 	}
640 	return btrfs_write_and_wait_marked_extents(root,
641 					   &trans->transaction->dirty_pages,
642 					   EXTENT_DIRTY);
643 }
644 
645 /*
646  * this is used to update the root pointer in the tree of tree roots.
647  *
648  * But, in the case of the extent allocation tree, updating the root
649  * pointer may allocate blocks which may change the root of the extent
650  * allocation tree.
651  *
652  * So, this loops and repeats and makes sure the cowonly root didn't
653  * change while the root pointer was being updated in the metadata.
654  */
655 static int update_cowonly_root(struct btrfs_trans_handle *trans,
656 			       struct btrfs_root *root)
657 {
658 	int ret;
659 	u64 old_root_bytenr;
660 	u64 old_root_used;
661 	struct btrfs_root *tree_root = root->fs_info->tree_root;
662 
663 	old_root_used = btrfs_root_used(&root->root_item);
664 	btrfs_write_dirty_block_groups(trans, root);
665 
666 	while (1) {
667 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
668 		if (old_root_bytenr == root->node->start &&
669 		    old_root_used == btrfs_root_used(&root->root_item))
670 			break;
671 
672 		btrfs_set_root_node(&root->root_item, root->node);
673 		ret = btrfs_update_root(trans, tree_root,
674 					&root->root_key,
675 					&root->root_item);
676 		BUG_ON(ret);
677 
678 		old_root_used = btrfs_root_used(&root->root_item);
679 		ret = btrfs_write_dirty_block_groups(trans, root);
680 		BUG_ON(ret);
681 	}
682 
683 	if (root != root->fs_info->extent_root)
684 		switch_commit_root(root);
685 
686 	return 0;
687 }
688 
689 /*
690  * update all the cowonly tree roots on disk
691  */
692 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
693 					 struct btrfs_root *root)
694 {
695 	struct btrfs_fs_info *fs_info = root->fs_info;
696 	struct list_head *next;
697 	struct extent_buffer *eb;
698 	int ret;
699 
700 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
701 	BUG_ON(ret);
702 
703 	eb = btrfs_lock_root_node(fs_info->tree_root);
704 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
705 	btrfs_tree_unlock(eb);
706 	free_extent_buffer(eb);
707 
708 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
709 	BUG_ON(ret);
710 
711 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
712 		next = fs_info->dirty_cowonly_roots.next;
713 		list_del_init(next);
714 		root = list_entry(next, struct btrfs_root, dirty_list);
715 
716 		update_cowonly_root(trans, root);
717 	}
718 
719 	down_write(&fs_info->extent_commit_sem);
720 	switch_commit_root(fs_info->extent_root);
721 	up_write(&fs_info->extent_commit_sem);
722 
723 	return 0;
724 }
725 
726 /*
727  * dead roots are old snapshots that need to be deleted.  This allocates
728  * a dirty root struct and adds it into the list of dead roots that need to
729  * be deleted
730  */
731 int btrfs_add_dead_root(struct btrfs_root *root)
732 {
733 	spin_lock(&root->fs_info->trans_lock);
734 	list_add(&root->root_list, &root->fs_info->dead_roots);
735 	spin_unlock(&root->fs_info->trans_lock);
736 	return 0;
737 }
738 
739 /*
740  * update all the cowonly tree roots on disk
741  */
742 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
743 				    struct btrfs_root *root)
744 {
745 	struct btrfs_root *gang[8];
746 	struct btrfs_fs_info *fs_info = root->fs_info;
747 	int i;
748 	int ret;
749 	int err = 0;
750 
751 	spin_lock(&fs_info->fs_roots_radix_lock);
752 	while (1) {
753 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
754 						 (void **)gang, 0,
755 						 ARRAY_SIZE(gang),
756 						 BTRFS_ROOT_TRANS_TAG);
757 		if (ret == 0)
758 			break;
759 		for (i = 0; i < ret; i++) {
760 			root = gang[i];
761 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
762 					(unsigned long)root->root_key.objectid,
763 					BTRFS_ROOT_TRANS_TAG);
764 			spin_unlock(&fs_info->fs_roots_radix_lock);
765 
766 			btrfs_free_log(trans, root);
767 			btrfs_update_reloc_root(trans, root);
768 			btrfs_orphan_commit_root(trans, root);
769 
770 			btrfs_save_ino_cache(root, trans);
771 
772 			if (root->commit_root != root->node) {
773 				mutex_lock(&root->fs_commit_mutex);
774 				switch_commit_root(root);
775 				btrfs_unpin_free_ino(root);
776 				mutex_unlock(&root->fs_commit_mutex);
777 
778 				btrfs_set_root_node(&root->root_item,
779 						    root->node);
780 			}
781 
782 			err = btrfs_update_root(trans, fs_info->tree_root,
783 						&root->root_key,
784 						&root->root_item);
785 			spin_lock(&fs_info->fs_roots_radix_lock);
786 			if (err)
787 				break;
788 		}
789 	}
790 	spin_unlock(&fs_info->fs_roots_radix_lock);
791 	return err;
792 }
793 
794 /*
795  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
796  * otherwise every leaf in the btree is read and defragged.
797  */
798 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
799 {
800 	struct btrfs_fs_info *info = root->fs_info;
801 	struct btrfs_trans_handle *trans;
802 	int ret;
803 	unsigned long nr;
804 
805 	if (xchg(&root->defrag_running, 1))
806 		return 0;
807 
808 	while (1) {
809 		trans = btrfs_start_transaction(root, 0);
810 		if (IS_ERR(trans))
811 			return PTR_ERR(trans);
812 
813 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
814 
815 		nr = trans->blocks_used;
816 		btrfs_end_transaction(trans, root);
817 		btrfs_btree_balance_dirty(info->tree_root, nr);
818 		cond_resched();
819 
820 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
821 			break;
822 	}
823 	root->defrag_running = 0;
824 	return ret;
825 }
826 
827 /*
828  * new snapshots need to be created at a very specific time in the
829  * transaction commit.  This does the actual creation
830  */
831 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
832 				   struct btrfs_fs_info *fs_info,
833 				   struct btrfs_pending_snapshot *pending)
834 {
835 	struct btrfs_key key;
836 	struct btrfs_root_item *new_root_item;
837 	struct btrfs_root *tree_root = fs_info->tree_root;
838 	struct btrfs_root *root = pending->root;
839 	struct btrfs_root *parent_root;
840 	struct inode *parent_inode;
841 	struct dentry *parent;
842 	struct dentry *dentry;
843 	struct extent_buffer *tmp;
844 	struct extent_buffer *old;
845 	int ret;
846 	u64 to_reserve = 0;
847 	u64 index = 0;
848 	u64 objectid;
849 	u64 root_flags;
850 
851 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
852 	if (!new_root_item) {
853 		pending->error = -ENOMEM;
854 		goto fail;
855 	}
856 
857 	ret = btrfs_find_free_objectid(tree_root, &objectid);
858 	if (ret) {
859 		pending->error = ret;
860 		goto fail;
861 	}
862 
863 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
864 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
865 
866 	if (to_reserve > 0) {
867 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
868 					  to_reserve);
869 		if (ret) {
870 			pending->error = ret;
871 			goto fail;
872 		}
873 	}
874 
875 	key.objectid = objectid;
876 	key.offset = (u64)-1;
877 	key.type = BTRFS_ROOT_ITEM_KEY;
878 
879 	trans->block_rsv = &pending->block_rsv;
880 
881 	dentry = pending->dentry;
882 	parent = dget_parent(dentry);
883 	parent_inode = parent->d_inode;
884 	parent_root = BTRFS_I(parent_inode)->root;
885 	btrfs_record_root_in_trans(trans, parent_root);
886 
887 	/*
888 	 * insert the directory item
889 	 */
890 	ret = btrfs_set_inode_index(parent_inode, &index);
891 	BUG_ON(ret);
892 	ret = btrfs_insert_dir_item(trans, parent_root,
893 				dentry->d_name.name, dentry->d_name.len,
894 				parent_inode, &key,
895 				BTRFS_FT_DIR, index);
896 	BUG_ON(ret);
897 
898 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
899 					 dentry->d_name.len * 2);
900 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
901 	BUG_ON(ret);
902 
903 	btrfs_record_root_in_trans(trans, root);
904 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
905 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
906 	btrfs_check_and_init_root_item(new_root_item);
907 
908 	root_flags = btrfs_root_flags(new_root_item);
909 	if (pending->readonly)
910 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
911 	else
912 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
913 	btrfs_set_root_flags(new_root_item, root_flags);
914 
915 	old = btrfs_lock_root_node(root);
916 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
917 	btrfs_set_lock_blocking(old);
918 
919 	btrfs_copy_root(trans, root, old, &tmp, objectid);
920 	btrfs_tree_unlock(old);
921 	free_extent_buffer(old);
922 
923 	btrfs_set_root_node(new_root_item, tmp);
924 	/* record when the snapshot was created in key.offset */
925 	key.offset = trans->transid;
926 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
927 	btrfs_tree_unlock(tmp);
928 	free_extent_buffer(tmp);
929 	BUG_ON(ret);
930 
931 	/*
932 	 * insert root back/forward references
933 	 */
934 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
935 				 parent_root->root_key.objectid,
936 				 btrfs_ino(parent_inode), index,
937 				 dentry->d_name.name, dentry->d_name.len);
938 	BUG_ON(ret);
939 	dput(parent);
940 
941 	key.offset = (u64)-1;
942 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
943 	BUG_ON(IS_ERR(pending->snap));
944 
945 	btrfs_reloc_post_snapshot(trans, pending);
946 	btrfs_orphan_post_snapshot(trans, pending);
947 fail:
948 	kfree(new_root_item);
949 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
950 	return 0;
951 }
952 
953 /*
954  * create all the snapshots we've scheduled for creation
955  */
956 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
957 					     struct btrfs_fs_info *fs_info)
958 {
959 	struct btrfs_pending_snapshot *pending;
960 	struct list_head *head = &trans->transaction->pending_snapshots;
961 	int ret;
962 
963 	list_for_each_entry(pending, head, list) {
964 		/*
965 		 * We must deal with the delayed items before creating
966 		 * snapshots, or we will create a snapthot with inconsistent
967 		 * information.
968 		*/
969 		ret = btrfs_run_delayed_items(trans, fs_info->fs_root);
970 		BUG_ON(ret);
971 
972 		ret = create_pending_snapshot(trans, fs_info, pending);
973 		BUG_ON(ret);
974 	}
975 	return 0;
976 }
977 
978 static void update_super_roots(struct btrfs_root *root)
979 {
980 	struct btrfs_root_item *root_item;
981 	struct btrfs_super_block *super;
982 
983 	super = &root->fs_info->super_copy;
984 
985 	root_item = &root->fs_info->chunk_root->root_item;
986 	super->chunk_root = root_item->bytenr;
987 	super->chunk_root_generation = root_item->generation;
988 	super->chunk_root_level = root_item->level;
989 
990 	root_item = &root->fs_info->tree_root->root_item;
991 	super->root = root_item->bytenr;
992 	super->generation = root_item->generation;
993 	super->root_level = root_item->level;
994 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
995 		super->cache_generation = root_item->generation;
996 }
997 
998 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
999 {
1000 	int ret = 0;
1001 	spin_lock(&info->trans_lock);
1002 	if (info->running_transaction)
1003 		ret = info->running_transaction->in_commit;
1004 	spin_unlock(&info->trans_lock);
1005 	return ret;
1006 }
1007 
1008 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1009 {
1010 	int ret = 0;
1011 	spin_lock(&info->trans_lock);
1012 	if (info->running_transaction)
1013 		ret = info->running_transaction->blocked;
1014 	spin_unlock(&info->trans_lock);
1015 	return ret;
1016 }
1017 
1018 /*
1019  * wait for the current transaction commit to start and block subsequent
1020  * transaction joins
1021  */
1022 static void wait_current_trans_commit_start(struct btrfs_root *root,
1023 					    struct btrfs_transaction *trans)
1024 {
1025 	DEFINE_WAIT(wait);
1026 
1027 	if (trans->in_commit)
1028 		return;
1029 
1030 	while (1) {
1031 		prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1032 				TASK_UNINTERRUPTIBLE);
1033 		if (trans->in_commit) {
1034 			finish_wait(&root->fs_info->transaction_blocked_wait,
1035 				    &wait);
1036 			break;
1037 		}
1038 		schedule();
1039 		finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1040 	}
1041 }
1042 
1043 /*
1044  * wait for the current transaction to start and then become unblocked.
1045  * caller holds ref.
1046  */
1047 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1048 					 struct btrfs_transaction *trans)
1049 {
1050 	DEFINE_WAIT(wait);
1051 
1052 	if (trans->commit_done || (trans->in_commit && !trans->blocked))
1053 		return;
1054 
1055 	while (1) {
1056 		prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1057 				TASK_UNINTERRUPTIBLE);
1058 		if (trans->commit_done ||
1059 		    (trans->in_commit && !trans->blocked)) {
1060 			finish_wait(&root->fs_info->transaction_wait,
1061 				    &wait);
1062 			break;
1063 		}
1064 		schedule();
1065 		finish_wait(&root->fs_info->transaction_wait,
1066 			    &wait);
1067 	}
1068 }
1069 
1070 /*
1071  * commit transactions asynchronously. once btrfs_commit_transaction_async
1072  * returns, any subsequent transaction will not be allowed to join.
1073  */
1074 struct btrfs_async_commit {
1075 	struct btrfs_trans_handle *newtrans;
1076 	struct btrfs_root *root;
1077 	struct delayed_work work;
1078 };
1079 
1080 static void do_async_commit(struct work_struct *work)
1081 {
1082 	struct btrfs_async_commit *ac =
1083 		container_of(work, struct btrfs_async_commit, work.work);
1084 
1085 	btrfs_commit_transaction(ac->newtrans, ac->root);
1086 	kfree(ac);
1087 }
1088 
1089 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1090 				   struct btrfs_root *root,
1091 				   int wait_for_unblock)
1092 {
1093 	struct btrfs_async_commit *ac;
1094 	struct btrfs_transaction *cur_trans;
1095 
1096 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1097 	if (!ac)
1098 		return -ENOMEM;
1099 
1100 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1101 	ac->root = root;
1102 	ac->newtrans = btrfs_join_transaction(root);
1103 	if (IS_ERR(ac->newtrans)) {
1104 		int err = PTR_ERR(ac->newtrans);
1105 		kfree(ac);
1106 		return err;
1107 	}
1108 
1109 	/* take transaction reference */
1110 	cur_trans = trans->transaction;
1111 	atomic_inc(&cur_trans->use_count);
1112 
1113 	btrfs_end_transaction(trans, root);
1114 	schedule_delayed_work(&ac->work, 0);
1115 
1116 	/* wait for transaction to start and unblock */
1117 	if (wait_for_unblock)
1118 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1119 	else
1120 		wait_current_trans_commit_start(root, cur_trans);
1121 	put_transaction(cur_trans);
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * btrfs_transaction state sequence:
1128  *    in_commit = 0, blocked = 0  (initial)
1129  *    in_commit = 1, blocked = 1
1130  *    blocked = 0
1131  *    commit_done = 1
1132  */
1133 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1134 			     struct btrfs_root *root)
1135 {
1136 	unsigned long joined = 0;
1137 	struct btrfs_transaction *cur_trans;
1138 	struct btrfs_transaction *prev_trans = NULL;
1139 	DEFINE_WAIT(wait);
1140 	int ret;
1141 	int should_grow = 0;
1142 	unsigned long now = get_seconds();
1143 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1144 
1145 	btrfs_run_ordered_operations(root, 0);
1146 
1147 	/* make a pass through all the delayed refs we have so far
1148 	 * any runnings procs may add more while we are here
1149 	 */
1150 	ret = btrfs_run_delayed_refs(trans, root, 0);
1151 	BUG_ON(ret);
1152 
1153 	btrfs_trans_release_metadata(trans, root);
1154 
1155 	cur_trans = trans->transaction;
1156 	/*
1157 	 * set the flushing flag so procs in this transaction have to
1158 	 * start sending their work down.
1159 	 */
1160 	cur_trans->delayed_refs.flushing = 1;
1161 
1162 	ret = btrfs_run_delayed_refs(trans, root, 0);
1163 	BUG_ON(ret);
1164 
1165 	spin_lock(&cur_trans->commit_lock);
1166 	if (cur_trans->in_commit) {
1167 		spin_unlock(&cur_trans->commit_lock);
1168 		atomic_inc(&cur_trans->use_count);
1169 		btrfs_end_transaction(trans, root);
1170 
1171 		ret = wait_for_commit(root, cur_trans);
1172 		BUG_ON(ret);
1173 
1174 		put_transaction(cur_trans);
1175 
1176 		return 0;
1177 	}
1178 
1179 	trans->transaction->in_commit = 1;
1180 	trans->transaction->blocked = 1;
1181 	spin_unlock(&cur_trans->commit_lock);
1182 	wake_up(&root->fs_info->transaction_blocked_wait);
1183 
1184 	spin_lock(&root->fs_info->trans_lock);
1185 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1186 		prev_trans = list_entry(cur_trans->list.prev,
1187 					struct btrfs_transaction, list);
1188 		if (!prev_trans->commit_done) {
1189 			atomic_inc(&prev_trans->use_count);
1190 			spin_unlock(&root->fs_info->trans_lock);
1191 
1192 			wait_for_commit(root, prev_trans);
1193 
1194 			put_transaction(prev_trans);
1195 		} else {
1196 			spin_unlock(&root->fs_info->trans_lock);
1197 		}
1198 	} else {
1199 		spin_unlock(&root->fs_info->trans_lock);
1200 	}
1201 
1202 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1203 		should_grow = 1;
1204 
1205 	do {
1206 		int snap_pending = 0;
1207 
1208 		joined = cur_trans->num_joined;
1209 		if (!list_empty(&trans->transaction->pending_snapshots))
1210 			snap_pending = 1;
1211 
1212 		WARN_ON(cur_trans != trans->transaction);
1213 
1214 		if (flush_on_commit || snap_pending) {
1215 			btrfs_start_delalloc_inodes(root, 1);
1216 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1217 			BUG_ON(ret);
1218 		}
1219 
1220 		ret = btrfs_run_delayed_items(trans, root);
1221 		BUG_ON(ret);
1222 
1223 		/*
1224 		 * rename don't use btrfs_join_transaction, so, once we
1225 		 * set the transaction to blocked above, we aren't going
1226 		 * to get any new ordered operations.  We can safely run
1227 		 * it here and no for sure that nothing new will be added
1228 		 * to the list
1229 		 */
1230 		btrfs_run_ordered_operations(root, 1);
1231 
1232 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1233 				TASK_UNINTERRUPTIBLE);
1234 
1235 		if (atomic_read(&cur_trans->num_writers) > 1)
1236 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1237 		else if (should_grow)
1238 			schedule_timeout(1);
1239 
1240 		finish_wait(&cur_trans->writer_wait, &wait);
1241 		spin_lock(&root->fs_info->trans_lock);
1242 		root->fs_info->trans_no_join = 1;
1243 		spin_unlock(&root->fs_info->trans_lock);
1244 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1245 		 (should_grow && cur_trans->num_joined != joined));
1246 
1247 	ret = create_pending_snapshots(trans, root->fs_info);
1248 	BUG_ON(ret);
1249 
1250 	ret = btrfs_run_delayed_items(trans, root);
1251 	BUG_ON(ret);
1252 
1253 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1254 	BUG_ON(ret);
1255 
1256 	WARN_ON(cur_trans != trans->transaction);
1257 
1258 	btrfs_scrub_pause(root);
1259 	/* btrfs_commit_tree_roots is responsible for getting the
1260 	 * various roots consistent with each other.  Every pointer
1261 	 * in the tree of tree roots has to point to the most up to date
1262 	 * root for every subvolume and other tree.  So, we have to keep
1263 	 * the tree logging code from jumping in and changing any
1264 	 * of the trees.
1265 	 *
1266 	 * At this point in the commit, there can't be any tree-log
1267 	 * writers, but a little lower down we drop the trans mutex
1268 	 * and let new people in.  By holding the tree_log_mutex
1269 	 * from now until after the super is written, we avoid races
1270 	 * with the tree-log code.
1271 	 */
1272 	mutex_lock(&root->fs_info->tree_log_mutex);
1273 
1274 	ret = commit_fs_roots(trans, root);
1275 	BUG_ON(ret);
1276 
1277 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1278 	 * safe to free the root of tree log roots
1279 	 */
1280 	btrfs_free_log_root_tree(trans, root->fs_info);
1281 
1282 	ret = commit_cowonly_roots(trans, root);
1283 	BUG_ON(ret);
1284 
1285 	btrfs_prepare_extent_commit(trans, root);
1286 
1287 	cur_trans = root->fs_info->running_transaction;
1288 
1289 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1290 			    root->fs_info->tree_root->node);
1291 	switch_commit_root(root->fs_info->tree_root);
1292 
1293 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1294 			    root->fs_info->chunk_root->node);
1295 	switch_commit_root(root->fs_info->chunk_root);
1296 
1297 	update_super_roots(root);
1298 
1299 	if (!root->fs_info->log_root_recovering) {
1300 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1301 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1302 	}
1303 
1304 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1305 	       sizeof(root->fs_info->super_copy));
1306 
1307 	trans->transaction->blocked = 0;
1308 	spin_lock(&root->fs_info->trans_lock);
1309 	root->fs_info->running_transaction = NULL;
1310 	root->fs_info->trans_no_join = 0;
1311 	spin_unlock(&root->fs_info->trans_lock);
1312 
1313 	wake_up(&root->fs_info->transaction_wait);
1314 
1315 	ret = btrfs_write_and_wait_transaction(trans, root);
1316 	BUG_ON(ret);
1317 	write_ctree_super(trans, root, 0);
1318 
1319 	/*
1320 	 * the super is written, we can safely allow the tree-loggers
1321 	 * to go about their business
1322 	 */
1323 	mutex_unlock(&root->fs_info->tree_log_mutex);
1324 
1325 	btrfs_finish_extent_commit(trans, root);
1326 
1327 	cur_trans->commit_done = 1;
1328 
1329 	root->fs_info->last_trans_committed = cur_trans->transid;
1330 
1331 	wake_up(&cur_trans->commit_wait);
1332 
1333 	spin_lock(&root->fs_info->trans_lock);
1334 	list_del_init(&cur_trans->list);
1335 	spin_unlock(&root->fs_info->trans_lock);
1336 
1337 	put_transaction(cur_trans);
1338 	put_transaction(cur_trans);
1339 
1340 	trace_btrfs_transaction_commit(root);
1341 
1342 	btrfs_scrub_continue(root);
1343 
1344 	if (current->journal_info == trans)
1345 		current->journal_info = NULL;
1346 
1347 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1348 
1349 	if (current != root->fs_info->transaction_kthread)
1350 		btrfs_run_delayed_iputs(root);
1351 
1352 	return ret;
1353 }
1354 
1355 /*
1356  * interface function to delete all the snapshots we have scheduled for deletion
1357  */
1358 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1359 {
1360 	LIST_HEAD(list);
1361 	struct btrfs_fs_info *fs_info = root->fs_info;
1362 
1363 	spin_lock(&fs_info->trans_lock);
1364 	list_splice_init(&fs_info->dead_roots, &list);
1365 	spin_unlock(&fs_info->trans_lock);
1366 
1367 	while (!list_empty(&list)) {
1368 		root = list_entry(list.next, struct btrfs_root, root_list);
1369 		list_del(&root->root_list);
1370 
1371 		btrfs_kill_all_delayed_nodes(root);
1372 
1373 		if (btrfs_header_backref_rev(root->node) <
1374 		    BTRFS_MIXED_BACKREF_REV)
1375 			btrfs_drop_snapshot(root, NULL, 0);
1376 		else
1377 			btrfs_drop_snapshot(root, NULL, 1);
1378 	}
1379 	return 0;
1380 }
1381