xref: /linux/fs/btrfs/transaction.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		/*
79 		 * If any block groups are found in ->deleted_bgs then it's
80 		 * because the transaction was aborted and a commit did not
81 		 * happen (things failed before writing the new superblock
82 		 * and calling btrfs_finish_extent_commit()), so we can not
83 		 * discard the physical locations of the block groups.
84 		 */
85 		while (!list_empty(&transaction->deleted_bgs)) {
86 			struct btrfs_block_group_cache *cache;
87 
88 			cache = list_first_entry(&transaction->deleted_bgs,
89 						 struct btrfs_block_group_cache,
90 						 bg_list);
91 			list_del_init(&cache->bg_list);
92 			btrfs_put_block_group_trimming(cache);
93 			btrfs_put_block_group(cache);
94 		}
95 		kmem_cache_free(btrfs_transaction_cachep, transaction);
96 	}
97 }
98 
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 	spin_lock(&tree->lock);
102 	/*
103 	 * Do a single barrier for the waitqueue_active check here, the state
104 	 * of the waitqueue should not change once clear_btree_io_tree is
105 	 * called.
106 	 */
107 	smp_mb();
108 	while (!RB_EMPTY_ROOT(&tree->state)) {
109 		struct rb_node *node;
110 		struct extent_state *state;
111 
112 		node = rb_first(&tree->state);
113 		state = rb_entry(node, struct extent_state, rb_node);
114 		rb_erase(&state->rb_node, &tree->state);
115 		RB_CLEAR_NODE(&state->rb_node);
116 		/*
117 		 * btree io trees aren't supposed to have tasks waiting for
118 		 * changes in the flags of extent states ever.
119 		 */
120 		ASSERT(!waitqueue_active(&state->wq));
121 		free_extent_state(state);
122 
123 		cond_resched_lock(&tree->lock);
124 	}
125 	spin_unlock(&tree->lock);
126 }
127 
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 					 struct btrfs_fs_info *fs_info)
130 {
131 	struct btrfs_root *root, *tmp;
132 
133 	down_write(&fs_info->commit_root_sem);
134 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 				 dirty_list) {
136 		list_del_init(&root->dirty_list);
137 		free_extent_buffer(root->commit_root);
138 		root->commit_root = btrfs_root_node(root);
139 		if (is_fstree(root->objectid))
140 			btrfs_unpin_free_ino(root);
141 		clear_btree_io_tree(&root->dirty_log_pages);
142 	}
143 
144 	/* We can free old roots now. */
145 	spin_lock(&trans->dropped_roots_lock);
146 	while (!list_empty(&trans->dropped_roots)) {
147 		root = list_first_entry(&trans->dropped_roots,
148 					struct btrfs_root, root_list);
149 		list_del_init(&root->root_list);
150 		spin_unlock(&trans->dropped_roots_lock);
151 		btrfs_drop_and_free_fs_root(fs_info, root);
152 		spin_lock(&trans->dropped_roots_lock);
153 	}
154 	spin_unlock(&trans->dropped_roots_lock);
155 	up_write(&fs_info->commit_root_sem);
156 }
157 
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 					 unsigned int type)
160 {
161 	if (type & TRANS_EXTWRITERS)
162 		atomic_inc(&trans->num_extwriters);
163 }
164 
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 					 unsigned int type)
167 {
168 	if (type & TRANS_EXTWRITERS)
169 		atomic_dec(&trans->num_extwriters);
170 }
171 
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 					  unsigned int type)
174 {
175 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177 
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 	return atomic_read(&trans->num_extwriters);
181 }
182 
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 	struct btrfs_transaction *cur_trans;
189 	struct btrfs_fs_info *fs_info = root->fs_info;
190 
191 	spin_lock(&fs_info->trans_lock);
192 loop:
193 	/* The file system has been taken offline. No new transactions. */
194 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 		spin_unlock(&fs_info->trans_lock);
196 		return -EROFS;
197 	}
198 
199 	cur_trans = fs_info->running_transaction;
200 	if (cur_trans) {
201 		if (cur_trans->aborted) {
202 			spin_unlock(&fs_info->trans_lock);
203 			return cur_trans->aborted;
204 		}
205 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 			spin_unlock(&fs_info->trans_lock);
207 			return -EBUSY;
208 		}
209 		atomic_inc(&cur_trans->use_count);
210 		atomic_inc(&cur_trans->num_writers);
211 		extwriter_counter_inc(cur_trans, type);
212 		spin_unlock(&fs_info->trans_lock);
213 		return 0;
214 	}
215 	spin_unlock(&fs_info->trans_lock);
216 
217 	/*
218 	 * If we are ATTACH, we just want to catch the current transaction,
219 	 * and commit it. If there is no transaction, just return ENOENT.
220 	 */
221 	if (type == TRANS_ATTACH)
222 		return -ENOENT;
223 
224 	/*
225 	 * JOIN_NOLOCK only happens during the transaction commit, so
226 	 * it is impossible that ->running_transaction is NULL
227 	 */
228 	BUG_ON(type == TRANS_JOIN_NOLOCK);
229 
230 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 	if (!cur_trans)
232 		return -ENOMEM;
233 
234 	spin_lock(&fs_info->trans_lock);
235 	if (fs_info->running_transaction) {
236 		/*
237 		 * someone started a transaction after we unlocked.  Make sure
238 		 * to redo the checks above
239 		 */
240 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 		goto loop;
242 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 		spin_unlock(&fs_info->trans_lock);
244 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 		return -EROFS;
246 	}
247 
248 	atomic_set(&cur_trans->num_writers, 1);
249 	extwriter_counter_init(cur_trans, type);
250 	init_waitqueue_head(&cur_trans->writer_wait);
251 	init_waitqueue_head(&cur_trans->commit_wait);
252 	init_waitqueue_head(&cur_trans->pending_wait);
253 	cur_trans->state = TRANS_STATE_RUNNING;
254 	/*
255 	 * One for this trans handle, one so it will live on until we
256 	 * commit the transaction.
257 	 */
258 	atomic_set(&cur_trans->use_count, 2);
259 	atomic_set(&cur_trans->pending_ordered, 0);
260 	cur_trans->flags = 0;
261 	cur_trans->start_time = get_seconds();
262 
263 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264 
265 	cur_trans->delayed_refs.href_root = RB_ROOT;
266 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268 
269 	/*
270 	 * although the tree mod log is per file system and not per transaction,
271 	 * the log must never go across transaction boundaries.
272 	 */
273 	smp_mb();
274 	if (!list_empty(&fs_info->tree_mod_seq_list))
275 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 			"creating a fresh transaction\n");
277 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 			"creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root,
315 			       int force)
316 {
317 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 	    root->last_trans < trans->transid) || force) {
319 		WARN_ON(root == root->fs_info->extent_root);
320 		WARN_ON(root->commit_root != root->node);
321 
322 		/*
323 		 * see below for IN_TRANS_SETUP usage rules
324 		 * we have the reloc mutex held now, so there
325 		 * is only one writer in this function
326 		 */
327 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328 
329 		/* make sure readers find IN_TRANS_SETUP before
330 		 * they find our root->last_trans update
331 		 */
332 		smp_wmb();
333 
334 		spin_lock(&root->fs_info->fs_roots_radix_lock);
335 		if (root->last_trans == trans->transid && !force) {
336 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 			return 0;
338 		}
339 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 			   (unsigned long)root->root_key.objectid,
341 			   BTRFS_ROOT_TRANS_TAG);
342 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 		root->last_trans = trans->transid;
344 
345 		/* this is pretty tricky.  We don't want to
346 		 * take the relocation lock in btrfs_record_root_in_trans
347 		 * unless we're really doing the first setup for this root in
348 		 * this transaction.
349 		 *
350 		 * Normally we'd use root->last_trans as a flag to decide
351 		 * if we want to take the expensive mutex.
352 		 *
353 		 * But, we have to set root->last_trans before we
354 		 * init the relocation root, otherwise, we trip over warnings
355 		 * in ctree.c.  The solution used here is to flag ourselves
356 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
357 		 * fixing up the reloc trees and everyone must wait.
358 		 *
359 		 * When this is zero, they can trust root->last_trans and fly
360 		 * through btrfs_record_root_in_trans without having to take the
361 		 * lock.  smp_wmb() makes sure that all the writes above are
362 		 * done before we pop in the zero below
363 		 */
364 		btrfs_init_reloc_root(trans, root);
365 		smp_mb__before_atomic();
366 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 	}
368 	return 0;
369 }
370 
371 
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 			    struct btrfs_root *root)
374 {
375 	struct btrfs_transaction *cur_trans = trans->transaction;
376 
377 	/* Add ourselves to the transaction dropped list */
378 	spin_lock(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 	spin_unlock(&cur_trans->dropped_roots_lock);
381 
382 	/* Make sure we don't try to update the root at commit time */
383 	spin_lock(&root->fs_info->fs_roots_radix_lock);
384 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 			     (unsigned long)root->root_key.objectid,
386 			     BTRFS_ROOT_TRANS_TAG);
387 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389 
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 			       struct btrfs_root *root)
392 {
393 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 		return 0;
395 
396 	/*
397 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 	 * and barriers
399 	 */
400 	smp_rmb();
401 	if (root->last_trans == trans->transid &&
402 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 		return 0;
404 
405 	mutex_lock(&root->fs_info->reloc_mutex);
406 	record_root_in_trans(trans, root, 0);
407 	mutex_unlock(&root->fs_info->reloc_mutex);
408 
409 	return 0;
410 }
411 
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 	return (trans->state >= TRANS_STATE_BLOCKED &&
415 		trans->state < TRANS_STATE_UNBLOCKED &&
416 		!trans->aborted);
417 }
418 
419 /* wait for commit against the current transaction to become unblocked
420  * when this is done, it is safe to start a new transaction, but the current
421  * transaction might not be fully on disk.
422  */
423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 	struct btrfs_transaction *cur_trans;
426 
427 	spin_lock(&root->fs_info->trans_lock);
428 	cur_trans = root->fs_info->running_transaction;
429 	if (cur_trans && is_transaction_blocked(cur_trans)) {
430 		atomic_inc(&cur_trans->use_count);
431 		spin_unlock(&root->fs_info->trans_lock);
432 
433 		wait_event(root->fs_info->transaction_wait,
434 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 			   cur_trans->aborted);
436 		btrfs_put_transaction(cur_trans);
437 	} else {
438 		spin_unlock(&root->fs_info->trans_lock);
439 	}
440 }
441 
442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 	if (root->fs_info->log_root_recovering)
445 		return 0;
446 
447 	if (type == TRANS_USERSPACE)
448 		return 1;
449 
450 	if (type == TRANS_START &&
451 	    !atomic_read(&root->fs_info->open_ioctl_trans))
452 		return 1;
453 
454 	return 0;
455 }
456 
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 	if (!root->fs_info->reloc_ctl ||
460 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 	    root->reloc_root)
463 		return false;
464 
465 	return true;
466 }
467 
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 	struct btrfs_trans_handle *h;
473 	struct btrfs_transaction *cur_trans;
474 	u64 num_bytes = 0;
475 	u64 qgroup_reserved = 0;
476 	bool reloc_reserved = false;
477 	int ret;
478 
479 	/* Send isn't supposed to start transactions. */
480 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481 
482 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 		return ERR_PTR(-EROFS);
484 
485 	if (current->journal_info) {
486 		WARN_ON(type & TRANS_EXTWRITERS);
487 		h = current->journal_info;
488 		h->use_count++;
489 		WARN_ON(h->use_count > 2);
490 		h->orig_rsv = h->block_rsv;
491 		h->block_rsv = NULL;
492 		goto got_it;
493 	}
494 
495 	/*
496 	 * Do the reservation before we join the transaction so we can do all
497 	 * the appropriate flushing if need be.
498 	 */
499 	if (num_items > 0 && root != root->fs_info->chunk_root) {
500 		qgroup_reserved = num_items * root->nodesize;
501 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 		if (ret)
503 			return ERR_PTR(ret);
504 
505 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 		/*
507 		 * Do the reservation for the relocation root creation
508 		 */
509 		if (need_reserve_reloc_root(root)) {
510 			num_bytes += root->nodesize;
511 			reloc_reserved = true;
512 		}
513 
514 		ret = btrfs_block_rsv_add(root,
515 					  &root->fs_info->trans_block_rsv,
516 					  num_bytes, flush);
517 		if (ret)
518 			goto reserve_fail;
519 	}
520 again:
521 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 	if (!h) {
523 		ret = -ENOMEM;
524 		goto alloc_fail;
525 	}
526 
527 	/*
528 	 * If we are JOIN_NOLOCK we're already committing a transaction and
529 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 	 * because we're already holding a ref.  We need this because we could
531 	 * have raced in and did an fsync() on a file which can kick a commit
532 	 * and then we deadlock with somebody doing a freeze.
533 	 *
534 	 * If we are ATTACH, it means we just want to catch the current
535 	 * transaction and commit it, so we needn't do sb_start_intwrite().
536 	 */
537 	if (type & __TRANS_FREEZABLE)
538 		sb_start_intwrite(root->fs_info->sb);
539 
540 	if (may_wait_transaction(root, type))
541 		wait_current_trans(root);
542 
543 	do {
544 		ret = join_transaction(root, type);
545 		if (ret == -EBUSY) {
546 			wait_current_trans(root);
547 			if (unlikely(type == TRANS_ATTACH))
548 				ret = -ENOENT;
549 		}
550 	} while (ret == -EBUSY);
551 
552 	if (ret < 0) {
553 		/* We must get the transaction if we are JOIN_NOLOCK. */
554 		BUG_ON(type == TRANS_JOIN_NOLOCK);
555 		goto join_fail;
556 	}
557 
558 	cur_trans = root->fs_info->running_transaction;
559 
560 	h->transid = cur_trans->transid;
561 	h->transaction = cur_trans;
562 	h->root = root;
563 	h->use_count = 1;
564 
565 	h->type = type;
566 	h->can_flush_pending_bgs = true;
567 	INIT_LIST_HEAD(&h->qgroup_ref_list);
568 	INIT_LIST_HEAD(&h->new_bgs);
569 
570 	smp_mb();
571 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
572 	    may_wait_transaction(root, type)) {
573 		current->journal_info = h;
574 		btrfs_commit_transaction(h, root);
575 		goto again;
576 	}
577 
578 	if (num_bytes) {
579 		trace_btrfs_space_reservation(root->fs_info, "transaction",
580 					      h->transid, num_bytes, 1);
581 		h->block_rsv = &root->fs_info->trans_block_rsv;
582 		h->bytes_reserved = num_bytes;
583 		h->reloc_reserved = reloc_reserved;
584 	}
585 
586 got_it:
587 	btrfs_record_root_in_trans(h, root);
588 
589 	if (!current->journal_info && type != TRANS_USERSPACE)
590 		current->journal_info = h;
591 	return h;
592 
593 join_fail:
594 	if (type & __TRANS_FREEZABLE)
595 		sb_end_intwrite(root->fs_info->sb);
596 	kmem_cache_free(btrfs_trans_handle_cachep, h);
597 alloc_fail:
598 	if (num_bytes)
599 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
600 					num_bytes);
601 reserve_fail:
602 	btrfs_qgroup_free_meta(root, qgroup_reserved);
603 	return ERR_PTR(ret);
604 }
605 
606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
607 						   unsigned int num_items)
608 {
609 	return start_transaction(root, num_items, TRANS_START,
610 				 BTRFS_RESERVE_FLUSH_ALL);
611 }
612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
613 					struct btrfs_root *root,
614 					unsigned int num_items,
615 					int min_factor)
616 {
617 	struct btrfs_trans_handle *trans;
618 	u64 num_bytes;
619 	int ret;
620 
621 	trans = btrfs_start_transaction(root, num_items);
622 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
623 		return trans;
624 
625 	trans = btrfs_start_transaction(root, 0);
626 	if (IS_ERR(trans))
627 		return trans;
628 
629 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
630 	ret = btrfs_cond_migrate_bytes(root->fs_info,
631 				       &root->fs_info->trans_block_rsv,
632 				       num_bytes,
633 				       min_factor);
634 	if (ret) {
635 		btrfs_end_transaction(trans, root);
636 		return ERR_PTR(ret);
637 	}
638 
639 	trans->block_rsv = &root->fs_info->trans_block_rsv;
640 	trans->bytes_reserved = num_bytes;
641 	trace_btrfs_space_reservation(root->fs_info, "transaction",
642 				      trans->transid, num_bytes, 1);
643 
644 	return trans;
645 }
646 
647 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
648 					struct btrfs_root *root,
649 					unsigned int num_items)
650 {
651 	return start_transaction(root, num_items, TRANS_START,
652 				 BTRFS_RESERVE_FLUSH_LIMIT);
653 }
654 
655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
656 {
657 	return start_transaction(root, 0, TRANS_JOIN,
658 				 BTRFS_RESERVE_NO_FLUSH);
659 }
660 
661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
662 {
663 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
664 				 BTRFS_RESERVE_NO_FLUSH);
665 }
666 
667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
668 {
669 	return start_transaction(root, 0, TRANS_USERSPACE,
670 				 BTRFS_RESERVE_NO_FLUSH);
671 }
672 
673 /*
674  * btrfs_attach_transaction() - catch the running transaction
675  *
676  * It is used when we want to commit the current the transaction, but
677  * don't want to start a new one.
678  *
679  * Note: If this function return -ENOENT, it just means there is no
680  * running transaction. But it is possible that the inactive transaction
681  * is still in the memory, not fully on disk. If you hope there is no
682  * inactive transaction in the fs when -ENOENT is returned, you should
683  * invoke
684  *     btrfs_attach_transaction_barrier()
685  */
686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
687 {
688 	return start_transaction(root, 0, TRANS_ATTACH,
689 				 BTRFS_RESERVE_NO_FLUSH);
690 }
691 
692 /*
693  * btrfs_attach_transaction_barrier() - catch the running transaction
694  *
695  * It is similar to the above function, the differentia is this one
696  * will wait for all the inactive transactions until they fully
697  * complete.
698  */
699 struct btrfs_trans_handle *
700 btrfs_attach_transaction_barrier(struct btrfs_root *root)
701 {
702 	struct btrfs_trans_handle *trans;
703 
704 	trans = start_transaction(root, 0, TRANS_ATTACH,
705 				  BTRFS_RESERVE_NO_FLUSH);
706 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
707 		btrfs_wait_for_commit(root, 0);
708 
709 	return trans;
710 }
711 
712 /* wait for a transaction commit to be fully complete */
713 static noinline void wait_for_commit(struct btrfs_root *root,
714 				    struct btrfs_transaction *commit)
715 {
716 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
717 }
718 
719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
720 {
721 	struct btrfs_transaction *cur_trans = NULL, *t;
722 	int ret = 0;
723 
724 	if (transid) {
725 		if (transid <= root->fs_info->last_trans_committed)
726 			goto out;
727 
728 		/* find specified transaction */
729 		spin_lock(&root->fs_info->trans_lock);
730 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
731 			if (t->transid == transid) {
732 				cur_trans = t;
733 				atomic_inc(&cur_trans->use_count);
734 				ret = 0;
735 				break;
736 			}
737 			if (t->transid > transid) {
738 				ret = 0;
739 				break;
740 			}
741 		}
742 		spin_unlock(&root->fs_info->trans_lock);
743 
744 		/*
745 		 * The specified transaction doesn't exist, or we
746 		 * raced with btrfs_commit_transaction
747 		 */
748 		if (!cur_trans) {
749 			if (transid > root->fs_info->last_trans_committed)
750 				ret = -EINVAL;
751 			goto out;
752 		}
753 	} else {
754 		/* find newest transaction that is committing | committed */
755 		spin_lock(&root->fs_info->trans_lock);
756 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
757 					    list) {
758 			if (t->state >= TRANS_STATE_COMMIT_START) {
759 				if (t->state == TRANS_STATE_COMPLETED)
760 					break;
761 				cur_trans = t;
762 				atomic_inc(&cur_trans->use_count);
763 				break;
764 			}
765 		}
766 		spin_unlock(&root->fs_info->trans_lock);
767 		if (!cur_trans)
768 			goto out;  /* nothing committing|committed */
769 	}
770 
771 	wait_for_commit(root, cur_trans);
772 	btrfs_put_transaction(cur_trans);
773 out:
774 	return ret;
775 }
776 
777 void btrfs_throttle(struct btrfs_root *root)
778 {
779 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
780 		wait_current_trans(root);
781 }
782 
783 static int should_end_transaction(struct btrfs_trans_handle *trans,
784 				  struct btrfs_root *root)
785 {
786 	if (root->fs_info->global_block_rsv.space_info->full &&
787 	    btrfs_check_space_for_delayed_refs(trans, root))
788 		return 1;
789 
790 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
791 }
792 
793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
794 				 struct btrfs_root *root)
795 {
796 	struct btrfs_transaction *cur_trans = trans->transaction;
797 	int updates;
798 	int err;
799 
800 	smp_mb();
801 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 	    cur_trans->delayed_refs.flushing)
803 		return 1;
804 
805 	updates = trans->delayed_ref_updates;
806 	trans->delayed_ref_updates = 0;
807 	if (updates) {
808 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
809 		if (err) /* Error code will also eval true */
810 			return err;
811 	}
812 
813 	return should_end_transaction(trans, root);
814 }
815 
816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
817 			  struct btrfs_root *root, int throttle)
818 {
819 	struct btrfs_transaction *cur_trans = trans->transaction;
820 	struct btrfs_fs_info *info = root->fs_info;
821 	unsigned long cur = trans->delayed_ref_updates;
822 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
823 	int err = 0;
824 	int must_run_delayed_refs = 0;
825 
826 	if (trans->use_count > 1) {
827 		trans->use_count--;
828 		trans->block_rsv = trans->orig_rsv;
829 		return 0;
830 	}
831 
832 	btrfs_trans_release_metadata(trans, root);
833 	trans->block_rsv = NULL;
834 
835 	if (!list_empty(&trans->new_bgs))
836 		btrfs_create_pending_block_groups(trans, root);
837 
838 	trans->delayed_ref_updates = 0;
839 	if (!trans->sync) {
840 		must_run_delayed_refs =
841 			btrfs_should_throttle_delayed_refs(trans, root);
842 		cur = max_t(unsigned long, cur, 32);
843 
844 		/*
845 		 * don't make the caller wait if they are from a NOLOCK
846 		 * or ATTACH transaction, it will deadlock with commit
847 		 */
848 		if (must_run_delayed_refs == 1 &&
849 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
850 			must_run_delayed_refs = 2;
851 	}
852 
853 	btrfs_trans_release_metadata(trans, root);
854 	trans->block_rsv = NULL;
855 
856 	if (!list_empty(&trans->new_bgs))
857 		btrfs_create_pending_block_groups(trans, root);
858 
859 	btrfs_trans_release_chunk_metadata(trans);
860 
861 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
862 	    should_end_transaction(trans, root) &&
863 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
864 		spin_lock(&info->trans_lock);
865 		if (cur_trans->state == TRANS_STATE_RUNNING)
866 			cur_trans->state = TRANS_STATE_BLOCKED;
867 		spin_unlock(&info->trans_lock);
868 	}
869 
870 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
871 		if (throttle)
872 			return btrfs_commit_transaction(trans, root);
873 		else
874 			wake_up_process(info->transaction_kthread);
875 	}
876 
877 	if (trans->type & __TRANS_FREEZABLE)
878 		sb_end_intwrite(root->fs_info->sb);
879 
880 	WARN_ON(cur_trans != info->running_transaction);
881 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
882 	atomic_dec(&cur_trans->num_writers);
883 	extwriter_counter_dec(cur_trans, trans->type);
884 
885 	/*
886 	 * Make sure counter is updated before we wake up waiters.
887 	 */
888 	smp_mb();
889 	if (waitqueue_active(&cur_trans->writer_wait))
890 		wake_up(&cur_trans->writer_wait);
891 	btrfs_put_transaction(cur_trans);
892 
893 	if (current->journal_info == trans)
894 		current->journal_info = NULL;
895 
896 	if (throttle)
897 		btrfs_run_delayed_iputs(root);
898 
899 	if (trans->aborted ||
900 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
901 		wake_up_process(info->transaction_kthread);
902 		err = -EIO;
903 	}
904 	assert_qgroups_uptodate(trans);
905 
906 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
907 	if (must_run_delayed_refs) {
908 		btrfs_async_run_delayed_refs(root, cur,
909 					     must_run_delayed_refs == 1);
910 	}
911 	return err;
912 }
913 
914 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
915 			  struct btrfs_root *root)
916 {
917 	return __btrfs_end_transaction(trans, root, 0);
918 }
919 
920 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
921 				   struct btrfs_root *root)
922 {
923 	return __btrfs_end_transaction(trans, root, 1);
924 }
925 
926 /*
927  * when btree blocks are allocated, they have some corresponding bits set for
928  * them in one of two extent_io trees.  This is used to make sure all of
929  * those extents are sent to disk but does not wait on them
930  */
931 int btrfs_write_marked_extents(struct btrfs_root *root,
932 			       struct extent_io_tree *dirty_pages, int mark)
933 {
934 	int err = 0;
935 	int werr = 0;
936 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
937 	struct extent_state *cached_state = NULL;
938 	u64 start = 0;
939 	u64 end;
940 
941 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
942 				      mark, &cached_state)) {
943 		bool wait_writeback = false;
944 
945 		err = convert_extent_bit(dirty_pages, start, end,
946 					 EXTENT_NEED_WAIT,
947 					 mark, &cached_state);
948 		/*
949 		 * convert_extent_bit can return -ENOMEM, which is most of the
950 		 * time a temporary error. So when it happens, ignore the error
951 		 * and wait for writeback of this range to finish - because we
952 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
953 		 * to btrfs_wait_marked_extents() would not know that writeback
954 		 * for this range started and therefore wouldn't wait for it to
955 		 * finish - we don't want to commit a superblock that points to
956 		 * btree nodes/leafs for which writeback hasn't finished yet
957 		 * (and without errors).
958 		 * We cleanup any entries left in the io tree when committing
959 		 * the transaction (through clear_btree_io_tree()).
960 		 */
961 		if (err == -ENOMEM) {
962 			err = 0;
963 			wait_writeback = true;
964 		}
965 		if (!err)
966 			err = filemap_fdatawrite_range(mapping, start, end);
967 		if (err)
968 			werr = err;
969 		else if (wait_writeback)
970 			werr = filemap_fdatawait_range(mapping, start, end);
971 		free_extent_state(cached_state);
972 		cached_state = NULL;
973 		cond_resched();
974 		start = end + 1;
975 	}
976 	return werr;
977 }
978 
979 /*
980  * when btree blocks are allocated, they have some corresponding bits set for
981  * them in one of two extent_io trees.  This is used to make sure all of
982  * those extents are on disk for transaction or log commit.  We wait
983  * on all the pages and clear them from the dirty pages state tree
984  */
985 int btrfs_wait_marked_extents(struct btrfs_root *root,
986 			      struct extent_io_tree *dirty_pages, int mark)
987 {
988 	int err = 0;
989 	int werr = 0;
990 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
991 	struct extent_state *cached_state = NULL;
992 	u64 start = 0;
993 	u64 end;
994 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
995 	bool errors = false;
996 
997 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
998 				      EXTENT_NEED_WAIT, &cached_state)) {
999 		/*
1000 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1001 		 * When committing the transaction, we'll remove any entries
1002 		 * left in the io tree. For a log commit, we don't remove them
1003 		 * after committing the log because the tree can be accessed
1004 		 * concurrently - we do it only at transaction commit time when
1005 		 * it's safe to do it (through clear_btree_io_tree()).
1006 		 */
1007 		err = clear_extent_bit(dirty_pages, start, end,
1008 				       EXTENT_NEED_WAIT,
1009 				       0, 0, &cached_state, GFP_NOFS);
1010 		if (err == -ENOMEM)
1011 			err = 0;
1012 		if (!err)
1013 			err = filemap_fdatawait_range(mapping, start, end);
1014 		if (err)
1015 			werr = err;
1016 		free_extent_state(cached_state);
1017 		cached_state = NULL;
1018 		cond_resched();
1019 		start = end + 1;
1020 	}
1021 	if (err)
1022 		werr = err;
1023 
1024 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1025 		if ((mark & EXTENT_DIRTY) &&
1026 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1027 				       &btree_ino->runtime_flags))
1028 			errors = true;
1029 
1030 		if ((mark & EXTENT_NEW) &&
1031 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1032 				       &btree_ino->runtime_flags))
1033 			errors = true;
1034 	} else {
1035 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1036 				       &btree_ino->runtime_flags))
1037 			errors = true;
1038 	}
1039 
1040 	if (errors && !werr)
1041 		werr = -EIO;
1042 
1043 	return werr;
1044 }
1045 
1046 /*
1047  * when btree blocks are allocated, they have some corresponding bits set for
1048  * them in one of two extent_io trees.  This is used to make sure all of
1049  * those extents are on disk for transaction or log commit
1050  */
1051 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1052 				struct extent_io_tree *dirty_pages, int mark)
1053 {
1054 	int ret;
1055 	int ret2;
1056 	struct blk_plug plug;
1057 
1058 	blk_start_plug(&plug);
1059 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1060 	blk_finish_plug(&plug);
1061 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1062 
1063 	if (ret)
1064 		return ret;
1065 	if (ret2)
1066 		return ret2;
1067 	return 0;
1068 }
1069 
1070 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1071 				     struct btrfs_root *root)
1072 {
1073 	int ret;
1074 
1075 	ret = btrfs_write_and_wait_marked_extents(root,
1076 					   &trans->transaction->dirty_pages,
1077 					   EXTENT_DIRTY);
1078 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1079 
1080 	return ret;
1081 }
1082 
1083 /*
1084  * this is used to update the root pointer in the tree of tree roots.
1085  *
1086  * But, in the case of the extent allocation tree, updating the root
1087  * pointer may allocate blocks which may change the root of the extent
1088  * allocation tree.
1089  *
1090  * So, this loops and repeats and makes sure the cowonly root didn't
1091  * change while the root pointer was being updated in the metadata.
1092  */
1093 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1094 			       struct btrfs_root *root)
1095 {
1096 	int ret;
1097 	u64 old_root_bytenr;
1098 	u64 old_root_used;
1099 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1100 
1101 	old_root_used = btrfs_root_used(&root->root_item);
1102 
1103 	while (1) {
1104 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1105 		if (old_root_bytenr == root->node->start &&
1106 		    old_root_used == btrfs_root_used(&root->root_item))
1107 			break;
1108 
1109 		btrfs_set_root_node(&root->root_item, root->node);
1110 		ret = btrfs_update_root(trans, tree_root,
1111 					&root->root_key,
1112 					&root->root_item);
1113 		if (ret)
1114 			return ret;
1115 
1116 		old_root_used = btrfs_root_used(&root->root_item);
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 /*
1123  * update all the cowonly tree roots on disk
1124  *
1125  * The error handling in this function may not be obvious. Any of the
1126  * failures will cause the file system to go offline. We still need
1127  * to clean up the delayed refs.
1128  */
1129 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1130 					 struct btrfs_root *root)
1131 {
1132 	struct btrfs_fs_info *fs_info = root->fs_info;
1133 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1134 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1135 	struct list_head *next;
1136 	struct extent_buffer *eb;
1137 	int ret;
1138 
1139 	eb = btrfs_lock_root_node(fs_info->tree_root);
1140 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1141 			      0, &eb);
1142 	btrfs_tree_unlock(eb);
1143 	free_extent_buffer(eb);
1144 
1145 	if (ret)
1146 		return ret;
1147 
1148 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1149 	if (ret)
1150 		return ret;
1151 
1152 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1153 	if (ret)
1154 		return ret;
1155 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1156 	if (ret)
1157 		return ret;
1158 	ret = btrfs_run_qgroups(trans, root->fs_info);
1159 	if (ret)
1160 		return ret;
1161 
1162 	ret = btrfs_setup_space_cache(trans, root);
1163 	if (ret)
1164 		return ret;
1165 
1166 	/* run_qgroups might have added some more refs */
1167 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1168 	if (ret)
1169 		return ret;
1170 again:
1171 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1172 		next = fs_info->dirty_cowonly_roots.next;
1173 		list_del_init(next);
1174 		root = list_entry(next, struct btrfs_root, dirty_list);
1175 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1176 
1177 		if (root != fs_info->extent_root)
1178 			list_add_tail(&root->dirty_list,
1179 				      &trans->transaction->switch_commits);
1180 		ret = update_cowonly_root(trans, root);
1181 		if (ret)
1182 			return ret;
1183 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1184 		if (ret)
1185 			return ret;
1186 	}
1187 
1188 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1189 		ret = btrfs_write_dirty_block_groups(trans, root);
1190 		if (ret)
1191 			return ret;
1192 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1193 		if (ret)
1194 			return ret;
1195 	}
1196 
1197 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1198 		goto again;
1199 
1200 	list_add_tail(&fs_info->extent_root->dirty_list,
1201 		      &trans->transaction->switch_commits);
1202 	btrfs_after_dev_replace_commit(fs_info);
1203 
1204 	return 0;
1205 }
1206 
1207 /*
1208  * dead roots are old snapshots that need to be deleted.  This allocates
1209  * a dirty root struct and adds it into the list of dead roots that need to
1210  * be deleted
1211  */
1212 void btrfs_add_dead_root(struct btrfs_root *root)
1213 {
1214 	spin_lock(&root->fs_info->trans_lock);
1215 	if (list_empty(&root->root_list))
1216 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1217 	spin_unlock(&root->fs_info->trans_lock);
1218 }
1219 
1220 /*
1221  * update all the cowonly tree roots on disk
1222  */
1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1224 				    struct btrfs_root *root)
1225 {
1226 	struct btrfs_root *gang[8];
1227 	struct btrfs_fs_info *fs_info = root->fs_info;
1228 	int i;
1229 	int ret;
1230 	int err = 0;
1231 
1232 	spin_lock(&fs_info->fs_roots_radix_lock);
1233 	while (1) {
1234 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1235 						 (void **)gang, 0,
1236 						 ARRAY_SIZE(gang),
1237 						 BTRFS_ROOT_TRANS_TAG);
1238 		if (ret == 0)
1239 			break;
1240 		for (i = 0; i < ret; i++) {
1241 			root = gang[i];
1242 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1243 					(unsigned long)root->root_key.objectid,
1244 					BTRFS_ROOT_TRANS_TAG);
1245 			spin_unlock(&fs_info->fs_roots_radix_lock);
1246 
1247 			btrfs_free_log(trans, root);
1248 			btrfs_update_reloc_root(trans, root);
1249 			btrfs_orphan_commit_root(trans, root);
1250 
1251 			btrfs_save_ino_cache(root, trans);
1252 
1253 			/* see comments in should_cow_block() */
1254 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1255 			smp_mb__after_atomic();
1256 
1257 			if (root->commit_root != root->node) {
1258 				list_add_tail(&root->dirty_list,
1259 					&trans->transaction->switch_commits);
1260 				btrfs_set_root_node(&root->root_item,
1261 						    root->node);
1262 			}
1263 
1264 			err = btrfs_update_root(trans, fs_info->tree_root,
1265 						&root->root_key,
1266 						&root->root_item);
1267 			spin_lock(&fs_info->fs_roots_radix_lock);
1268 			if (err)
1269 				break;
1270 			btrfs_qgroup_free_meta_all(root);
1271 		}
1272 	}
1273 	spin_unlock(&fs_info->fs_roots_radix_lock);
1274 	return err;
1275 }
1276 
1277 /*
1278  * defrag a given btree.
1279  * Every leaf in the btree is read and defragged.
1280  */
1281 int btrfs_defrag_root(struct btrfs_root *root)
1282 {
1283 	struct btrfs_fs_info *info = root->fs_info;
1284 	struct btrfs_trans_handle *trans;
1285 	int ret;
1286 
1287 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1288 		return 0;
1289 
1290 	while (1) {
1291 		trans = btrfs_start_transaction(root, 0);
1292 		if (IS_ERR(trans))
1293 			return PTR_ERR(trans);
1294 
1295 		ret = btrfs_defrag_leaves(trans, root);
1296 
1297 		btrfs_end_transaction(trans, root);
1298 		btrfs_btree_balance_dirty(info->tree_root);
1299 		cond_resched();
1300 
1301 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1302 			break;
1303 
1304 		if (btrfs_defrag_cancelled(root->fs_info)) {
1305 			pr_debug("BTRFS: defrag_root cancelled\n");
1306 			ret = -EAGAIN;
1307 			break;
1308 		}
1309 	}
1310 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1311 	return ret;
1312 }
1313 
1314 /* Bisesctability fixup, remove in 4.8 */
1315 #ifndef btrfs_std_error
1316 #define btrfs_std_error btrfs_handle_fs_error
1317 #endif
1318 
1319 /*
1320  * Do all special snapshot related qgroup dirty hack.
1321  *
1322  * Will do all needed qgroup inherit and dirty hack like switch commit
1323  * roots inside one transaction and write all btree into disk, to make
1324  * qgroup works.
1325  */
1326 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1327 				   struct btrfs_root *src,
1328 				   struct btrfs_root *parent,
1329 				   struct btrfs_qgroup_inherit *inherit,
1330 				   u64 dst_objectid)
1331 {
1332 	struct btrfs_fs_info *fs_info = src->fs_info;
1333 	int ret;
1334 
1335 	/*
1336 	 * Save some performance in the case that qgroups are not
1337 	 * enabled. If this check races with the ioctl, rescan will
1338 	 * kick in anyway.
1339 	 */
1340 	mutex_lock(&fs_info->qgroup_ioctl_lock);
1341 	if (!fs_info->quota_enabled) {
1342 		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1343 		return 0;
1344 	}
1345 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1346 
1347 	/*
1348 	 * We are going to commit transaction, see btrfs_commit_transaction()
1349 	 * comment for reason locking tree_log_mutex
1350 	 */
1351 	mutex_lock(&fs_info->tree_log_mutex);
1352 
1353 	ret = commit_fs_roots(trans, src);
1354 	if (ret)
1355 		goto out;
1356 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1357 	if (ret < 0)
1358 		goto out;
1359 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1364 	ret = btrfs_qgroup_inherit(trans, fs_info,
1365 				   src->root_key.objectid, dst_objectid,
1366 				   inherit);
1367 	if (ret < 0)
1368 		goto out;
1369 
1370 	/*
1371 	 * Now we do a simplified commit transaction, which will:
1372 	 * 1) commit all subvolume and extent tree
1373 	 *    To ensure all subvolume and extent tree have a valid
1374 	 *    commit_root to accounting later insert_dir_item()
1375 	 * 2) write all btree blocks onto disk
1376 	 *    This is to make sure later btree modification will be cowed
1377 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1378 	 * In this simplified commit, we don't really care about other trees
1379 	 * like chunk and root tree, as they won't affect qgroup.
1380 	 * And we don't write super to avoid half committed status.
1381 	 */
1382 	ret = commit_cowonly_roots(trans, src);
1383 	if (ret)
1384 		goto out;
1385 	switch_commit_roots(trans->transaction, fs_info);
1386 	ret = btrfs_write_and_wait_transaction(trans, src);
1387 	if (ret)
1388 		btrfs_std_error(fs_info, ret,
1389 			"Error while writing out transaction for qgroup");
1390 
1391 out:
1392 	mutex_unlock(&fs_info->tree_log_mutex);
1393 
1394 	/*
1395 	 * Force parent root to be updated, as we recorded it before so its
1396 	 * last_trans == cur_transid.
1397 	 * Or it won't be committed again onto disk after later
1398 	 * insert_dir_item()
1399 	 */
1400 	if (!ret)
1401 		record_root_in_trans(trans, parent, 1);
1402 	return ret;
1403 }
1404 
1405 /*
1406  * new snapshots need to be created at a very specific time in the
1407  * transaction commit.  This does the actual creation.
1408  *
1409  * Note:
1410  * If the error which may affect the commitment of the current transaction
1411  * happens, we should return the error number. If the error which just affect
1412  * the creation of the pending snapshots, just return 0.
1413  */
1414 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1415 				   struct btrfs_fs_info *fs_info,
1416 				   struct btrfs_pending_snapshot *pending)
1417 {
1418 	struct btrfs_key key;
1419 	struct btrfs_root_item *new_root_item;
1420 	struct btrfs_root *tree_root = fs_info->tree_root;
1421 	struct btrfs_root *root = pending->root;
1422 	struct btrfs_root *parent_root;
1423 	struct btrfs_block_rsv *rsv;
1424 	struct inode *parent_inode;
1425 	struct btrfs_path *path;
1426 	struct btrfs_dir_item *dir_item;
1427 	struct dentry *dentry;
1428 	struct extent_buffer *tmp;
1429 	struct extent_buffer *old;
1430 	struct timespec cur_time;
1431 	int ret = 0;
1432 	u64 to_reserve = 0;
1433 	u64 index = 0;
1434 	u64 objectid;
1435 	u64 root_flags;
1436 	uuid_le new_uuid;
1437 
1438 	ASSERT(pending->path);
1439 	path = pending->path;
1440 
1441 	ASSERT(pending->root_item);
1442 	new_root_item = pending->root_item;
1443 
1444 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1445 	if (pending->error)
1446 		goto no_free_objectid;
1447 
1448 	/*
1449 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1450 	 * accounted by later btrfs_qgroup_inherit().
1451 	 */
1452 	btrfs_set_skip_qgroup(trans, objectid);
1453 
1454 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1455 
1456 	if (to_reserve > 0) {
1457 		pending->error = btrfs_block_rsv_add(root,
1458 						     &pending->block_rsv,
1459 						     to_reserve,
1460 						     BTRFS_RESERVE_NO_FLUSH);
1461 		if (pending->error)
1462 			goto clear_skip_qgroup;
1463 	}
1464 
1465 	key.objectid = objectid;
1466 	key.offset = (u64)-1;
1467 	key.type = BTRFS_ROOT_ITEM_KEY;
1468 
1469 	rsv = trans->block_rsv;
1470 	trans->block_rsv = &pending->block_rsv;
1471 	trans->bytes_reserved = trans->block_rsv->reserved;
1472 	trace_btrfs_space_reservation(root->fs_info, "transaction",
1473 				      trans->transid,
1474 				      trans->bytes_reserved, 1);
1475 	dentry = pending->dentry;
1476 	parent_inode = pending->dir;
1477 	parent_root = BTRFS_I(parent_inode)->root;
1478 	record_root_in_trans(trans, parent_root, 0);
1479 
1480 	cur_time = current_fs_time(parent_inode->i_sb);
1481 
1482 	/*
1483 	 * insert the directory item
1484 	 */
1485 	ret = btrfs_set_inode_index(parent_inode, &index);
1486 	BUG_ON(ret); /* -ENOMEM */
1487 
1488 	/* check if there is a file/dir which has the same name. */
1489 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1490 					 btrfs_ino(parent_inode),
1491 					 dentry->d_name.name,
1492 					 dentry->d_name.len, 0);
1493 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1494 		pending->error = -EEXIST;
1495 		goto dir_item_existed;
1496 	} else if (IS_ERR(dir_item)) {
1497 		ret = PTR_ERR(dir_item);
1498 		btrfs_abort_transaction(trans, root, ret);
1499 		goto fail;
1500 	}
1501 	btrfs_release_path(path);
1502 
1503 	/*
1504 	 * pull in the delayed directory update
1505 	 * and the delayed inode item
1506 	 * otherwise we corrupt the FS during
1507 	 * snapshot
1508 	 */
1509 	ret = btrfs_run_delayed_items(trans, root);
1510 	if (ret) {	/* Transaction aborted */
1511 		btrfs_abort_transaction(trans, root, ret);
1512 		goto fail;
1513 	}
1514 
1515 	record_root_in_trans(trans, root, 0);
1516 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1517 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1518 	btrfs_check_and_init_root_item(new_root_item);
1519 
1520 	root_flags = btrfs_root_flags(new_root_item);
1521 	if (pending->readonly)
1522 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1523 	else
1524 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1525 	btrfs_set_root_flags(new_root_item, root_flags);
1526 
1527 	btrfs_set_root_generation_v2(new_root_item,
1528 			trans->transid);
1529 	uuid_le_gen(&new_uuid);
1530 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1531 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1532 			BTRFS_UUID_SIZE);
1533 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1534 		memset(new_root_item->received_uuid, 0,
1535 		       sizeof(new_root_item->received_uuid));
1536 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1537 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1538 		btrfs_set_root_stransid(new_root_item, 0);
1539 		btrfs_set_root_rtransid(new_root_item, 0);
1540 	}
1541 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1542 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1543 	btrfs_set_root_otransid(new_root_item, trans->transid);
1544 
1545 	old = btrfs_lock_root_node(root);
1546 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1547 	if (ret) {
1548 		btrfs_tree_unlock(old);
1549 		free_extent_buffer(old);
1550 		btrfs_abort_transaction(trans, root, ret);
1551 		goto fail;
1552 	}
1553 
1554 	btrfs_set_lock_blocking(old);
1555 
1556 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1557 	/* clean up in any case */
1558 	btrfs_tree_unlock(old);
1559 	free_extent_buffer(old);
1560 	if (ret) {
1561 		btrfs_abort_transaction(trans, root, ret);
1562 		goto fail;
1563 	}
1564 	/* see comments in should_cow_block() */
1565 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1566 	smp_wmb();
1567 
1568 	btrfs_set_root_node(new_root_item, tmp);
1569 	/* record when the snapshot was created in key.offset */
1570 	key.offset = trans->transid;
1571 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1572 	btrfs_tree_unlock(tmp);
1573 	free_extent_buffer(tmp);
1574 	if (ret) {
1575 		btrfs_abort_transaction(trans, root, ret);
1576 		goto fail;
1577 	}
1578 
1579 	/*
1580 	 * insert root back/forward references
1581 	 */
1582 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1583 				 parent_root->root_key.objectid,
1584 				 btrfs_ino(parent_inode), index,
1585 				 dentry->d_name.name, dentry->d_name.len);
1586 	if (ret) {
1587 		btrfs_abort_transaction(trans, root, ret);
1588 		goto fail;
1589 	}
1590 
1591 	key.offset = (u64)-1;
1592 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1593 	if (IS_ERR(pending->snap)) {
1594 		ret = PTR_ERR(pending->snap);
1595 		btrfs_abort_transaction(trans, root, ret);
1596 		goto fail;
1597 	}
1598 
1599 	ret = btrfs_reloc_post_snapshot(trans, pending);
1600 	if (ret) {
1601 		btrfs_abort_transaction(trans, root, ret);
1602 		goto fail;
1603 	}
1604 
1605 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1606 	if (ret) {
1607 		btrfs_abort_transaction(trans, root, ret);
1608 		goto fail;
1609 	}
1610 
1611 	/*
1612 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1613 	 * snapshot hack to do fast snapshot.
1614 	 * To co-operate with that hack, we do hack again.
1615 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1616 	 */
1617 	ret = qgroup_account_snapshot(trans, root, parent_root,
1618 				      pending->inherit, objectid);
1619 	if (ret < 0)
1620 		goto fail;
1621 
1622 	ret = btrfs_insert_dir_item(trans, parent_root,
1623 				    dentry->d_name.name, dentry->d_name.len,
1624 				    parent_inode, &key,
1625 				    BTRFS_FT_DIR, index);
1626 	/* We have check then name at the beginning, so it is impossible. */
1627 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1628 	if (ret) {
1629 		btrfs_abort_transaction(trans, root, ret);
1630 		goto fail;
1631 	}
1632 
1633 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1634 					 dentry->d_name.len * 2);
1635 	parent_inode->i_mtime = parent_inode->i_ctime =
1636 		current_fs_time(parent_inode->i_sb);
1637 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1638 	if (ret) {
1639 		btrfs_abort_transaction(trans, root, ret);
1640 		goto fail;
1641 	}
1642 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1643 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1644 	if (ret) {
1645 		btrfs_abort_transaction(trans, root, ret);
1646 		goto fail;
1647 	}
1648 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1649 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1650 					  new_root_item->received_uuid,
1651 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1652 					  objectid);
1653 		if (ret && ret != -EEXIST) {
1654 			btrfs_abort_transaction(trans, root, ret);
1655 			goto fail;
1656 		}
1657 	}
1658 
1659 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1660 	if (ret) {
1661 		btrfs_abort_transaction(trans, root, ret);
1662 		goto fail;
1663 	}
1664 
1665 fail:
1666 	pending->error = ret;
1667 dir_item_existed:
1668 	trans->block_rsv = rsv;
1669 	trans->bytes_reserved = 0;
1670 clear_skip_qgroup:
1671 	btrfs_clear_skip_qgroup(trans);
1672 no_free_objectid:
1673 	kfree(new_root_item);
1674 	pending->root_item = NULL;
1675 	btrfs_free_path(path);
1676 	pending->path = NULL;
1677 
1678 	return ret;
1679 }
1680 
1681 /*
1682  * create all the snapshots we've scheduled for creation
1683  */
1684 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1685 					     struct btrfs_fs_info *fs_info)
1686 {
1687 	struct btrfs_pending_snapshot *pending, *next;
1688 	struct list_head *head = &trans->transaction->pending_snapshots;
1689 	int ret = 0;
1690 
1691 	list_for_each_entry_safe(pending, next, head, list) {
1692 		list_del(&pending->list);
1693 		ret = create_pending_snapshot(trans, fs_info, pending);
1694 		if (ret)
1695 			break;
1696 	}
1697 	return ret;
1698 }
1699 
1700 static void update_super_roots(struct btrfs_root *root)
1701 {
1702 	struct btrfs_root_item *root_item;
1703 	struct btrfs_super_block *super;
1704 
1705 	super = root->fs_info->super_copy;
1706 
1707 	root_item = &root->fs_info->chunk_root->root_item;
1708 	super->chunk_root = root_item->bytenr;
1709 	super->chunk_root_generation = root_item->generation;
1710 	super->chunk_root_level = root_item->level;
1711 
1712 	root_item = &root->fs_info->tree_root->root_item;
1713 	super->root = root_item->bytenr;
1714 	super->generation = root_item->generation;
1715 	super->root_level = root_item->level;
1716 	if (btrfs_test_opt(root, SPACE_CACHE))
1717 		super->cache_generation = root_item->generation;
1718 	if (root->fs_info->update_uuid_tree_gen)
1719 		super->uuid_tree_generation = root_item->generation;
1720 }
1721 
1722 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1723 {
1724 	struct btrfs_transaction *trans;
1725 	int ret = 0;
1726 
1727 	spin_lock(&info->trans_lock);
1728 	trans = info->running_transaction;
1729 	if (trans)
1730 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1731 	spin_unlock(&info->trans_lock);
1732 	return ret;
1733 }
1734 
1735 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1736 {
1737 	struct btrfs_transaction *trans;
1738 	int ret = 0;
1739 
1740 	spin_lock(&info->trans_lock);
1741 	trans = info->running_transaction;
1742 	if (trans)
1743 		ret = is_transaction_blocked(trans);
1744 	spin_unlock(&info->trans_lock);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * wait for the current transaction commit to start and block subsequent
1750  * transaction joins
1751  */
1752 static void wait_current_trans_commit_start(struct btrfs_root *root,
1753 					    struct btrfs_transaction *trans)
1754 {
1755 	wait_event(root->fs_info->transaction_blocked_wait,
1756 		   trans->state >= TRANS_STATE_COMMIT_START ||
1757 		   trans->aborted);
1758 }
1759 
1760 /*
1761  * wait for the current transaction to start and then become unblocked.
1762  * caller holds ref.
1763  */
1764 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1765 					 struct btrfs_transaction *trans)
1766 {
1767 	wait_event(root->fs_info->transaction_wait,
1768 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1769 		   trans->aborted);
1770 }
1771 
1772 /*
1773  * commit transactions asynchronously. once btrfs_commit_transaction_async
1774  * returns, any subsequent transaction will not be allowed to join.
1775  */
1776 struct btrfs_async_commit {
1777 	struct btrfs_trans_handle *newtrans;
1778 	struct btrfs_root *root;
1779 	struct work_struct work;
1780 };
1781 
1782 static void do_async_commit(struct work_struct *work)
1783 {
1784 	struct btrfs_async_commit *ac =
1785 		container_of(work, struct btrfs_async_commit, work);
1786 
1787 	/*
1788 	 * We've got freeze protection passed with the transaction.
1789 	 * Tell lockdep about it.
1790 	 */
1791 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1792 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1793 
1794 	current->journal_info = ac->newtrans;
1795 
1796 	btrfs_commit_transaction(ac->newtrans, ac->root);
1797 	kfree(ac);
1798 }
1799 
1800 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1801 				   struct btrfs_root *root,
1802 				   int wait_for_unblock)
1803 {
1804 	struct btrfs_async_commit *ac;
1805 	struct btrfs_transaction *cur_trans;
1806 
1807 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1808 	if (!ac)
1809 		return -ENOMEM;
1810 
1811 	INIT_WORK(&ac->work, do_async_commit);
1812 	ac->root = root;
1813 	ac->newtrans = btrfs_join_transaction(root);
1814 	if (IS_ERR(ac->newtrans)) {
1815 		int err = PTR_ERR(ac->newtrans);
1816 		kfree(ac);
1817 		return err;
1818 	}
1819 
1820 	/* take transaction reference */
1821 	cur_trans = trans->transaction;
1822 	atomic_inc(&cur_trans->use_count);
1823 
1824 	btrfs_end_transaction(trans, root);
1825 
1826 	/*
1827 	 * Tell lockdep we've released the freeze rwsem, since the
1828 	 * async commit thread will be the one to unlock it.
1829 	 */
1830 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1831 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1832 
1833 	schedule_work(&ac->work);
1834 
1835 	/* wait for transaction to start and unblock */
1836 	if (wait_for_unblock)
1837 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1838 	else
1839 		wait_current_trans_commit_start(root, cur_trans);
1840 
1841 	if (current->journal_info == trans)
1842 		current->journal_info = NULL;
1843 
1844 	btrfs_put_transaction(cur_trans);
1845 	return 0;
1846 }
1847 
1848 
1849 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1850 				struct btrfs_root *root, int err)
1851 {
1852 	struct btrfs_transaction *cur_trans = trans->transaction;
1853 	DEFINE_WAIT(wait);
1854 
1855 	WARN_ON(trans->use_count > 1);
1856 
1857 	btrfs_abort_transaction(trans, root, err);
1858 
1859 	spin_lock(&root->fs_info->trans_lock);
1860 
1861 	/*
1862 	 * If the transaction is removed from the list, it means this
1863 	 * transaction has been committed successfully, so it is impossible
1864 	 * to call the cleanup function.
1865 	 */
1866 	BUG_ON(list_empty(&cur_trans->list));
1867 
1868 	list_del_init(&cur_trans->list);
1869 	if (cur_trans == root->fs_info->running_transaction) {
1870 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1871 		spin_unlock(&root->fs_info->trans_lock);
1872 		wait_event(cur_trans->writer_wait,
1873 			   atomic_read(&cur_trans->num_writers) == 1);
1874 
1875 		spin_lock(&root->fs_info->trans_lock);
1876 	}
1877 	spin_unlock(&root->fs_info->trans_lock);
1878 
1879 	btrfs_cleanup_one_transaction(trans->transaction, root);
1880 
1881 	spin_lock(&root->fs_info->trans_lock);
1882 	if (cur_trans == root->fs_info->running_transaction)
1883 		root->fs_info->running_transaction = NULL;
1884 	spin_unlock(&root->fs_info->trans_lock);
1885 
1886 	if (trans->type & __TRANS_FREEZABLE)
1887 		sb_end_intwrite(root->fs_info->sb);
1888 	btrfs_put_transaction(cur_trans);
1889 	btrfs_put_transaction(cur_trans);
1890 
1891 	trace_btrfs_transaction_commit(root);
1892 
1893 	if (current->journal_info == trans)
1894 		current->journal_info = NULL;
1895 	btrfs_scrub_cancel(root->fs_info);
1896 
1897 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1898 }
1899 
1900 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1901 {
1902 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1903 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1904 	return 0;
1905 }
1906 
1907 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1908 {
1909 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1910 		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1911 }
1912 
1913 static inline void
1914 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1915 {
1916 	wait_event(cur_trans->pending_wait,
1917 		   atomic_read(&cur_trans->pending_ordered) == 0);
1918 }
1919 
1920 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1921 			     struct btrfs_root *root)
1922 {
1923 	struct btrfs_transaction *cur_trans = trans->transaction;
1924 	struct btrfs_transaction *prev_trans = NULL;
1925 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1926 	int ret;
1927 
1928 	/* Stop the commit early if ->aborted is set */
1929 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1930 		ret = cur_trans->aborted;
1931 		btrfs_end_transaction(trans, root);
1932 		return ret;
1933 	}
1934 
1935 	/* make a pass through all the delayed refs we have so far
1936 	 * any runnings procs may add more while we are here
1937 	 */
1938 	ret = btrfs_run_delayed_refs(trans, root, 0);
1939 	if (ret) {
1940 		btrfs_end_transaction(trans, root);
1941 		return ret;
1942 	}
1943 
1944 	btrfs_trans_release_metadata(trans, root);
1945 	trans->block_rsv = NULL;
1946 
1947 	cur_trans = trans->transaction;
1948 
1949 	/*
1950 	 * set the flushing flag so procs in this transaction have to
1951 	 * start sending their work down.
1952 	 */
1953 	cur_trans->delayed_refs.flushing = 1;
1954 	smp_wmb();
1955 
1956 	if (!list_empty(&trans->new_bgs))
1957 		btrfs_create_pending_block_groups(trans, root);
1958 
1959 	ret = btrfs_run_delayed_refs(trans, root, 0);
1960 	if (ret) {
1961 		btrfs_end_transaction(trans, root);
1962 		return ret;
1963 	}
1964 
1965 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1966 		int run_it = 0;
1967 
1968 		/* this mutex is also taken before trying to set
1969 		 * block groups readonly.  We need to make sure
1970 		 * that nobody has set a block group readonly
1971 		 * after a extents from that block group have been
1972 		 * allocated for cache files.  btrfs_set_block_group_ro
1973 		 * will wait for the transaction to commit if it
1974 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1975 		 *
1976 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1977 		 * only one process starts all the block group IO.  It wouldn't
1978 		 * hurt to have more than one go through, but there's no
1979 		 * real advantage to it either.
1980 		 */
1981 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1982 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1983 				      &cur_trans->flags))
1984 			run_it = 1;
1985 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1986 
1987 		if (run_it)
1988 			ret = btrfs_start_dirty_block_groups(trans, root);
1989 	}
1990 	if (ret) {
1991 		btrfs_end_transaction(trans, root);
1992 		return ret;
1993 	}
1994 
1995 	spin_lock(&root->fs_info->trans_lock);
1996 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1997 		spin_unlock(&root->fs_info->trans_lock);
1998 		atomic_inc(&cur_trans->use_count);
1999 		ret = btrfs_end_transaction(trans, root);
2000 
2001 		wait_for_commit(root, cur_trans);
2002 
2003 		if (unlikely(cur_trans->aborted))
2004 			ret = cur_trans->aborted;
2005 
2006 		btrfs_put_transaction(cur_trans);
2007 
2008 		return ret;
2009 	}
2010 
2011 	cur_trans->state = TRANS_STATE_COMMIT_START;
2012 	wake_up(&root->fs_info->transaction_blocked_wait);
2013 
2014 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
2015 		prev_trans = list_entry(cur_trans->list.prev,
2016 					struct btrfs_transaction, list);
2017 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2018 			atomic_inc(&prev_trans->use_count);
2019 			spin_unlock(&root->fs_info->trans_lock);
2020 
2021 			wait_for_commit(root, prev_trans);
2022 			ret = prev_trans->aborted;
2023 
2024 			btrfs_put_transaction(prev_trans);
2025 			if (ret)
2026 				goto cleanup_transaction;
2027 		} else {
2028 			spin_unlock(&root->fs_info->trans_lock);
2029 		}
2030 	} else {
2031 		spin_unlock(&root->fs_info->trans_lock);
2032 	}
2033 
2034 	extwriter_counter_dec(cur_trans, trans->type);
2035 
2036 	ret = btrfs_start_delalloc_flush(root->fs_info);
2037 	if (ret)
2038 		goto cleanup_transaction;
2039 
2040 	ret = btrfs_run_delayed_items(trans, root);
2041 	if (ret)
2042 		goto cleanup_transaction;
2043 
2044 	wait_event(cur_trans->writer_wait,
2045 		   extwriter_counter_read(cur_trans) == 0);
2046 
2047 	/* some pending stuffs might be added after the previous flush. */
2048 	ret = btrfs_run_delayed_items(trans, root);
2049 	if (ret)
2050 		goto cleanup_transaction;
2051 
2052 	btrfs_wait_delalloc_flush(root->fs_info);
2053 
2054 	btrfs_wait_pending_ordered(cur_trans);
2055 
2056 	btrfs_scrub_pause(root);
2057 	/*
2058 	 * Ok now we need to make sure to block out any other joins while we
2059 	 * commit the transaction.  We could have started a join before setting
2060 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2061 	 */
2062 	spin_lock(&root->fs_info->trans_lock);
2063 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2064 	spin_unlock(&root->fs_info->trans_lock);
2065 	wait_event(cur_trans->writer_wait,
2066 		   atomic_read(&cur_trans->num_writers) == 1);
2067 
2068 	/* ->aborted might be set after the previous check, so check it */
2069 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2070 		ret = cur_trans->aborted;
2071 		goto scrub_continue;
2072 	}
2073 	/*
2074 	 * the reloc mutex makes sure that we stop
2075 	 * the balancing code from coming in and moving
2076 	 * extents around in the middle of the commit
2077 	 */
2078 	mutex_lock(&root->fs_info->reloc_mutex);
2079 
2080 	/*
2081 	 * We needn't worry about the delayed items because we will
2082 	 * deal with them in create_pending_snapshot(), which is the
2083 	 * core function of the snapshot creation.
2084 	 */
2085 	ret = create_pending_snapshots(trans, root->fs_info);
2086 	if (ret) {
2087 		mutex_unlock(&root->fs_info->reloc_mutex);
2088 		goto scrub_continue;
2089 	}
2090 
2091 	/*
2092 	 * We insert the dir indexes of the snapshots and update the inode
2093 	 * of the snapshots' parents after the snapshot creation, so there
2094 	 * are some delayed items which are not dealt with. Now deal with
2095 	 * them.
2096 	 *
2097 	 * We needn't worry that this operation will corrupt the snapshots,
2098 	 * because all the tree which are snapshoted will be forced to COW
2099 	 * the nodes and leaves.
2100 	 */
2101 	ret = btrfs_run_delayed_items(trans, root);
2102 	if (ret) {
2103 		mutex_unlock(&root->fs_info->reloc_mutex);
2104 		goto scrub_continue;
2105 	}
2106 
2107 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2108 	if (ret) {
2109 		mutex_unlock(&root->fs_info->reloc_mutex);
2110 		goto scrub_continue;
2111 	}
2112 
2113 	/* Reocrd old roots for later qgroup accounting */
2114 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2115 	if (ret) {
2116 		mutex_unlock(&root->fs_info->reloc_mutex);
2117 		goto scrub_continue;
2118 	}
2119 
2120 	/*
2121 	 * make sure none of the code above managed to slip in a
2122 	 * delayed item
2123 	 */
2124 	btrfs_assert_delayed_root_empty(root);
2125 
2126 	WARN_ON(cur_trans != trans->transaction);
2127 
2128 	/* btrfs_commit_tree_roots is responsible for getting the
2129 	 * various roots consistent with each other.  Every pointer
2130 	 * in the tree of tree roots has to point to the most up to date
2131 	 * root for every subvolume and other tree.  So, we have to keep
2132 	 * the tree logging code from jumping in and changing any
2133 	 * of the trees.
2134 	 *
2135 	 * At this point in the commit, there can't be any tree-log
2136 	 * writers, but a little lower down we drop the trans mutex
2137 	 * and let new people in.  By holding the tree_log_mutex
2138 	 * from now until after the super is written, we avoid races
2139 	 * with the tree-log code.
2140 	 */
2141 	mutex_lock(&root->fs_info->tree_log_mutex);
2142 
2143 	ret = commit_fs_roots(trans, root);
2144 	if (ret) {
2145 		mutex_unlock(&root->fs_info->tree_log_mutex);
2146 		mutex_unlock(&root->fs_info->reloc_mutex);
2147 		goto scrub_continue;
2148 	}
2149 
2150 	/*
2151 	 * Since the transaction is done, we can apply the pending changes
2152 	 * before the next transaction.
2153 	 */
2154 	btrfs_apply_pending_changes(root->fs_info);
2155 
2156 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2157 	 * safe to free the root of tree log roots
2158 	 */
2159 	btrfs_free_log_root_tree(trans, root->fs_info);
2160 
2161 	/*
2162 	 * Since fs roots are all committed, we can get a quite accurate
2163 	 * new_roots. So let's do quota accounting.
2164 	 */
2165 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2166 	if (ret < 0) {
2167 		mutex_unlock(&root->fs_info->tree_log_mutex);
2168 		mutex_unlock(&root->fs_info->reloc_mutex);
2169 		goto scrub_continue;
2170 	}
2171 
2172 	ret = commit_cowonly_roots(trans, root);
2173 	if (ret) {
2174 		mutex_unlock(&root->fs_info->tree_log_mutex);
2175 		mutex_unlock(&root->fs_info->reloc_mutex);
2176 		goto scrub_continue;
2177 	}
2178 
2179 	/*
2180 	 * The tasks which save the space cache and inode cache may also
2181 	 * update ->aborted, check it.
2182 	 */
2183 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2184 		ret = cur_trans->aborted;
2185 		mutex_unlock(&root->fs_info->tree_log_mutex);
2186 		mutex_unlock(&root->fs_info->reloc_mutex);
2187 		goto scrub_continue;
2188 	}
2189 
2190 	btrfs_prepare_extent_commit(trans, root);
2191 
2192 	cur_trans = root->fs_info->running_transaction;
2193 
2194 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2195 			    root->fs_info->tree_root->node);
2196 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2197 		      &cur_trans->switch_commits);
2198 
2199 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2200 			    root->fs_info->chunk_root->node);
2201 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2202 		      &cur_trans->switch_commits);
2203 
2204 	switch_commit_roots(cur_trans, root->fs_info);
2205 
2206 	assert_qgroups_uptodate(trans);
2207 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2208 	ASSERT(list_empty(&cur_trans->io_bgs));
2209 	update_super_roots(root);
2210 
2211 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2212 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2213 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2214 	       sizeof(*root->fs_info->super_copy));
2215 
2216 	btrfs_update_commit_device_size(root->fs_info);
2217 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2218 
2219 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2220 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2221 
2222 	btrfs_trans_release_chunk_metadata(trans);
2223 
2224 	spin_lock(&root->fs_info->trans_lock);
2225 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2226 	root->fs_info->running_transaction = NULL;
2227 	spin_unlock(&root->fs_info->trans_lock);
2228 	mutex_unlock(&root->fs_info->reloc_mutex);
2229 
2230 	wake_up(&root->fs_info->transaction_wait);
2231 
2232 	ret = btrfs_write_and_wait_transaction(trans, root);
2233 	if (ret) {
2234 		btrfs_handle_fs_error(root->fs_info, ret,
2235 			    "Error while writing out transaction");
2236 		mutex_unlock(&root->fs_info->tree_log_mutex);
2237 		goto scrub_continue;
2238 	}
2239 
2240 	ret = write_ctree_super(trans, root, 0);
2241 	if (ret) {
2242 		mutex_unlock(&root->fs_info->tree_log_mutex);
2243 		goto scrub_continue;
2244 	}
2245 
2246 	/*
2247 	 * the super is written, we can safely allow the tree-loggers
2248 	 * to go about their business
2249 	 */
2250 	mutex_unlock(&root->fs_info->tree_log_mutex);
2251 
2252 	btrfs_finish_extent_commit(trans, root);
2253 
2254 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2255 		btrfs_clear_space_info_full(root->fs_info);
2256 
2257 	root->fs_info->last_trans_committed = cur_trans->transid;
2258 	/*
2259 	 * We needn't acquire the lock here because there is no other task
2260 	 * which can change it.
2261 	 */
2262 	cur_trans->state = TRANS_STATE_COMPLETED;
2263 	wake_up(&cur_trans->commit_wait);
2264 
2265 	spin_lock(&root->fs_info->trans_lock);
2266 	list_del_init(&cur_trans->list);
2267 	spin_unlock(&root->fs_info->trans_lock);
2268 
2269 	btrfs_put_transaction(cur_trans);
2270 	btrfs_put_transaction(cur_trans);
2271 
2272 	if (trans->type & __TRANS_FREEZABLE)
2273 		sb_end_intwrite(root->fs_info->sb);
2274 
2275 	trace_btrfs_transaction_commit(root);
2276 
2277 	btrfs_scrub_continue(root);
2278 
2279 	if (current->journal_info == trans)
2280 		current->journal_info = NULL;
2281 
2282 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2283 
2284 	if (current != root->fs_info->transaction_kthread &&
2285 	    current != root->fs_info->cleaner_kthread)
2286 		btrfs_run_delayed_iputs(root);
2287 
2288 	return ret;
2289 
2290 scrub_continue:
2291 	btrfs_scrub_continue(root);
2292 cleanup_transaction:
2293 	btrfs_trans_release_metadata(trans, root);
2294 	btrfs_trans_release_chunk_metadata(trans);
2295 	trans->block_rsv = NULL;
2296 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2297 	if (current->journal_info == trans)
2298 		current->journal_info = NULL;
2299 	cleanup_transaction(trans, root, ret);
2300 
2301 	return ret;
2302 }
2303 
2304 /*
2305  * return < 0 if error
2306  * 0 if there are no more dead_roots at the time of call
2307  * 1 there are more to be processed, call me again
2308  *
2309  * The return value indicates there are certainly more snapshots to delete, but
2310  * if there comes a new one during processing, it may return 0. We don't mind,
2311  * because btrfs_commit_super will poke cleaner thread and it will process it a
2312  * few seconds later.
2313  */
2314 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2315 {
2316 	int ret;
2317 	struct btrfs_fs_info *fs_info = root->fs_info;
2318 
2319 	spin_lock(&fs_info->trans_lock);
2320 	if (list_empty(&fs_info->dead_roots)) {
2321 		spin_unlock(&fs_info->trans_lock);
2322 		return 0;
2323 	}
2324 	root = list_first_entry(&fs_info->dead_roots,
2325 			struct btrfs_root, root_list);
2326 	list_del_init(&root->root_list);
2327 	spin_unlock(&fs_info->trans_lock);
2328 
2329 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2330 
2331 	btrfs_kill_all_delayed_nodes(root);
2332 
2333 	if (btrfs_header_backref_rev(root->node) <
2334 			BTRFS_MIXED_BACKREF_REV)
2335 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2336 	else
2337 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2338 
2339 	return (ret < 0) ? 0 : 1;
2340 }
2341 
2342 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2343 {
2344 	unsigned long prev;
2345 	unsigned long bit;
2346 
2347 	prev = xchg(&fs_info->pending_changes, 0);
2348 	if (!prev)
2349 		return;
2350 
2351 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2352 	if (prev & bit)
2353 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2354 	prev &= ~bit;
2355 
2356 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2357 	if (prev & bit)
2358 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2359 	prev &= ~bit;
2360 
2361 	bit = 1 << BTRFS_PENDING_COMMIT;
2362 	if (prev & bit)
2363 		btrfs_debug(fs_info, "pending commit done");
2364 	prev &= ~bit;
2365 
2366 	if (prev)
2367 		btrfs_warn(fs_info,
2368 			"unknown pending changes left 0x%lx, ignoring", prev);
2369 }
2370