1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2013 Fusion IO. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/mount.h> 8 #include <linux/magic.h> 9 #include "btrfs-tests.h" 10 #include "../ctree.h" 11 #include "../free-space-cache.h" 12 #include "../free-space-tree.h" 13 #include "../transaction.h" 14 #include "../volumes.h" 15 #include "../disk-io.h" 16 #include "../qgroup.h" 17 18 static struct vfsmount *test_mnt = NULL; 19 20 const char *test_error[] = { 21 [TEST_ALLOC_FS_INFO] = "cannot allocate fs_info", 22 [TEST_ALLOC_ROOT] = "cannot allocate root", 23 [TEST_ALLOC_EXTENT_BUFFER] = "cannot extent buffer", 24 [TEST_ALLOC_PATH] = "cannot allocate path", 25 [TEST_ALLOC_INODE] = "cannot allocate inode", 26 [TEST_ALLOC_BLOCK_GROUP] = "cannot allocate block group", 27 [TEST_ALLOC_EXTENT_MAP] = "cannot allocate extent map", 28 }; 29 30 static const struct super_operations btrfs_test_super_ops = { 31 .alloc_inode = btrfs_alloc_inode, 32 .destroy_inode = btrfs_test_destroy_inode, 33 }; 34 35 static struct dentry *btrfs_test_mount(struct file_system_type *fs_type, 36 int flags, const char *dev_name, 37 void *data) 38 { 39 return mount_pseudo(fs_type, "btrfs_test:", &btrfs_test_super_ops, 40 NULL, BTRFS_TEST_MAGIC); 41 } 42 43 static struct file_system_type test_type = { 44 .name = "btrfs_test_fs", 45 .mount = btrfs_test_mount, 46 .kill_sb = kill_anon_super, 47 }; 48 49 struct inode *btrfs_new_test_inode(void) 50 { 51 return new_inode(test_mnt->mnt_sb); 52 } 53 54 static int btrfs_init_test_fs(void) 55 { 56 int ret; 57 58 ret = register_filesystem(&test_type); 59 if (ret) { 60 printk(KERN_ERR "btrfs: cannot register test file system\n"); 61 return ret; 62 } 63 64 test_mnt = kern_mount(&test_type); 65 if (IS_ERR(test_mnt)) { 66 printk(KERN_ERR "btrfs: cannot mount test file system\n"); 67 unregister_filesystem(&test_type); 68 return PTR_ERR(test_mnt); 69 } 70 return 0; 71 } 72 73 static void btrfs_destroy_test_fs(void) 74 { 75 kern_unmount(test_mnt); 76 unregister_filesystem(&test_type); 77 } 78 79 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize) 80 { 81 struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info), 82 GFP_KERNEL); 83 84 if (!fs_info) 85 return fs_info; 86 fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices), 87 GFP_KERNEL); 88 if (!fs_info->fs_devices) { 89 kfree(fs_info); 90 return NULL; 91 } 92 fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block), 93 GFP_KERNEL); 94 if (!fs_info->super_copy) { 95 kfree(fs_info->fs_devices); 96 kfree(fs_info); 97 return NULL; 98 } 99 100 fs_info->nodesize = nodesize; 101 fs_info->sectorsize = sectorsize; 102 103 if (init_srcu_struct(&fs_info->subvol_srcu)) { 104 kfree(fs_info->fs_devices); 105 kfree(fs_info->super_copy); 106 kfree(fs_info); 107 return NULL; 108 } 109 110 spin_lock_init(&fs_info->buffer_lock); 111 spin_lock_init(&fs_info->qgroup_lock); 112 spin_lock_init(&fs_info->super_lock); 113 spin_lock_init(&fs_info->fs_roots_radix_lock); 114 spin_lock_init(&fs_info->tree_mod_seq_lock); 115 mutex_init(&fs_info->qgroup_ioctl_lock); 116 mutex_init(&fs_info->qgroup_rescan_lock); 117 rwlock_init(&fs_info->tree_mod_log_lock); 118 fs_info->running_transaction = NULL; 119 fs_info->qgroup_tree = RB_ROOT; 120 fs_info->qgroup_ulist = NULL; 121 atomic64_set(&fs_info->tree_mod_seq, 0); 122 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 123 INIT_LIST_HEAD(&fs_info->dead_roots); 124 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 125 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 126 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 127 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 128 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 129 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 130 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 131 fs_info->pinned_extents = &fs_info->freed_extents[0]; 132 set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 133 134 test_mnt->mnt_sb->s_fs_info = fs_info; 135 136 return fs_info; 137 } 138 139 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info) 140 { 141 struct radix_tree_iter iter; 142 void **slot; 143 144 if (!fs_info) 145 return; 146 147 if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, 148 &fs_info->fs_state))) 149 return; 150 151 test_mnt->mnt_sb->s_fs_info = NULL; 152 153 spin_lock(&fs_info->buffer_lock); 154 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) { 155 struct extent_buffer *eb; 156 157 eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock); 158 if (!eb) 159 continue; 160 /* Shouldn't happen but that kind of thinking creates CVE's */ 161 if (radix_tree_exception(eb)) { 162 if (radix_tree_deref_retry(eb)) 163 slot = radix_tree_iter_retry(&iter); 164 continue; 165 } 166 slot = radix_tree_iter_resume(slot, &iter); 167 spin_unlock(&fs_info->buffer_lock); 168 free_extent_buffer_stale(eb); 169 spin_lock(&fs_info->buffer_lock); 170 } 171 spin_unlock(&fs_info->buffer_lock); 172 173 btrfs_free_qgroup_config(fs_info); 174 btrfs_free_fs_roots(fs_info); 175 cleanup_srcu_struct(&fs_info->subvol_srcu); 176 kfree(fs_info->super_copy); 177 kfree(fs_info->fs_devices); 178 kfree(fs_info); 179 } 180 181 void btrfs_free_dummy_root(struct btrfs_root *root) 182 { 183 if (!root) 184 return; 185 /* Will be freed by btrfs_free_fs_roots */ 186 if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state))) 187 return; 188 if (root->node) { 189 /* One for allocate_extent_buffer */ 190 free_extent_buffer(root->node); 191 } 192 kfree(root); 193 } 194 195 struct btrfs_block_group_cache * 196 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info, 197 unsigned long length) 198 { 199 struct btrfs_block_group_cache *cache; 200 201 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 202 if (!cache) 203 return NULL; 204 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 205 GFP_KERNEL); 206 if (!cache->free_space_ctl) { 207 kfree(cache); 208 return NULL; 209 } 210 211 cache->key.objectid = 0; 212 cache->key.offset = length; 213 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 214 cache->full_stripe_len = fs_info->sectorsize; 215 cache->fs_info = fs_info; 216 217 INIT_LIST_HEAD(&cache->list); 218 INIT_LIST_HEAD(&cache->cluster_list); 219 INIT_LIST_HEAD(&cache->bg_list); 220 btrfs_init_free_space_ctl(cache); 221 mutex_init(&cache->free_space_lock); 222 223 return cache; 224 } 225 226 void btrfs_free_dummy_block_group(struct btrfs_block_group_cache *cache) 227 { 228 if (!cache) 229 return; 230 __btrfs_remove_free_space_cache(cache->free_space_ctl); 231 kfree(cache->free_space_ctl); 232 kfree(cache); 233 } 234 235 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans, 236 struct btrfs_fs_info *fs_info) 237 { 238 memset(trans, 0, sizeof(*trans)); 239 trans->transid = 1; 240 trans->type = __TRANS_DUMMY; 241 trans->fs_info = fs_info; 242 } 243 244 int btrfs_run_sanity_tests(void) 245 { 246 int ret, i; 247 u32 sectorsize, nodesize; 248 u32 test_sectorsize[] = { 249 PAGE_SIZE, 250 }; 251 ret = btrfs_init_test_fs(); 252 if (ret) 253 return ret; 254 for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) { 255 sectorsize = test_sectorsize[i]; 256 for (nodesize = sectorsize; 257 nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE; 258 nodesize <<= 1) { 259 pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n", 260 sectorsize, nodesize); 261 ret = btrfs_test_free_space_cache(sectorsize, nodesize); 262 if (ret) 263 goto out; 264 ret = btrfs_test_extent_buffer_operations(sectorsize, 265 nodesize); 266 if (ret) 267 goto out; 268 ret = btrfs_test_extent_io(sectorsize, nodesize); 269 if (ret) 270 goto out; 271 ret = btrfs_test_inodes(sectorsize, nodesize); 272 if (ret) 273 goto out; 274 ret = btrfs_test_qgroups(sectorsize, nodesize); 275 if (ret) 276 goto out; 277 ret = btrfs_test_free_space_tree(sectorsize, nodesize); 278 if (ret) 279 goto out; 280 } 281 } 282 ret = btrfs_test_extent_map(); 283 284 out: 285 btrfs_destroy_test_fs(); 286 return ret; 287 } 288