1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2013 Fusion IO. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include "btrfs-tests.h" 11 #include "../ctree.h" 12 #include "../free-space-cache.h" 13 #include "../free-space-tree.h" 14 #include "../transaction.h" 15 #include "../volumes.h" 16 #include "../disk-io.h" 17 #include "../qgroup.h" 18 #include "../block-group.h" 19 #include "../fs.h" 20 21 static struct vfsmount *test_mnt = NULL; 22 23 const char *test_error[] = { 24 [TEST_ALLOC_FS_INFO] = "cannot allocate fs_info", 25 [TEST_ALLOC_ROOT] = "cannot allocate root", 26 [TEST_ALLOC_EXTENT_BUFFER] = "cannot extent buffer", 27 [TEST_ALLOC_PATH] = "cannot allocate path", 28 [TEST_ALLOC_INODE] = "cannot allocate inode", 29 [TEST_ALLOC_BLOCK_GROUP] = "cannot allocate block group", 30 [TEST_ALLOC_EXTENT_MAP] = "cannot allocate extent map", 31 [TEST_ALLOC_CHUNK_MAP] = "cannot allocate chunk map", 32 }; 33 34 static const struct super_operations btrfs_test_super_ops = { 35 .alloc_inode = btrfs_alloc_inode, 36 .destroy_inode = btrfs_test_destroy_inode, 37 }; 38 39 40 static int btrfs_test_init_fs_context(struct fs_context *fc) 41 { 42 struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC); 43 if (!ctx) 44 return -ENOMEM; 45 ctx->ops = &btrfs_test_super_ops; 46 return 0; 47 } 48 49 static struct file_system_type test_type = { 50 .name = "btrfs_test_fs", 51 .init_fs_context = btrfs_test_init_fs_context, 52 .kill_sb = kill_anon_super, 53 }; 54 55 struct inode *btrfs_new_test_inode(void) 56 { 57 struct inode *inode; 58 59 inode = new_inode(test_mnt->mnt_sb); 60 if (!inode) 61 return NULL; 62 63 inode->i_mode = S_IFREG; 64 inode->i_ino = BTRFS_FIRST_FREE_OBJECTID; 65 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 66 BTRFS_I(inode)->location.objectid = BTRFS_FIRST_FREE_OBJECTID; 67 BTRFS_I(inode)->location.offset = 0; 68 inode_init_owner(&nop_mnt_idmap, inode, NULL, S_IFREG); 69 70 return inode; 71 } 72 73 static int btrfs_init_test_fs(void) 74 { 75 int ret; 76 77 ret = register_filesystem(&test_type); 78 if (ret) { 79 printk(KERN_ERR "btrfs: cannot register test file system\n"); 80 return ret; 81 } 82 83 test_mnt = kern_mount(&test_type); 84 if (IS_ERR(test_mnt)) { 85 printk(KERN_ERR "btrfs: cannot mount test file system\n"); 86 unregister_filesystem(&test_type); 87 return PTR_ERR(test_mnt); 88 } 89 return 0; 90 } 91 92 static void btrfs_destroy_test_fs(void) 93 { 94 kern_unmount(test_mnt); 95 unregister_filesystem(&test_type); 96 } 97 98 struct btrfs_device *btrfs_alloc_dummy_device(struct btrfs_fs_info *fs_info) 99 { 100 struct btrfs_device *dev; 101 102 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 103 if (!dev) 104 return ERR_PTR(-ENOMEM); 105 106 extent_io_tree_init(fs_info, &dev->alloc_state, 0); 107 INIT_LIST_HEAD(&dev->dev_list); 108 list_add(&dev->dev_list, &fs_info->fs_devices->devices); 109 110 return dev; 111 } 112 113 static void btrfs_free_dummy_device(struct btrfs_device *dev) 114 { 115 extent_io_tree_release(&dev->alloc_state); 116 kfree(dev); 117 } 118 119 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize) 120 { 121 struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info), 122 GFP_KERNEL); 123 124 if (!fs_info) 125 return fs_info; 126 fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices), 127 GFP_KERNEL); 128 if (!fs_info->fs_devices) { 129 kfree(fs_info); 130 return NULL; 131 } 132 INIT_LIST_HEAD(&fs_info->fs_devices->devices); 133 134 fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block), 135 GFP_KERNEL); 136 if (!fs_info->super_copy) { 137 kfree(fs_info->fs_devices); 138 kfree(fs_info); 139 return NULL; 140 } 141 142 btrfs_init_fs_info(fs_info); 143 144 fs_info->nodesize = nodesize; 145 fs_info->sectorsize = sectorsize; 146 fs_info->sectorsize_bits = ilog2(sectorsize); 147 set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 148 149 test_mnt->mnt_sb->s_fs_info = fs_info; 150 151 return fs_info; 152 } 153 154 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info) 155 { 156 struct radix_tree_iter iter; 157 void **slot; 158 struct btrfs_device *dev, *tmp; 159 160 if (!fs_info) 161 return; 162 163 if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, 164 &fs_info->fs_state))) 165 return; 166 167 test_mnt->mnt_sb->s_fs_info = NULL; 168 169 spin_lock(&fs_info->buffer_lock); 170 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) { 171 struct extent_buffer *eb; 172 173 eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock); 174 if (!eb) 175 continue; 176 /* Shouldn't happen but that kind of thinking creates CVE's */ 177 if (radix_tree_exception(eb)) { 178 if (radix_tree_deref_retry(eb)) 179 slot = radix_tree_iter_retry(&iter); 180 continue; 181 } 182 slot = radix_tree_iter_resume(slot, &iter); 183 spin_unlock(&fs_info->buffer_lock); 184 free_extent_buffer_stale(eb); 185 spin_lock(&fs_info->buffer_lock); 186 } 187 spin_unlock(&fs_info->buffer_lock); 188 189 btrfs_mapping_tree_free(fs_info); 190 list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices, 191 dev_list) { 192 btrfs_free_dummy_device(dev); 193 } 194 btrfs_free_qgroup_config(fs_info); 195 btrfs_free_fs_roots(fs_info); 196 kfree(fs_info->super_copy); 197 btrfs_check_leaked_roots(fs_info); 198 btrfs_extent_buffer_leak_debug_check(fs_info); 199 kfree(fs_info->fs_devices); 200 kfree(fs_info); 201 } 202 203 void btrfs_free_dummy_root(struct btrfs_root *root) 204 { 205 if (IS_ERR_OR_NULL(root)) 206 return; 207 /* Will be freed by btrfs_free_fs_roots */ 208 if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state))) 209 return; 210 btrfs_global_root_delete(root); 211 btrfs_put_root(root); 212 } 213 214 struct btrfs_block_group * 215 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info, 216 unsigned long length) 217 { 218 struct btrfs_block_group *cache; 219 220 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 221 if (!cache) 222 return NULL; 223 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 224 GFP_KERNEL); 225 if (!cache->free_space_ctl) { 226 kfree(cache); 227 return NULL; 228 } 229 230 cache->start = 0; 231 cache->length = length; 232 cache->full_stripe_len = fs_info->sectorsize; 233 cache->fs_info = fs_info; 234 235 INIT_LIST_HEAD(&cache->list); 236 INIT_LIST_HEAD(&cache->cluster_list); 237 INIT_LIST_HEAD(&cache->bg_list); 238 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 239 mutex_init(&cache->free_space_lock); 240 241 return cache; 242 } 243 244 void btrfs_free_dummy_block_group(struct btrfs_block_group *cache) 245 { 246 if (!cache) 247 return; 248 btrfs_remove_free_space_cache(cache); 249 kfree(cache->free_space_ctl); 250 kfree(cache); 251 } 252 253 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans, 254 struct btrfs_fs_info *fs_info) 255 { 256 memset(trans, 0, sizeof(*trans)); 257 trans->transid = 1; 258 trans->type = __TRANS_DUMMY; 259 trans->fs_info = fs_info; 260 } 261 262 int btrfs_run_sanity_tests(void) 263 { 264 int ret, i; 265 u32 sectorsize, nodesize; 266 u32 test_sectorsize[] = { 267 PAGE_SIZE, 268 }; 269 ret = btrfs_init_test_fs(); 270 if (ret) 271 return ret; 272 for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) { 273 sectorsize = test_sectorsize[i]; 274 for (nodesize = sectorsize; 275 nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE; 276 nodesize <<= 1) { 277 pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n", 278 sectorsize, nodesize); 279 ret = btrfs_test_free_space_cache(sectorsize, nodesize); 280 if (ret) 281 goto out; 282 ret = btrfs_test_extent_buffer_operations(sectorsize, 283 nodesize); 284 if (ret) 285 goto out; 286 ret = btrfs_test_extent_io(sectorsize, nodesize); 287 if (ret) 288 goto out; 289 ret = btrfs_test_inodes(sectorsize, nodesize); 290 if (ret) 291 goto out; 292 ret = btrfs_test_qgroups(sectorsize, nodesize); 293 if (ret) 294 goto out; 295 ret = btrfs_test_free_space_tree(sectorsize, nodesize); 296 if (ret) 297 goto out; 298 } 299 } 300 ret = btrfs_test_extent_map(); 301 302 out: 303 btrfs_destroy_test_fs(); 304 return ret; 305 } 306