xref: /linux/fs/btrfs/super.c (revision fea88a0c02822fbb91a0b8301bf9af04377876a3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60 
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63 
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 				      char nbuf[16])
66 {
67 	char *errstr = NULL;
68 
69 	switch (errno) {
70 	case -EIO:
71 		errstr = "IO failure";
72 		break;
73 	case -ENOMEM:
74 		errstr = "Out of memory";
75 		break;
76 	case -EROFS:
77 		errstr = "Readonly filesystem";
78 		break;
79 	case -EEXIST:
80 		errstr = "Object already exists";
81 		break;
82 	default:
83 		if (nbuf) {
84 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
85 				errstr = nbuf;
86 		}
87 		break;
88 	}
89 
90 	return errstr;
91 }
92 
93 static void __save_error_info(struct btrfs_fs_info *fs_info)
94 {
95 	/*
96 	 * today we only save the error info into ram.  Long term we'll
97 	 * also send it down to the disk
98 	 */
99 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
100 }
101 
102 /* NOTE:
103  *	We move write_super stuff at umount in order to avoid deadlock
104  *	for umount hold all lock.
105  */
106 static void save_error_info(struct btrfs_fs_info *fs_info)
107 {
108 	__save_error_info(fs_info);
109 }
110 
111 /* btrfs handle error by forcing the filesystem readonly */
112 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
113 {
114 	struct super_block *sb = fs_info->sb;
115 
116 	if (sb->s_flags & MS_RDONLY)
117 		return;
118 
119 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
120 		sb->s_flags |= MS_RDONLY;
121 		printk(KERN_INFO "btrfs is forced readonly\n");
122 		__btrfs_scrub_cancel(fs_info);
123 //		WARN_ON(1);
124 	}
125 }
126 
127 /*
128  * __btrfs_std_error decodes expected errors from the caller and
129  * invokes the approciate error response.
130  */
131 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
132 		       unsigned int line, int errno, const char *fmt, ...)
133 {
134 	struct super_block *sb = fs_info->sb;
135 	char nbuf[16];
136 	const char *errstr;
137 	va_list args;
138 	va_start(args, fmt);
139 
140 	/*
141 	 * Special case: if the error is EROFS, and we're already
142 	 * under MS_RDONLY, then it is safe here.
143 	 */
144 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
145   		return;
146 
147   	errstr = btrfs_decode_error(fs_info, errno, nbuf);
148 	if (fmt) {
149 		struct va_format vaf = {
150 			.fmt = fmt,
151 			.va = &args,
152 		};
153 
154 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
155 			sb->s_id, function, line, errstr, &vaf);
156 	} else {
157 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
158 			sb->s_id, function, line, errstr);
159 	}
160 
161 	/* Don't go through full error handling during mount */
162 	if (sb->s_flags & MS_BORN) {
163 		save_error_info(fs_info);
164 		btrfs_handle_error(fs_info);
165 	}
166 	va_end(args);
167 }
168 
169 const char *logtypes[] = {
170 	"emergency",
171 	"alert",
172 	"critical",
173 	"error",
174 	"warning",
175 	"notice",
176 	"info",
177 	"debug",
178 };
179 
180 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182 	struct super_block *sb = fs_info->sb;
183 	char lvl[4];
184 	struct va_format vaf;
185 	va_list args;
186 	const char *type = logtypes[4];
187 
188 	va_start(args, fmt);
189 
190 	if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
191 		strncpy(lvl, fmt, 3);
192 		fmt += 3;
193 		type = logtypes[fmt[1] - '0'];
194 	} else
195 		*lvl = '\0';
196 
197 	vaf.fmt = fmt;
198 	vaf.va = &args;
199 	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
200 }
201 
202 /*
203  * We only mark the transaction aborted and then set the file system read-only.
204  * This will prevent new transactions from starting or trying to join this
205  * one.
206  *
207  * This means that error recovery at the call site is limited to freeing
208  * any local memory allocations and passing the error code up without
209  * further cleanup. The transaction should complete as it normally would
210  * in the call path but will return -EIO.
211  *
212  * We'll complete the cleanup in btrfs_end_transaction and
213  * btrfs_commit_transaction.
214  */
215 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
216 			       struct btrfs_root *root, const char *function,
217 			       unsigned int line, int errno)
218 {
219 	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
220 	trans->aborted = errno;
221 	/* Nothing used. The other threads that have joined this
222 	 * transaction may be able to continue. */
223 	if (!trans->blocks_used) {
224 		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
225 		return;
226 	}
227 	trans->transaction->aborted = errno;
228 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
229 }
230 /*
231  * __btrfs_panic decodes unexpected, fatal errors from the caller,
232  * issues an alert, and either panics or BUGs, depending on mount options.
233  */
234 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
235 		   unsigned int line, int errno, const char *fmt, ...)
236 {
237 	char nbuf[16];
238 	char *s_id = "<unknown>";
239 	const char *errstr;
240 	struct va_format vaf = { .fmt = fmt };
241 	va_list args;
242 
243 	if (fs_info)
244 		s_id = fs_info->sb->s_id;
245 
246 	va_start(args, fmt);
247 	vaf.va = &args;
248 
249 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
250 	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
251 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
252 			s_id, function, line, &vaf, errstr);
253 
254 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
255 	       s_id, function, line, &vaf, errstr);
256 	va_end(args);
257 	/* Caller calls BUG() */
258 }
259 
260 static void btrfs_put_super(struct super_block *sb)
261 {
262 	(void)close_ctree(btrfs_sb(sb)->tree_root);
263 	/* FIXME: need to fix VFS to return error? */
264 	/* AV: return it _where_?  ->put_super() can be triggered by any number
265 	 * of async events, up to and including delivery of SIGKILL to the
266 	 * last process that kept it busy.  Or segfault in the aforementioned
267 	 * process...  Whom would you report that to?
268 	 */
269 }
270 
271 enum {
272 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
273 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
274 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
275 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
276 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
277 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
278 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
279 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
280 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
281 	Opt_check_integrity_print_mask, Opt_fatal_errors,
282 	Opt_err,
283 };
284 
285 static match_table_t tokens = {
286 	{Opt_degraded, "degraded"},
287 	{Opt_subvol, "subvol=%s"},
288 	{Opt_subvolid, "subvolid=%d"},
289 	{Opt_device, "device=%s"},
290 	{Opt_nodatasum, "nodatasum"},
291 	{Opt_nodatacow, "nodatacow"},
292 	{Opt_nobarrier, "nobarrier"},
293 	{Opt_max_inline, "max_inline=%s"},
294 	{Opt_alloc_start, "alloc_start=%s"},
295 	{Opt_thread_pool, "thread_pool=%d"},
296 	{Opt_compress, "compress"},
297 	{Opt_compress_type, "compress=%s"},
298 	{Opt_compress_force, "compress-force"},
299 	{Opt_compress_force_type, "compress-force=%s"},
300 	{Opt_ssd, "ssd"},
301 	{Opt_ssd_spread, "ssd_spread"},
302 	{Opt_nossd, "nossd"},
303 	{Opt_noacl, "noacl"},
304 	{Opt_notreelog, "notreelog"},
305 	{Opt_flushoncommit, "flushoncommit"},
306 	{Opt_ratio, "metadata_ratio=%d"},
307 	{Opt_discard, "discard"},
308 	{Opt_space_cache, "space_cache"},
309 	{Opt_clear_cache, "clear_cache"},
310 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
311 	{Opt_enospc_debug, "enospc_debug"},
312 	{Opt_subvolrootid, "subvolrootid=%d"},
313 	{Opt_defrag, "autodefrag"},
314 	{Opt_inode_cache, "inode_cache"},
315 	{Opt_no_space_cache, "nospace_cache"},
316 	{Opt_recovery, "recovery"},
317 	{Opt_skip_balance, "skip_balance"},
318 	{Opt_check_integrity, "check_int"},
319 	{Opt_check_integrity_including_extent_data, "check_int_data"},
320 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
321 	{Opt_fatal_errors, "fatal_errors=%s"},
322 	{Opt_err, NULL},
323 };
324 
325 /*
326  * Regular mount options parser.  Everything that is needed only when
327  * reading in a new superblock is parsed here.
328  * XXX JDM: This needs to be cleaned up for remount.
329  */
330 int btrfs_parse_options(struct btrfs_root *root, char *options)
331 {
332 	struct btrfs_fs_info *info = root->fs_info;
333 	substring_t args[MAX_OPT_ARGS];
334 	char *p, *num, *orig = NULL;
335 	u64 cache_gen;
336 	int intarg;
337 	int ret = 0;
338 	char *compress_type;
339 	bool compress_force = false;
340 
341 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
342 	if (cache_gen)
343 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
344 
345 	if (!options)
346 		goto out;
347 
348 	/*
349 	 * strsep changes the string, duplicate it because parse_options
350 	 * gets called twice
351 	 */
352 	options = kstrdup(options, GFP_NOFS);
353 	if (!options)
354 		return -ENOMEM;
355 
356 	orig = options;
357 
358 	while ((p = strsep(&options, ",")) != NULL) {
359 		int token;
360 		if (!*p)
361 			continue;
362 
363 		token = match_token(p, tokens, args);
364 		switch (token) {
365 		case Opt_degraded:
366 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
367 			btrfs_set_opt(info->mount_opt, DEGRADED);
368 			break;
369 		case Opt_subvol:
370 		case Opt_subvolid:
371 		case Opt_subvolrootid:
372 		case Opt_device:
373 			/*
374 			 * These are parsed by btrfs_parse_early_options
375 			 * and can be happily ignored here.
376 			 */
377 			break;
378 		case Opt_nodatasum:
379 			printk(KERN_INFO "btrfs: setting nodatasum\n");
380 			btrfs_set_opt(info->mount_opt, NODATASUM);
381 			break;
382 		case Opt_nodatacow:
383 			printk(KERN_INFO "btrfs: setting nodatacow\n");
384 			btrfs_set_opt(info->mount_opt, NODATACOW);
385 			btrfs_set_opt(info->mount_opt, NODATASUM);
386 			break;
387 		case Opt_compress_force:
388 		case Opt_compress_force_type:
389 			compress_force = true;
390 		case Opt_compress:
391 		case Opt_compress_type:
392 			if (token == Opt_compress ||
393 			    token == Opt_compress_force ||
394 			    strcmp(args[0].from, "zlib") == 0) {
395 				compress_type = "zlib";
396 				info->compress_type = BTRFS_COMPRESS_ZLIB;
397 			} else if (strcmp(args[0].from, "lzo") == 0) {
398 				compress_type = "lzo";
399 				info->compress_type = BTRFS_COMPRESS_LZO;
400 			} else {
401 				ret = -EINVAL;
402 				goto out;
403 			}
404 
405 			btrfs_set_opt(info->mount_opt, COMPRESS);
406 			if (compress_force) {
407 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
408 				pr_info("btrfs: force %s compression\n",
409 					compress_type);
410 			} else
411 				pr_info("btrfs: use %s compression\n",
412 					compress_type);
413 			break;
414 		case Opt_ssd:
415 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
416 			btrfs_set_opt(info->mount_opt, SSD);
417 			break;
418 		case Opt_ssd_spread:
419 			printk(KERN_INFO "btrfs: use spread ssd "
420 			       "allocation scheme\n");
421 			btrfs_set_opt(info->mount_opt, SSD);
422 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
423 			break;
424 		case Opt_nossd:
425 			printk(KERN_INFO "btrfs: not using ssd allocation "
426 			       "scheme\n");
427 			btrfs_set_opt(info->mount_opt, NOSSD);
428 			btrfs_clear_opt(info->mount_opt, SSD);
429 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
430 			break;
431 		case Opt_nobarrier:
432 			printk(KERN_INFO "btrfs: turning off barriers\n");
433 			btrfs_set_opt(info->mount_opt, NOBARRIER);
434 			break;
435 		case Opt_thread_pool:
436 			intarg = 0;
437 			match_int(&args[0], &intarg);
438 			if (intarg) {
439 				info->thread_pool_size = intarg;
440 				printk(KERN_INFO "btrfs: thread pool %d\n",
441 				       info->thread_pool_size);
442 			}
443 			break;
444 		case Opt_max_inline:
445 			num = match_strdup(&args[0]);
446 			if (num) {
447 				info->max_inline = memparse(num, NULL);
448 				kfree(num);
449 
450 				if (info->max_inline) {
451 					info->max_inline = max_t(u64,
452 						info->max_inline,
453 						root->sectorsize);
454 				}
455 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
456 					(unsigned long long)info->max_inline);
457 			}
458 			break;
459 		case Opt_alloc_start:
460 			num = match_strdup(&args[0]);
461 			if (num) {
462 				info->alloc_start = memparse(num, NULL);
463 				kfree(num);
464 				printk(KERN_INFO
465 					"btrfs: allocations start at %llu\n",
466 					(unsigned long long)info->alloc_start);
467 			}
468 			break;
469 		case Opt_noacl:
470 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
471 			break;
472 		case Opt_notreelog:
473 			printk(KERN_INFO "btrfs: disabling tree log\n");
474 			btrfs_set_opt(info->mount_opt, NOTREELOG);
475 			break;
476 		case Opt_flushoncommit:
477 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
478 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
479 			break;
480 		case Opt_ratio:
481 			intarg = 0;
482 			match_int(&args[0], &intarg);
483 			if (intarg) {
484 				info->metadata_ratio = intarg;
485 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
486 				       info->metadata_ratio);
487 			}
488 			break;
489 		case Opt_discard:
490 			btrfs_set_opt(info->mount_opt, DISCARD);
491 			break;
492 		case Opt_space_cache:
493 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
494 			break;
495 		case Opt_no_space_cache:
496 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
497 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
498 			break;
499 		case Opt_inode_cache:
500 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
501 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
502 			break;
503 		case Opt_clear_cache:
504 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
505 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
506 			break;
507 		case Opt_user_subvol_rm_allowed:
508 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
509 			break;
510 		case Opt_enospc_debug:
511 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
512 			break;
513 		case Opt_defrag:
514 			printk(KERN_INFO "btrfs: enabling auto defrag");
515 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
516 			break;
517 		case Opt_recovery:
518 			printk(KERN_INFO "btrfs: enabling auto recovery");
519 			btrfs_set_opt(info->mount_opt, RECOVERY);
520 			break;
521 		case Opt_skip_balance:
522 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
523 			break;
524 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
525 		case Opt_check_integrity_including_extent_data:
526 			printk(KERN_INFO "btrfs: enabling check integrity"
527 			       " including extent data\n");
528 			btrfs_set_opt(info->mount_opt,
529 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
530 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
531 			break;
532 		case Opt_check_integrity:
533 			printk(KERN_INFO "btrfs: enabling check integrity\n");
534 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
535 			break;
536 		case Opt_check_integrity_print_mask:
537 			intarg = 0;
538 			match_int(&args[0], &intarg);
539 			if (intarg) {
540 				info->check_integrity_print_mask = intarg;
541 				printk(KERN_INFO "btrfs:"
542 				       " check_integrity_print_mask 0x%x\n",
543 				       info->check_integrity_print_mask);
544 			}
545 			break;
546 #else
547 		case Opt_check_integrity_including_extent_data:
548 		case Opt_check_integrity:
549 		case Opt_check_integrity_print_mask:
550 			printk(KERN_ERR "btrfs: support for check_integrity*"
551 			       " not compiled in!\n");
552 			ret = -EINVAL;
553 			goto out;
554 #endif
555 		case Opt_fatal_errors:
556 			if (strcmp(args[0].from, "panic") == 0)
557 				btrfs_set_opt(info->mount_opt,
558 					      PANIC_ON_FATAL_ERROR);
559 			else if (strcmp(args[0].from, "bug") == 0)
560 				btrfs_clear_opt(info->mount_opt,
561 					      PANIC_ON_FATAL_ERROR);
562 			else {
563 				ret = -EINVAL;
564 				goto out;
565 			}
566 			break;
567 		case Opt_err:
568 			printk(KERN_INFO "btrfs: unrecognized mount option "
569 			       "'%s'\n", p);
570 			ret = -EINVAL;
571 			goto out;
572 		default:
573 			break;
574 		}
575 	}
576 out:
577 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
578 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
579 	kfree(orig);
580 	return ret;
581 }
582 
583 /*
584  * Parse mount options that are required early in the mount process.
585  *
586  * All other options will be parsed on much later in the mount process and
587  * only when we need to allocate a new super block.
588  */
589 static int btrfs_parse_early_options(const char *options, fmode_t flags,
590 		void *holder, char **subvol_name, u64 *subvol_objectid,
591 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
592 {
593 	substring_t args[MAX_OPT_ARGS];
594 	char *device_name, *opts, *orig, *p;
595 	int error = 0;
596 	int intarg;
597 
598 	if (!options)
599 		return 0;
600 
601 	/*
602 	 * strsep changes the string, duplicate it because parse_options
603 	 * gets called twice
604 	 */
605 	opts = kstrdup(options, GFP_KERNEL);
606 	if (!opts)
607 		return -ENOMEM;
608 	orig = opts;
609 
610 	while ((p = strsep(&opts, ",")) != NULL) {
611 		int token;
612 		if (!*p)
613 			continue;
614 
615 		token = match_token(p, tokens, args);
616 		switch (token) {
617 		case Opt_subvol:
618 			kfree(*subvol_name);
619 			*subvol_name = match_strdup(&args[0]);
620 			break;
621 		case Opt_subvolid:
622 			intarg = 0;
623 			error = match_int(&args[0], &intarg);
624 			if (!error) {
625 				/* we want the original fs_tree */
626 				if (!intarg)
627 					*subvol_objectid =
628 						BTRFS_FS_TREE_OBJECTID;
629 				else
630 					*subvol_objectid = intarg;
631 			}
632 			break;
633 		case Opt_subvolrootid:
634 			intarg = 0;
635 			error = match_int(&args[0], &intarg);
636 			if (!error) {
637 				/* we want the original fs_tree */
638 				if (!intarg)
639 					*subvol_rootid =
640 						BTRFS_FS_TREE_OBJECTID;
641 				else
642 					*subvol_rootid = intarg;
643 			}
644 			break;
645 		case Opt_device:
646 			device_name = match_strdup(&args[0]);
647 			if (!device_name) {
648 				error = -ENOMEM;
649 				goto out;
650 			}
651 			error = btrfs_scan_one_device(device_name,
652 					flags, holder, fs_devices);
653 			kfree(device_name);
654 			if (error)
655 				goto out;
656 			break;
657 		default:
658 			break;
659 		}
660 	}
661 
662 out:
663 	kfree(orig);
664 	return error;
665 }
666 
667 static struct dentry *get_default_root(struct super_block *sb,
668 				       u64 subvol_objectid)
669 {
670 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
671 	struct btrfs_root *root = fs_info->tree_root;
672 	struct btrfs_root *new_root;
673 	struct btrfs_dir_item *di;
674 	struct btrfs_path *path;
675 	struct btrfs_key location;
676 	struct inode *inode;
677 	u64 dir_id;
678 	int new = 0;
679 
680 	/*
681 	 * We have a specific subvol we want to mount, just setup location and
682 	 * go look up the root.
683 	 */
684 	if (subvol_objectid) {
685 		location.objectid = subvol_objectid;
686 		location.type = BTRFS_ROOT_ITEM_KEY;
687 		location.offset = (u64)-1;
688 		goto find_root;
689 	}
690 
691 	path = btrfs_alloc_path();
692 	if (!path)
693 		return ERR_PTR(-ENOMEM);
694 	path->leave_spinning = 1;
695 
696 	/*
697 	 * Find the "default" dir item which points to the root item that we
698 	 * will mount by default if we haven't been given a specific subvolume
699 	 * to mount.
700 	 */
701 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
702 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
703 	if (IS_ERR(di)) {
704 		btrfs_free_path(path);
705 		return ERR_CAST(di);
706 	}
707 	if (!di) {
708 		/*
709 		 * Ok the default dir item isn't there.  This is weird since
710 		 * it's always been there, but don't freak out, just try and
711 		 * mount to root most subvolume.
712 		 */
713 		btrfs_free_path(path);
714 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
715 		new_root = fs_info->fs_root;
716 		goto setup_root;
717 	}
718 
719 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
720 	btrfs_free_path(path);
721 
722 find_root:
723 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
724 	if (IS_ERR(new_root))
725 		return ERR_CAST(new_root);
726 
727 	if (btrfs_root_refs(&new_root->root_item) == 0)
728 		return ERR_PTR(-ENOENT);
729 
730 	dir_id = btrfs_root_dirid(&new_root->root_item);
731 setup_root:
732 	location.objectid = dir_id;
733 	location.type = BTRFS_INODE_ITEM_KEY;
734 	location.offset = 0;
735 
736 	inode = btrfs_iget(sb, &location, new_root, &new);
737 	if (IS_ERR(inode))
738 		return ERR_CAST(inode);
739 
740 	/*
741 	 * If we're just mounting the root most subvol put the inode and return
742 	 * a reference to the dentry.  We will have already gotten a reference
743 	 * to the inode in btrfs_fill_super so we're good to go.
744 	 */
745 	if (!new && sb->s_root->d_inode == inode) {
746 		iput(inode);
747 		return dget(sb->s_root);
748 	}
749 
750 	return d_obtain_alias(inode);
751 }
752 
753 static int btrfs_fill_super(struct super_block *sb,
754 			    struct btrfs_fs_devices *fs_devices,
755 			    void *data, int silent)
756 {
757 	struct inode *inode;
758 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
759 	struct btrfs_key key;
760 	int err;
761 
762 	sb->s_maxbytes = MAX_LFS_FILESIZE;
763 	sb->s_magic = BTRFS_SUPER_MAGIC;
764 	sb->s_op = &btrfs_super_ops;
765 	sb->s_d_op = &btrfs_dentry_operations;
766 	sb->s_export_op = &btrfs_export_ops;
767 	sb->s_xattr = btrfs_xattr_handlers;
768 	sb->s_time_gran = 1;
769 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
770 	sb->s_flags |= MS_POSIXACL;
771 #endif
772 
773 	err = open_ctree(sb, fs_devices, (char *)data);
774 	if (err) {
775 		printk("btrfs: open_ctree failed\n");
776 		return err;
777 	}
778 
779 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
780 	key.type = BTRFS_INODE_ITEM_KEY;
781 	key.offset = 0;
782 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
783 	if (IS_ERR(inode)) {
784 		err = PTR_ERR(inode);
785 		goto fail_close;
786 	}
787 
788 	sb->s_root = d_make_root(inode);
789 	if (!sb->s_root) {
790 		err = -ENOMEM;
791 		goto fail_close;
792 	}
793 
794 	save_mount_options(sb, data);
795 	cleancache_init_fs(sb);
796 	sb->s_flags |= MS_ACTIVE;
797 	return 0;
798 
799 fail_close:
800 	close_ctree(fs_info->tree_root);
801 	return err;
802 }
803 
804 int btrfs_sync_fs(struct super_block *sb, int wait)
805 {
806 	struct btrfs_trans_handle *trans;
807 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
808 	struct btrfs_root *root = fs_info->tree_root;
809 	int ret;
810 
811 	trace_btrfs_sync_fs(wait);
812 
813 	if (!wait) {
814 		filemap_flush(fs_info->btree_inode->i_mapping);
815 		return 0;
816 	}
817 
818 	btrfs_start_delalloc_inodes(root, 0);
819 	btrfs_wait_ordered_extents(root, 0, 0);
820 
821 	trans = btrfs_start_transaction(root, 0);
822 	if (IS_ERR(trans))
823 		return PTR_ERR(trans);
824 	ret = btrfs_commit_transaction(trans, root);
825 	return ret;
826 }
827 
828 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
829 {
830 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
831 	struct btrfs_root *root = info->tree_root;
832 	char *compress_type;
833 
834 	if (btrfs_test_opt(root, DEGRADED))
835 		seq_puts(seq, ",degraded");
836 	if (btrfs_test_opt(root, NODATASUM))
837 		seq_puts(seq, ",nodatasum");
838 	if (btrfs_test_opt(root, NODATACOW))
839 		seq_puts(seq, ",nodatacow");
840 	if (btrfs_test_opt(root, NOBARRIER))
841 		seq_puts(seq, ",nobarrier");
842 	if (info->max_inline != 8192 * 1024)
843 		seq_printf(seq, ",max_inline=%llu",
844 			   (unsigned long long)info->max_inline);
845 	if (info->alloc_start != 0)
846 		seq_printf(seq, ",alloc_start=%llu",
847 			   (unsigned long long)info->alloc_start);
848 	if (info->thread_pool_size !=  min_t(unsigned long,
849 					     num_online_cpus() + 2, 8))
850 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
851 	if (btrfs_test_opt(root, COMPRESS)) {
852 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
853 			compress_type = "zlib";
854 		else
855 			compress_type = "lzo";
856 		if (btrfs_test_opt(root, FORCE_COMPRESS))
857 			seq_printf(seq, ",compress-force=%s", compress_type);
858 		else
859 			seq_printf(seq, ",compress=%s", compress_type);
860 	}
861 	if (btrfs_test_opt(root, NOSSD))
862 		seq_puts(seq, ",nossd");
863 	if (btrfs_test_opt(root, SSD_SPREAD))
864 		seq_puts(seq, ",ssd_spread");
865 	else if (btrfs_test_opt(root, SSD))
866 		seq_puts(seq, ",ssd");
867 	if (btrfs_test_opt(root, NOTREELOG))
868 		seq_puts(seq, ",notreelog");
869 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
870 		seq_puts(seq, ",flushoncommit");
871 	if (btrfs_test_opt(root, DISCARD))
872 		seq_puts(seq, ",discard");
873 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
874 		seq_puts(seq, ",noacl");
875 	if (btrfs_test_opt(root, SPACE_CACHE))
876 		seq_puts(seq, ",space_cache");
877 	else
878 		seq_puts(seq, ",nospace_cache");
879 	if (btrfs_test_opt(root, CLEAR_CACHE))
880 		seq_puts(seq, ",clear_cache");
881 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
882 		seq_puts(seq, ",user_subvol_rm_allowed");
883 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
884 		seq_puts(seq, ",enospc_debug");
885 	if (btrfs_test_opt(root, AUTO_DEFRAG))
886 		seq_puts(seq, ",autodefrag");
887 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
888 		seq_puts(seq, ",inode_cache");
889 	if (btrfs_test_opt(root, SKIP_BALANCE))
890 		seq_puts(seq, ",skip_balance");
891 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
892 		seq_puts(seq, ",fatal_errors=panic");
893 	return 0;
894 }
895 
896 static int btrfs_test_super(struct super_block *s, void *data)
897 {
898 	struct btrfs_fs_info *p = data;
899 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
900 
901 	return fs_info->fs_devices == p->fs_devices;
902 }
903 
904 static int btrfs_set_super(struct super_block *s, void *data)
905 {
906 	int err = set_anon_super(s, data);
907 	if (!err)
908 		s->s_fs_info = data;
909 	return err;
910 }
911 
912 /*
913  * subvolumes are identified by ino 256
914  */
915 static inline int is_subvolume_inode(struct inode *inode)
916 {
917 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
918 		return 1;
919 	return 0;
920 }
921 
922 /*
923  * This will strip out the subvol=%s argument for an argument string and add
924  * subvolid=0 to make sure we get the actual tree root for path walking to the
925  * subvol we want.
926  */
927 static char *setup_root_args(char *args)
928 {
929 	unsigned copied = 0;
930 	unsigned len = strlen(args) + 2;
931 	char *pos;
932 	char *ret;
933 
934 	/*
935 	 * We need the same args as before, but minus
936 	 *
937 	 * subvol=a
938 	 *
939 	 * and add
940 	 *
941 	 * subvolid=0
942 	 *
943 	 * which is a difference of 2 characters, so we allocate strlen(args) +
944 	 * 2 characters.
945 	 */
946 	ret = kzalloc(len * sizeof(char), GFP_NOFS);
947 	if (!ret)
948 		return NULL;
949 	pos = strstr(args, "subvol=");
950 
951 	/* This shouldn't happen, but just in case.. */
952 	if (!pos) {
953 		kfree(ret);
954 		return NULL;
955 	}
956 
957 	/*
958 	 * The subvol=<> arg is not at the front of the string, copy everybody
959 	 * up to that into ret.
960 	 */
961 	if (pos != args) {
962 		*pos = '\0';
963 		strcpy(ret, args);
964 		copied += strlen(args);
965 		pos++;
966 	}
967 
968 	strncpy(ret + copied, "subvolid=0", len - copied);
969 
970 	/* Length of subvolid=0 */
971 	copied += 10;
972 
973 	/*
974 	 * If there is no , after the subvol= option then we know there's no
975 	 * other options and we can just return.
976 	 */
977 	pos = strchr(pos, ',');
978 	if (!pos)
979 		return ret;
980 
981 	/* Copy the rest of the arguments into our buffer */
982 	strncpy(ret + copied, pos, len - copied);
983 	copied += strlen(pos);
984 
985 	return ret;
986 }
987 
988 static struct dentry *mount_subvol(const char *subvol_name, int flags,
989 				   const char *device_name, char *data)
990 {
991 	struct dentry *root;
992 	struct vfsmount *mnt;
993 	char *newargs;
994 
995 	newargs = setup_root_args(data);
996 	if (!newargs)
997 		return ERR_PTR(-ENOMEM);
998 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
999 			     newargs);
1000 	kfree(newargs);
1001 	if (IS_ERR(mnt))
1002 		return ERR_CAST(mnt);
1003 
1004 	root = mount_subtree(mnt, subvol_name);
1005 
1006 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1007 		struct super_block *s = root->d_sb;
1008 		dput(root);
1009 		root = ERR_PTR(-EINVAL);
1010 		deactivate_locked_super(s);
1011 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1012 				subvol_name);
1013 	}
1014 
1015 	return root;
1016 }
1017 
1018 /*
1019  * Find a superblock for the given device / mount point.
1020  *
1021  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1022  *	  for multiple device setup.  Make sure to keep it in sync.
1023  */
1024 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1025 		const char *device_name, void *data)
1026 {
1027 	struct block_device *bdev = NULL;
1028 	struct super_block *s;
1029 	struct dentry *root;
1030 	struct btrfs_fs_devices *fs_devices = NULL;
1031 	struct btrfs_fs_info *fs_info = NULL;
1032 	fmode_t mode = FMODE_READ;
1033 	char *subvol_name = NULL;
1034 	u64 subvol_objectid = 0;
1035 	u64 subvol_rootid = 0;
1036 	int error = 0;
1037 
1038 	if (!(flags & MS_RDONLY))
1039 		mode |= FMODE_WRITE;
1040 
1041 	error = btrfs_parse_early_options(data, mode, fs_type,
1042 					  &subvol_name, &subvol_objectid,
1043 					  &subvol_rootid, &fs_devices);
1044 	if (error) {
1045 		kfree(subvol_name);
1046 		return ERR_PTR(error);
1047 	}
1048 
1049 	if (subvol_name) {
1050 		root = mount_subvol(subvol_name, flags, device_name, data);
1051 		kfree(subvol_name);
1052 		return root;
1053 	}
1054 
1055 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1056 	if (error)
1057 		return ERR_PTR(error);
1058 
1059 	/*
1060 	 * Setup a dummy root and fs_info for test/set super.  This is because
1061 	 * we don't actually fill this stuff out until open_ctree, but we need
1062 	 * it for searching for existing supers, so this lets us do that and
1063 	 * then open_ctree will properly initialize everything later.
1064 	 */
1065 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1066 	if (!fs_info)
1067 		return ERR_PTR(-ENOMEM);
1068 
1069 	fs_info->fs_devices = fs_devices;
1070 
1071 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1072 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1073 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1074 		error = -ENOMEM;
1075 		goto error_fs_info;
1076 	}
1077 
1078 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1079 	if (error)
1080 		goto error_fs_info;
1081 
1082 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1083 		error = -EACCES;
1084 		goto error_close_devices;
1085 	}
1086 
1087 	bdev = fs_devices->latest_bdev;
1088 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1089 	if (IS_ERR(s)) {
1090 		error = PTR_ERR(s);
1091 		goto error_close_devices;
1092 	}
1093 
1094 	if (s->s_root) {
1095 		btrfs_close_devices(fs_devices);
1096 		free_fs_info(fs_info);
1097 		if ((flags ^ s->s_flags) & MS_RDONLY)
1098 			error = -EBUSY;
1099 	} else {
1100 		char b[BDEVNAME_SIZE];
1101 
1102 		s->s_flags = flags | MS_NOSEC;
1103 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1104 		btrfs_sb(s)->bdev_holder = fs_type;
1105 		error = btrfs_fill_super(s, fs_devices, data,
1106 					 flags & MS_SILENT ? 1 : 0);
1107 	}
1108 
1109 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1110 	if (IS_ERR(root))
1111 		deactivate_locked_super(s);
1112 
1113 	return root;
1114 
1115 error_close_devices:
1116 	btrfs_close_devices(fs_devices);
1117 error_fs_info:
1118 	free_fs_info(fs_info);
1119 	return ERR_PTR(error);
1120 }
1121 
1122 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1123 {
1124 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1125 	struct btrfs_root *root = fs_info->tree_root;
1126 	unsigned old_flags = sb->s_flags;
1127 	unsigned long old_opts = fs_info->mount_opt;
1128 	unsigned long old_compress_type = fs_info->compress_type;
1129 	u64 old_max_inline = fs_info->max_inline;
1130 	u64 old_alloc_start = fs_info->alloc_start;
1131 	int old_thread_pool_size = fs_info->thread_pool_size;
1132 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1133 	int ret;
1134 
1135 	ret = btrfs_parse_options(root, data);
1136 	if (ret) {
1137 		ret = -EINVAL;
1138 		goto restore;
1139 	}
1140 
1141 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1142 		return 0;
1143 
1144 	if (*flags & MS_RDONLY) {
1145 		sb->s_flags |= MS_RDONLY;
1146 
1147 		ret = btrfs_commit_super(root);
1148 		if (ret)
1149 			goto restore;
1150 	} else {
1151 		if (fs_info->fs_devices->rw_devices == 0)
1152 			ret = -EACCES;
1153 			goto restore;
1154 
1155 		if (btrfs_super_log_root(fs_info->super_copy) != 0)
1156 			ret = -EINVAL;
1157 			goto restore;
1158 
1159 		ret = btrfs_cleanup_fs_roots(fs_info);
1160 		if (ret)
1161 			goto restore;
1162 
1163 		/* recover relocation */
1164 		ret = btrfs_recover_relocation(root);
1165 		if (ret)
1166 			goto restore;
1167 
1168 		sb->s_flags &= ~MS_RDONLY;
1169 	}
1170 
1171 	return 0;
1172 
1173 restore:
1174 	/* We've hit an error - don't reset MS_RDONLY */
1175 	if (sb->s_flags & MS_RDONLY)
1176 		old_flags |= MS_RDONLY;
1177 	sb->s_flags = old_flags;
1178 	fs_info->mount_opt = old_opts;
1179 	fs_info->compress_type = old_compress_type;
1180 	fs_info->max_inline = old_max_inline;
1181 	fs_info->alloc_start = old_alloc_start;
1182 	fs_info->thread_pool_size = old_thread_pool_size;
1183 	fs_info->metadata_ratio = old_metadata_ratio;
1184 	return ret;
1185 }
1186 
1187 /* Used to sort the devices by max_avail(descending sort) */
1188 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1189 				       const void *dev_info2)
1190 {
1191 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1192 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1193 		return -1;
1194 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1195 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1196 		return 1;
1197 	else
1198 	return 0;
1199 }
1200 
1201 /*
1202  * sort the devices by max_avail, in which max free extent size of each device
1203  * is stored.(Descending Sort)
1204  */
1205 static inline void btrfs_descending_sort_devices(
1206 					struct btrfs_device_info *devices,
1207 					size_t nr_devices)
1208 {
1209 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1210 	     btrfs_cmp_device_free_bytes, NULL);
1211 }
1212 
1213 /*
1214  * The helper to calc the free space on the devices that can be used to store
1215  * file data.
1216  */
1217 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1218 {
1219 	struct btrfs_fs_info *fs_info = root->fs_info;
1220 	struct btrfs_device_info *devices_info;
1221 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1222 	struct btrfs_device *device;
1223 	u64 skip_space;
1224 	u64 type;
1225 	u64 avail_space;
1226 	u64 used_space;
1227 	u64 min_stripe_size;
1228 	int min_stripes = 1, num_stripes = 1;
1229 	int i = 0, nr_devices;
1230 	int ret;
1231 
1232 	nr_devices = fs_info->fs_devices->open_devices;
1233 	BUG_ON(!nr_devices);
1234 
1235 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1236 			       GFP_NOFS);
1237 	if (!devices_info)
1238 		return -ENOMEM;
1239 
1240 	/* calc min stripe number for data space alloction */
1241 	type = btrfs_get_alloc_profile(root, 1);
1242 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1243 		min_stripes = 2;
1244 		num_stripes = nr_devices;
1245 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1246 		min_stripes = 2;
1247 		num_stripes = 2;
1248 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1249 		min_stripes = 4;
1250 		num_stripes = 4;
1251 	}
1252 
1253 	if (type & BTRFS_BLOCK_GROUP_DUP)
1254 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1255 	else
1256 		min_stripe_size = BTRFS_STRIPE_LEN;
1257 
1258 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1259 		if (!device->in_fs_metadata || !device->bdev)
1260 			continue;
1261 
1262 		avail_space = device->total_bytes - device->bytes_used;
1263 
1264 		/* align with stripe_len */
1265 		do_div(avail_space, BTRFS_STRIPE_LEN);
1266 		avail_space *= BTRFS_STRIPE_LEN;
1267 
1268 		/*
1269 		 * In order to avoid overwritting the superblock on the drive,
1270 		 * btrfs starts at an offset of at least 1MB when doing chunk
1271 		 * allocation.
1272 		 */
1273 		skip_space = 1024 * 1024;
1274 
1275 		/* user can set the offset in fs_info->alloc_start. */
1276 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1277 		    device->total_bytes)
1278 			skip_space = max(fs_info->alloc_start, skip_space);
1279 
1280 		/*
1281 		 * btrfs can not use the free space in [0, skip_space - 1],
1282 		 * we must subtract it from the total. In order to implement
1283 		 * it, we account the used space in this range first.
1284 		 */
1285 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1286 						     &used_space);
1287 		if (ret) {
1288 			kfree(devices_info);
1289 			return ret;
1290 		}
1291 
1292 		/* calc the free space in [0, skip_space - 1] */
1293 		skip_space -= used_space;
1294 
1295 		/*
1296 		 * we can use the free space in [0, skip_space - 1], subtract
1297 		 * it from the total.
1298 		 */
1299 		if (avail_space && avail_space >= skip_space)
1300 			avail_space -= skip_space;
1301 		else
1302 			avail_space = 0;
1303 
1304 		if (avail_space < min_stripe_size)
1305 			continue;
1306 
1307 		devices_info[i].dev = device;
1308 		devices_info[i].max_avail = avail_space;
1309 
1310 		i++;
1311 	}
1312 
1313 	nr_devices = i;
1314 
1315 	btrfs_descending_sort_devices(devices_info, nr_devices);
1316 
1317 	i = nr_devices - 1;
1318 	avail_space = 0;
1319 	while (nr_devices >= min_stripes) {
1320 		if (num_stripes > nr_devices)
1321 			num_stripes = nr_devices;
1322 
1323 		if (devices_info[i].max_avail >= min_stripe_size) {
1324 			int j;
1325 			u64 alloc_size;
1326 
1327 			avail_space += devices_info[i].max_avail * num_stripes;
1328 			alloc_size = devices_info[i].max_avail;
1329 			for (j = i + 1 - num_stripes; j <= i; j++)
1330 				devices_info[j].max_avail -= alloc_size;
1331 		}
1332 		i--;
1333 		nr_devices--;
1334 	}
1335 
1336 	kfree(devices_info);
1337 	*free_bytes = avail_space;
1338 	return 0;
1339 }
1340 
1341 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1342 {
1343 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1344 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1345 	struct list_head *head = &fs_info->space_info;
1346 	struct btrfs_space_info *found;
1347 	u64 total_used = 0;
1348 	u64 total_free_data = 0;
1349 	int bits = dentry->d_sb->s_blocksize_bits;
1350 	__be32 *fsid = (__be32 *)fs_info->fsid;
1351 	int ret;
1352 
1353 	/* holding chunk_muext to avoid allocating new chunks */
1354 	mutex_lock(&fs_info->chunk_mutex);
1355 	rcu_read_lock();
1356 	list_for_each_entry_rcu(found, head, list) {
1357 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1358 			total_free_data += found->disk_total - found->disk_used;
1359 			total_free_data -=
1360 				btrfs_account_ro_block_groups_free_space(found);
1361 		}
1362 
1363 		total_used += found->disk_used;
1364 	}
1365 	rcu_read_unlock();
1366 
1367 	buf->f_namelen = BTRFS_NAME_LEN;
1368 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1369 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1370 	buf->f_bsize = dentry->d_sb->s_blocksize;
1371 	buf->f_type = BTRFS_SUPER_MAGIC;
1372 	buf->f_bavail = total_free_data;
1373 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1374 	if (ret) {
1375 		mutex_unlock(&fs_info->chunk_mutex);
1376 		return ret;
1377 	}
1378 	buf->f_bavail += total_free_data;
1379 	buf->f_bavail = buf->f_bavail >> bits;
1380 	mutex_unlock(&fs_info->chunk_mutex);
1381 
1382 	/* We treat it as constant endianness (it doesn't matter _which_)
1383 	   because we want the fsid to come out the same whether mounted
1384 	   on a big-endian or little-endian host */
1385 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1386 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1387 	/* Mask in the root object ID too, to disambiguate subvols */
1388 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1389 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1390 
1391 	return 0;
1392 }
1393 
1394 static void btrfs_kill_super(struct super_block *sb)
1395 {
1396 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1397 	kill_anon_super(sb);
1398 	free_fs_info(fs_info);
1399 }
1400 
1401 static struct file_system_type btrfs_fs_type = {
1402 	.owner		= THIS_MODULE,
1403 	.name		= "btrfs",
1404 	.mount		= btrfs_mount,
1405 	.kill_sb	= btrfs_kill_super,
1406 	.fs_flags	= FS_REQUIRES_DEV,
1407 };
1408 
1409 /*
1410  * used by btrfsctl to scan devices when no FS is mounted
1411  */
1412 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1413 				unsigned long arg)
1414 {
1415 	struct btrfs_ioctl_vol_args *vol;
1416 	struct btrfs_fs_devices *fs_devices;
1417 	int ret = -ENOTTY;
1418 
1419 	if (!capable(CAP_SYS_ADMIN))
1420 		return -EPERM;
1421 
1422 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1423 	if (IS_ERR(vol))
1424 		return PTR_ERR(vol);
1425 
1426 	switch (cmd) {
1427 	case BTRFS_IOC_SCAN_DEV:
1428 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1429 					    &btrfs_fs_type, &fs_devices);
1430 		break;
1431 	}
1432 
1433 	kfree(vol);
1434 	return ret;
1435 }
1436 
1437 static int btrfs_freeze(struct super_block *sb)
1438 {
1439 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1440 	mutex_lock(&fs_info->transaction_kthread_mutex);
1441 	mutex_lock(&fs_info->cleaner_mutex);
1442 	return 0;
1443 }
1444 
1445 static int btrfs_unfreeze(struct super_block *sb)
1446 {
1447 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1448 	mutex_unlock(&fs_info->cleaner_mutex);
1449 	mutex_unlock(&fs_info->transaction_kthread_mutex);
1450 	return 0;
1451 }
1452 
1453 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1454 {
1455 	int ret;
1456 
1457 	ret = btrfs_dirty_inode(inode);
1458 	if (ret)
1459 		printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1460 				   "error %d\n", btrfs_ino(inode), ret);
1461 }
1462 
1463 static const struct super_operations btrfs_super_ops = {
1464 	.drop_inode	= btrfs_drop_inode,
1465 	.evict_inode	= btrfs_evict_inode,
1466 	.put_super	= btrfs_put_super,
1467 	.sync_fs	= btrfs_sync_fs,
1468 	.show_options	= btrfs_show_options,
1469 	.write_inode	= btrfs_write_inode,
1470 	.dirty_inode	= btrfs_fs_dirty_inode,
1471 	.alloc_inode	= btrfs_alloc_inode,
1472 	.destroy_inode	= btrfs_destroy_inode,
1473 	.statfs		= btrfs_statfs,
1474 	.remount_fs	= btrfs_remount,
1475 	.freeze_fs	= btrfs_freeze,
1476 	.unfreeze_fs	= btrfs_unfreeze,
1477 };
1478 
1479 static const struct file_operations btrfs_ctl_fops = {
1480 	.unlocked_ioctl	 = btrfs_control_ioctl,
1481 	.compat_ioctl = btrfs_control_ioctl,
1482 	.owner	 = THIS_MODULE,
1483 	.llseek = noop_llseek,
1484 };
1485 
1486 static struct miscdevice btrfs_misc = {
1487 	.minor		= BTRFS_MINOR,
1488 	.name		= "btrfs-control",
1489 	.fops		= &btrfs_ctl_fops
1490 };
1491 
1492 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1493 MODULE_ALIAS("devname:btrfs-control");
1494 
1495 static int btrfs_interface_init(void)
1496 {
1497 	return misc_register(&btrfs_misc);
1498 }
1499 
1500 static void btrfs_interface_exit(void)
1501 {
1502 	if (misc_deregister(&btrfs_misc) < 0)
1503 		printk(KERN_INFO "misc_deregister failed for control device");
1504 }
1505 
1506 static int __init init_btrfs_fs(void)
1507 {
1508 	int err;
1509 
1510 	err = btrfs_init_sysfs();
1511 	if (err)
1512 		return err;
1513 
1514 	btrfs_init_compress();
1515 
1516 	err = btrfs_init_cachep();
1517 	if (err)
1518 		goto free_compress;
1519 
1520 	err = extent_io_init();
1521 	if (err)
1522 		goto free_cachep;
1523 
1524 	err = extent_map_init();
1525 	if (err)
1526 		goto free_extent_io;
1527 
1528 	err = btrfs_delayed_inode_init();
1529 	if (err)
1530 		goto free_extent_map;
1531 
1532 	err = btrfs_interface_init();
1533 	if (err)
1534 		goto free_delayed_inode;
1535 
1536 	err = register_filesystem(&btrfs_fs_type);
1537 	if (err)
1538 		goto unregister_ioctl;
1539 
1540 	btrfs_init_lockdep();
1541 
1542 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1543 	return 0;
1544 
1545 unregister_ioctl:
1546 	btrfs_interface_exit();
1547 free_delayed_inode:
1548 	btrfs_delayed_inode_exit();
1549 free_extent_map:
1550 	extent_map_exit();
1551 free_extent_io:
1552 	extent_io_exit();
1553 free_cachep:
1554 	btrfs_destroy_cachep();
1555 free_compress:
1556 	btrfs_exit_compress();
1557 	btrfs_exit_sysfs();
1558 	return err;
1559 }
1560 
1561 static void __exit exit_btrfs_fs(void)
1562 {
1563 	btrfs_destroy_cachep();
1564 	btrfs_delayed_inode_exit();
1565 	extent_map_exit();
1566 	extent_io_exit();
1567 	btrfs_interface_exit();
1568 	unregister_filesystem(&btrfs_fs_type);
1569 	btrfs_exit_sysfs();
1570 	btrfs_cleanup_fs_uuids();
1571 	btrfs_exit_compress();
1572 }
1573 
1574 module_init(init_btrfs_fs)
1575 module_exit(exit_btrfs_fs)
1576 
1577 MODULE_LICENSE("GPL");
1578