1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "props.h" 38 #include "xattr.h" 39 #include "bio.h" 40 #include "export.h" 41 #include "compression.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "zoned.h" 48 #include "tests/btrfs-tests.h" 49 #include "block-group.h" 50 #include "discard.h" 51 #include "qgroup.h" 52 #include "raid56.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "defrag.h" 56 #include "dir-item.h" 57 #include "ioctl.h" 58 #include "scrub.h" 59 #include "verity.h" 60 #include "super.h" 61 #include "extent-tree.h" 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/btrfs.h> 64 65 static const struct super_operations btrfs_super_ops; 66 static struct file_system_type btrfs_fs_type; 67 68 static void btrfs_put_super(struct super_block *sb) 69 { 70 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 71 72 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 73 close_ctree(fs_info); 74 } 75 76 /* Store the mount options related information. */ 77 struct btrfs_fs_context { 78 char *subvol_name; 79 u64 subvol_objectid; 80 u64 max_inline; 81 u32 commit_interval; 82 u32 metadata_ratio; 83 u32 thread_pool_size; 84 unsigned long mount_opt; 85 unsigned long compress_type:4; 86 unsigned int compress_level; 87 refcount_t refs; 88 }; 89 90 enum { 91 Opt_acl, 92 Opt_clear_cache, 93 Opt_commit_interval, 94 Opt_compress, 95 Opt_compress_force, 96 Opt_compress_force_type, 97 Opt_compress_type, 98 Opt_degraded, 99 Opt_device, 100 Opt_fatal_errors, 101 Opt_flushoncommit, 102 Opt_max_inline, 103 Opt_barrier, 104 Opt_datacow, 105 Opt_datasum, 106 Opt_defrag, 107 Opt_discard, 108 Opt_discard_mode, 109 Opt_ratio, 110 Opt_rescan_uuid_tree, 111 Opt_skip_balance, 112 Opt_space_cache, 113 Opt_space_cache_version, 114 Opt_ssd, 115 Opt_ssd_spread, 116 Opt_subvol, 117 Opt_subvol_empty, 118 Opt_subvolid, 119 Opt_thread_pool, 120 Opt_treelog, 121 Opt_user_subvol_rm_allowed, 122 Opt_norecovery, 123 124 /* Rescue options */ 125 Opt_rescue, 126 Opt_usebackuproot, 127 Opt_nologreplay, 128 Opt_ignorebadroots, 129 Opt_ignoredatacsums, 130 Opt_rescue_all, 131 132 /* Debugging options */ 133 Opt_enospc_debug, 134 #ifdef CONFIG_BTRFS_DEBUG 135 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 136 #endif 137 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 138 Opt_ref_verify, 139 #endif 140 Opt_err, 141 }; 142 143 enum { 144 Opt_fatal_errors_panic, 145 Opt_fatal_errors_bug, 146 }; 147 148 static const struct constant_table btrfs_parameter_fatal_errors[] = { 149 { "panic", Opt_fatal_errors_panic }, 150 { "bug", Opt_fatal_errors_bug }, 151 {} 152 }; 153 154 enum { 155 Opt_discard_sync, 156 Opt_discard_async, 157 }; 158 159 static const struct constant_table btrfs_parameter_discard[] = { 160 { "sync", Opt_discard_sync }, 161 { "async", Opt_discard_async }, 162 {} 163 }; 164 165 enum { 166 Opt_space_cache_v1, 167 Opt_space_cache_v2, 168 }; 169 170 static const struct constant_table btrfs_parameter_space_cache[] = { 171 { "v1", Opt_space_cache_v1 }, 172 { "v2", Opt_space_cache_v2 }, 173 {} 174 }; 175 176 enum { 177 Opt_rescue_usebackuproot, 178 Opt_rescue_nologreplay, 179 Opt_rescue_ignorebadroots, 180 Opt_rescue_ignoredatacsums, 181 Opt_rescue_parameter_all, 182 }; 183 184 static const struct constant_table btrfs_parameter_rescue[] = { 185 { "usebackuproot", Opt_rescue_usebackuproot }, 186 { "nologreplay", Opt_rescue_nologreplay }, 187 { "ignorebadroots", Opt_rescue_ignorebadroots }, 188 { "ibadroots", Opt_rescue_ignorebadroots }, 189 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 190 { "idatacsums", Opt_rescue_ignoredatacsums }, 191 { "all", Opt_rescue_parameter_all }, 192 {} 193 }; 194 195 #ifdef CONFIG_BTRFS_DEBUG 196 enum { 197 Opt_fragment_parameter_data, 198 Opt_fragment_parameter_metadata, 199 Opt_fragment_parameter_all, 200 }; 201 202 static const struct constant_table btrfs_parameter_fragment[] = { 203 { "data", Opt_fragment_parameter_data }, 204 { "metadata", Opt_fragment_parameter_metadata }, 205 { "all", Opt_fragment_parameter_all }, 206 {} 207 }; 208 #endif 209 210 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 211 fsparam_flag_no("acl", Opt_acl), 212 fsparam_flag_no("autodefrag", Opt_defrag), 213 fsparam_flag_no("barrier", Opt_barrier), 214 fsparam_flag("clear_cache", Opt_clear_cache), 215 fsparam_u32("commit", Opt_commit_interval), 216 fsparam_flag("compress", Opt_compress), 217 fsparam_string("compress", Opt_compress_type), 218 fsparam_flag("compress-force", Opt_compress_force), 219 fsparam_string("compress-force", Opt_compress_force_type), 220 fsparam_flag_no("datacow", Opt_datacow), 221 fsparam_flag_no("datasum", Opt_datasum), 222 fsparam_flag("degraded", Opt_degraded), 223 fsparam_string("device", Opt_device), 224 fsparam_flag_no("discard", Opt_discard), 225 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 226 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 227 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 228 fsparam_string("max_inline", Opt_max_inline), 229 fsparam_u32("metadata_ratio", Opt_ratio), 230 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 231 fsparam_flag("skip_balance", Opt_skip_balance), 232 fsparam_flag_no("space_cache", Opt_space_cache), 233 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 234 fsparam_flag_no("ssd", Opt_ssd), 235 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 236 fsparam_string("subvol", Opt_subvol), 237 fsparam_flag("subvol=", Opt_subvol_empty), 238 fsparam_u64("subvolid", Opt_subvolid), 239 fsparam_u32("thread_pool", Opt_thread_pool), 240 fsparam_flag_no("treelog", Opt_treelog), 241 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 242 243 /* Rescue options. */ 244 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 245 /* Deprecated, with alias rescue=nologreplay */ 246 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL), 247 /* Deprecated, with alias rescue=usebackuproot */ 248 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 249 /* For compatibility only, alias for "rescue=nologreplay". */ 250 fsparam_flag("norecovery", Opt_norecovery), 251 252 /* Debugging options. */ 253 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 254 #ifdef CONFIG_BTRFS_DEBUG 255 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 256 #endif 257 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 258 fsparam_flag("ref_verify", Opt_ref_verify), 259 #endif 260 {} 261 }; 262 263 /* No support for restricting writes to btrfs devices yet... */ 264 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 265 { 266 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 267 } 268 269 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 270 { 271 struct btrfs_fs_context *ctx = fc->fs_private; 272 struct fs_parse_result result; 273 int opt; 274 275 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 276 if (opt < 0) 277 return opt; 278 279 switch (opt) { 280 case Opt_degraded: 281 btrfs_set_opt(ctx->mount_opt, DEGRADED); 282 break; 283 case Opt_subvol_empty: 284 /* 285 * This exists because we used to allow it on accident, so we're 286 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 287 * empty subvol= again"). 288 */ 289 break; 290 case Opt_subvol: 291 kfree(ctx->subvol_name); 292 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 293 if (!ctx->subvol_name) 294 return -ENOMEM; 295 break; 296 case Opt_subvolid: 297 ctx->subvol_objectid = result.uint_64; 298 299 /* subvolid=0 means give me the original fs_tree. */ 300 if (!ctx->subvol_objectid) 301 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 302 break; 303 case Opt_device: { 304 struct btrfs_device *device; 305 blk_mode_t mode = btrfs_open_mode(fc); 306 307 mutex_lock(&uuid_mutex); 308 device = btrfs_scan_one_device(param->string, mode, false); 309 mutex_unlock(&uuid_mutex); 310 if (IS_ERR(device)) 311 return PTR_ERR(device); 312 break; 313 } 314 case Opt_datasum: 315 if (result.negated) { 316 btrfs_set_opt(ctx->mount_opt, NODATASUM); 317 } else { 318 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 319 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 320 } 321 break; 322 case Opt_datacow: 323 if (result.negated) { 324 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 325 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 326 btrfs_set_opt(ctx->mount_opt, NODATACOW); 327 btrfs_set_opt(ctx->mount_opt, NODATASUM); 328 } else { 329 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 330 } 331 break; 332 case Opt_compress_force: 333 case Opt_compress_force_type: 334 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 335 fallthrough; 336 case Opt_compress: 337 case Opt_compress_type: 338 if (opt == Opt_compress || opt == Opt_compress_force) { 339 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 340 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 341 btrfs_set_opt(ctx->mount_opt, COMPRESS); 342 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 343 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 344 } else if (strncmp(param->string, "zlib", 4) == 0) { 345 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 346 ctx->compress_level = 347 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 348 param->string + 4); 349 btrfs_set_opt(ctx->mount_opt, COMPRESS); 350 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 351 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 352 } else if (strncmp(param->string, "lzo", 3) == 0) { 353 ctx->compress_type = BTRFS_COMPRESS_LZO; 354 ctx->compress_level = 0; 355 btrfs_set_opt(ctx->mount_opt, COMPRESS); 356 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 357 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 358 } else if (strncmp(param->string, "zstd", 4) == 0) { 359 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 360 ctx->compress_level = 361 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 362 param->string + 4); 363 btrfs_set_opt(ctx->mount_opt, COMPRESS); 364 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 365 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 366 } else if (strncmp(param->string, "no", 2) == 0) { 367 ctx->compress_level = 0; 368 ctx->compress_type = 0; 369 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 370 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 371 } else { 372 btrfs_err(NULL, "unrecognized compression value %s", 373 param->string); 374 return -EINVAL; 375 } 376 break; 377 case Opt_ssd: 378 if (result.negated) { 379 btrfs_set_opt(ctx->mount_opt, NOSSD); 380 btrfs_clear_opt(ctx->mount_opt, SSD); 381 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 382 } else { 383 btrfs_set_opt(ctx->mount_opt, SSD); 384 btrfs_clear_opt(ctx->mount_opt, NOSSD); 385 } 386 break; 387 case Opt_ssd_spread: 388 if (result.negated) { 389 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 390 } else { 391 btrfs_set_opt(ctx->mount_opt, SSD); 392 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 393 btrfs_clear_opt(ctx->mount_opt, NOSSD); 394 } 395 break; 396 case Opt_barrier: 397 if (result.negated) 398 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 399 else 400 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 401 break; 402 case Opt_thread_pool: 403 if (result.uint_32 == 0) { 404 btrfs_err(NULL, "invalid value 0 for thread_pool"); 405 return -EINVAL; 406 } 407 ctx->thread_pool_size = result.uint_32; 408 break; 409 case Opt_max_inline: 410 ctx->max_inline = memparse(param->string, NULL); 411 break; 412 case Opt_acl: 413 if (result.negated) { 414 fc->sb_flags &= ~SB_POSIXACL; 415 } else { 416 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 417 fc->sb_flags |= SB_POSIXACL; 418 #else 419 btrfs_err(NULL, "support for ACL not compiled in"); 420 return -EINVAL; 421 #endif 422 } 423 /* 424 * VFS limits the ability to toggle ACL on and off via remount, 425 * despite every file system allowing this. This seems to be 426 * an oversight since we all do, but it'll fail if we're 427 * remounting. So don't set the mask here, we'll check it in 428 * btrfs_reconfigure and do the toggling ourselves. 429 */ 430 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 431 fc->sb_flags_mask |= SB_POSIXACL; 432 break; 433 case Opt_treelog: 434 if (result.negated) 435 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 436 else 437 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 438 break; 439 case Opt_nologreplay: 440 btrfs_warn(NULL, 441 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 442 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 443 break; 444 case Opt_norecovery: 445 btrfs_info(NULL, 446 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 447 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 448 break; 449 case Opt_flushoncommit: 450 if (result.negated) 451 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 452 else 453 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 454 break; 455 case Opt_ratio: 456 ctx->metadata_ratio = result.uint_32; 457 break; 458 case Opt_discard: 459 if (result.negated) { 460 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 461 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 462 btrfs_set_opt(ctx->mount_opt, NODISCARD); 463 } else { 464 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 465 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 466 } 467 break; 468 case Opt_discard_mode: 469 switch (result.uint_32) { 470 case Opt_discard_sync: 471 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 472 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 473 break; 474 case Opt_discard_async: 475 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 476 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 477 break; 478 default: 479 btrfs_err(NULL, "unrecognized discard mode value %s", 480 param->key); 481 return -EINVAL; 482 } 483 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 484 break; 485 case Opt_space_cache: 486 if (result.negated) { 487 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 488 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 489 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 490 } else { 491 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 492 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 493 } 494 break; 495 case Opt_space_cache_version: 496 switch (result.uint_32) { 497 case Opt_space_cache_v1: 498 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 499 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 500 break; 501 case Opt_space_cache_v2: 502 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 503 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 504 break; 505 default: 506 btrfs_err(NULL, "unrecognized space_cache value %s", 507 param->key); 508 return -EINVAL; 509 } 510 break; 511 case Opt_rescan_uuid_tree: 512 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 513 break; 514 case Opt_clear_cache: 515 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 516 break; 517 case Opt_user_subvol_rm_allowed: 518 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 519 break; 520 case Opt_enospc_debug: 521 if (result.negated) 522 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 523 else 524 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 525 break; 526 case Opt_defrag: 527 if (result.negated) 528 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 529 else 530 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 531 break; 532 case Opt_usebackuproot: 533 btrfs_warn(NULL, 534 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 535 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 536 537 /* If we're loading the backup roots we can't trust the space cache. */ 538 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 539 break; 540 case Opt_skip_balance: 541 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 542 break; 543 case Opt_fatal_errors: 544 switch (result.uint_32) { 545 case Opt_fatal_errors_panic: 546 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 547 break; 548 case Opt_fatal_errors_bug: 549 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 550 break; 551 default: 552 btrfs_err(NULL, "unrecognized fatal_errors value %s", 553 param->key); 554 return -EINVAL; 555 } 556 break; 557 case Opt_commit_interval: 558 ctx->commit_interval = result.uint_32; 559 if (ctx->commit_interval == 0) 560 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 561 break; 562 case Opt_rescue: 563 switch (result.uint_32) { 564 case Opt_rescue_usebackuproot: 565 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 566 break; 567 case Opt_rescue_nologreplay: 568 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 569 break; 570 case Opt_rescue_ignorebadroots: 571 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 572 break; 573 case Opt_rescue_ignoredatacsums: 574 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 575 break; 576 case Opt_rescue_parameter_all: 577 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 578 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 579 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 580 break; 581 default: 582 btrfs_info(NULL, "unrecognized rescue option '%s'", 583 param->key); 584 return -EINVAL; 585 } 586 break; 587 #ifdef CONFIG_BTRFS_DEBUG 588 case Opt_fragment: 589 switch (result.uint_32) { 590 case Opt_fragment_parameter_all: 591 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 592 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 593 break; 594 case Opt_fragment_parameter_metadata: 595 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 596 break; 597 case Opt_fragment_parameter_data: 598 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 599 break; 600 default: 601 btrfs_info(NULL, "unrecognized fragment option '%s'", 602 param->key); 603 return -EINVAL; 604 } 605 break; 606 #endif 607 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 608 case Opt_ref_verify: 609 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 610 break; 611 #endif 612 default: 613 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 614 return -EINVAL; 615 } 616 617 return 0; 618 } 619 620 /* 621 * Some options only have meaning at mount time and shouldn't persist across 622 * remounts, or be displayed. Clear these at the end of mount and remount code 623 * paths. 624 */ 625 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 626 { 627 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 628 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 629 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 630 } 631 632 static bool check_ro_option(struct btrfs_fs_info *fs_info, 633 unsigned long mount_opt, unsigned long opt, 634 const char *opt_name) 635 { 636 if (mount_opt & opt) { 637 btrfs_err(fs_info, "%s must be used with ro mount option", 638 opt_name); 639 return true; 640 } 641 return false; 642 } 643 644 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt, 645 unsigned long flags) 646 { 647 bool ret = true; 648 649 if (!(flags & SB_RDONLY) && 650 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 651 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 652 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))) 653 ret = false; 654 655 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 656 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 657 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 658 btrfs_err(info, "cannot disable free-space-tree"); 659 ret = false; 660 } 661 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 662 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 663 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 664 ret = false; 665 } 666 667 if (btrfs_check_mountopts_zoned(info, mount_opt)) 668 ret = false; 669 670 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 671 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) 672 btrfs_info(info, "disk space caching is enabled"); 673 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 674 btrfs_info(info, "using free-space-tree"); 675 } 676 677 return ret; 678 } 679 680 /* 681 * This is subtle, we only call this during open_ctree(). We need to pre-load 682 * the mount options with the on-disk settings. Before the new mount API took 683 * effect we would do this on mount and remount. With the new mount API we'll 684 * only do this on the initial mount. 685 * 686 * This isn't a change in behavior, because we're using the current state of the 687 * file system to set the current mount options. If you mounted with special 688 * options to disable these features and then remounted we wouldn't revert the 689 * settings, because mounting without these features cleared the on-disk 690 * settings, so this being called on re-mount is not needed. 691 */ 692 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 693 { 694 if (fs_info->sectorsize < PAGE_SIZE) { 695 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 696 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 697 btrfs_info(fs_info, 698 "forcing free space tree for sector size %u with page size %lu", 699 fs_info->sectorsize, PAGE_SIZE); 700 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 701 } 702 } 703 704 /* 705 * At this point our mount options are populated, so we only mess with 706 * these settings if we don't have any settings already. 707 */ 708 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 709 return; 710 711 if (btrfs_is_zoned(fs_info) && 712 btrfs_free_space_cache_v1_active(fs_info)) { 713 btrfs_info(fs_info, "zoned: clearing existing space cache"); 714 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 715 return; 716 } 717 718 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 719 return; 720 721 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 722 return; 723 724 /* 725 * At this point we don't have explicit options set by the user, set 726 * them ourselves based on the state of the file system. 727 */ 728 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 729 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 730 else if (btrfs_free_space_cache_v1_active(fs_info)) 731 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 732 } 733 734 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 735 { 736 if (!btrfs_test_opt(fs_info, NOSSD) && 737 !fs_info->fs_devices->rotating) 738 btrfs_set_opt(fs_info->mount_opt, SSD); 739 740 /* 741 * For devices supporting discard turn on discard=async automatically, 742 * unless it's already set or disabled. This could be turned off by 743 * nodiscard for the same mount. 744 * 745 * The zoned mode piggy backs on the discard functionality for 746 * resetting a zone. There is no reason to delay the zone reset as it is 747 * fast enough. So, do not enable async discard for zoned mode. 748 */ 749 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 750 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 751 btrfs_test_opt(fs_info, NODISCARD)) && 752 fs_info->fs_devices->discardable && 753 !btrfs_is_zoned(fs_info)) 754 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 755 } 756 757 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 758 u64 subvol_objectid) 759 { 760 struct btrfs_root *root = fs_info->tree_root; 761 struct btrfs_root *fs_root = NULL; 762 struct btrfs_root_ref *root_ref; 763 struct btrfs_inode_ref *inode_ref; 764 struct btrfs_key key; 765 struct btrfs_path *path = NULL; 766 char *name = NULL, *ptr; 767 u64 dirid; 768 int len; 769 int ret; 770 771 path = btrfs_alloc_path(); 772 if (!path) { 773 ret = -ENOMEM; 774 goto err; 775 } 776 777 name = kmalloc(PATH_MAX, GFP_KERNEL); 778 if (!name) { 779 ret = -ENOMEM; 780 goto err; 781 } 782 ptr = name + PATH_MAX - 1; 783 ptr[0] = '\0'; 784 785 /* 786 * Walk up the subvolume trees in the tree of tree roots by root 787 * backrefs until we hit the top-level subvolume. 788 */ 789 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 790 key.objectid = subvol_objectid; 791 key.type = BTRFS_ROOT_BACKREF_KEY; 792 key.offset = (u64)-1; 793 794 ret = btrfs_search_backwards(root, &key, path); 795 if (ret < 0) { 796 goto err; 797 } else if (ret > 0) { 798 ret = -ENOENT; 799 goto err; 800 } 801 802 subvol_objectid = key.offset; 803 804 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 805 struct btrfs_root_ref); 806 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 807 ptr -= len + 1; 808 if (ptr < name) { 809 ret = -ENAMETOOLONG; 810 goto err; 811 } 812 read_extent_buffer(path->nodes[0], ptr + 1, 813 (unsigned long)(root_ref + 1), len); 814 ptr[0] = '/'; 815 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 816 btrfs_release_path(path); 817 818 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 819 if (IS_ERR(fs_root)) { 820 ret = PTR_ERR(fs_root); 821 fs_root = NULL; 822 goto err; 823 } 824 825 /* 826 * Walk up the filesystem tree by inode refs until we hit the 827 * root directory. 828 */ 829 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 830 key.objectid = dirid; 831 key.type = BTRFS_INODE_REF_KEY; 832 key.offset = (u64)-1; 833 834 ret = btrfs_search_backwards(fs_root, &key, path); 835 if (ret < 0) { 836 goto err; 837 } else if (ret > 0) { 838 ret = -ENOENT; 839 goto err; 840 } 841 842 dirid = key.offset; 843 844 inode_ref = btrfs_item_ptr(path->nodes[0], 845 path->slots[0], 846 struct btrfs_inode_ref); 847 len = btrfs_inode_ref_name_len(path->nodes[0], 848 inode_ref); 849 ptr -= len + 1; 850 if (ptr < name) { 851 ret = -ENAMETOOLONG; 852 goto err; 853 } 854 read_extent_buffer(path->nodes[0], ptr + 1, 855 (unsigned long)(inode_ref + 1), len); 856 ptr[0] = '/'; 857 btrfs_release_path(path); 858 } 859 btrfs_put_root(fs_root); 860 fs_root = NULL; 861 } 862 863 btrfs_free_path(path); 864 if (ptr == name + PATH_MAX - 1) { 865 name[0] = '/'; 866 name[1] = '\0'; 867 } else { 868 memmove(name, ptr, name + PATH_MAX - ptr); 869 } 870 return name; 871 872 err: 873 btrfs_put_root(fs_root); 874 btrfs_free_path(path); 875 kfree(name); 876 return ERR_PTR(ret); 877 } 878 879 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 880 { 881 struct btrfs_root *root = fs_info->tree_root; 882 struct btrfs_dir_item *di; 883 struct btrfs_path *path; 884 struct btrfs_key location; 885 struct fscrypt_str name = FSTR_INIT("default", 7); 886 u64 dir_id; 887 888 path = btrfs_alloc_path(); 889 if (!path) 890 return -ENOMEM; 891 892 /* 893 * Find the "default" dir item which points to the root item that we 894 * will mount by default if we haven't been given a specific subvolume 895 * to mount. 896 */ 897 dir_id = btrfs_super_root_dir(fs_info->super_copy); 898 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 899 if (IS_ERR(di)) { 900 btrfs_free_path(path); 901 return PTR_ERR(di); 902 } 903 if (!di) { 904 /* 905 * Ok the default dir item isn't there. This is weird since 906 * it's always been there, but don't freak out, just try and 907 * mount the top-level subvolume. 908 */ 909 btrfs_free_path(path); 910 *objectid = BTRFS_FS_TREE_OBJECTID; 911 return 0; 912 } 913 914 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 915 btrfs_free_path(path); 916 *objectid = location.objectid; 917 return 0; 918 } 919 920 static int btrfs_fill_super(struct super_block *sb, 921 struct btrfs_fs_devices *fs_devices, 922 void *data) 923 { 924 struct inode *inode; 925 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 926 int err; 927 928 sb->s_maxbytes = MAX_LFS_FILESIZE; 929 sb->s_magic = BTRFS_SUPER_MAGIC; 930 sb->s_op = &btrfs_super_ops; 931 sb->s_d_op = &btrfs_dentry_operations; 932 sb->s_export_op = &btrfs_export_ops; 933 #ifdef CONFIG_FS_VERITY 934 sb->s_vop = &btrfs_verityops; 935 #endif 936 sb->s_xattr = btrfs_xattr_handlers; 937 sb->s_time_gran = 1; 938 sb->s_iflags |= SB_I_CGROUPWB; 939 940 err = super_setup_bdi(sb); 941 if (err) { 942 btrfs_err(fs_info, "super_setup_bdi failed"); 943 return err; 944 } 945 946 err = open_ctree(sb, fs_devices, (char *)data); 947 if (err) { 948 btrfs_err(fs_info, "open_ctree failed"); 949 return err; 950 } 951 952 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 953 if (IS_ERR(inode)) { 954 err = PTR_ERR(inode); 955 btrfs_handle_fs_error(fs_info, err, NULL); 956 goto fail_close; 957 } 958 959 sb->s_root = d_make_root(inode); 960 if (!sb->s_root) { 961 err = -ENOMEM; 962 goto fail_close; 963 } 964 965 sb->s_flags |= SB_ACTIVE; 966 return 0; 967 968 fail_close: 969 close_ctree(fs_info); 970 return err; 971 } 972 973 int btrfs_sync_fs(struct super_block *sb, int wait) 974 { 975 struct btrfs_trans_handle *trans; 976 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 977 struct btrfs_root *root = fs_info->tree_root; 978 979 trace_btrfs_sync_fs(fs_info, wait); 980 981 if (!wait) { 982 filemap_flush(fs_info->btree_inode->i_mapping); 983 return 0; 984 } 985 986 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 987 988 trans = btrfs_attach_transaction_barrier(root); 989 if (IS_ERR(trans)) { 990 /* no transaction, don't bother */ 991 if (PTR_ERR(trans) == -ENOENT) { 992 /* 993 * Exit unless we have some pending changes 994 * that need to go through commit 995 */ 996 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 997 &fs_info->flags)) 998 return 0; 999 /* 1000 * A non-blocking test if the fs is frozen. We must not 1001 * start a new transaction here otherwise a deadlock 1002 * happens. The pending operations are delayed to the 1003 * next commit after thawing. 1004 */ 1005 if (sb_start_write_trylock(sb)) 1006 sb_end_write(sb); 1007 else 1008 return 0; 1009 trans = btrfs_start_transaction(root, 0); 1010 } 1011 if (IS_ERR(trans)) 1012 return PTR_ERR(trans); 1013 } 1014 return btrfs_commit_transaction(trans); 1015 } 1016 1017 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1018 { 1019 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1020 *printed = true; 1021 } 1022 1023 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1024 { 1025 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1026 const char *compress_type; 1027 const char *subvol_name; 1028 bool printed = false; 1029 1030 if (btrfs_test_opt(info, DEGRADED)) 1031 seq_puts(seq, ",degraded"); 1032 if (btrfs_test_opt(info, NODATASUM)) 1033 seq_puts(seq, ",nodatasum"); 1034 if (btrfs_test_opt(info, NODATACOW)) 1035 seq_puts(seq, ",nodatacow"); 1036 if (btrfs_test_opt(info, NOBARRIER)) 1037 seq_puts(seq, ",nobarrier"); 1038 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1039 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1040 if (info->thread_pool_size != min_t(unsigned long, 1041 num_online_cpus() + 2, 8)) 1042 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1043 if (btrfs_test_opt(info, COMPRESS)) { 1044 compress_type = btrfs_compress_type2str(info->compress_type); 1045 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1046 seq_printf(seq, ",compress-force=%s", compress_type); 1047 else 1048 seq_printf(seq, ",compress=%s", compress_type); 1049 if (info->compress_level) 1050 seq_printf(seq, ":%d", info->compress_level); 1051 } 1052 if (btrfs_test_opt(info, NOSSD)) 1053 seq_puts(seq, ",nossd"); 1054 if (btrfs_test_opt(info, SSD_SPREAD)) 1055 seq_puts(seq, ",ssd_spread"); 1056 else if (btrfs_test_opt(info, SSD)) 1057 seq_puts(seq, ",ssd"); 1058 if (btrfs_test_opt(info, NOTREELOG)) 1059 seq_puts(seq, ",notreelog"); 1060 if (btrfs_test_opt(info, NOLOGREPLAY)) 1061 print_rescue_option(seq, "nologreplay", &printed); 1062 if (btrfs_test_opt(info, USEBACKUPROOT)) 1063 print_rescue_option(seq, "usebackuproot", &printed); 1064 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1065 print_rescue_option(seq, "ignorebadroots", &printed); 1066 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1067 print_rescue_option(seq, "ignoredatacsums", &printed); 1068 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1069 seq_puts(seq, ",flushoncommit"); 1070 if (btrfs_test_opt(info, DISCARD_SYNC)) 1071 seq_puts(seq, ",discard"); 1072 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1073 seq_puts(seq, ",discard=async"); 1074 if (!(info->sb->s_flags & SB_POSIXACL)) 1075 seq_puts(seq, ",noacl"); 1076 if (btrfs_free_space_cache_v1_active(info)) 1077 seq_puts(seq, ",space_cache"); 1078 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1079 seq_puts(seq, ",space_cache=v2"); 1080 else 1081 seq_puts(seq, ",nospace_cache"); 1082 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1083 seq_puts(seq, ",rescan_uuid_tree"); 1084 if (btrfs_test_opt(info, CLEAR_CACHE)) 1085 seq_puts(seq, ",clear_cache"); 1086 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1087 seq_puts(seq, ",user_subvol_rm_allowed"); 1088 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1089 seq_puts(seq, ",enospc_debug"); 1090 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1091 seq_puts(seq, ",autodefrag"); 1092 if (btrfs_test_opt(info, SKIP_BALANCE)) 1093 seq_puts(seq, ",skip_balance"); 1094 if (info->metadata_ratio) 1095 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1096 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1097 seq_puts(seq, ",fatal_errors=panic"); 1098 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1099 seq_printf(seq, ",commit=%u", info->commit_interval); 1100 #ifdef CONFIG_BTRFS_DEBUG 1101 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1102 seq_puts(seq, ",fragment=data"); 1103 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1104 seq_puts(seq, ",fragment=metadata"); 1105 #endif 1106 if (btrfs_test_opt(info, REF_VERIFY)) 1107 seq_puts(seq, ",ref_verify"); 1108 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1109 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1110 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1111 if (!IS_ERR(subvol_name)) { 1112 seq_puts(seq, ",subvol="); 1113 seq_escape(seq, subvol_name, " \t\n\\"); 1114 kfree(subvol_name); 1115 } 1116 return 0; 1117 } 1118 1119 /* 1120 * subvolumes are identified by ino 256 1121 */ 1122 static inline int is_subvolume_inode(struct inode *inode) 1123 { 1124 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1125 return 1; 1126 return 0; 1127 } 1128 1129 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1130 struct vfsmount *mnt) 1131 { 1132 struct dentry *root; 1133 int ret; 1134 1135 if (!subvol_name) { 1136 if (!subvol_objectid) { 1137 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1138 &subvol_objectid); 1139 if (ret) { 1140 root = ERR_PTR(ret); 1141 goto out; 1142 } 1143 } 1144 subvol_name = btrfs_get_subvol_name_from_objectid( 1145 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1146 if (IS_ERR(subvol_name)) { 1147 root = ERR_CAST(subvol_name); 1148 subvol_name = NULL; 1149 goto out; 1150 } 1151 1152 } 1153 1154 root = mount_subtree(mnt, subvol_name); 1155 /* mount_subtree() drops our reference on the vfsmount. */ 1156 mnt = NULL; 1157 1158 if (!IS_ERR(root)) { 1159 struct super_block *s = root->d_sb; 1160 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1161 struct inode *root_inode = d_inode(root); 1162 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1163 1164 ret = 0; 1165 if (!is_subvolume_inode(root_inode)) { 1166 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1167 subvol_name); 1168 ret = -EINVAL; 1169 } 1170 if (subvol_objectid && root_objectid != subvol_objectid) { 1171 /* 1172 * This will also catch a race condition where a 1173 * subvolume which was passed by ID is renamed and 1174 * another subvolume is renamed over the old location. 1175 */ 1176 btrfs_err(fs_info, 1177 "subvol '%s' does not match subvolid %llu", 1178 subvol_name, subvol_objectid); 1179 ret = -EINVAL; 1180 } 1181 if (ret) { 1182 dput(root); 1183 root = ERR_PTR(ret); 1184 deactivate_locked_super(s); 1185 } 1186 } 1187 1188 out: 1189 mntput(mnt); 1190 kfree(subvol_name); 1191 return root; 1192 } 1193 1194 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1195 u32 new_pool_size, u32 old_pool_size) 1196 { 1197 if (new_pool_size == old_pool_size) 1198 return; 1199 1200 fs_info->thread_pool_size = new_pool_size; 1201 1202 btrfs_info(fs_info, "resize thread pool %d -> %d", 1203 old_pool_size, new_pool_size); 1204 1205 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1206 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1207 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1208 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1209 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1210 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1211 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1212 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1213 } 1214 1215 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1216 unsigned long old_opts, int flags) 1217 { 1218 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1219 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1220 (flags & SB_RDONLY))) { 1221 /* wait for any defraggers to finish */ 1222 wait_event(fs_info->transaction_wait, 1223 (atomic_read(&fs_info->defrag_running) == 0)); 1224 if (flags & SB_RDONLY) 1225 sync_filesystem(fs_info->sb); 1226 } 1227 } 1228 1229 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1230 unsigned long old_opts) 1231 { 1232 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1233 1234 /* 1235 * We need to cleanup all defragable inodes if the autodefragment is 1236 * close or the filesystem is read only. 1237 */ 1238 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1239 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1240 btrfs_cleanup_defrag_inodes(fs_info); 1241 } 1242 1243 /* If we toggled discard async */ 1244 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1245 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1246 btrfs_discard_resume(fs_info); 1247 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1248 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1249 btrfs_discard_cleanup(fs_info); 1250 1251 /* If we toggled space cache */ 1252 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1253 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1254 } 1255 1256 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1257 { 1258 int ret; 1259 1260 if (BTRFS_FS_ERROR(fs_info)) { 1261 btrfs_err(fs_info, 1262 "remounting read-write after error is not allowed"); 1263 return -EINVAL; 1264 } 1265 1266 if (fs_info->fs_devices->rw_devices == 0) 1267 return -EACCES; 1268 1269 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1270 btrfs_warn(fs_info, 1271 "too many missing devices, writable remount is not allowed"); 1272 return -EACCES; 1273 } 1274 1275 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1276 btrfs_warn(fs_info, 1277 "mount required to replay tree-log, cannot remount read-write"); 1278 return -EINVAL; 1279 } 1280 1281 /* 1282 * NOTE: when remounting with a change that does writes, don't put it 1283 * anywhere above this point, as we are not sure to be safe to write 1284 * until we pass the above checks. 1285 */ 1286 ret = btrfs_start_pre_rw_mount(fs_info); 1287 if (ret) 1288 return ret; 1289 1290 btrfs_clear_sb_rdonly(fs_info->sb); 1291 1292 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1293 1294 /* 1295 * If we've gone from readonly -> read-write, we need to get our 1296 * sync/async discard lists in the right state. 1297 */ 1298 btrfs_discard_resume(fs_info); 1299 1300 return 0; 1301 } 1302 1303 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1304 { 1305 /* 1306 * This also happens on 'umount -rf' or on shutdown, when the 1307 * filesystem is busy. 1308 */ 1309 cancel_work_sync(&fs_info->async_reclaim_work); 1310 cancel_work_sync(&fs_info->async_data_reclaim_work); 1311 1312 btrfs_discard_cleanup(fs_info); 1313 1314 /* Wait for the uuid_scan task to finish */ 1315 down(&fs_info->uuid_tree_rescan_sem); 1316 /* Avoid complains from lockdep et al. */ 1317 up(&fs_info->uuid_tree_rescan_sem); 1318 1319 btrfs_set_sb_rdonly(fs_info->sb); 1320 1321 /* 1322 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1323 * loop if it's already active. If it's already asleep, we'll leave 1324 * unused block groups on disk until we're mounted read-write again 1325 * unless we clean them up here. 1326 */ 1327 btrfs_delete_unused_bgs(fs_info); 1328 1329 /* 1330 * The cleaner task could be already running before we set the flag 1331 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1332 * sure that after we finish the remount, i.e. after we call 1333 * btrfs_commit_super(), the cleaner can no longer start a transaction 1334 * - either because it was dropping a dead root, running delayed iputs 1335 * or deleting an unused block group (the cleaner picked a block 1336 * group from the list of unused block groups before we were able to 1337 * in the previous call to btrfs_delete_unused_bgs()). 1338 */ 1339 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1340 1341 /* 1342 * We've set the superblock to RO mode, so we might have made the 1343 * cleaner task sleep without running all pending delayed iputs. Go 1344 * through all the delayed iputs here, so that if an unmount happens 1345 * without remounting RW we don't end up at finishing close_ctree() 1346 * with a non-empty list of delayed iputs. 1347 */ 1348 btrfs_run_delayed_iputs(fs_info); 1349 1350 btrfs_dev_replace_suspend_for_unmount(fs_info); 1351 btrfs_scrub_cancel(fs_info); 1352 btrfs_pause_balance(fs_info); 1353 1354 /* 1355 * Pause the qgroup rescan worker if it is running. We don't want it to 1356 * be still running after we are in RO mode, as after that, by the time 1357 * we unmount, it might have left a transaction open, so we would leak 1358 * the transaction and/or crash. 1359 */ 1360 btrfs_qgroup_wait_for_completion(fs_info, false); 1361 1362 return btrfs_commit_super(fs_info); 1363 } 1364 1365 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1366 { 1367 fs_info->max_inline = ctx->max_inline; 1368 fs_info->commit_interval = ctx->commit_interval; 1369 fs_info->metadata_ratio = ctx->metadata_ratio; 1370 fs_info->thread_pool_size = ctx->thread_pool_size; 1371 fs_info->mount_opt = ctx->mount_opt; 1372 fs_info->compress_type = ctx->compress_type; 1373 fs_info->compress_level = ctx->compress_level; 1374 } 1375 1376 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1377 { 1378 ctx->max_inline = fs_info->max_inline; 1379 ctx->commit_interval = fs_info->commit_interval; 1380 ctx->metadata_ratio = fs_info->metadata_ratio; 1381 ctx->thread_pool_size = fs_info->thread_pool_size; 1382 ctx->mount_opt = fs_info->mount_opt; 1383 ctx->compress_type = fs_info->compress_type; 1384 ctx->compress_level = fs_info->compress_level; 1385 } 1386 1387 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1388 do { \ 1389 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1390 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1391 btrfs_info(fs_info, fmt, ##args); \ 1392 } while (0) 1393 1394 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1395 do { \ 1396 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1397 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1398 btrfs_info(fs_info, fmt, ##args); \ 1399 } while (0) 1400 1401 static void btrfs_emit_options(struct btrfs_fs_info *info, 1402 struct btrfs_fs_context *old) 1403 { 1404 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1405 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1406 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1407 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1408 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1409 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1410 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1411 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1412 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1413 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1414 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1415 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1416 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1417 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1418 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1419 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1420 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1421 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1422 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1423 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1424 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1425 1426 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1427 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1428 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1429 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1430 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1431 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1432 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1433 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1434 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1435 1436 /* Did the compression settings change? */ 1437 if (btrfs_test_opt(info, COMPRESS) && 1438 (!old || 1439 old->compress_type != info->compress_type || 1440 old->compress_level != info->compress_level || 1441 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1442 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1443 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1444 1445 btrfs_info(info, "%s %s compression, level %d", 1446 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1447 compress_type, info->compress_level); 1448 } 1449 1450 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1451 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1452 } 1453 1454 static int btrfs_reconfigure(struct fs_context *fc) 1455 { 1456 struct super_block *sb = fc->root->d_sb; 1457 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1458 struct btrfs_fs_context *ctx = fc->fs_private; 1459 struct btrfs_fs_context old_ctx; 1460 int ret = 0; 1461 bool mount_reconfigure = (fc->s_fs_info != NULL); 1462 1463 btrfs_info_to_ctx(fs_info, &old_ctx); 1464 1465 /* 1466 * This is our "bind mount" trick, we don't want to allow the user to do 1467 * anything other than mount a different ro/rw and a different subvol, 1468 * all of the mount options should be maintained. 1469 */ 1470 if (mount_reconfigure) 1471 ctx->mount_opt = old_ctx.mount_opt; 1472 1473 sync_filesystem(sb); 1474 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1475 1476 if (!mount_reconfigure && 1477 !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1478 return -EINVAL; 1479 1480 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1481 if (ret < 0) 1482 return ret; 1483 1484 btrfs_ctx_to_info(fs_info, ctx); 1485 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1486 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1487 old_ctx.thread_pool_size); 1488 1489 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1490 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1491 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1492 btrfs_warn(fs_info, 1493 "remount supports changing free space tree only from RO to RW"); 1494 /* Make sure free space cache options match the state on disk. */ 1495 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1496 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1497 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1498 } 1499 if (btrfs_free_space_cache_v1_active(fs_info)) { 1500 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1501 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1502 } 1503 } 1504 1505 ret = 0; 1506 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1507 ret = btrfs_remount_ro(fs_info); 1508 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1509 ret = btrfs_remount_rw(fs_info); 1510 if (ret) 1511 goto restore; 1512 1513 /* 1514 * If we set the mask during the parameter parsing VFS would reject the 1515 * remount. Here we can set the mask and the value will be updated 1516 * appropriately. 1517 */ 1518 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1519 fc->sb_flags_mask |= SB_POSIXACL; 1520 1521 btrfs_emit_options(fs_info, &old_ctx); 1522 wake_up_process(fs_info->transaction_kthread); 1523 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1524 btrfs_clear_oneshot_options(fs_info); 1525 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1526 1527 return 0; 1528 restore: 1529 btrfs_ctx_to_info(fs_info, &old_ctx); 1530 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1531 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1532 return ret; 1533 } 1534 1535 /* Used to sort the devices by max_avail(descending sort) */ 1536 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1537 { 1538 const struct btrfs_device_info *dev_info1 = a; 1539 const struct btrfs_device_info *dev_info2 = b; 1540 1541 if (dev_info1->max_avail > dev_info2->max_avail) 1542 return -1; 1543 else if (dev_info1->max_avail < dev_info2->max_avail) 1544 return 1; 1545 return 0; 1546 } 1547 1548 /* 1549 * sort the devices by max_avail, in which max free extent size of each device 1550 * is stored.(Descending Sort) 1551 */ 1552 static inline void btrfs_descending_sort_devices( 1553 struct btrfs_device_info *devices, 1554 size_t nr_devices) 1555 { 1556 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1557 btrfs_cmp_device_free_bytes, NULL); 1558 } 1559 1560 /* 1561 * The helper to calc the free space on the devices that can be used to store 1562 * file data. 1563 */ 1564 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1565 u64 *free_bytes) 1566 { 1567 struct btrfs_device_info *devices_info; 1568 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1569 struct btrfs_device *device; 1570 u64 type; 1571 u64 avail_space; 1572 u64 min_stripe_size; 1573 int num_stripes = 1; 1574 int i = 0, nr_devices; 1575 const struct btrfs_raid_attr *rattr; 1576 1577 /* 1578 * We aren't under the device list lock, so this is racy-ish, but good 1579 * enough for our purposes. 1580 */ 1581 nr_devices = fs_info->fs_devices->open_devices; 1582 if (!nr_devices) { 1583 smp_mb(); 1584 nr_devices = fs_info->fs_devices->open_devices; 1585 ASSERT(nr_devices); 1586 if (!nr_devices) { 1587 *free_bytes = 0; 1588 return 0; 1589 } 1590 } 1591 1592 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1593 GFP_KERNEL); 1594 if (!devices_info) 1595 return -ENOMEM; 1596 1597 /* calc min stripe number for data space allocation */ 1598 type = btrfs_data_alloc_profile(fs_info); 1599 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1600 1601 if (type & BTRFS_BLOCK_GROUP_RAID0) 1602 num_stripes = nr_devices; 1603 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1604 num_stripes = rattr->ncopies; 1605 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1606 num_stripes = 4; 1607 1608 /* Adjust for more than 1 stripe per device */ 1609 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1610 1611 rcu_read_lock(); 1612 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1613 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1614 &device->dev_state) || 1615 !device->bdev || 1616 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1617 continue; 1618 1619 if (i >= nr_devices) 1620 break; 1621 1622 avail_space = device->total_bytes - device->bytes_used; 1623 1624 /* align with stripe_len */ 1625 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1626 1627 /* 1628 * Ensure we have at least min_stripe_size on top of the 1629 * reserved space on the device. 1630 */ 1631 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1632 continue; 1633 1634 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1635 1636 devices_info[i].dev = device; 1637 devices_info[i].max_avail = avail_space; 1638 1639 i++; 1640 } 1641 rcu_read_unlock(); 1642 1643 nr_devices = i; 1644 1645 btrfs_descending_sort_devices(devices_info, nr_devices); 1646 1647 i = nr_devices - 1; 1648 avail_space = 0; 1649 while (nr_devices >= rattr->devs_min) { 1650 num_stripes = min(num_stripes, nr_devices); 1651 1652 if (devices_info[i].max_avail >= min_stripe_size) { 1653 int j; 1654 u64 alloc_size; 1655 1656 avail_space += devices_info[i].max_avail * num_stripes; 1657 alloc_size = devices_info[i].max_avail; 1658 for (j = i + 1 - num_stripes; j <= i; j++) 1659 devices_info[j].max_avail -= alloc_size; 1660 } 1661 i--; 1662 nr_devices--; 1663 } 1664 1665 kfree(devices_info); 1666 *free_bytes = avail_space; 1667 return 0; 1668 } 1669 1670 /* 1671 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1672 * 1673 * If there's a redundant raid level at DATA block groups, use the respective 1674 * multiplier to scale the sizes. 1675 * 1676 * Unused device space usage is based on simulating the chunk allocator 1677 * algorithm that respects the device sizes and order of allocations. This is 1678 * a close approximation of the actual use but there are other factors that may 1679 * change the result (like a new metadata chunk). 1680 * 1681 * If metadata is exhausted, f_bavail will be 0. 1682 */ 1683 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1684 { 1685 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1686 struct btrfs_super_block *disk_super = fs_info->super_copy; 1687 struct btrfs_space_info *found; 1688 u64 total_used = 0; 1689 u64 total_free_data = 0; 1690 u64 total_free_meta = 0; 1691 u32 bits = fs_info->sectorsize_bits; 1692 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1693 unsigned factor = 1; 1694 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1695 int ret; 1696 u64 thresh = 0; 1697 int mixed = 0; 1698 1699 list_for_each_entry(found, &fs_info->space_info, list) { 1700 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1701 int i; 1702 1703 total_free_data += found->disk_total - found->disk_used; 1704 total_free_data -= 1705 btrfs_account_ro_block_groups_free_space(found); 1706 1707 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1708 if (!list_empty(&found->block_groups[i])) 1709 factor = btrfs_bg_type_to_factor( 1710 btrfs_raid_array[i].bg_flag); 1711 } 1712 } 1713 1714 /* 1715 * Metadata in mixed block group profiles are accounted in data 1716 */ 1717 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1718 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1719 mixed = 1; 1720 else 1721 total_free_meta += found->disk_total - 1722 found->disk_used; 1723 } 1724 1725 total_used += found->disk_used; 1726 } 1727 1728 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1729 buf->f_blocks >>= bits; 1730 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1731 1732 /* Account global block reserve as used, it's in logical size already */ 1733 spin_lock(&block_rsv->lock); 1734 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1735 if (buf->f_bfree >= block_rsv->size >> bits) 1736 buf->f_bfree -= block_rsv->size >> bits; 1737 else 1738 buf->f_bfree = 0; 1739 spin_unlock(&block_rsv->lock); 1740 1741 buf->f_bavail = div_u64(total_free_data, factor); 1742 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1743 if (ret) 1744 return ret; 1745 buf->f_bavail += div_u64(total_free_data, factor); 1746 buf->f_bavail = buf->f_bavail >> bits; 1747 1748 /* 1749 * We calculate the remaining metadata space minus global reserve. If 1750 * this is (supposedly) smaller than zero, there's no space. But this 1751 * does not hold in practice, the exhausted state happens where's still 1752 * some positive delta. So we apply some guesswork and compare the 1753 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1754 * 1755 * We probably cannot calculate the exact threshold value because this 1756 * depends on the internal reservations requested by various 1757 * operations, so some operations that consume a few metadata will 1758 * succeed even if the Avail is zero. But this is better than the other 1759 * way around. 1760 */ 1761 thresh = SZ_4M; 1762 1763 /* 1764 * We only want to claim there's no available space if we can no longer 1765 * allocate chunks for our metadata profile and our global reserve will 1766 * not fit in the free metadata space. If we aren't ->full then we 1767 * still can allocate chunks and thus are fine using the currently 1768 * calculated f_bavail. 1769 */ 1770 if (!mixed && block_rsv->space_info->full && 1771 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1772 buf->f_bavail = 0; 1773 1774 buf->f_type = BTRFS_SUPER_MAGIC; 1775 buf->f_bsize = fs_info->sectorsize; 1776 buf->f_namelen = BTRFS_NAME_LEN; 1777 1778 /* We treat it as constant endianness (it doesn't matter _which_) 1779 because we want the fsid to come out the same whether mounted 1780 on a big-endian or little-endian host */ 1781 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1782 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1783 /* Mask in the root object ID too, to disambiguate subvols */ 1784 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1785 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1786 1787 return 0; 1788 } 1789 1790 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1791 { 1792 struct btrfs_fs_info *p = fc->s_fs_info; 1793 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1794 1795 return fs_info->fs_devices == p->fs_devices; 1796 } 1797 1798 static int btrfs_get_tree_super(struct fs_context *fc) 1799 { 1800 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1801 struct btrfs_fs_context *ctx = fc->fs_private; 1802 struct btrfs_fs_devices *fs_devices = NULL; 1803 struct block_device *bdev; 1804 struct btrfs_device *device; 1805 struct super_block *sb; 1806 blk_mode_t mode = btrfs_open_mode(fc); 1807 int ret; 1808 1809 btrfs_ctx_to_info(fs_info, ctx); 1810 mutex_lock(&uuid_mutex); 1811 1812 /* 1813 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1814 * either a valid device or an error. 1815 */ 1816 device = btrfs_scan_one_device(fc->source, mode, true); 1817 ASSERT(device != NULL); 1818 if (IS_ERR(device)) { 1819 mutex_unlock(&uuid_mutex); 1820 return PTR_ERR(device); 1821 } 1822 1823 fs_devices = device->fs_devices; 1824 fs_info->fs_devices = fs_devices; 1825 1826 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1827 mutex_unlock(&uuid_mutex); 1828 if (ret) 1829 return ret; 1830 1831 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1832 ret = -EACCES; 1833 goto error; 1834 } 1835 1836 bdev = fs_devices->latest_dev->bdev; 1837 1838 /* 1839 * From now on the error handling is not straightforward. 1840 * 1841 * If successful, this will transfer the fs_info into the super block, 1842 * and fc->s_fs_info will be NULL. However if there's an existing 1843 * super, we'll still have fc->s_fs_info populated. If we error 1844 * completely out it'll be cleaned up when we drop the fs_context, 1845 * otherwise it's tied to the lifetime of the super_block. 1846 */ 1847 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1848 if (IS_ERR(sb)) { 1849 ret = PTR_ERR(sb); 1850 goto error; 1851 } 1852 1853 set_device_specific_options(fs_info); 1854 1855 if (sb->s_root) { 1856 btrfs_close_devices(fs_devices); 1857 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY) 1858 ret = -EBUSY; 1859 } else { 1860 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1861 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1862 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1863 ret = btrfs_fill_super(sb, fs_devices, NULL); 1864 } 1865 1866 if (ret) { 1867 deactivate_locked_super(sb); 1868 return ret; 1869 } 1870 1871 btrfs_clear_oneshot_options(fs_info); 1872 1873 fc->root = dget(sb->s_root); 1874 return 0; 1875 1876 error: 1877 btrfs_close_devices(fs_devices); 1878 return ret; 1879 } 1880 1881 /* 1882 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1883 * with different ro/rw options") the following works: 1884 * 1885 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1886 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1887 * 1888 * which looks nice and innocent but is actually pretty intricate and deserves 1889 * a long comment. 1890 * 1891 * On another filesystem a subvolume mount is close to something like: 1892 * 1893 * (iii) # create rw superblock + initial mount 1894 * mount -t xfs /dev/sdb /opt/ 1895 * 1896 * # create ro bind mount 1897 * mount --bind -o ro /opt/foo /mnt/foo 1898 * 1899 * # unmount initial mount 1900 * umount /opt 1901 * 1902 * Of course, there's some special subvolume sauce and there's the fact that the 1903 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1904 * it's very close and will help us understand the issue. 1905 * 1906 * The old mount API didn't cleanly distinguish between a mount being made ro 1907 * and a superblock being made ro. The only way to change the ro state of 1908 * either object was by passing ms_rdonly. If a new mount was created via 1909 * mount(2) such as: 1910 * 1911 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1912 * 1913 * the MS_RDONLY flag being specified had two effects: 1914 * 1915 * (1) MNT_READONLY was raised -> the resulting mount got 1916 * @mnt->mnt_flags |= MNT_READONLY raised. 1917 * 1918 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1919 * made the superblock ro. Note, how SB_RDONLY has the same value as 1920 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1921 * 1922 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1923 * subtree mounted ro. 1924 * 1925 * But consider the effect on the old mount API on btrfs subvolume mounting 1926 * which combines the distinct step in (iii) into a single step. 1927 * 1928 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1929 * is issued the superblock is ro and thus even if the mount created for (ii) is 1930 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1931 * to rw for (ii) which it did using an internal remount call. 1932 * 1933 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1934 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1935 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1936 * passed by mount(8) to mount(2). 1937 * 1938 * Enter the new mount API. The new mount API disambiguates making a mount ro 1939 * and making a superblock ro. 1940 * 1941 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1942 * fsmount() or mount_setattr() this is a pure VFS level change for a 1943 * specific mount or mount tree that is never seen by the filesystem itself. 1944 * 1945 * (4) To turn a superblock ro the "ro" flag must be used with 1946 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1947 * in fc->sb_flags. 1948 * 1949 * This disambiguation has rather positive consequences. Mounting a subvolume 1950 * ro will not also turn the superblock ro. Only the mount for the subvolume 1951 * will become ro. 1952 * 1953 * So, if the superblock creation request comes from the new mount API the 1954 * caller must have explicitly done: 1955 * 1956 * fsconfig(FSCONFIG_SET_FLAG, "ro") 1957 * fsmount/mount_setattr(MOUNT_ATTR_RDONLY) 1958 * 1959 * IOW, at some point the caller must have explicitly turned the whole 1960 * superblock ro and we shouldn't just undo it like we did for the old mount 1961 * API. In any case, it lets us avoid the hack in the new mount API. 1962 * 1963 * Consequently, the remounting hack must only be used for requests originating 1964 * from the old mount API and should be marked for full deprecation so it can be 1965 * turned off in a couple of years. 1966 * 1967 * The new mount API has no reason to support this hack. 1968 */ 1969 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc) 1970 { 1971 struct vfsmount *mnt; 1972 int ret; 1973 const bool ro2rw = !(fc->sb_flags & SB_RDONLY); 1974 1975 /* 1976 * We got an EBUSY because our SB_RDONLY flag didn't match the existing 1977 * super block, so invert our setting here and retry the mount so we 1978 * can get our vfsmount. 1979 */ 1980 if (ro2rw) 1981 fc->sb_flags |= SB_RDONLY; 1982 else 1983 fc->sb_flags &= ~SB_RDONLY; 1984 1985 mnt = fc_mount(fc); 1986 if (IS_ERR(mnt)) 1987 return mnt; 1988 1989 if (!fc->oldapi || !ro2rw) 1990 return mnt; 1991 1992 /* We need to convert to rw, call reconfigure. */ 1993 fc->sb_flags &= ~SB_RDONLY; 1994 down_write(&mnt->mnt_sb->s_umount); 1995 ret = btrfs_reconfigure(fc); 1996 up_write(&mnt->mnt_sb->s_umount); 1997 if (ret) { 1998 mntput(mnt); 1999 return ERR_PTR(ret); 2000 } 2001 return mnt; 2002 } 2003 2004 static int btrfs_get_tree_subvol(struct fs_context *fc) 2005 { 2006 struct btrfs_fs_info *fs_info = NULL; 2007 struct btrfs_fs_context *ctx = fc->fs_private; 2008 struct fs_context *dup_fc; 2009 struct dentry *dentry; 2010 struct vfsmount *mnt; 2011 2012 /* 2013 * Setup a dummy root and fs_info for test/set super. This is because 2014 * we don't actually fill this stuff out until open_ctree, but we need 2015 * then open_ctree will properly initialize the file system specific 2016 * settings later. btrfs_init_fs_info initializes the static elements 2017 * of the fs_info (locks and such) to make cleanup easier if we find a 2018 * superblock with our given fs_devices later on at sget() time. 2019 */ 2020 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2021 if (!fs_info) 2022 return -ENOMEM; 2023 2024 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2025 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2026 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2027 btrfs_free_fs_info(fs_info); 2028 return -ENOMEM; 2029 } 2030 btrfs_init_fs_info(fs_info); 2031 2032 dup_fc = vfs_dup_fs_context(fc); 2033 if (IS_ERR(dup_fc)) { 2034 btrfs_free_fs_info(fs_info); 2035 return PTR_ERR(dup_fc); 2036 } 2037 2038 /* 2039 * When we do the sget_fc this gets transferred to the sb, so we only 2040 * need to set it on the dup_fc as this is what creates the super block. 2041 */ 2042 dup_fc->s_fs_info = fs_info; 2043 2044 /* 2045 * We'll do the security settings in our btrfs_get_tree_super() mount 2046 * loop, they were duplicated into dup_fc, we can drop the originals 2047 * here. 2048 */ 2049 security_free_mnt_opts(&fc->security); 2050 fc->security = NULL; 2051 2052 mnt = fc_mount(dup_fc); 2053 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) 2054 mnt = btrfs_reconfigure_for_mount(dup_fc); 2055 put_fs_context(dup_fc); 2056 if (IS_ERR(mnt)) 2057 return PTR_ERR(mnt); 2058 2059 /* 2060 * This free's ->subvol_name, because if it isn't set we have to 2061 * allocate a buffer to hold the subvol_name, so we just drop our 2062 * reference to it here. 2063 */ 2064 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2065 ctx->subvol_name = NULL; 2066 if (IS_ERR(dentry)) 2067 return PTR_ERR(dentry); 2068 2069 fc->root = dentry; 2070 return 0; 2071 } 2072 2073 static int btrfs_get_tree(struct fs_context *fc) 2074 { 2075 /* 2076 * Since we use mount_subtree to mount the default/specified subvol, we 2077 * have to do mounts in two steps. 2078 * 2079 * First pass through we call btrfs_get_tree_subvol(), this is just a 2080 * wrapper around fc_mount() to call back into here again, and this time 2081 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2082 * everything to open the devices and file system. Then we return back 2083 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2084 * from there we can do our mount_subvol() call, which will lookup 2085 * whichever subvol we're mounting and setup this fc with the 2086 * appropriate dentry for the subvol. 2087 */ 2088 if (fc->s_fs_info) 2089 return btrfs_get_tree_super(fc); 2090 return btrfs_get_tree_subvol(fc); 2091 } 2092 2093 static void btrfs_kill_super(struct super_block *sb) 2094 { 2095 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2096 kill_anon_super(sb); 2097 btrfs_free_fs_info(fs_info); 2098 } 2099 2100 static void btrfs_free_fs_context(struct fs_context *fc) 2101 { 2102 struct btrfs_fs_context *ctx = fc->fs_private; 2103 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2104 2105 if (fs_info) 2106 btrfs_free_fs_info(fs_info); 2107 2108 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2109 kfree(ctx->subvol_name); 2110 kfree(ctx); 2111 } 2112 } 2113 2114 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2115 { 2116 struct btrfs_fs_context *ctx = src_fc->fs_private; 2117 2118 /* 2119 * Give a ref to our ctx to this dup, as we want to keep it around for 2120 * our original fc so we can have the subvolume name or objectid. 2121 * 2122 * We unset ->source in the original fc because the dup needs it for 2123 * mounting, and then once we free the dup it'll free ->source, so we 2124 * need to make sure we're only pointing to it in one fc. 2125 */ 2126 refcount_inc(&ctx->refs); 2127 fc->fs_private = ctx; 2128 fc->source = src_fc->source; 2129 src_fc->source = NULL; 2130 return 0; 2131 } 2132 2133 static const struct fs_context_operations btrfs_fs_context_ops = { 2134 .parse_param = btrfs_parse_param, 2135 .reconfigure = btrfs_reconfigure, 2136 .get_tree = btrfs_get_tree, 2137 .dup = btrfs_dup_fs_context, 2138 .free = btrfs_free_fs_context, 2139 }; 2140 2141 static int btrfs_init_fs_context(struct fs_context *fc) 2142 { 2143 struct btrfs_fs_context *ctx; 2144 2145 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2146 if (!ctx) 2147 return -ENOMEM; 2148 2149 refcount_set(&ctx->refs, 1); 2150 fc->fs_private = ctx; 2151 fc->ops = &btrfs_fs_context_ops; 2152 2153 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2154 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2155 } else { 2156 ctx->thread_pool_size = 2157 min_t(unsigned long, num_online_cpus() + 2, 8); 2158 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2159 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2160 } 2161 2162 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2163 fc->sb_flags |= SB_POSIXACL; 2164 #endif 2165 fc->sb_flags |= SB_I_VERSION; 2166 2167 return 0; 2168 } 2169 2170 static struct file_system_type btrfs_fs_type = { 2171 .owner = THIS_MODULE, 2172 .name = "btrfs", 2173 .init_fs_context = btrfs_init_fs_context, 2174 .parameters = btrfs_fs_parameters, 2175 .kill_sb = btrfs_kill_super, 2176 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2177 }; 2178 2179 MODULE_ALIAS_FS("btrfs"); 2180 2181 static int btrfs_control_open(struct inode *inode, struct file *file) 2182 { 2183 /* 2184 * The control file's private_data is used to hold the 2185 * transaction when it is started and is used to keep 2186 * track of whether a transaction is already in progress. 2187 */ 2188 file->private_data = NULL; 2189 return 0; 2190 } 2191 2192 /* 2193 * Used by /dev/btrfs-control for devices ioctls. 2194 */ 2195 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2196 unsigned long arg) 2197 { 2198 struct btrfs_ioctl_vol_args *vol; 2199 struct btrfs_device *device = NULL; 2200 dev_t devt = 0; 2201 int ret = -ENOTTY; 2202 2203 if (!capable(CAP_SYS_ADMIN)) 2204 return -EPERM; 2205 2206 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2207 if (IS_ERR(vol)) 2208 return PTR_ERR(vol); 2209 ret = btrfs_check_ioctl_vol_args_path(vol); 2210 if (ret < 0) 2211 goto out; 2212 2213 switch (cmd) { 2214 case BTRFS_IOC_SCAN_DEV: 2215 mutex_lock(&uuid_mutex); 2216 /* 2217 * Scanning outside of mount can return NULL which would turn 2218 * into 0 error code. 2219 */ 2220 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2221 ret = PTR_ERR_OR_ZERO(device); 2222 mutex_unlock(&uuid_mutex); 2223 break; 2224 case BTRFS_IOC_FORGET_DEV: 2225 if (vol->name[0] != 0) { 2226 ret = lookup_bdev(vol->name, &devt); 2227 if (ret) 2228 break; 2229 } 2230 ret = btrfs_forget_devices(devt); 2231 break; 2232 case BTRFS_IOC_DEVICES_READY: 2233 mutex_lock(&uuid_mutex); 2234 /* 2235 * Scanning outside of mount can return NULL which would turn 2236 * into 0 error code. 2237 */ 2238 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2239 if (IS_ERR_OR_NULL(device)) { 2240 mutex_unlock(&uuid_mutex); 2241 ret = PTR_ERR(device); 2242 break; 2243 } 2244 ret = !(device->fs_devices->num_devices == 2245 device->fs_devices->total_devices); 2246 mutex_unlock(&uuid_mutex); 2247 break; 2248 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2249 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2250 break; 2251 } 2252 2253 out: 2254 kfree(vol); 2255 return ret; 2256 } 2257 2258 static int btrfs_freeze(struct super_block *sb) 2259 { 2260 struct btrfs_trans_handle *trans; 2261 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2262 struct btrfs_root *root = fs_info->tree_root; 2263 2264 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2265 /* 2266 * We don't need a barrier here, we'll wait for any transaction that 2267 * could be in progress on other threads (and do delayed iputs that 2268 * we want to avoid on a frozen filesystem), or do the commit 2269 * ourselves. 2270 */ 2271 trans = btrfs_attach_transaction_barrier(root); 2272 if (IS_ERR(trans)) { 2273 /* no transaction, don't bother */ 2274 if (PTR_ERR(trans) == -ENOENT) 2275 return 0; 2276 return PTR_ERR(trans); 2277 } 2278 return btrfs_commit_transaction(trans); 2279 } 2280 2281 static int check_dev_super(struct btrfs_device *dev) 2282 { 2283 struct btrfs_fs_info *fs_info = dev->fs_info; 2284 struct btrfs_super_block *sb; 2285 u64 last_trans; 2286 u16 csum_type; 2287 int ret = 0; 2288 2289 /* This should be called with fs still frozen. */ 2290 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2291 2292 /* Missing dev, no need to check. */ 2293 if (!dev->bdev) 2294 return 0; 2295 2296 /* Only need to check the primary super block. */ 2297 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2298 if (IS_ERR(sb)) 2299 return PTR_ERR(sb); 2300 2301 /* Verify the checksum. */ 2302 csum_type = btrfs_super_csum_type(sb); 2303 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2304 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2305 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2306 ret = -EUCLEAN; 2307 goto out; 2308 } 2309 2310 if (btrfs_check_super_csum(fs_info, sb)) { 2311 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2312 ret = -EUCLEAN; 2313 goto out; 2314 } 2315 2316 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2317 ret = btrfs_validate_super(fs_info, sb, 0); 2318 if (ret < 0) 2319 goto out; 2320 2321 last_trans = btrfs_get_last_trans_committed(fs_info); 2322 if (btrfs_super_generation(sb) != last_trans) { 2323 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2324 btrfs_super_generation(sb), last_trans); 2325 ret = -EUCLEAN; 2326 goto out; 2327 } 2328 out: 2329 btrfs_release_disk_super(sb); 2330 return ret; 2331 } 2332 2333 static int btrfs_unfreeze(struct super_block *sb) 2334 { 2335 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2336 struct btrfs_device *device; 2337 int ret = 0; 2338 2339 /* 2340 * Make sure the fs is not changed by accident (like hibernation then 2341 * modified by other OS). 2342 * If we found anything wrong, we mark the fs error immediately. 2343 * 2344 * And since the fs is frozen, no one can modify the fs yet, thus 2345 * we don't need to hold device_list_mutex. 2346 */ 2347 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2348 ret = check_dev_super(device); 2349 if (ret < 0) { 2350 btrfs_handle_fs_error(fs_info, ret, 2351 "super block on devid %llu got modified unexpectedly", 2352 device->devid); 2353 break; 2354 } 2355 } 2356 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2357 2358 /* 2359 * We still return 0, to allow VFS layer to unfreeze the fs even the 2360 * above checks failed. Since the fs is either fine or read-only, we're 2361 * safe to continue, without causing further damage. 2362 */ 2363 return 0; 2364 } 2365 2366 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2367 { 2368 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2369 2370 /* 2371 * There should be always a valid pointer in latest_dev, it may be stale 2372 * for a short moment in case it's being deleted but still valid until 2373 * the end of RCU grace period. 2374 */ 2375 rcu_read_lock(); 2376 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2377 rcu_read_unlock(); 2378 2379 return 0; 2380 } 2381 2382 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2383 { 2384 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2385 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2386 2387 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2388 2389 return nr; 2390 } 2391 2392 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2393 { 2394 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2395 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2396 2397 return btrfs_free_extent_maps(fs_info, nr_to_scan); 2398 } 2399 2400 static const struct super_operations btrfs_super_ops = { 2401 .drop_inode = btrfs_drop_inode, 2402 .evict_inode = btrfs_evict_inode, 2403 .put_super = btrfs_put_super, 2404 .sync_fs = btrfs_sync_fs, 2405 .show_options = btrfs_show_options, 2406 .show_devname = btrfs_show_devname, 2407 .alloc_inode = btrfs_alloc_inode, 2408 .destroy_inode = btrfs_destroy_inode, 2409 .free_inode = btrfs_free_inode, 2410 .statfs = btrfs_statfs, 2411 .freeze_fs = btrfs_freeze, 2412 .unfreeze_fs = btrfs_unfreeze, 2413 .nr_cached_objects = btrfs_nr_cached_objects, 2414 .free_cached_objects = btrfs_free_cached_objects, 2415 }; 2416 2417 static const struct file_operations btrfs_ctl_fops = { 2418 .open = btrfs_control_open, 2419 .unlocked_ioctl = btrfs_control_ioctl, 2420 .compat_ioctl = compat_ptr_ioctl, 2421 .owner = THIS_MODULE, 2422 .llseek = noop_llseek, 2423 }; 2424 2425 static struct miscdevice btrfs_misc = { 2426 .minor = BTRFS_MINOR, 2427 .name = "btrfs-control", 2428 .fops = &btrfs_ctl_fops 2429 }; 2430 2431 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2432 MODULE_ALIAS("devname:btrfs-control"); 2433 2434 static int __init btrfs_interface_init(void) 2435 { 2436 return misc_register(&btrfs_misc); 2437 } 2438 2439 static __cold void btrfs_interface_exit(void) 2440 { 2441 misc_deregister(&btrfs_misc); 2442 } 2443 2444 static int __init btrfs_print_mod_info(void) 2445 { 2446 static const char options[] = "" 2447 #ifdef CONFIG_BTRFS_DEBUG 2448 ", debug=on" 2449 #endif 2450 #ifdef CONFIG_BTRFS_ASSERT 2451 ", assert=on" 2452 #endif 2453 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2454 ", ref-verify=on" 2455 #endif 2456 #ifdef CONFIG_BLK_DEV_ZONED 2457 ", zoned=yes" 2458 #else 2459 ", zoned=no" 2460 #endif 2461 #ifdef CONFIG_FS_VERITY 2462 ", fsverity=yes" 2463 #else 2464 ", fsverity=no" 2465 #endif 2466 ; 2467 pr_info("Btrfs loaded%s\n", options); 2468 return 0; 2469 } 2470 2471 static int register_btrfs(void) 2472 { 2473 return register_filesystem(&btrfs_fs_type); 2474 } 2475 2476 static void unregister_btrfs(void) 2477 { 2478 unregister_filesystem(&btrfs_fs_type); 2479 } 2480 2481 /* Helper structure for long init/exit functions. */ 2482 struct init_sequence { 2483 int (*init_func)(void); 2484 /* Can be NULL if the init_func doesn't need cleanup. */ 2485 void (*exit_func)(void); 2486 }; 2487 2488 static const struct init_sequence mod_init_seq[] = { 2489 { 2490 .init_func = btrfs_props_init, 2491 .exit_func = NULL, 2492 }, { 2493 .init_func = btrfs_init_sysfs, 2494 .exit_func = btrfs_exit_sysfs, 2495 }, { 2496 .init_func = btrfs_init_compress, 2497 .exit_func = btrfs_exit_compress, 2498 }, { 2499 .init_func = btrfs_init_cachep, 2500 .exit_func = btrfs_destroy_cachep, 2501 }, { 2502 .init_func = btrfs_transaction_init, 2503 .exit_func = btrfs_transaction_exit, 2504 }, { 2505 .init_func = btrfs_ctree_init, 2506 .exit_func = btrfs_ctree_exit, 2507 }, { 2508 .init_func = btrfs_free_space_init, 2509 .exit_func = btrfs_free_space_exit, 2510 }, { 2511 .init_func = extent_state_init_cachep, 2512 .exit_func = extent_state_free_cachep, 2513 }, { 2514 .init_func = extent_buffer_init_cachep, 2515 .exit_func = extent_buffer_free_cachep, 2516 }, { 2517 .init_func = btrfs_bioset_init, 2518 .exit_func = btrfs_bioset_exit, 2519 }, { 2520 .init_func = extent_map_init, 2521 .exit_func = extent_map_exit, 2522 }, { 2523 .init_func = ordered_data_init, 2524 .exit_func = ordered_data_exit, 2525 }, { 2526 .init_func = btrfs_delayed_inode_init, 2527 .exit_func = btrfs_delayed_inode_exit, 2528 }, { 2529 .init_func = btrfs_auto_defrag_init, 2530 .exit_func = btrfs_auto_defrag_exit, 2531 }, { 2532 .init_func = btrfs_delayed_ref_init, 2533 .exit_func = btrfs_delayed_ref_exit, 2534 }, { 2535 .init_func = btrfs_prelim_ref_init, 2536 .exit_func = btrfs_prelim_ref_exit, 2537 }, { 2538 .init_func = btrfs_interface_init, 2539 .exit_func = btrfs_interface_exit, 2540 }, { 2541 .init_func = btrfs_print_mod_info, 2542 .exit_func = NULL, 2543 }, { 2544 .init_func = btrfs_run_sanity_tests, 2545 .exit_func = NULL, 2546 }, { 2547 .init_func = register_btrfs, 2548 .exit_func = unregister_btrfs, 2549 } 2550 }; 2551 2552 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2553 2554 static __always_inline void btrfs_exit_btrfs_fs(void) 2555 { 2556 int i; 2557 2558 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2559 if (!mod_init_result[i]) 2560 continue; 2561 if (mod_init_seq[i].exit_func) 2562 mod_init_seq[i].exit_func(); 2563 mod_init_result[i] = false; 2564 } 2565 } 2566 2567 static void __exit exit_btrfs_fs(void) 2568 { 2569 btrfs_exit_btrfs_fs(); 2570 btrfs_cleanup_fs_uuids(); 2571 } 2572 2573 static int __init init_btrfs_fs(void) 2574 { 2575 int ret; 2576 int i; 2577 2578 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2579 ASSERT(!mod_init_result[i]); 2580 ret = mod_init_seq[i].init_func(); 2581 if (ret < 0) { 2582 btrfs_exit_btrfs_fs(); 2583 return ret; 2584 } 2585 mod_init_result[i] = true; 2586 } 2587 return 0; 2588 } 2589 2590 late_initcall(init_btrfs_fs); 2591 module_exit(exit_btrfs_fs) 2592 2593 MODULE_LICENSE("GPL"); 2594 MODULE_SOFTDEP("pre: crc32c"); 2595 MODULE_SOFTDEP("pre: xxhash64"); 2596 MODULE_SOFTDEP("pre: sha256"); 2597 MODULE_SOFTDEP("pre: blake2b-256"); 2598