xref: /linux/fs/btrfs/super.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60 
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63 
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 				      char nbuf[16])
66 {
67 	char *errstr = NULL;
68 
69 	switch (errno) {
70 	case -EIO:
71 		errstr = "IO failure";
72 		break;
73 	case -ENOMEM:
74 		errstr = "Out of memory";
75 		break;
76 	case -EROFS:
77 		errstr = "Readonly filesystem";
78 		break;
79 	default:
80 		if (nbuf) {
81 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82 				errstr = nbuf;
83 		}
84 		break;
85 	}
86 
87 	return errstr;
88 }
89 
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92 	/*
93 	 * today we only save the error info into ram.  Long term we'll
94 	 * also send it down to the disk
95 	 */
96 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98 
99 /* NOTE:
100  *	We move write_super stuff at umount in order to avoid deadlock
101  *	for umount hold all lock.
102  */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 	__save_error_info(fs_info);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 		sb->s_flags |= MS_RDONLY;
118 		printk(KERN_INFO "btrfs is forced readonly\n");
119 	}
120 }
121 
122 /*
123  * __btrfs_std_error decodes expected errors from the caller and
124  * invokes the approciate error response.
125  */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127 		     unsigned int line, int errno)
128 {
129 	struct super_block *sb = fs_info->sb;
130 	char nbuf[16];
131 	const char *errstr;
132 
133 	/*
134 	 * Special case: if the error is EROFS, and we're already
135 	 * under MS_RDONLY, then it is safe here.
136 	 */
137 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 		return;
139 
140 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
141 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142 		sb->s_id, function, line, errstr);
143 	save_error_info(fs_info);
144 
145 	btrfs_handle_error(fs_info);
146 }
147 
148 static void btrfs_put_super(struct super_block *sb)
149 {
150 	struct btrfs_root *root = btrfs_sb(sb);
151 	int ret;
152 
153 	ret = close_ctree(root);
154 	sb->s_fs_info = NULL;
155 
156 	(void)ret; /* FIXME: need to fix VFS to return error? */
157 }
158 
159 enum {
160 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167 	Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err,
168 };
169 
170 static match_table_t tokens = {
171 	{Opt_degraded, "degraded"},
172 	{Opt_subvol, "subvol=%s"},
173 	{Opt_subvolid, "subvolid=%d"},
174 	{Opt_device, "device=%s"},
175 	{Opt_nodatasum, "nodatasum"},
176 	{Opt_nodatacow, "nodatacow"},
177 	{Opt_nobarrier, "nobarrier"},
178 	{Opt_max_inline, "max_inline=%s"},
179 	{Opt_alloc_start, "alloc_start=%s"},
180 	{Opt_thread_pool, "thread_pool=%d"},
181 	{Opt_compress, "compress"},
182 	{Opt_compress_type, "compress=%s"},
183 	{Opt_compress_force, "compress-force"},
184 	{Opt_compress_force_type, "compress-force=%s"},
185 	{Opt_ssd, "ssd"},
186 	{Opt_ssd_spread, "ssd_spread"},
187 	{Opt_nossd, "nossd"},
188 	{Opt_noacl, "noacl"},
189 	{Opt_notreelog, "notreelog"},
190 	{Opt_flushoncommit, "flushoncommit"},
191 	{Opt_ratio, "metadata_ratio=%d"},
192 	{Opt_discard, "discard"},
193 	{Opt_space_cache, "space_cache"},
194 	{Opt_clear_cache, "clear_cache"},
195 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196 	{Opt_enospc_debug, "enospc_debug"},
197 	{Opt_subvolrootid, "subvolrootid=%d"},
198 	{Opt_defrag, "autodefrag"},
199 	{Opt_inode_cache, "inode_cache"},
200 	{Opt_no_space_cache, "nospace_cache"},
201 	{Opt_recovery, "recovery"},
202 	{Opt_err, NULL},
203 };
204 
205 /*
206  * Regular mount options parser.  Everything that is needed only when
207  * reading in a new superblock is parsed here.
208  */
209 int btrfs_parse_options(struct btrfs_root *root, char *options)
210 {
211 	struct btrfs_fs_info *info = root->fs_info;
212 	substring_t args[MAX_OPT_ARGS];
213 	char *p, *num, *orig = NULL;
214 	u64 cache_gen;
215 	int intarg;
216 	int ret = 0;
217 	char *compress_type;
218 	bool compress_force = false;
219 
220 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
221 	if (cache_gen)
222 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
223 
224 	if (!options)
225 		goto out;
226 
227 	/*
228 	 * strsep changes the string, duplicate it because parse_options
229 	 * gets called twice
230 	 */
231 	options = kstrdup(options, GFP_NOFS);
232 	if (!options)
233 		return -ENOMEM;
234 
235 	orig = options;
236 
237 	while ((p = strsep(&options, ",")) != NULL) {
238 		int token;
239 		if (!*p)
240 			continue;
241 
242 		token = match_token(p, tokens, args);
243 		switch (token) {
244 		case Opt_degraded:
245 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
246 			btrfs_set_opt(info->mount_opt, DEGRADED);
247 			break;
248 		case Opt_subvol:
249 		case Opt_subvolid:
250 		case Opt_subvolrootid:
251 		case Opt_device:
252 			/*
253 			 * These are parsed by btrfs_parse_early_options
254 			 * and can be happily ignored here.
255 			 */
256 			break;
257 		case Opt_nodatasum:
258 			printk(KERN_INFO "btrfs: setting nodatasum\n");
259 			btrfs_set_opt(info->mount_opt, NODATASUM);
260 			break;
261 		case Opt_nodatacow:
262 			printk(KERN_INFO "btrfs: setting nodatacow\n");
263 			btrfs_set_opt(info->mount_opt, NODATACOW);
264 			btrfs_set_opt(info->mount_opt, NODATASUM);
265 			break;
266 		case Opt_compress_force:
267 		case Opt_compress_force_type:
268 			compress_force = true;
269 		case Opt_compress:
270 		case Opt_compress_type:
271 			if (token == Opt_compress ||
272 			    token == Opt_compress_force ||
273 			    strcmp(args[0].from, "zlib") == 0) {
274 				compress_type = "zlib";
275 				info->compress_type = BTRFS_COMPRESS_ZLIB;
276 			} else if (strcmp(args[0].from, "lzo") == 0) {
277 				compress_type = "lzo";
278 				info->compress_type = BTRFS_COMPRESS_LZO;
279 			} else {
280 				ret = -EINVAL;
281 				goto out;
282 			}
283 
284 			btrfs_set_opt(info->mount_opt, COMPRESS);
285 			if (compress_force) {
286 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
287 				pr_info("btrfs: force %s compression\n",
288 					compress_type);
289 			} else
290 				pr_info("btrfs: use %s compression\n",
291 					compress_type);
292 			break;
293 		case Opt_ssd:
294 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
295 			btrfs_set_opt(info->mount_opt, SSD);
296 			break;
297 		case Opt_ssd_spread:
298 			printk(KERN_INFO "btrfs: use spread ssd "
299 			       "allocation scheme\n");
300 			btrfs_set_opt(info->mount_opt, SSD);
301 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
302 			break;
303 		case Opt_nossd:
304 			printk(KERN_INFO "btrfs: not using ssd allocation "
305 			       "scheme\n");
306 			btrfs_set_opt(info->mount_opt, NOSSD);
307 			btrfs_clear_opt(info->mount_opt, SSD);
308 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
309 			break;
310 		case Opt_nobarrier:
311 			printk(KERN_INFO "btrfs: turning off barriers\n");
312 			btrfs_set_opt(info->mount_opt, NOBARRIER);
313 			break;
314 		case Opt_thread_pool:
315 			intarg = 0;
316 			match_int(&args[0], &intarg);
317 			if (intarg) {
318 				info->thread_pool_size = intarg;
319 				printk(KERN_INFO "btrfs: thread pool %d\n",
320 				       info->thread_pool_size);
321 			}
322 			break;
323 		case Opt_max_inline:
324 			num = match_strdup(&args[0]);
325 			if (num) {
326 				info->max_inline = memparse(num, NULL);
327 				kfree(num);
328 
329 				if (info->max_inline) {
330 					info->max_inline = max_t(u64,
331 						info->max_inline,
332 						root->sectorsize);
333 				}
334 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
335 					(unsigned long long)info->max_inline);
336 			}
337 			break;
338 		case Opt_alloc_start:
339 			num = match_strdup(&args[0]);
340 			if (num) {
341 				info->alloc_start = memparse(num, NULL);
342 				kfree(num);
343 				printk(KERN_INFO
344 					"btrfs: allocations start at %llu\n",
345 					(unsigned long long)info->alloc_start);
346 			}
347 			break;
348 		case Opt_noacl:
349 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
350 			break;
351 		case Opt_notreelog:
352 			printk(KERN_INFO "btrfs: disabling tree log\n");
353 			btrfs_set_opt(info->mount_opt, NOTREELOG);
354 			break;
355 		case Opt_flushoncommit:
356 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
357 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
358 			break;
359 		case Opt_ratio:
360 			intarg = 0;
361 			match_int(&args[0], &intarg);
362 			if (intarg) {
363 				info->metadata_ratio = intarg;
364 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
365 				       info->metadata_ratio);
366 			}
367 			break;
368 		case Opt_discard:
369 			btrfs_set_opt(info->mount_opt, DISCARD);
370 			break;
371 		case Opt_space_cache:
372 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
373 			break;
374 		case Opt_no_space_cache:
375 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
376 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
377 			break;
378 		case Opt_inode_cache:
379 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
380 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
381 			break;
382 		case Opt_clear_cache:
383 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
384 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
385 			break;
386 		case Opt_user_subvol_rm_allowed:
387 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
388 			break;
389 		case Opt_enospc_debug:
390 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
391 			break;
392 		case Opt_defrag:
393 			printk(KERN_INFO "btrfs: enabling auto defrag");
394 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
395 			break;
396 		case Opt_recovery:
397 			printk(KERN_INFO "btrfs: enabling auto recovery");
398 			btrfs_set_opt(info->mount_opt, RECOVERY);
399 			break;
400 		case Opt_err:
401 			printk(KERN_INFO "btrfs: unrecognized mount option "
402 			       "'%s'\n", p);
403 			ret = -EINVAL;
404 			goto out;
405 		default:
406 			break;
407 		}
408 	}
409 out:
410 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
411 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
412 	kfree(orig);
413 	return ret;
414 }
415 
416 /*
417  * Parse mount options that are required early in the mount process.
418  *
419  * All other options will be parsed on much later in the mount process and
420  * only when we need to allocate a new super block.
421  */
422 static int btrfs_parse_early_options(const char *options, fmode_t flags,
423 		void *holder, char **subvol_name, u64 *subvol_objectid,
424 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
425 {
426 	substring_t args[MAX_OPT_ARGS];
427 	char *device_name, *opts, *orig, *p;
428 	int error = 0;
429 	int intarg;
430 
431 	if (!options)
432 		return 0;
433 
434 	/*
435 	 * strsep changes the string, duplicate it because parse_options
436 	 * gets called twice
437 	 */
438 	opts = kstrdup(options, GFP_KERNEL);
439 	if (!opts)
440 		return -ENOMEM;
441 	orig = opts;
442 
443 	while ((p = strsep(&opts, ",")) != NULL) {
444 		int token;
445 		if (!*p)
446 			continue;
447 
448 		token = match_token(p, tokens, args);
449 		switch (token) {
450 		case Opt_subvol:
451 			kfree(*subvol_name);
452 			*subvol_name = match_strdup(&args[0]);
453 			break;
454 		case Opt_subvolid:
455 			intarg = 0;
456 			error = match_int(&args[0], &intarg);
457 			if (!error) {
458 				/* we want the original fs_tree */
459 				if (!intarg)
460 					*subvol_objectid =
461 						BTRFS_FS_TREE_OBJECTID;
462 				else
463 					*subvol_objectid = intarg;
464 			}
465 			break;
466 		case Opt_subvolrootid:
467 			intarg = 0;
468 			error = match_int(&args[0], &intarg);
469 			if (!error) {
470 				/* we want the original fs_tree */
471 				if (!intarg)
472 					*subvol_rootid =
473 						BTRFS_FS_TREE_OBJECTID;
474 				else
475 					*subvol_rootid = intarg;
476 			}
477 			break;
478 		case Opt_device:
479 			device_name = match_strdup(&args[0]);
480 			if (!device_name) {
481 				error = -ENOMEM;
482 				goto out;
483 			}
484 			error = btrfs_scan_one_device(device_name,
485 					flags, holder, fs_devices);
486 			kfree(device_name);
487 			if (error)
488 				goto out;
489 			break;
490 		default:
491 			break;
492 		}
493 	}
494 
495 out:
496 	kfree(orig);
497 	return error;
498 }
499 
500 static struct dentry *get_default_root(struct super_block *sb,
501 				       u64 subvol_objectid)
502 {
503 	struct btrfs_root *root = sb->s_fs_info;
504 	struct btrfs_root *new_root;
505 	struct btrfs_dir_item *di;
506 	struct btrfs_path *path;
507 	struct btrfs_key location;
508 	struct inode *inode;
509 	u64 dir_id;
510 	int new = 0;
511 
512 	/*
513 	 * We have a specific subvol we want to mount, just setup location and
514 	 * go look up the root.
515 	 */
516 	if (subvol_objectid) {
517 		location.objectid = subvol_objectid;
518 		location.type = BTRFS_ROOT_ITEM_KEY;
519 		location.offset = (u64)-1;
520 		goto find_root;
521 	}
522 
523 	path = btrfs_alloc_path();
524 	if (!path)
525 		return ERR_PTR(-ENOMEM);
526 	path->leave_spinning = 1;
527 
528 	/*
529 	 * Find the "default" dir item which points to the root item that we
530 	 * will mount by default if we haven't been given a specific subvolume
531 	 * to mount.
532 	 */
533 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
534 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
535 	if (IS_ERR(di)) {
536 		btrfs_free_path(path);
537 		return ERR_CAST(di);
538 	}
539 	if (!di) {
540 		/*
541 		 * Ok the default dir item isn't there.  This is weird since
542 		 * it's always been there, but don't freak out, just try and
543 		 * mount to root most subvolume.
544 		 */
545 		btrfs_free_path(path);
546 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
547 		new_root = root->fs_info->fs_root;
548 		goto setup_root;
549 	}
550 
551 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
552 	btrfs_free_path(path);
553 
554 find_root:
555 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
556 	if (IS_ERR(new_root))
557 		return ERR_CAST(new_root);
558 
559 	if (btrfs_root_refs(&new_root->root_item) == 0)
560 		return ERR_PTR(-ENOENT);
561 
562 	dir_id = btrfs_root_dirid(&new_root->root_item);
563 setup_root:
564 	location.objectid = dir_id;
565 	location.type = BTRFS_INODE_ITEM_KEY;
566 	location.offset = 0;
567 
568 	inode = btrfs_iget(sb, &location, new_root, &new);
569 	if (IS_ERR(inode))
570 		return ERR_CAST(inode);
571 
572 	/*
573 	 * If we're just mounting the root most subvol put the inode and return
574 	 * a reference to the dentry.  We will have already gotten a reference
575 	 * to the inode in btrfs_fill_super so we're good to go.
576 	 */
577 	if (!new && sb->s_root->d_inode == inode) {
578 		iput(inode);
579 		return dget(sb->s_root);
580 	}
581 
582 	return d_obtain_alias(inode);
583 }
584 
585 static int btrfs_fill_super(struct super_block *sb,
586 			    struct btrfs_fs_devices *fs_devices,
587 			    void *data, int silent)
588 {
589 	struct inode *inode;
590 	struct dentry *root_dentry;
591 	struct btrfs_root *tree_root;
592 	struct btrfs_key key;
593 	int err;
594 
595 	sb->s_maxbytes = MAX_LFS_FILESIZE;
596 	sb->s_magic = BTRFS_SUPER_MAGIC;
597 	sb->s_op = &btrfs_super_ops;
598 	sb->s_d_op = &btrfs_dentry_operations;
599 	sb->s_export_op = &btrfs_export_ops;
600 	sb->s_xattr = btrfs_xattr_handlers;
601 	sb->s_time_gran = 1;
602 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
603 	sb->s_flags |= MS_POSIXACL;
604 #endif
605 
606 	tree_root = open_ctree(sb, fs_devices, (char *)data);
607 
608 	if (IS_ERR(tree_root)) {
609 		printk("btrfs: open_ctree failed\n");
610 		return PTR_ERR(tree_root);
611 	}
612 	sb->s_fs_info = tree_root;
613 
614 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
615 	key.type = BTRFS_INODE_ITEM_KEY;
616 	key.offset = 0;
617 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
618 	if (IS_ERR(inode)) {
619 		err = PTR_ERR(inode);
620 		goto fail_close;
621 	}
622 
623 	root_dentry = d_alloc_root(inode);
624 	if (!root_dentry) {
625 		iput(inode);
626 		err = -ENOMEM;
627 		goto fail_close;
628 	}
629 
630 	sb->s_root = root_dentry;
631 
632 	save_mount_options(sb, data);
633 	cleancache_init_fs(sb);
634 	return 0;
635 
636 fail_close:
637 	close_ctree(tree_root);
638 	return err;
639 }
640 
641 int btrfs_sync_fs(struct super_block *sb, int wait)
642 {
643 	struct btrfs_trans_handle *trans;
644 	struct btrfs_root *root = btrfs_sb(sb);
645 	int ret;
646 
647 	trace_btrfs_sync_fs(wait);
648 
649 	if (!wait) {
650 		filemap_flush(root->fs_info->btree_inode->i_mapping);
651 		return 0;
652 	}
653 
654 	btrfs_start_delalloc_inodes(root, 0);
655 	btrfs_wait_ordered_extents(root, 0, 0);
656 
657 	trans = btrfs_start_transaction(root, 0);
658 	if (IS_ERR(trans))
659 		return PTR_ERR(trans);
660 	ret = btrfs_commit_transaction(trans, root);
661 	return ret;
662 }
663 
664 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
665 {
666 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
667 	struct btrfs_fs_info *info = root->fs_info;
668 	char *compress_type;
669 
670 	if (btrfs_test_opt(root, DEGRADED))
671 		seq_puts(seq, ",degraded");
672 	if (btrfs_test_opt(root, NODATASUM))
673 		seq_puts(seq, ",nodatasum");
674 	if (btrfs_test_opt(root, NODATACOW))
675 		seq_puts(seq, ",nodatacow");
676 	if (btrfs_test_opt(root, NOBARRIER))
677 		seq_puts(seq, ",nobarrier");
678 	if (info->max_inline != 8192 * 1024)
679 		seq_printf(seq, ",max_inline=%llu",
680 			   (unsigned long long)info->max_inline);
681 	if (info->alloc_start != 0)
682 		seq_printf(seq, ",alloc_start=%llu",
683 			   (unsigned long long)info->alloc_start);
684 	if (info->thread_pool_size !=  min_t(unsigned long,
685 					     num_online_cpus() + 2, 8))
686 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
687 	if (btrfs_test_opt(root, COMPRESS)) {
688 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
689 			compress_type = "zlib";
690 		else
691 			compress_type = "lzo";
692 		if (btrfs_test_opt(root, FORCE_COMPRESS))
693 			seq_printf(seq, ",compress-force=%s", compress_type);
694 		else
695 			seq_printf(seq, ",compress=%s", compress_type);
696 	}
697 	if (btrfs_test_opt(root, NOSSD))
698 		seq_puts(seq, ",nossd");
699 	if (btrfs_test_opt(root, SSD_SPREAD))
700 		seq_puts(seq, ",ssd_spread");
701 	else if (btrfs_test_opt(root, SSD))
702 		seq_puts(seq, ",ssd");
703 	if (btrfs_test_opt(root, NOTREELOG))
704 		seq_puts(seq, ",notreelog");
705 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
706 		seq_puts(seq, ",flushoncommit");
707 	if (btrfs_test_opt(root, DISCARD))
708 		seq_puts(seq, ",discard");
709 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
710 		seq_puts(seq, ",noacl");
711 	if (btrfs_test_opt(root, SPACE_CACHE))
712 		seq_puts(seq, ",space_cache");
713 	else
714 		seq_puts(seq, ",nospace_cache");
715 	if (btrfs_test_opt(root, CLEAR_CACHE))
716 		seq_puts(seq, ",clear_cache");
717 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
718 		seq_puts(seq, ",user_subvol_rm_allowed");
719 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
720 		seq_puts(seq, ",enospc_debug");
721 	if (btrfs_test_opt(root, AUTO_DEFRAG))
722 		seq_puts(seq, ",autodefrag");
723 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
724 		seq_puts(seq, ",inode_cache");
725 	return 0;
726 }
727 
728 static int btrfs_test_super(struct super_block *s, void *data)
729 {
730 	struct btrfs_root *test_root = data;
731 	struct btrfs_root *root = btrfs_sb(s);
732 
733 	/*
734 	 * If this super block is going away, return false as it
735 	 * can't match as an existing super block.
736 	 */
737 	if (!atomic_read(&s->s_active))
738 		return 0;
739 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
740 }
741 
742 static int btrfs_set_super(struct super_block *s, void *data)
743 {
744 	s->s_fs_info = data;
745 
746 	return set_anon_super(s, data);
747 }
748 
749 /*
750  * subvolumes are identified by ino 256
751  */
752 static inline int is_subvolume_inode(struct inode *inode)
753 {
754 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
755 		return 1;
756 	return 0;
757 }
758 
759 /*
760  * This will strip out the subvol=%s argument for an argument string and add
761  * subvolid=0 to make sure we get the actual tree root for path walking to the
762  * subvol we want.
763  */
764 static char *setup_root_args(char *args)
765 {
766 	unsigned copied = 0;
767 	unsigned len = strlen(args) + 2;
768 	char *pos;
769 	char *ret;
770 
771 	/*
772 	 * We need the same args as before, but minus
773 	 *
774 	 * subvol=a
775 	 *
776 	 * and add
777 	 *
778 	 * subvolid=0
779 	 *
780 	 * which is a difference of 2 characters, so we allocate strlen(args) +
781 	 * 2 characters.
782 	 */
783 	ret = kzalloc(len * sizeof(char), GFP_NOFS);
784 	if (!ret)
785 		return NULL;
786 	pos = strstr(args, "subvol=");
787 
788 	/* This shouldn't happen, but just in case.. */
789 	if (!pos) {
790 		kfree(ret);
791 		return NULL;
792 	}
793 
794 	/*
795 	 * The subvol=<> arg is not at the front of the string, copy everybody
796 	 * up to that into ret.
797 	 */
798 	if (pos != args) {
799 		*pos = '\0';
800 		strcpy(ret, args);
801 		copied += strlen(args);
802 		pos++;
803 	}
804 
805 	strncpy(ret + copied, "subvolid=0", len - copied);
806 
807 	/* Length of subvolid=0 */
808 	copied += 10;
809 
810 	/*
811 	 * If there is no , after the subvol= option then we know there's no
812 	 * other options and we can just return.
813 	 */
814 	pos = strchr(pos, ',');
815 	if (!pos)
816 		return ret;
817 
818 	/* Copy the rest of the arguments into our buffer */
819 	strncpy(ret + copied, pos, len - copied);
820 	copied += strlen(pos);
821 
822 	return ret;
823 }
824 
825 static struct dentry *mount_subvol(const char *subvol_name, int flags,
826 				   const char *device_name, char *data)
827 {
828 	struct super_block *s;
829 	struct dentry *root;
830 	struct vfsmount *mnt;
831 	struct mnt_namespace *ns_private;
832 	char *newargs;
833 	struct path path;
834 	int error;
835 
836 	newargs = setup_root_args(data);
837 	if (!newargs)
838 		return ERR_PTR(-ENOMEM);
839 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
840 			     newargs);
841 	kfree(newargs);
842 	if (IS_ERR(mnt))
843 		return ERR_CAST(mnt);
844 
845 	ns_private = create_mnt_ns(mnt);
846 	if (IS_ERR(ns_private)) {
847 		mntput(mnt);
848 		return ERR_CAST(ns_private);
849 	}
850 
851 	/*
852 	 * This will trigger the automount of the subvol so we can just
853 	 * drop the mnt we have here and return the dentry that we
854 	 * found.
855 	 */
856 	error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
857 				LOOKUP_FOLLOW, &path);
858 	put_mnt_ns(ns_private);
859 	if (error)
860 		return ERR_PTR(error);
861 
862 	if (!is_subvolume_inode(path.dentry->d_inode)) {
863 		path_put(&path);
864 		mntput(mnt);
865 		error = -EINVAL;
866 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
867 				subvol_name);
868 		return ERR_PTR(-EINVAL);
869 	}
870 
871 	/* Get a ref to the sb and the dentry we found and return it */
872 	s = path.mnt->mnt_sb;
873 	atomic_inc(&s->s_active);
874 	root = dget(path.dentry);
875 	path_put(&path);
876 	down_write(&s->s_umount);
877 
878 	return root;
879 }
880 
881 /*
882  * Find a superblock for the given device / mount point.
883  *
884  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
885  *	  for multiple device setup.  Make sure to keep it in sync.
886  */
887 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
888 		const char *device_name, void *data)
889 {
890 	struct block_device *bdev = NULL;
891 	struct super_block *s;
892 	struct dentry *root;
893 	struct btrfs_fs_devices *fs_devices = NULL;
894 	struct btrfs_fs_info *fs_info = NULL;
895 	fmode_t mode = FMODE_READ;
896 	char *subvol_name = NULL;
897 	u64 subvol_objectid = 0;
898 	u64 subvol_rootid = 0;
899 	int error = 0;
900 
901 	if (!(flags & MS_RDONLY))
902 		mode |= FMODE_WRITE;
903 
904 	error = btrfs_parse_early_options(data, mode, fs_type,
905 					  &subvol_name, &subvol_objectid,
906 					  &subvol_rootid, &fs_devices);
907 	if (error) {
908 		kfree(subvol_name);
909 		return ERR_PTR(error);
910 	}
911 
912 	if (subvol_name) {
913 		root = mount_subvol(subvol_name, flags, device_name, data);
914 		kfree(subvol_name);
915 		return root;
916 	}
917 
918 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
919 	if (error)
920 		return ERR_PTR(error);
921 
922 	/*
923 	 * Setup a dummy root and fs_info for test/set super.  This is because
924 	 * we don't actually fill this stuff out until open_ctree, but we need
925 	 * it for searching for existing supers, so this lets us do that and
926 	 * then open_ctree will properly initialize everything later.
927 	 */
928 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
929 	if (!fs_info)
930 		return ERR_PTR(-ENOMEM);
931 
932 	fs_info->tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
933 	if (!fs_info->tree_root) {
934 		error = -ENOMEM;
935 		goto error_fs_info;
936 	}
937 	fs_info->tree_root->fs_info = fs_info;
938 	fs_info->fs_devices = fs_devices;
939 
940 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
941 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
942 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
943 		error = -ENOMEM;
944 		goto error_fs_info;
945 	}
946 
947 	error = btrfs_open_devices(fs_devices, mode, fs_type);
948 	if (error)
949 		goto error_fs_info;
950 
951 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
952 		error = -EACCES;
953 		goto error_close_devices;
954 	}
955 
956 	bdev = fs_devices->latest_bdev;
957 	s = sget(fs_type, btrfs_test_super, btrfs_set_super,
958 		 fs_info->tree_root);
959 	if (IS_ERR(s)) {
960 		error = PTR_ERR(s);
961 		goto error_close_devices;
962 	}
963 
964 	if (s->s_root) {
965 		if ((flags ^ s->s_flags) & MS_RDONLY) {
966 			deactivate_locked_super(s);
967 			error = -EBUSY;
968 			goto error_close_devices;
969 		}
970 
971 		btrfs_close_devices(fs_devices);
972 		free_fs_info(fs_info);
973 	} else {
974 		char b[BDEVNAME_SIZE];
975 
976 		s->s_flags = flags | MS_NOSEC;
977 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
978 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
979 		error = btrfs_fill_super(s, fs_devices, data,
980 					 flags & MS_SILENT ? 1 : 0);
981 		if (error) {
982 			deactivate_locked_super(s);
983 			return ERR_PTR(error);
984 		}
985 
986 		s->s_flags |= MS_ACTIVE;
987 	}
988 
989 	root = get_default_root(s, subvol_objectid);
990 	if (IS_ERR(root)) {
991 		deactivate_locked_super(s);
992 		return root;
993 	}
994 
995 	return root;
996 
997 error_close_devices:
998 	btrfs_close_devices(fs_devices);
999 error_fs_info:
1000 	free_fs_info(fs_info);
1001 	return ERR_PTR(error);
1002 }
1003 
1004 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1005 {
1006 	struct btrfs_root *root = btrfs_sb(sb);
1007 	int ret;
1008 
1009 	ret = btrfs_parse_options(root, data);
1010 	if (ret)
1011 		return -EINVAL;
1012 
1013 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1014 		return 0;
1015 
1016 	if (*flags & MS_RDONLY) {
1017 		sb->s_flags |= MS_RDONLY;
1018 
1019 		ret =  btrfs_commit_super(root);
1020 		WARN_ON(ret);
1021 	} else {
1022 		if (root->fs_info->fs_devices->rw_devices == 0)
1023 			return -EACCES;
1024 
1025 		if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1026 			return -EINVAL;
1027 
1028 		ret = btrfs_cleanup_fs_roots(root->fs_info);
1029 		WARN_ON(ret);
1030 
1031 		/* recover relocation */
1032 		ret = btrfs_recover_relocation(root);
1033 		WARN_ON(ret);
1034 
1035 		sb->s_flags &= ~MS_RDONLY;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 /* Used to sort the devices by max_avail(descending sort) */
1042 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1043 				       const void *dev_info2)
1044 {
1045 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1046 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1047 		return -1;
1048 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1049 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1050 		return 1;
1051 	else
1052 	return 0;
1053 }
1054 
1055 /*
1056  * sort the devices by max_avail, in which max free extent size of each device
1057  * is stored.(Descending Sort)
1058  */
1059 static inline void btrfs_descending_sort_devices(
1060 					struct btrfs_device_info *devices,
1061 					size_t nr_devices)
1062 {
1063 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1064 	     btrfs_cmp_device_free_bytes, NULL);
1065 }
1066 
1067 /*
1068  * The helper to calc the free space on the devices that can be used to store
1069  * file data.
1070  */
1071 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1072 {
1073 	struct btrfs_fs_info *fs_info = root->fs_info;
1074 	struct btrfs_device_info *devices_info;
1075 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1076 	struct btrfs_device *device;
1077 	u64 skip_space;
1078 	u64 type;
1079 	u64 avail_space;
1080 	u64 used_space;
1081 	u64 min_stripe_size;
1082 	int min_stripes = 1;
1083 	int i = 0, nr_devices;
1084 	int ret;
1085 
1086 	nr_devices = fs_info->fs_devices->rw_devices;
1087 	BUG_ON(!nr_devices);
1088 
1089 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1090 			       GFP_NOFS);
1091 	if (!devices_info)
1092 		return -ENOMEM;
1093 
1094 	/* calc min stripe number for data space alloction */
1095 	type = btrfs_get_alloc_profile(root, 1);
1096 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1097 		min_stripes = 2;
1098 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1099 		min_stripes = 2;
1100 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1101 		min_stripes = 4;
1102 
1103 	if (type & BTRFS_BLOCK_GROUP_DUP)
1104 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1105 	else
1106 		min_stripe_size = BTRFS_STRIPE_LEN;
1107 
1108 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1109 		if (!device->in_fs_metadata)
1110 			continue;
1111 
1112 		avail_space = device->total_bytes - device->bytes_used;
1113 
1114 		/* align with stripe_len */
1115 		do_div(avail_space, BTRFS_STRIPE_LEN);
1116 		avail_space *= BTRFS_STRIPE_LEN;
1117 
1118 		/*
1119 		 * In order to avoid overwritting the superblock on the drive,
1120 		 * btrfs starts at an offset of at least 1MB when doing chunk
1121 		 * allocation.
1122 		 */
1123 		skip_space = 1024 * 1024;
1124 
1125 		/* user can set the offset in fs_info->alloc_start. */
1126 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1127 		    device->total_bytes)
1128 			skip_space = max(fs_info->alloc_start, skip_space);
1129 
1130 		/*
1131 		 * btrfs can not use the free space in [0, skip_space - 1],
1132 		 * we must subtract it from the total. In order to implement
1133 		 * it, we account the used space in this range first.
1134 		 */
1135 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1136 						     &used_space);
1137 		if (ret) {
1138 			kfree(devices_info);
1139 			return ret;
1140 		}
1141 
1142 		/* calc the free space in [0, skip_space - 1] */
1143 		skip_space -= used_space;
1144 
1145 		/*
1146 		 * we can use the free space in [0, skip_space - 1], subtract
1147 		 * it from the total.
1148 		 */
1149 		if (avail_space && avail_space >= skip_space)
1150 			avail_space -= skip_space;
1151 		else
1152 			avail_space = 0;
1153 
1154 		if (avail_space < min_stripe_size)
1155 			continue;
1156 
1157 		devices_info[i].dev = device;
1158 		devices_info[i].max_avail = avail_space;
1159 
1160 		i++;
1161 	}
1162 
1163 	nr_devices = i;
1164 
1165 	btrfs_descending_sort_devices(devices_info, nr_devices);
1166 
1167 	i = nr_devices - 1;
1168 	avail_space = 0;
1169 	while (nr_devices >= min_stripes) {
1170 		if (devices_info[i].max_avail >= min_stripe_size) {
1171 			int j;
1172 			u64 alloc_size;
1173 
1174 			avail_space += devices_info[i].max_avail * min_stripes;
1175 			alloc_size = devices_info[i].max_avail;
1176 			for (j = i + 1 - min_stripes; j <= i; j++)
1177 				devices_info[j].max_avail -= alloc_size;
1178 		}
1179 		i--;
1180 		nr_devices--;
1181 	}
1182 
1183 	kfree(devices_info);
1184 	*free_bytes = avail_space;
1185 	return 0;
1186 }
1187 
1188 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1189 {
1190 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1191 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1192 	struct list_head *head = &root->fs_info->space_info;
1193 	struct btrfs_space_info *found;
1194 	u64 total_used = 0;
1195 	u64 total_free_data = 0;
1196 	int bits = dentry->d_sb->s_blocksize_bits;
1197 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1198 	int ret;
1199 
1200 	/* holding chunk_muext to avoid allocating new chunks */
1201 	mutex_lock(&root->fs_info->chunk_mutex);
1202 	rcu_read_lock();
1203 	list_for_each_entry_rcu(found, head, list) {
1204 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1205 			total_free_data += found->disk_total - found->disk_used;
1206 			total_free_data -=
1207 				btrfs_account_ro_block_groups_free_space(found);
1208 		}
1209 
1210 		total_used += found->disk_used;
1211 	}
1212 	rcu_read_unlock();
1213 
1214 	buf->f_namelen = BTRFS_NAME_LEN;
1215 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1216 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1217 	buf->f_bsize = dentry->d_sb->s_blocksize;
1218 	buf->f_type = BTRFS_SUPER_MAGIC;
1219 	buf->f_bavail = total_free_data;
1220 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1221 	if (ret) {
1222 		mutex_unlock(&root->fs_info->chunk_mutex);
1223 		return ret;
1224 	}
1225 	buf->f_bavail += total_free_data;
1226 	buf->f_bavail = buf->f_bavail >> bits;
1227 	mutex_unlock(&root->fs_info->chunk_mutex);
1228 
1229 	/* We treat it as constant endianness (it doesn't matter _which_)
1230 	   because we want the fsid to come out the same whether mounted
1231 	   on a big-endian or little-endian host */
1232 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1233 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1234 	/* Mask in the root object ID too, to disambiguate subvols */
1235 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1236 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1237 
1238 	return 0;
1239 }
1240 
1241 static struct file_system_type btrfs_fs_type = {
1242 	.owner		= THIS_MODULE,
1243 	.name		= "btrfs",
1244 	.mount		= btrfs_mount,
1245 	.kill_sb	= kill_anon_super,
1246 	.fs_flags	= FS_REQUIRES_DEV,
1247 };
1248 
1249 /*
1250  * used by btrfsctl to scan devices when no FS is mounted
1251  */
1252 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1253 				unsigned long arg)
1254 {
1255 	struct btrfs_ioctl_vol_args *vol;
1256 	struct btrfs_fs_devices *fs_devices;
1257 	int ret = -ENOTTY;
1258 
1259 	if (!capable(CAP_SYS_ADMIN))
1260 		return -EPERM;
1261 
1262 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1263 	if (IS_ERR(vol))
1264 		return PTR_ERR(vol);
1265 
1266 	switch (cmd) {
1267 	case BTRFS_IOC_SCAN_DEV:
1268 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1269 					    &btrfs_fs_type, &fs_devices);
1270 		break;
1271 	}
1272 
1273 	kfree(vol);
1274 	return ret;
1275 }
1276 
1277 static int btrfs_freeze(struct super_block *sb)
1278 {
1279 	struct btrfs_root *root = btrfs_sb(sb);
1280 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1281 	mutex_lock(&root->fs_info->cleaner_mutex);
1282 	return 0;
1283 }
1284 
1285 static int btrfs_unfreeze(struct super_block *sb)
1286 {
1287 	struct btrfs_root *root = btrfs_sb(sb);
1288 	mutex_unlock(&root->fs_info->cleaner_mutex);
1289 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1290 	return 0;
1291 }
1292 
1293 static const struct super_operations btrfs_super_ops = {
1294 	.drop_inode	= btrfs_drop_inode,
1295 	.evict_inode	= btrfs_evict_inode,
1296 	.put_super	= btrfs_put_super,
1297 	.sync_fs	= btrfs_sync_fs,
1298 	.show_options	= btrfs_show_options,
1299 	.write_inode	= btrfs_write_inode,
1300 	.dirty_inode	= btrfs_dirty_inode,
1301 	.alloc_inode	= btrfs_alloc_inode,
1302 	.destroy_inode	= btrfs_destroy_inode,
1303 	.statfs		= btrfs_statfs,
1304 	.remount_fs	= btrfs_remount,
1305 	.freeze_fs	= btrfs_freeze,
1306 	.unfreeze_fs	= btrfs_unfreeze,
1307 };
1308 
1309 static const struct file_operations btrfs_ctl_fops = {
1310 	.unlocked_ioctl	 = btrfs_control_ioctl,
1311 	.compat_ioctl = btrfs_control_ioctl,
1312 	.owner	 = THIS_MODULE,
1313 	.llseek = noop_llseek,
1314 };
1315 
1316 static struct miscdevice btrfs_misc = {
1317 	.minor		= BTRFS_MINOR,
1318 	.name		= "btrfs-control",
1319 	.fops		= &btrfs_ctl_fops
1320 };
1321 
1322 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1323 MODULE_ALIAS("devname:btrfs-control");
1324 
1325 static int btrfs_interface_init(void)
1326 {
1327 	return misc_register(&btrfs_misc);
1328 }
1329 
1330 static void btrfs_interface_exit(void)
1331 {
1332 	if (misc_deregister(&btrfs_misc) < 0)
1333 		printk(KERN_INFO "misc_deregister failed for control device");
1334 }
1335 
1336 static int __init init_btrfs_fs(void)
1337 {
1338 	int err;
1339 
1340 	err = btrfs_init_sysfs();
1341 	if (err)
1342 		return err;
1343 
1344 	err = btrfs_init_compress();
1345 	if (err)
1346 		goto free_sysfs;
1347 
1348 	err = btrfs_init_cachep();
1349 	if (err)
1350 		goto free_compress;
1351 
1352 	err = extent_io_init();
1353 	if (err)
1354 		goto free_cachep;
1355 
1356 	err = extent_map_init();
1357 	if (err)
1358 		goto free_extent_io;
1359 
1360 	err = btrfs_delayed_inode_init();
1361 	if (err)
1362 		goto free_extent_map;
1363 
1364 	err = btrfs_interface_init();
1365 	if (err)
1366 		goto free_delayed_inode;
1367 
1368 	err = register_filesystem(&btrfs_fs_type);
1369 	if (err)
1370 		goto unregister_ioctl;
1371 
1372 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1373 	return 0;
1374 
1375 unregister_ioctl:
1376 	btrfs_interface_exit();
1377 free_delayed_inode:
1378 	btrfs_delayed_inode_exit();
1379 free_extent_map:
1380 	extent_map_exit();
1381 free_extent_io:
1382 	extent_io_exit();
1383 free_cachep:
1384 	btrfs_destroy_cachep();
1385 free_compress:
1386 	btrfs_exit_compress();
1387 free_sysfs:
1388 	btrfs_exit_sysfs();
1389 	return err;
1390 }
1391 
1392 static void __exit exit_btrfs_fs(void)
1393 {
1394 	btrfs_destroy_cachep();
1395 	btrfs_delayed_inode_exit();
1396 	extent_map_exit();
1397 	extent_io_exit();
1398 	btrfs_interface_exit();
1399 	unregister_filesystem(&btrfs_fs_type);
1400 	btrfs_exit_sysfs();
1401 	btrfs_cleanup_fs_uuids();
1402 	btrfs_exit_compress();
1403 }
1404 
1405 module_init(init_btrfs_fs)
1406 module_exit(exit_btrfs_fs)
1407 
1408 MODULE_LICENSE("GPL");
1409