1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include "compat.h" 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "xattr.h" 53 #include "volumes.h" 54 #include "version.h" 55 #include "export.h" 56 #include "compression.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/btrfs.h> 60 61 static const struct super_operations btrfs_super_ops; 62 static struct file_system_type btrfs_fs_type; 63 64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno, 65 char nbuf[16]) 66 { 67 char *errstr = NULL; 68 69 switch (errno) { 70 case -EIO: 71 errstr = "IO failure"; 72 break; 73 case -ENOMEM: 74 errstr = "Out of memory"; 75 break; 76 case -EROFS: 77 errstr = "Readonly filesystem"; 78 break; 79 default: 80 if (nbuf) { 81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 82 errstr = nbuf; 83 } 84 break; 85 } 86 87 return errstr; 88 } 89 90 static void __save_error_info(struct btrfs_fs_info *fs_info) 91 { 92 /* 93 * today we only save the error info into ram. Long term we'll 94 * also send it down to the disk 95 */ 96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR; 97 } 98 99 /* NOTE: 100 * We move write_super stuff at umount in order to avoid deadlock 101 * for umount hold all lock. 102 */ 103 static void save_error_info(struct btrfs_fs_info *fs_info) 104 { 105 __save_error_info(fs_info); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 117 sb->s_flags |= MS_RDONLY; 118 printk(KERN_INFO "btrfs is forced readonly\n"); 119 } 120 } 121 122 /* 123 * __btrfs_std_error decodes expected errors from the caller and 124 * invokes the approciate error response. 125 */ 126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 127 unsigned int line, int errno) 128 { 129 struct super_block *sb = fs_info->sb; 130 char nbuf[16]; 131 const char *errstr; 132 133 /* 134 * Special case: if the error is EROFS, and we're already 135 * under MS_RDONLY, then it is safe here. 136 */ 137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 138 return; 139 140 errstr = btrfs_decode_error(fs_info, errno, nbuf); 141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", 142 sb->s_id, function, line, errstr); 143 save_error_info(fs_info); 144 145 btrfs_handle_error(fs_info); 146 } 147 148 static void btrfs_put_super(struct super_block *sb) 149 { 150 (void)close_ctree(btrfs_sb(sb)->tree_root); 151 /* FIXME: need to fix VFS to return error? */ 152 /* AV: return it _where_? ->put_super() can be triggered by any number 153 * of async events, up to and including delivery of SIGKILL to the 154 * last process that kept it busy. Or segfault in the aforementioned 155 * process... Whom would you report that to? 156 */ 157 } 158 159 enum { 160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 167 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 168 Opt_check_integrity, Opt_check_integrity_including_extent_data, 169 Opt_check_integrity_print_mask, 170 Opt_err, 171 }; 172 173 static match_table_t tokens = { 174 {Opt_degraded, "degraded"}, 175 {Opt_subvol, "subvol=%s"}, 176 {Opt_subvolid, "subvolid=%d"}, 177 {Opt_device, "device=%s"}, 178 {Opt_nodatasum, "nodatasum"}, 179 {Opt_nodatacow, "nodatacow"}, 180 {Opt_nobarrier, "nobarrier"}, 181 {Opt_max_inline, "max_inline=%s"}, 182 {Opt_alloc_start, "alloc_start=%s"}, 183 {Opt_thread_pool, "thread_pool=%d"}, 184 {Opt_compress, "compress"}, 185 {Opt_compress_type, "compress=%s"}, 186 {Opt_compress_force, "compress-force"}, 187 {Opt_compress_force_type, "compress-force=%s"}, 188 {Opt_ssd, "ssd"}, 189 {Opt_ssd_spread, "ssd_spread"}, 190 {Opt_nossd, "nossd"}, 191 {Opt_noacl, "noacl"}, 192 {Opt_notreelog, "notreelog"}, 193 {Opt_flushoncommit, "flushoncommit"}, 194 {Opt_ratio, "metadata_ratio=%d"}, 195 {Opt_discard, "discard"}, 196 {Opt_space_cache, "space_cache"}, 197 {Opt_clear_cache, "clear_cache"}, 198 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 199 {Opt_enospc_debug, "enospc_debug"}, 200 {Opt_subvolrootid, "subvolrootid=%d"}, 201 {Opt_defrag, "autodefrag"}, 202 {Opt_inode_cache, "inode_cache"}, 203 {Opt_no_space_cache, "nospace_cache"}, 204 {Opt_recovery, "recovery"}, 205 {Opt_skip_balance, "skip_balance"}, 206 {Opt_check_integrity, "check_int"}, 207 {Opt_check_integrity_including_extent_data, "check_int_data"}, 208 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 209 {Opt_err, NULL}, 210 }; 211 212 /* 213 * Regular mount options parser. Everything that is needed only when 214 * reading in a new superblock is parsed here. 215 */ 216 int btrfs_parse_options(struct btrfs_root *root, char *options) 217 { 218 struct btrfs_fs_info *info = root->fs_info; 219 substring_t args[MAX_OPT_ARGS]; 220 char *p, *num, *orig = NULL; 221 u64 cache_gen; 222 int intarg; 223 int ret = 0; 224 char *compress_type; 225 bool compress_force = false; 226 227 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 228 if (cache_gen) 229 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 230 231 if (!options) 232 goto out; 233 234 /* 235 * strsep changes the string, duplicate it because parse_options 236 * gets called twice 237 */ 238 options = kstrdup(options, GFP_NOFS); 239 if (!options) 240 return -ENOMEM; 241 242 orig = options; 243 244 while ((p = strsep(&options, ",")) != NULL) { 245 int token; 246 if (!*p) 247 continue; 248 249 token = match_token(p, tokens, args); 250 switch (token) { 251 case Opt_degraded: 252 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 253 btrfs_set_opt(info->mount_opt, DEGRADED); 254 break; 255 case Opt_subvol: 256 case Opt_subvolid: 257 case Opt_subvolrootid: 258 case Opt_device: 259 /* 260 * These are parsed by btrfs_parse_early_options 261 * and can be happily ignored here. 262 */ 263 break; 264 case Opt_nodatasum: 265 printk(KERN_INFO "btrfs: setting nodatasum\n"); 266 btrfs_set_opt(info->mount_opt, NODATASUM); 267 break; 268 case Opt_nodatacow: 269 printk(KERN_INFO "btrfs: setting nodatacow\n"); 270 btrfs_set_opt(info->mount_opt, NODATACOW); 271 btrfs_set_opt(info->mount_opt, NODATASUM); 272 break; 273 case Opt_compress_force: 274 case Opt_compress_force_type: 275 compress_force = true; 276 case Opt_compress: 277 case Opt_compress_type: 278 if (token == Opt_compress || 279 token == Opt_compress_force || 280 strcmp(args[0].from, "zlib") == 0) { 281 compress_type = "zlib"; 282 info->compress_type = BTRFS_COMPRESS_ZLIB; 283 } else if (strcmp(args[0].from, "lzo") == 0) { 284 compress_type = "lzo"; 285 info->compress_type = BTRFS_COMPRESS_LZO; 286 } else { 287 ret = -EINVAL; 288 goto out; 289 } 290 291 btrfs_set_opt(info->mount_opt, COMPRESS); 292 if (compress_force) { 293 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 294 pr_info("btrfs: force %s compression\n", 295 compress_type); 296 } else 297 pr_info("btrfs: use %s compression\n", 298 compress_type); 299 break; 300 case Opt_ssd: 301 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 302 btrfs_set_opt(info->mount_opt, SSD); 303 break; 304 case Opt_ssd_spread: 305 printk(KERN_INFO "btrfs: use spread ssd " 306 "allocation scheme\n"); 307 btrfs_set_opt(info->mount_opt, SSD); 308 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 309 break; 310 case Opt_nossd: 311 printk(KERN_INFO "btrfs: not using ssd allocation " 312 "scheme\n"); 313 btrfs_set_opt(info->mount_opt, NOSSD); 314 btrfs_clear_opt(info->mount_opt, SSD); 315 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 316 break; 317 case Opt_nobarrier: 318 printk(KERN_INFO "btrfs: turning off barriers\n"); 319 btrfs_set_opt(info->mount_opt, NOBARRIER); 320 break; 321 case Opt_thread_pool: 322 intarg = 0; 323 match_int(&args[0], &intarg); 324 if (intarg) { 325 info->thread_pool_size = intarg; 326 printk(KERN_INFO "btrfs: thread pool %d\n", 327 info->thread_pool_size); 328 } 329 break; 330 case Opt_max_inline: 331 num = match_strdup(&args[0]); 332 if (num) { 333 info->max_inline = memparse(num, NULL); 334 kfree(num); 335 336 if (info->max_inline) { 337 info->max_inline = max_t(u64, 338 info->max_inline, 339 root->sectorsize); 340 } 341 printk(KERN_INFO "btrfs: max_inline at %llu\n", 342 (unsigned long long)info->max_inline); 343 } 344 break; 345 case Opt_alloc_start: 346 num = match_strdup(&args[0]); 347 if (num) { 348 info->alloc_start = memparse(num, NULL); 349 kfree(num); 350 printk(KERN_INFO 351 "btrfs: allocations start at %llu\n", 352 (unsigned long long)info->alloc_start); 353 } 354 break; 355 case Opt_noacl: 356 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 357 break; 358 case Opt_notreelog: 359 printk(KERN_INFO "btrfs: disabling tree log\n"); 360 btrfs_set_opt(info->mount_opt, NOTREELOG); 361 break; 362 case Opt_flushoncommit: 363 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 364 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 365 break; 366 case Opt_ratio: 367 intarg = 0; 368 match_int(&args[0], &intarg); 369 if (intarg) { 370 info->metadata_ratio = intarg; 371 printk(KERN_INFO "btrfs: metadata ratio %d\n", 372 info->metadata_ratio); 373 } 374 break; 375 case Opt_discard: 376 btrfs_set_opt(info->mount_opt, DISCARD); 377 break; 378 case Opt_space_cache: 379 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 380 break; 381 case Opt_no_space_cache: 382 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 383 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 384 break; 385 case Opt_inode_cache: 386 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 387 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 388 break; 389 case Opt_clear_cache: 390 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 391 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 392 break; 393 case Opt_user_subvol_rm_allowed: 394 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 395 break; 396 case Opt_enospc_debug: 397 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 398 break; 399 case Opt_defrag: 400 printk(KERN_INFO "btrfs: enabling auto defrag"); 401 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 402 break; 403 case Opt_recovery: 404 printk(KERN_INFO "btrfs: enabling auto recovery"); 405 btrfs_set_opt(info->mount_opt, RECOVERY); 406 break; 407 case Opt_skip_balance: 408 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 409 break; 410 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 411 case Opt_check_integrity_including_extent_data: 412 printk(KERN_INFO "btrfs: enabling check integrity" 413 " including extent data\n"); 414 btrfs_set_opt(info->mount_opt, 415 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 416 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 417 break; 418 case Opt_check_integrity: 419 printk(KERN_INFO "btrfs: enabling check integrity\n"); 420 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 421 break; 422 case Opt_check_integrity_print_mask: 423 intarg = 0; 424 match_int(&args[0], &intarg); 425 if (intarg) { 426 info->check_integrity_print_mask = intarg; 427 printk(KERN_INFO "btrfs:" 428 " check_integrity_print_mask 0x%x\n", 429 info->check_integrity_print_mask); 430 } 431 break; 432 #else 433 case Opt_check_integrity_including_extent_data: 434 case Opt_check_integrity: 435 case Opt_check_integrity_print_mask: 436 printk(KERN_ERR "btrfs: support for check_integrity*" 437 " not compiled in!\n"); 438 ret = -EINVAL; 439 goto out; 440 #endif 441 case Opt_err: 442 printk(KERN_INFO "btrfs: unrecognized mount option " 443 "'%s'\n", p); 444 ret = -EINVAL; 445 goto out; 446 default: 447 break; 448 } 449 } 450 out: 451 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 452 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 453 kfree(orig); 454 return ret; 455 } 456 457 /* 458 * Parse mount options that are required early in the mount process. 459 * 460 * All other options will be parsed on much later in the mount process and 461 * only when we need to allocate a new super block. 462 */ 463 static int btrfs_parse_early_options(const char *options, fmode_t flags, 464 void *holder, char **subvol_name, u64 *subvol_objectid, 465 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices) 466 { 467 substring_t args[MAX_OPT_ARGS]; 468 char *device_name, *opts, *orig, *p; 469 int error = 0; 470 int intarg; 471 472 if (!options) 473 return 0; 474 475 /* 476 * strsep changes the string, duplicate it because parse_options 477 * gets called twice 478 */ 479 opts = kstrdup(options, GFP_KERNEL); 480 if (!opts) 481 return -ENOMEM; 482 orig = opts; 483 484 while ((p = strsep(&opts, ",")) != NULL) { 485 int token; 486 if (!*p) 487 continue; 488 489 token = match_token(p, tokens, args); 490 switch (token) { 491 case Opt_subvol: 492 kfree(*subvol_name); 493 *subvol_name = match_strdup(&args[0]); 494 break; 495 case Opt_subvolid: 496 intarg = 0; 497 error = match_int(&args[0], &intarg); 498 if (!error) { 499 /* we want the original fs_tree */ 500 if (!intarg) 501 *subvol_objectid = 502 BTRFS_FS_TREE_OBJECTID; 503 else 504 *subvol_objectid = intarg; 505 } 506 break; 507 case Opt_subvolrootid: 508 intarg = 0; 509 error = match_int(&args[0], &intarg); 510 if (!error) { 511 /* we want the original fs_tree */ 512 if (!intarg) 513 *subvol_rootid = 514 BTRFS_FS_TREE_OBJECTID; 515 else 516 *subvol_rootid = intarg; 517 } 518 break; 519 case Opt_device: 520 device_name = match_strdup(&args[0]); 521 if (!device_name) { 522 error = -ENOMEM; 523 goto out; 524 } 525 error = btrfs_scan_one_device(device_name, 526 flags, holder, fs_devices); 527 kfree(device_name); 528 if (error) 529 goto out; 530 break; 531 default: 532 break; 533 } 534 } 535 536 out: 537 kfree(orig); 538 return error; 539 } 540 541 static struct dentry *get_default_root(struct super_block *sb, 542 u64 subvol_objectid) 543 { 544 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 545 struct btrfs_root *root = fs_info->tree_root; 546 struct btrfs_root *new_root; 547 struct btrfs_dir_item *di; 548 struct btrfs_path *path; 549 struct btrfs_key location; 550 struct inode *inode; 551 u64 dir_id; 552 int new = 0; 553 554 /* 555 * We have a specific subvol we want to mount, just setup location and 556 * go look up the root. 557 */ 558 if (subvol_objectid) { 559 location.objectid = subvol_objectid; 560 location.type = BTRFS_ROOT_ITEM_KEY; 561 location.offset = (u64)-1; 562 goto find_root; 563 } 564 565 path = btrfs_alloc_path(); 566 if (!path) 567 return ERR_PTR(-ENOMEM); 568 path->leave_spinning = 1; 569 570 /* 571 * Find the "default" dir item which points to the root item that we 572 * will mount by default if we haven't been given a specific subvolume 573 * to mount. 574 */ 575 dir_id = btrfs_super_root_dir(fs_info->super_copy); 576 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 577 if (IS_ERR(di)) { 578 btrfs_free_path(path); 579 return ERR_CAST(di); 580 } 581 if (!di) { 582 /* 583 * Ok the default dir item isn't there. This is weird since 584 * it's always been there, but don't freak out, just try and 585 * mount to root most subvolume. 586 */ 587 btrfs_free_path(path); 588 dir_id = BTRFS_FIRST_FREE_OBJECTID; 589 new_root = fs_info->fs_root; 590 goto setup_root; 591 } 592 593 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 594 btrfs_free_path(path); 595 596 find_root: 597 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 598 if (IS_ERR(new_root)) 599 return ERR_CAST(new_root); 600 601 if (btrfs_root_refs(&new_root->root_item) == 0) 602 return ERR_PTR(-ENOENT); 603 604 dir_id = btrfs_root_dirid(&new_root->root_item); 605 setup_root: 606 location.objectid = dir_id; 607 location.type = BTRFS_INODE_ITEM_KEY; 608 location.offset = 0; 609 610 inode = btrfs_iget(sb, &location, new_root, &new); 611 if (IS_ERR(inode)) 612 return ERR_CAST(inode); 613 614 /* 615 * If we're just mounting the root most subvol put the inode and return 616 * a reference to the dentry. We will have already gotten a reference 617 * to the inode in btrfs_fill_super so we're good to go. 618 */ 619 if (!new && sb->s_root->d_inode == inode) { 620 iput(inode); 621 return dget(sb->s_root); 622 } 623 624 return d_obtain_alias(inode); 625 } 626 627 static int btrfs_fill_super(struct super_block *sb, 628 struct btrfs_fs_devices *fs_devices, 629 void *data, int silent) 630 { 631 struct inode *inode; 632 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 633 struct btrfs_key key; 634 int err; 635 636 sb->s_maxbytes = MAX_LFS_FILESIZE; 637 sb->s_magic = BTRFS_SUPER_MAGIC; 638 sb->s_op = &btrfs_super_ops; 639 sb->s_d_op = &btrfs_dentry_operations; 640 sb->s_export_op = &btrfs_export_ops; 641 sb->s_xattr = btrfs_xattr_handlers; 642 sb->s_time_gran = 1; 643 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 644 sb->s_flags |= MS_POSIXACL; 645 #endif 646 647 err = open_ctree(sb, fs_devices, (char *)data); 648 if (err) { 649 printk("btrfs: open_ctree failed\n"); 650 return err; 651 } 652 653 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 654 key.type = BTRFS_INODE_ITEM_KEY; 655 key.offset = 0; 656 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 657 if (IS_ERR(inode)) { 658 err = PTR_ERR(inode); 659 goto fail_close; 660 } 661 662 sb->s_root = d_make_root(inode); 663 if (!sb->s_root) { 664 err = -ENOMEM; 665 goto fail_close; 666 } 667 668 save_mount_options(sb, data); 669 cleancache_init_fs(sb); 670 sb->s_flags |= MS_ACTIVE; 671 return 0; 672 673 fail_close: 674 close_ctree(fs_info->tree_root); 675 return err; 676 } 677 678 int btrfs_sync_fs(struct super_block *sb, int wait) 679 { 680 struct btrfs_trans_handle *trans; 681 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 682 struct btrfs_root *root = fs_info->tree_root; 683 int ret; 684 685 trace_btrfs_sync_fs(wait); 686 687 if (!wait) { 688 filemap_flush(fs_info->btree_inode->i_mapping); 689 return 0; 690 } 691 692 btrfs_start_delalloc_inodes(root, 0); 693 btrfs_wait_ordered_extents(root, 0, 0); 694 695 trans = btrfs_start_transaction(root, 0); 696 if (IS_ERR(trans)) 697 return PTR_ERR(trans); 698 ret = btrfs_commit_transaction(trans, root); 699 return ret; 700 } 701 702 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 703 { 704 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 705 struct btrfs_root *root = info->tree_root; 706 char *compress_type; 707 708 if (btrfs_test_opt(root, DEGRADED)) 709 seq_puts(seq, ",degraded"); 710 if (btrfs_test_opt(root, NODATASUM)) 711 seq_puts(seq, ",nodatasum"); 712 if (btrfs_test_opt(root, NODATACOW)) 713 seq_puts(seq, ",nodatacow"); 714 if (btrfs_test_opt(root, NOBARRIER)) 715 seq_puts(seq, ",nobarrier"); 716 if (info->max_inline != 8192 * 1024) 717 seq_printf(seq, ",max_inline=%llu", 718 (unsigned long long)info->max_inline); 719 if (info->alloc_start != 0) 720 seq_printf(seq, ",alloc_start=%llu", 721 (unsigned long long)info->alloc_start); 722 if (info->thread_pool_size != min_t(unsigned long, 723 num_online_cpus() + 2, 8)) 724 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 725 if (btrfs_test_opt(root, COMPRESS)) { 726 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 727 compress_type = "zlib"; 728 else 729 compress_type = "lzo"; 730 if (btrfs_test_opt(root, FORCE_COMPRESS)) 731 seq_printf(seq, ",compress-force=%s", compress_type); 732 else 733 seq_printf(seq, ",compress=%s", compress_type); 734 } 735 if (btrfs_test_opt(root, NOSSD)) 736 seq_puts(seq, ",nossd"); 737 if (btrfs_test_opt(root, SSD_SPREAD)) 738 seq_puts(seq, ",ssd_spread"); 739 else if (btrfs_test_opt(root, SSD)) 740 seq_puts(seq, ",ssd"); 741 if (btrfs_test_opt(root, NOTREELOG)) 742 seq_puts(seq, ",notreelog"); 743 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 744 seq_puts(seq, ",flushoncommit"); 745 if (btrfs_test_opt(root, DISCARD)) 746 seq_puts(seq, ",discard"); 747 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 748 seq_puts(seq, ",noacl"); 749 if (btrfs_test_opt(root, SPACE_CACHE)) 750 seq_puts(seq, ",space_cache"); 751 else 752 seq_puts(seq, ",nospace_cache"); 753 if (btrfs_test_opt(root, CLEAR_CACHE)) 754 seq_puts(seq, ",clear_cache"); 755 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 756 seq_puts(seq, ",user_subvol_rm_allowed"); 757 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 758 seq_puts(seq, ",enospc_debug"); 759 if (btrfs_test_opt(root, AUTO_DEFRAG)) 760 seq_puts(seq, ",autodefrag"); 761 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 762 seq_puts(seq, ",inode_cache"); 763 if (btrfs_test_opt(root, SKIP_BALANCE)) 764 seq_puts(seq, ",skip_balance"); 765 return 0; 766 } 767 768 static int btrfs_test_super(struct super_block *s, void *data) 769 { 770 struct btrfs_fs_info *p = data; 771 struct btrfs_fs_info *fs_info = btrfs_sb(s); 772 773 return fs_info->fs_devices == p->fs_devices; 774 } 775 776 static int btrfs_set_super(struct super_block *s, void *data) 777 { 778 int err = set_anon_super(s, data); 779 if (!err) 780 s->s_fs_info = data; 781 return err; 782 } 783 784 /* 785 * subvolumes are identified by ino 256 786 */ 787 static inline int is_subvolume_inode(struct inode *inode) 788 { 789 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 790 return 1; 791 return 0; 792 } 793 794 /* 795 * This will strip out the subvol=%s argument for an argument string and add 796 * subvolid=0 to make sure we get the actual tree root for path walking to the 797 * subvol we want. 798 */ 799 static char *setup_root_args(char *args) 800 { 801 unsigned copied = 0; 802 unsigned len = strlen(args) + 2; 803 char *pos; 804 char *ret; 805 806 /* 807 * We need the same args as before, but minus 808 * 809 * subvol=a 810 * 811 * and add 812 * 813 * subvolid=0 814 * 815 * which is a difference of 2 characters, so we allocate strlen(args) + 816 * 2 characters. 817 */ 818 ret = kzalloc(len * sizeof(char), GFP_NOFS); 819 if (!ret) 820 return NULL; 821 pos = strstr(args, "subvol="); 822 823 /* This shouldn't happen, but just in case.. */ 824 if (!pos) { 825 kfree(ret); 826 return NULL; 827 } 828 829 /* 830 * The subvol=<> arg is not at the front of the string, copy everybody 831 * up to that into ret. 832 */ 833 if (pos != args) { 834 *pos = '\0'; 835 strcpy(ret, args); 836 copied += strlen(args); 837 pos++; 838 } 839 840 strncpy(ret + copied, "subvolid=0", len - copied); 841 842 /* Length of subvolid=0 */ 843 copied += 10; 844 845 /* 846 * If there is no , after the subvol= option then we know there's no 847 * other options and we can just return. 848 */ 849 pos = strchr(pos, ','); 850 if (!pos) 851 return ret; 852 853 /* Copy the rest of the arguments into our buffer */ 854 strncpy(ret + copied, pos, len - copied); 855 copied += strlen(pos); 856 857 return ret; 858 } 859 860 static struct dentry *mount_subvol(const char *subvol_name, int flags, 861 const char *device_name, char *data) 862 { 863 struct dentry *root; 864 struct vfsmount *mnt; 865 char *newargs; 866 867 newargs = setup_root_args(data); 868 if (!newargs) 869 return ERR_PTR(-ENOMEM); 870 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 871 newargs); 872 kfree(newargs); 873 if (IS_ERR(mnt)) 874 return ERR_CAST(mnt); 875 876 root = mount_subtree(mnt, subvol_name); 877 878 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 879 struct super_block *s = root->d_sb; 880 dput(root); 881 root = ERR_PTR(-EINVAL); 882 deactivate_locked_super(s); 883 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 884 subvol_name); 885 } 886 887 return root; 888 } 889 890 /* 891 * Find a superblock for the given device / mount point. 892 * 893 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 894 * for multiple device setup. Make sure to keep it in sync. 895 */ 896 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 897 const char *device_name, void *data) 898 { 899 struct block_device *bdev = NULL; 900 struct super_block *s; 901 struct dentry *root; 902 struct btrfs_fs_devices *fs_devices = NULL; 903 struct btrfs_fs_info *fs_info = NULL; 904 fmode_t mode = FMODE_READ; 905 char *subvol_name = NULL; 906 u64 subvol_objectid = 0; 907 u64 subvol_rootid = 0; 908 int error = 0; 909 910 if (!(flags & MS_RDONLY)) 911 mode |= FMODE_WRITE; 912 913 error = btrfs_parse_early_options(data, mode, fs_type, 914 &subvol_name, &subvol_objectid, 915 &subvol_rootid, &fs_devices); 916 if (error) { 917 kfree(subvol_name); 918 return ERR_PTR(error); 919 } 920 921 if (subvol_name) { 922 root = mount_subvol(subvol_name, flags, device_name, data); 923 kfree(subvol_name); 924 return root; 925 } 926 927 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 928 if (error) 929 return ERR_PTR(error); 930 931 /* 932 * Setup a dummy root and fs_info for test/set super. This is because 933 * we don't actually fill this stuff out until open_ctree, but we need 934 * it for searching for existing supers, so this lets us do that and 935 * then open_ctree will properly initialize everything later. 936 */ 937 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 938 if (!fs_info) 939 return ERR_PTR(-ENOMEM); 940 941 fs_info->fs_devices = fs_devices; 942 943 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 944 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 945 if (!fs_info->super_copy || !fs_info->super_for_commit) { 946 error = -ENOMEM; 947 goto error_fs_info; 948 } 949 950 error = btrfs_open_devices(fs_devices, mode, fs_type); 951 if (error) 952 goto error_fs_info; 953 954 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 955 error = -EACCES; 956 goto error_close_devices; 957 } 958 959 bdev = fs_devices->latest_bdev; 960 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info); 961 if (IS_ERR(s)) { 962 error = PTR_ERR(s); 963 goto error_close_devices; 964 } 965 966 if (s->s_root) { 967 btrfs_close_devices(fs_devices); 968 free_fs_info(fs_info); 969 if ((flags ^ s->s_flags) & MS_RDONLY) 970 error = -EBUSY; 971 } else { 972 char b[BDEVNAME_SIZE]; 973 974 s->s_flags = flags | MS_NOSEC; 975 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 976 btrfs_sb(s)->bdev_holder = fs_type; 977 error = btrfs_fill_super(s, fs_devices, data, 978 flags & MS_SILENT ? 1 : 0); 979 } 980 981 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 982 if (IS_ERR(root)) 983 deactivate_locked_super(s); 984 985 return root; 986 987 error_close_devices: 988 btrfs_close_devices(fs_devices); 989 error_fs_info: 990 free_fs_info(fs_info); 991 return ERR_PTR(error); 992 } 993 994 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 995 { 996 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 997 struct btrfs_root *root = fs_info->tree_root; 998 int ret; 999 1000 ret = btrfs_parse_options(root, data); 1001 if (ret) 1002 return -EINVAL; 1003 1004 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1005 return 0; 1006 1007 if (*flags & MS_RDONLY) { 1008 sb->s_flags |= MS_RDONLY; 1009 1010 ret = btrfs_commit_super(root); 1011 WARN_ON(ret); 1012 } else { 1013 if (fs_info->fs_devices->rw_devices == 0) 1014 return -EACCES; 1015 1016 if (btrfs_super_log_root(fs_info->super_copy) != 0) 1017 return -EINVAL; 1018 1019 ret = btrfs_cleanup_fs_roots(fs_info); 1020 WARN_ON(ret); 1021 1022 /* recover relocation */ 1023 ret = btrfs_recover_relocation(root); 1024 WARN_ON(ret); 1025 1026 sb->s_flags &= ~MS_RDONLY; 1027 } 1028 1029 return 0; 1030 } 1031 1032 /* Used to sort the devices by max_avail(descending sort) */ 1033 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1034 const void *dev_info2) 1035 { 1036 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1037 ((struct btrfs_device_info *)dev_info2)->max_avail) 1038 return -1; 1039 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1040 ((struct btrfs_device_info *)dev_info2)->max_avail) 1041 return 1; 1042 else 1043 return 0; 1044 } 1045 1046 /* 1047 * sort the devices by max_avail, in which max free extent size of each device 1048 * is stored.(Descending Sort) 1049 */ 1050 static inline void btrfs_descending_sort_devices( 1051 struct btrfs_device_info *devices, 1052 size_t nr_devices) 1053 { 1054 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1055 btrfs_cmp_device_free_bytes, NULL); 1056 } 1057 1058 /* 1059 * The helper to calc the free space on the devices that can be used to store 1060 * file data. 1061 */ 1062 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1063 { 1064 struct btrfs_fs_info *fs_info = root->fs_info; 1065 struct btrfs_device_info *devices_info; 1066 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1067 struct btrfs_device *device; 1068 u64 skip_space; 1069 u64 type; 1070 u64 avail_space; 1071 u64 used_space; 1072 u64 min_stripe_size; 1073 int min_stripes = 1, num_stripes = 1; 1074 int i = 0, nr_devices; 1075 int ret; 1076 1077 nr_devices = fs_info->fs_devices->open_devices; 1078 BUG_ON(!nr_devices); 1079 1080 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1081 GFP_NOFS); 1082 if (!devices_info) 1083 return -ENOMEM; 1084 1085 /* calc min stripe number for data space alloction */ 1086 type = btrfs_get_alloc_profile(root, 1); 1087 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1088 min_stripes = 2; 1089 num_stripes = nr_devices; 1090 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1091 min_stripes = 2; 1092 num_stripes = 2; 1093 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1094 min_stripes = 4; 1095 num_stripes = 4; 1096 } 1097 1098 if (type & BTRFS_BLOCK_GROUP_DUP) 1099 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1100 else 1101 min_stripe_size = BTRFS_STRIPE_LEN; 1102 1103 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1104 if (!device->in_fs_metadata || !device->bdev) 1105 continue; 1106 1107 avail_space = device->total_bytes - device->bytes_used; 1108 1109 /* align with stripe_len */ 1110 do_div(avail_space, BTRFS_STRIPE_LEN); 1111 avail_space *= BTRFS_STRIPE_LEN; 1112 1113 /* 1114 * In order to avoid overwritting the superblock on the drive, 1115 * btrfs starts at an offset of at least 1MB when doing chunk 1116 * allocation. 1117 */ 1118 skip_space = 1024 * 1024; 1119 1120 /* user can set the offset in fs_info->alloc_start. */ 1121 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1122 device->total_bytes) 1123 skip_space = max(fs_info->alloc_start, skip_space); 1124 1125 /* 1126 * btrfs can not use the free space in [0, skip_space - 1], 1127 * we must subtract it from the total. In order to implement 1128 * it, we account the used space in this range first. 1129 */ 1130 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1131 &used_space); 1132 if (ret) { 1133 kfree(devices_info); 1134 return ret; 1135 } 1136 1137 /* calc the free space in [0, skip_space - 1] */ 1138 skip_space -= used_space; 1139 1140 /* 1141 * we can use the free space in [0, skip_space - 1], subtract 1142 * it from the total. 1143 */ 1144 if (avail_space && avail_space >= skip_space) 1145 avail_space -= skip_space; 1146 else 1147 avail_space = 0; 1148 1149 if (avail_space < min_stripe_size) 1150 continue; 1151 1152 devices_info[i].dev = device; 1153 devices_info[i].max_avail = avail_space; 1154 1155 i++; 1156 } 1157 1158 nr_devices = i; 1159 1160 btrfs_descending_sort_devices(devices_info, nr_devices); 1161 1162 i = nr_devices - 1; 1163 avail_space = 0; 1164 while (nr_devices >= min_stripes) { 1165 if (num_stripes > nr_devices) 1166 num_stripes = nr_devices; 1167 1168 if (devices_info[i].max_avail >= min_stripe_size) { 1169 int j; 1170 u64 alloc_size; 1171 1172 avail_space += devices_info[i].max_avail * num_stripes; 1173 alloc_size = devices_info[i].max_avail; 1174 for (j = i + 1 - num_stripes; j <= i; j++) 1175 devices_info[j].max_avail -= alloc_size; 1176 } 1177 i--; 1178 nr_devices--; 1179 } 1180 1181 kfree(devices_info); 1182 *free_bytes = avail_space; 1183 return 0; 1184 } 1185 1186 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1187 { 1188 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1189 struct btrfs_super_block *disk_super = fs_info->super_copy; 1190 struct list_head *head = &fs_info->space_info; 1191 struct btrfs_space_info *found; 1192 u64 total_used = 0; 1193 u64 total_free_data = 0; 1194 int bits = dentry->d_sb->s_blocksize_bits; 1195 __be32 *fsid = (__be32 *)fs_info->fsid; 1196 int ret; 1197 1198 /* holding chunk_muext to avoid allocating new chunks */ 1199 mutex_lock(&fs_info->chunk_mutex); 1200 rcu_read_lock(); 1201 list_for_each_entry_rcu(found, head, list) { 1202 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1203 total_free_data += found->disk_total - found->disk_used; 1204 total_free_data -= 1205 btrfs_account_ro_block_groups_free_space(found); 1206 } 1207 1208 total_used += found->disk_used; 1209 } 1210 rcu_read_unlock(); 1211 1212 buf->f_namelen = BTRFS_NAME_LEN; 1213 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1214 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1215 buf->f_bsize = dentry->d_sb->s_blocksize; 1216 buf->f_type = BTRFS_SUPER_MAGIC; 1217 buf->f_bavail = total_free_data; 1218 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1219 if (ret) { 1220 mutex_unlock(&fs_info->chunk_mutex); 1221 return ret; 1222 } 1223 buf->f_bavail += total_free_data; 1224 buf->f_bavail = buf->f_bavail >> bits; 1225 mutex_unlock(&fs_info->chunk_mutex); 1226 1227 /* We treat it as constant endianness (it doesn't matter _which_) 1228 because we want the fsid to come out the same whether mounted 1229 on a big-endian or little-endian host */ 1230 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1231 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1232 /* Mask in the root object ID too, to disambiguate subvols */ 1233 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1234 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1235 1236 return 0; 1237 } 1238 1239 static void btrfs_kill_super(struct super_block *sb) 1240 { 1241 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1242 kill_anon_super(sb); 1243 free_fs_info(fs_info); 1244 } 1245 1246 static struct file_system_type btrfs_fs_type = { 1247 .owner = THIS_MODULE, 1248 .name = "btrfs", 1249 .mount = btrfs_mount, 1250 .kill_sb = btrfs_kill_super, 1251 .fs_flags = FS_REQUIRES_DEV, 1252 }; 1253 1254 /* 1255 * used by btrfsctl to scan devices when no FS is mounted 1256 */ 1257 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1258 unsigned long arg) 1259 { 1260 struct btrfs_ioctl_vol_args *vol; 1261 struct btrfs_fs_devices *fs_devices; 1262 int ret = -ENOTTY; 1263 1264 if (!capable(CAP_SYS_ADMIN)) 1265 return -EPERM; 1266 1267 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1268 if (IS_ERR(vol)) 1269 return PTR_ERR(vol); 1270 1271 switch (cmd) { 1272 case BTRFS_IOC_SCAN_DEV: 1273 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1274 &btrfs_fs_type, &fs_devices); 1275 break; 1276 } 1277 1278 kfree(vol); 1279 return ret; 1280 } 1281 1282 static int btrfs_freeze(struct super_block *sb) 1283 { 1284 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1285 mutex_lock(&fs_info->transaction_kthread_mutex); 1286 mutex_lock(&fs_info->cleaner_mutex); 1287 return 0; 1288 } 1289 1290 static int btrfs_unfreeze(struct super_block *sb) 1291 { 1292 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1293 mutex_unlock(&fs_info->cleaner_mutex); 1294 mutex_unlock(&fs_info->transaction_kthread_mutex); 1295 return 0; 1296 } 1297 1298 static void btrfs_fs_dirty_inode(struct inode *inode, int flags) 1299 { 1300 int ret; 1301 1302 ret = btrfs_dirty_inode(inode); 1303 if (ret) 1304 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu " 1305 "error %d\n", btrfs_ino(inode), ret); 1306 } 1307 1308 static const struct super_operations btrfs_super_ops = { 1309 .drop_inode = btrfs_drop_inode, 1310 .evict_inode = btrfs_evict_inode, 1311 .put_super = btrfs_put_super, 1312 .sync_fs = btrfs_sync_fs, 1313 .show_options = btrfs_show_options, 1314 .write_inode = btrfs_write_inode, 1315 .dirty_inode = btrfs_fs_dirty_inode, 1316 .alloc_inode = btrfs_alloc_inode, 1317 .destroy_inode = btrfs_destroy_inode, 1318 .statfs = btrfs_statfs, 1319 .remount_fs = btrfs_remount, 1320 .freeze_fs = btrfs_freeze, 1321 .unfreeze_fs = btrfs_unfreeze, 1322 }; 1323 1324 static const struct file_operations btrfs_ctl_fops = { 1325 .unlocked_ioctl = btrfs_control_ioctl, 1326 .compat_ioctl = btrfs_control_ioctl, 1327 .owner = THIS_MODULE, 1328 .llseek = noop_llseek, 1329 }; 1330 1331 static struct miscdevice btrfs_misc = { 1332 .minor = BTRFS_MINOR, 1333 .name = "btrfs-control", 1334 .fops = &btrfs_ctl_fops 1335 }; 1336 1337 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1338 MODULE_ALIAS("devname:btrfs-control"); 1339 1340 static int btrfs_interface_init(void) 1341 { 1342 return misc_register(&btrfs_misc); 1343 } 1344 1345 static void btrfs_interface_exit(void) 1346 { 1347 if (misc_deregister(&btrfs_misc) < 0) 1348 printk(KERN_INFO "misc_deregister failed for control device"); 1349 } 1350 1351 static int __init init_btrfs_fs(void) 1352 { 1353 int err; 1354 1355 err = btrfs_init_sysfs(); 1356 if (err) 1357 return err; 1358 1359 err = btrfs_init_compress(); 1360 if (err) 1361 goto free_sysfs; 1362 1363 err = btrfs_init_cachep(); 1364 if (err) 1365 goto free_compress; 1366 1367 err = extent_io_init(); 1368 if (err) 1369 goto free_cachep; 1370 1371 err = extent_map_init(); 1372 if (err) 1373 goto free_extent_io; 1374 1375 err = btrfs_delayed_inode_init(); 1376 if (err) 1377 goto free_extent_map; 1378 1379 err = btrfs_interface_init(); 1380 if (err) 1381 goto free_delayed_inode; 1382 1383 err = register_filesystem(&btrfs_fs_type); 1384 if (err) 1385 goto unregister_ioctl; 1386 1387 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1388 return 0; 1389 1390 unregister_ioctl: 1391 btrfs_interface_exit(); 1392 free_delayed_inode: 1393 btrfs_delayed_inode_exit(); 1394 free_extent_map: 1395 extent_map_exit(); 1396 free_extent_io: 1397 extent_io_exit(); 1398 free_cachep: 1399 btrfs_destroy_cachep(); 1400 free_compress: 1401 btrfs_exit_compress(); 1402 free_sysfs: 1403 btrfs_exit_sysfs(); 1404 return err; 1405 } 1406 1407 static void __exit exit_btrfs_fs(void) 1408 { 1409 btrfs_destroy_cachep(); 1410 btrfs_delayed_inode_exit(); 1411 extent_map_exit(); 1412 extent_io_exit(); 1413 btrfs_interface_exit(); 1414 unregister_filesystem(&btrfs_fs_type); 1415 btrfs_exit_sysfs(); 1416 btrfs_cleanup_fs_uuids(); 1417 btrfs_exit_compress(); 1418 } 1419 1420 module_init(init_btrfs_fs) 1421 module_exit(exit_btrfs_fs) 1422 1423 MODULE_LICENSE("GPL"); 1424