xref: /linux/fs/btrfs/super.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "props.h"
38 #include "xattr.h"
39 #include "bio.h"
40 #include "export.h"
41 #include "compression.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #include "ioctl.h"
58 #include "scrub.h"
59 #include "verity.h"
60 #include "super.h"
61 #include "extent-tree.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/btrfs.h>
64 
65 static const struct super_operations btrfs_super_ops;
66 static struct file_system_type btrfs_fs_type;
67 
68 static void btrfs_put_super(struct super_block *sb)
69 {
70 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
71 
72 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
73 	close_ctree(fs_info);
74 }
75 
76 /* Store the mount options related information. */
77 struct btrfs_fs_context {
78 	char *subvol_name;
79 	u64 subvol_objectid;
80 	u64 max_inline;
81 	u32 commit_interval;
82 	u32 metadata_ratio;
83 	u32 thread_pool_size;
84 	unsigned long mount_opt;
85 	unsigned long compress_type:4;
86 	unsigned int compress_level;
87 	refcount_t refs;
88 };
89 
90 enum {
91 	Opt_acl,
92 	Opt_clear_cache,
93 	Opt_commit_interval,
94 	Opt_compress,
95 	Opt_compress_force,
96 	Opt_compress_force_type,
97 	Opt_compress_type,
98 	Opt_degraded,
99 	Opt_device,
100 	Opt_fatal_errors,
101 	Opt_flushoncommit,
102 	Opt_max_inline,
103 	Opt_barrier,
104 	Opt_datacow,
105 	Opt_datasum,
106 	Opt_defrag,
107 	Opt_discard,
108 	Opt_discard_mode,
109 	Opt_ratio,
110 	Opt_rescan_uuid_tree,
111 	Opt_skip_balance,
112 	Opt_space_cache,
113 	Opt_space_cache_version,
114 	Opt_ssd,
115 	Opt_ssd_spread,
116 	Opt_subvol,
117 	Opt_subvol_empty,
118 	Opt_subvolid,
119 	Opt_thread_pool,
120 	Opt_treelog,
121 	Opt_user_subvol_rm_allowed,
122 
123 	/* Rescue options */
124 	Opt_rescue,
125 	Opt_usebackuproot,
126 	Opt_nologreplay,
127 	Opt_ignorebadroots,
128 	Opt_ignoredatacsums,
129 	Opt_rescue_all,
130 
131 	/* Debugging options */
132 	Opt_enospc_debug,
133 #ifdef CONFIG_BTRFS_DEBUG
134 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
135 #endif
136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
137 	Opt_ref_verify,
138 #endif
139 	Opt_err,
140 };
141 
142 enum {
143 	Opt_fatal_errors_panic,
144 	Opt_fatal_errors_bug,
145 };
146 
147 static const struct constant_table btrfs_parameter_fatal_errors[] = {
148 	{ "panic", Opt_fatal_errors_panic },
149 	{ "bug", Opt_fatal_errors_bug },
150 	{}
151 };
152 
153 enum {
154 	Opt_discard_sync,
155 	Opt_discard_async,
156 };
157 
158 static const struct constant_table btrfs_parameter_discard[] = {
159 	{ "sync", Opt_discard_sync },
160 	{ "async", Opt_discard_async },
161 	{}
162 };
163 
164 enum {
165 	Opt_space_cache_v1,
166 	Opt_space_cache_v2,
167 };
168 
169 static const struct constant_table btrfs_parameter_space_cache[] = {
170 	{ "v1", Opt_space_cache_v1 },
171 	{ "v2", Opt_space_cache_v2 },
172 	{}
173 };
174 
175 enum {
176 	Opt_rescue_usebackuproot,
177 	Opt_rescue_nologreplay,
178 	Opt_rescue_ignorebadroots,
179 	Opt_rescue_ignoredatacsums,
180 	Opt_rescue_parameter_all,
181 };
182 
183 static const struct constant_table btrfs_parameter_rescue[] = {
184 	{ "usebackuproot", Opt_rescue_usebackuproot },
185 	{ "nologreplay", Opt_rescue_nologreplay },
186 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
187 	{ "ibadroots", Opt_rescue_ignorebadroots },
188 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
189 	{ "idatacsums", Opt_rescue_ignoredatacsums },
190 	{ "all", Opt_rescue_parameter_all },
191 	{}
192 };
193 
194 #ifdef CONFIG_BTRFS_DEBUG
195 enum {
196 	Opt_fragment_parameter_data,
197 	Opt_fragment_parameter_metadata,
198 	Opt_fragment_parameter_all,
199 };
200 
201 static const struct constant_table btrfs_parameter_fragment[] = {
202 	{ "data", Opt_fragment_parameter_data },
203 	{ "metadata", Opt_fragment_parameter_metadata },
204 	{ "all", Opt_fragment_parameter_all },
205 	{}
206 };
207 #endif
208 
209 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
210 	fsparam_flag_no("acl", Opt_acl),
211 	fsparam_flag_no("autodefrag", Opt_defrag),
212 	fsparam_flag_no("barrier", Opt_barrier),
213 	fsparam_flag("clear_cache", Opt_clear_cache),
214 	fsparam_u32("commit", Opt_commit_interval),
215 	fsparam_flag("compress", Opt_compress),
216 	fsparam_string("compress", Opt_compress_type),
217 	fsparam_flag("compress-force", Opt_compress_force),
218 	fsparam_string("compress-force", Opt_compress_force_type),
219 	fsparam_flag_no("datacow", Opt_datacow),
220 	fsparam_flag_no("datasum", Opt_datasum),
221 	fsparam_flag("degraded", Opt_degraded),
222 	fsparam_string("device", Opt_device),
223 	fsparam_flag_no("discard", Opt_discard),
224 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
225 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
226 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
227 	fsparam_string("max_inline", Opt_max_inline),
228 	fsparam_u32("metadata_ratio", Opt_ratio),
229 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
230 	fsparam_flag("skip_balance", Opt_skip_balance),
231 	fsparam_flag_no("space_cache", Opt_space_cache),
232 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
233 	fsparam_flag_no("ssd", Opt_ssd),
234 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
235 	fsparam_string("subvol", Opt_subvol),
236 	fsparam_flag("subvol=", Opt_subvol_empty),
237 	fsparam_u64("subvolid", Opt_subvolid),
238 	fsparam_u32("thread_pool", Opt_thread_pool),
239 	fsparam_flag_no("treelog", Opt_treelog),
240 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
241 
242 	/* Rescue options. */
243 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
244 	/* Deprecated, with alias rescue=nologreplay */
245 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
246 	/* Deprecated, with alias rescue=usebackuproot */
247 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
248 
249 	/* Debugging options. */
250 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
251 #ifdef CONFIG_BTRFS_DEBUG
252 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
253 #endif
254 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
255 	fsparam_flag("ref_verify", Opt_ref_verify),
256 #endif
257 	{}
258 };
259 
260 /* No support for restricting writes to btrfs devices yet... */
261 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
262 {
263 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
264 }
265 
266 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
267 {
268 	struct btrfs_fs_context *ctx = fc->fs_private;
269 	struct fs_parse_result result;
270 	int opt;
271 
272 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
273 	if (opt < 0)
274 		return opt;
275 
276 	switch (opt) {
277 	case Opt_degraded:
278 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
279 		break;
280 	case Opt_subvol_empty:
281 		/*
282 		 * This exists because we used to allow it on accident, so we're
283 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
284 		 * empty subvol= again").
285 		 */
286 		break;
287 	case Opt_subvol:
288 		kfree(ctx->subvol_name);
289 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
290 		if (!ctx->subvol_name)
291 			return -ENOMEM;
292 		break;
293 	case Opt_subvolid:
294 		ctx->subvol_objectid = result.uint_64;
295 
296 		/* subvolid=0 means give me the original fs_tree. */
297 		if (!ctx->subvol_objectid)
298 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
299 		break;
300 	case Opt_device: {
301 		struct btrfs_device *device;
302 		blk_mode_t mode = btrfs_open_mode(fc);
303 
304 		mutex_lock(&uuid_mutex);
305 		device = btrfs_scan_one_device(param->string, mode, false);
306 		mutex_unlock(&uuid_mutex);
307 		if (IS_ERR(device))
308 			return PTR_ERR(device);
309 		break;
310 	}
311 	case Opt_datasum:
312 		if (result.negated) {
313 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
314 		} else {
315 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
316 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
317 		}
318 		break;
319 	case Opt_datacow:
320 		if (result.negated) {
321 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
322 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
323 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
324 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
325 		} else {
326 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
327 		}
328 		break;
329 	case Opt_compress_force:
330 	case Opt_compress_force_type:
331 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
332 		fallthrough;
333 	case Opt_compress:
334 	case Opt_compress_type:
335 		if (opt == Opt_compress || opt == Opt_compress_force) {
336 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
337 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
338 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
339 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
340 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
341 		} else if (strncmp(param->string, "zlib", 4) == 0) {
342 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
343 			ctx->compress_level =
344 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
345 							 param->string + 4);
346 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
347 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
348 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
349 		} else if (strncmp(param->string, "lzo", 3) == 0) {
350 			ctx->compress_type = BTRFS_COMPRESS_LZO;
351 			ctx->compress_level = 0;
352 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
353 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
354 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
355 		} else if (strncmp(param->string, "zstd", 4) == 0) {
356 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
357 			ctx->compress_level =
358 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
359 							 param->string + 4);
360 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
361 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
362 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
363 		} else if (strncmp(param->string, "no", 2) == 0) {
364 			ctx->compress_level = 0;
365 			ctx->compress_type = 0;
366 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
367 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
368 		} else {
369 			btrfs_err(NULL, "unrecognized compression value %s",
370 				  param->string);
371 			return -EINVAL;
372 		}
373 		break;
374 	case Opt_ssd:
375 		if (result.negated) {
376 			btrfs_set_opt(ctx->mount_opt, NOSSD);
377 			btrfs_clear_opt(ctx->mount_opt, SSD);
378 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
379 		} else {
380 			btrfs_set_opt(ctx->mount_opt, SSD);
381 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
382 		}
383 		break;
384 	case Opt_ssd_spread:
385 		if (result.negated) {
386 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
387 		} else {
388 			btrfs_set_opt(ctx->mount_opt, SSD);
389 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
390 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
391 		}
392 		break;
393 	case Opt_barrier:
394 		if (result.negated)
395 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
396 		else
397 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
398 		break;
399 	case Opt_thread_pool:
400 		if (result.uint_32 == 0) {
401 			btrfs_err(NULL, "invalid value 0 for thread_pool");
402 			return -EINVAL;
403 		}
404 		ctx->thread_pool_size = result.uint_32;
405 		break;
406 	case Opt_max_inline:
407 		ctx->max_inline = memparse(param->string, NULL);
408 		break;
409 	case Opt_acl:
410 		if (result.negated) {
411 			fc->sb_flags &= ~SB_POSIXACL;
412 		} else {
413 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
414 			fc->sb_flags |= SB_POSIXACL;
415 #else
416 			btrfs_err(NULL, "support for ACL not compiled in");
417 			return -EINVAL;
418 #endif
419 		}
420 		/*
421 		 * VFS limits the ability to toggle ACL on and off via remount,
422 		 * despite every file system allowing this.  This seems to be
423 		 * an oversight since we all do, but it'll fail if we're
424 		 * remounting.  So don't set the mask here, we'll check it in
425 		 * btrfs_reconfigure and do the toggling ourselves.
426 		 */
427 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
428 			fc->sb_flags_mask |= SB_POSIXACL;
429 		break;
430 	case Opt_treelog:
431 		if (result.negated)
432 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
433 		else
434 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
435 		break;
436 	case Opt_nologreplay:
437 		btrfs_warn(NULL,
438 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
439 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
440 		break;
441 	case Opt_flushoncommit:
442 		if (result.negated)
443 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
444 		else
445 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
446 		break;
447 	case Opt_ratio:
448 		ctx->metadata_ratio = result.uint_32;
449 		break;
450 	case Opt_discard:
451 		if (result.negated) {
452 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
453 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
454 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
455 		} else {
456 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
457 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
458 		}
459 		break;
460 	case Opt_discard_mode:
461 		switch (result.uint_32) {
462 		case Opt_discard_sync:
463 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
464 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
465 			break;
466 		case Opt_discard_async:
467 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
468 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
469 			break;
470 		default:
471 			btrfs_err(NULL, "unrecognized discard mode value %s",
472 				  param->key);
473 			return -EINVAL;
474 		}
475 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
476 		break;
477 	case Opt_space_cache:
478 		if (result.negated) {
479 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
480 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
481 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
482 		} else {
483 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
484 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
485 		}
486 		break;
487 	case Opt_space_cache_version:
488 		switch (result.uint_32) {
489 		case Opt_space_cache_v1:
490 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
491 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
492 			break;
493 		case Opt_space_cache_v2:
494 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
495 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
496 			break;
497 		default:
498 			btrfs_err(NULL, "unrecognized space_cache value %s",
499 				  param->key);
500 			return -EINVAL;
501 		}
502 		break;
503 	case Opt_rescan_uuid_tree:
504 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
505 		break;
506 	case Opt_clear_cache:
507 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
508 		break;
509 	case Opt_user_subvol_rm_allowed:
510 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
511 		break;
512 	case Opt_enospc_debug:
513 		if (result.negated)
514 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
515 		else
516 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
517 		break;
518 	case Opt_defrag:
519 		if (result.negated)
520 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
521 		else
522 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
523 		break;
524 	case Opt_usebackuproot:
525 		btrfs_warn(NULL,
526 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
527 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
528 
529 		/* If we're loading the backup roots we can't trust the space cache. */
530 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
531 		break;
532 	case Opt_skip_balance:
533 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
534 		break;
535 	case Opt_fatal_errors:
536 		switch (result.uint_32) {
537 		case Opt_fatal_errors_panic:
538 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
539 			break;
540 		case Opt_fatal_errors_bug:
541 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
542 			break;
543 		default:
544 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
545 				  param->key);
546 			return -EINVAL;
547 		}
548 		break;
549 	case Opt_commit_interval:
550 		ctx->commit_interval = result.uint_32;
551 		if (ctx->commit_interval == 0)
552 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
553 		break;
554 	case Opt_rescue:
555 		switch (result.uint_32) {
556 		case Opt_rescue_usebackuproot:
557 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
558 			break;
559 		case Opt_rescue_nologreplay:
560 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
561 			break;
562 		case Opt_rescue_ignorebadroots:
563 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
564 			break;
565 		case Opt_rescue_ignoredatacsums:
566 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
567 			break;
568 		case Opt_rescue_parameter_all:
569 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
570 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
571 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
572 			break;
573 		default:
574 			btrfs_info(NULL, "unrecognized rescue option '%s'",
575 				   param->key);
576 			return -EINVAL;
577 		}
578 		break;
579 #ifdef CONFIG_BTRFS_DEBUG
580 	case Opt_fragment:
581 		switch (result.uint_32) {
582 		case Opt_fragment_parameter_all:
583 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
584 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
585 			break;
586 		case Opt_fragment_parameter_metadata:
587 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
588 			break;
589 		case Opt_fragment_parameter_data:
590 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
591 			break;
592 		default:
593 			btrfs_info(NULL, "unrecognized fragment option '%s'",
594 				   param->key);
595 			return -EINVAL;
596 		}
597 		break;
598 #endif
599 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
600 	case Opt_ref_verify:
601 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
602 		break;
603 #endif
604 	default:
605 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
606 		return -EINVAL;
607 	}
608 
609 	return 0;
610 }
611 
612 /*
613  * Some options only have meaning at mount time and shouldn't persist across
614  * remounts, or be displayed. Clear these at the end of mount and remount code
615  * paths.
616  */
617 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
618 {
619 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
620 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
621 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
622 }
623 
624 static bool check_ro_option(struct btrfs_fs_info *fs_info,
625 			    unsigned long mount_opt, unsigned long opt,
626 			    const char *opt_name)
627 {
628 	if (mount_opt & opt) {
629 		btrfs_err(fs_info, "%s must be used with ro mount option",
630 			  opt_name);
631 		return true;
632 	}
633 	return false;
634 }
635 
636 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
637 			 unsigned long flags)
638 {
639 	bool ret = true;
640 
641 	if (!(flags & SB_RDONLY) &&
642 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
643 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
644 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
645 		ret = false;
646 
647 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
648 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
649 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
650 		btrfs_err(info, "cannot disable free-space-tree");
651 		ret = false;
652 	}
653 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
654 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
655 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
656 		ret = false;
657 	}
658 
659 	if (btrfs_check_mountopts_zoned(info, mount_opt))
660 		ret = false;
661 
662 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
663 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
664 			btrfs_info(info, "disk space caching is enabled");
665 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
666 			btrfs_info(info, "using free-space-tree");
667 	}
668 
669 	return ret;
670 }
671 
672 /*
673  * This is subtle, we only call this during open_ctree().  We need to pre-load
674  * the mount options with the on-disk settings.  Before the new mount API took
675  * effect we would do this on mount and remount.  With the new mount API we'll
676  * only do this on the initial mount.
677  *
678  * This isn't a change in behavior, because we're using the current state of the
679  * file system to set the current mount options.  If you mounted with special
680  * options to disable these features and then remounted we wouldn't revert the
681  * settings, because mounting without these features cleared the on-disk
682  * settings, so this being called on re-mount is not needed.
683  */
684 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
685 {
686 	if (fs_info->sectorsize < PAGE_SIZE) {
687 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
688 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
689 			btrfs_info(fs_info,
690 				   "forcing free space tree for sector size %u with page size %lu",
691 				   fs_info->sectorsize, PAGE_SIZE);
692 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
693 		}
694 	}
695 
696 	/*
697 	 * At this point our mount options are populated, so we only mess with
698 	 * these settings if we don't have any settings already.
699 	 */
700 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
701 		return;
702 
703 	if (btrfs_is_zoned(fs_info) &&
704 	    btrfs_free_space_cache_v1_active(fs_info)) {
705 		btrfs_info(fs_info, "zoned: clearing existing space cache");
706 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
707 		return;
708 	}
709 
710 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
711 		return;
712 
713 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
714 		return;
715 
716 	/*
717 	 * At this point we don't have explicit options set by the user, set
718 	 * them ourselves based on the state of the file system.
719 	 */
720 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
721 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
722 	else if (btrfs_free_space_cache_v1_active(fs_info))
723 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
724 }
725 
726 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
727 {
728 	if (!btrfs_test_opt(fs_info, NOSSD) &&
729 	    !fs_info->fs_devices->rotating)
730 		btrfs_set_opt(fs_info->mount_opt, SSD);
731 
732 	/*
733 	 * For devices supporting discard turn on discard=async automatically,
734 	 * unless it's already set or disabled. This could be turned off by
735 	 * nodiscard for the same mount.
736 	 *
737 	 * The zoned mode piggy backs on the discard functionality for
738 	 * resetting a zone. There is no reason to delay the zone reset as it is
739 	 * fast enough. So, do not enable async discard for zoned mode.
740 	 */
741 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
742 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
743 	      btrfs_test_opt(fs_info, NODISCARD)) &&
744 	    fs_info->fs_devices->discardable &&
745 	    !btrfs_is_zoned(fs_info))
746 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
747 }
748 
749 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
750 					  u64 subvol_objectid)
751 {
752 	struct btrfs_root *root = fs_info->tree_root;
753 	struct btrfs_root *fs_root = NULL;
754 	struct btrfs_root_ref *root_ref;
755 	struct btrfs_inode_ref *inode_ref;
756 	struct btrfs_key key;
757 	struct btrfs_path *path = NULL;
758 	char *name = NULL, *ptr;
759 	u64 dirid;
760 	int len;
761 	int ret;
762 
763 	path = btrfs_alloc_path();
764 	if (!path) {
765 		ret = -ENOMEM;
766 		goto err;
767 	}
768 
769 	name = kmalloc(PATH_MAX, GFP_KERNEL);
770 	if (!name) {
771 		ret = -ENOMEM;
772 		goto err;
773 	}
774 	ptr = name + PATH_MAX - 1;
775 	ptr[0] = '\0';
776 
777 	/*
778 	 * Walk up the subvolume trees in the tree of tree roots by root
779 	 * backrefs until we hit the top-level subvolume.
780 	 */
781 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
782 		key.objectid = subvol_objectid;
783 		key.type = BTRFS_ROOT_BACKREF_KEY;
784 		key.offset = (u64)-1;
785 
786 		ret = btrfs_search_backwards(root, &key, path);
787 		if (ret < 0) {
788 			goto err;
789 		} else if (ret > 0) {
790 			ret = -ENOENT;
791 			goto err;
792 		}
793 
794 		subvol_objectid = key.offset;
795 
796 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
797 					  struct btrfs_root_ref);
798 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
799 		ptr -= len + 1;
800 		if (ptr < name) {
801 			ret = -ENAMETOOLONG;
802 			goto err;
803 		}
804 		read_extent_buffer(path->nodes[0], ptr + 1,
805 				   (unsigned long)(root_ref + 1), len);
806 		ptr[0] = '/';
807 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
808 		btrfs_release_path(path);
809 
810 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
811 		if (IS_ERR(fs_root)) {
812 			ret = PTR_ERR(fs_root);
813 			fs_root = NULL;
814 			goto err;
815 		}
816 
817 		/*
818 		 * Walk up the filesystem tree by inode refs until we hit the
819 		 * root directory.
820 		 */
821 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
822 			key.objectid = dirid;
823 			key.type = BTRFS_INODE_REF_KEY;
824 			key.offset = (u64)-1;
825 
826 			ret = btrfs_search_backwards(fs_root, &key, path);
827 			if (ret < 0) {
828 				goto err;
829 			} else if (ret > 0) {
830 				ret = -ENOENT;
831 				goto err;
832 			}
833 
834 			dirid = key.offset;
835 
836 			inode_ref = btrfs_item_ptr(path->nodes[0],
837 						   path->slots[0],
838 						   struct btrfs_inode_ref);
839 			len = btrfs_inode_ref_name_len(path->nodes[0],
840 						       inode_ref);
841 			ptr -= len + 1;
842 			if (ptr < name) {
843 				ret = -ENAMETOOLONG;
844 				goto err;
845 			}
846 			read_extent_buffer(path->nodes[0], ptr + 1,
847 					   (unsigned long)(inode_ref + 1), len);
848 			ptr[0] = '/';
849 			btrfs_release_path(path);
850 		}
851 		btrfs_put_root(fs_root);
852 		fs_root = NULL;
853 	}
854 
855 	btrfs_free_path(path);
856 	if (ptr == name + PATH_MAX - 1) {
857 		name[0] = '/';
858 		name[1] = '\0';
859 	} else {
860 		memmove(name, ptr, name + PATH_MAX - ptr);
861 	}
862 	return name;
863 
864 err:
865 	btrfs_put_root(fs_root);
866 	btrfs_free_path(path);
867 	kfree(name);
868 	return ERR_PTR(ret);
869 }
870 
871 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
872 {
873 	struct btrfs_root *root = fs_info->tree_root;
874 	struct btrfs_dir_item *di;
875 	struct btrfs_path *path;
876 	struct btrfs_key location;
877 	struct fscrypt_str name = FSTR_INIT("default", 7);
878 	u64 dir_id;
879 
880 	path = btrfs_alloc_path();
881 	if (!path)
882 		return -ENOMEM;
883 
884 	/*
885 	 * Find the "default" dir item which points to the root item that we
886 	 * will mount by default if we haven't been given a specific subvolume
887 	 * to mount.
888 	 */
889 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
890 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
891 	if (IS_ERR(di)) {
892 		btrfs_free_path(path);
893 		return PTR_ERR(di);
894 	}
895 	if (!di) {
896 		/*
897 		 * Ok the default dir item isn't there.  This is weird since
898 		 * it's always been there, but don't freak out, just try and
899 		 * mount the top-level subvolume.
900 		 */
901 		btrfs_free_path(path);
902 		*objectid = BTRFS_FS_TREE_OBJECTID;
903 		return 0;
904 	}
905 
906 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 	btrfs_free_path(path);
908 	*objectid = location.objectid;
909 	return 0;
910 }
911 
912 static int btrfs_fill_super(struct super_block *sb,
913 			    struct btrfs_fs_devices *fs_devices,
914 			    void *data)
915 {
916 	struct inode *inode;
917 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
918 	int err;
919 
920 	sb->s_maxbytes = MAX_LFS_FILESIZE;
921 	sb->s_magic = BTRFS_SUPER_MAGIC;
922 	sb->s_op = &btrfs_super_ops;
923 	sb->s_d_op = &btrfs_dentry_operations;
924 	sb->s_export_op = &btrfs_export_ops;
925 #ifdef CONFIG_FS_VERITY
926 	sb->s_vop = &btrfs_verityops;
927 #endif
928 	sb->s_xattr = btrfs_xattr_handlers;
929 	sb->s_time_gran = 1;
930 	sb->s_iflags |= SB_I_CGROUPWB;
931 
932 	err = super_setup_bdi(sb);
933 	if (err) {
934 		btrfs_err(fs_info, "super_setup_bdi failed");
935 		return err;
936 	}
937 
938 	err = open_ctree(sb, fs_devices, (char *)data);
939 	if (err) {
940 		btrfs_err(fs_info, "open_ctree failed");
941 		return err;
942 	}
943 
944 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
945 	if (IS_ERR(inode)) {
946 		err = PTR_ERR(inode);
947 		btrfs_handle_fs_error(fs_info, err, NULL);
948 		goto fail_close;
949 	}
950 
951 	sb->s_root = d_make_root(inode);
952 	if (!sb->s_root) {
953 		err = -ENOMEM;
954 		goto fail_close;
955 	}
956 
957 	sb->s_flags |= SB_ACTIVE;
958 	return 0;
959 
960 fail_close:
961 	close_ctree(fs_info);
962 	return err;
963 }
964 
965 int btrfs_sync_fs(struct super_block *sb, int wait)
966 {
967 	struct btrfs_trans_handle *trans;
968 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
969 	struct btrfs_root *root = fs_info->tree_root;
970 
971 	trace_btrfs_sync_fs(fs_info, wait);
972 
973 	if (!wait) {
974 		filemap_flush(fs_info->btree_inode->i_mapping);
975 		return 0;
976 	}
977 
978 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
979 
980 	trans = btrfs_attach_transaction_barrier(root);
981 	if (IS_ERR(trans)) {
982 		/* no transaction, don't bother */
983 		if (PTR_ERR(trans) == -ENOENT) {
984 			/*
985 			 * Exit unless we have some pending changes
986 			 * that need to go through commit
987 			 */
988 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
989 				      &fs_info->flags))
990 				return 0;
991 			/*
992 			 * A non-blocking test if the fs is frozen. We must not
993 			 * start a new transaction here otherwise a deadlock
994 			 * happens. The pending operations are delayed to the
995 			 * next commit after thawing.
996 			 */
997 			if (sb_start_write_trylock(sb))
998 				sb_end_write(sb);
999 			else
1000 				return 0;
1001 			trans = btrfs_start_transaction(root, 0);
1002 		}
1003 		if (IS_ERR(trans))
1004 			return PTR_ERR(trans);
1005 	}
1006 	return btrfs_commit_transaction(trans);
1007 }
1008 
1009 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1010 {
1011 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1012 	*printed = true;
1013 }
1014 
1015 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1016 {
1017 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1018 	const char *compress_type;
1019 	const char *subvol_name;
1020 	bool printed = false;
1021 
1022 	if (btrfs_test_opt(info, DEGRADED))
1023 		seq_puts(seq, ",degraded");
1024 	if (btrfs_test_opt(info, NODATASUM))
1025 		seq_puts(seq, ",nodatasum");
1026 	if (btrfs_test_opt(info, NODATACOW))
1027 		seq_puts(seq, ",nodatacow");
1028 	if (btrfs_test_opt(info, NOBARRIER))
1029 		seq_puts(seq, ",nobarrier");
1030 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1031 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032 	if (info->thread_pool_size !=  min_t(unsigned long,
1033 					     num_online_cpus() + 2, 8))
1034 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1035 	if (btrfs_test_opt(info, COMPRESS)) {
1036 		compress_type = btrfs_compress_type2str(info->compress_type);
1037 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1038 			seq_printf(seq, ",compress-force=%s", compress_type);
1039 		else
1040 			seq_printf(seq, ",compress=%s", compress_type);
1041 		if (info->compress_level)
1042 			seq_printf(seq, ":%d", info->compress_level);
1043 	}
1044 	if (btrfs_test_opt(info, NOSSD))
1045 		seq_puts(seq, ",nossd");
1046 	if (btrfs_test_opt(info, SSD_SPREAD))
1047 		seq_puts(seq, ",ssd_spread");
1048 	else if (btrfs_test_opt(info, SSD))
1049 		seq_puts(seq, ",ssd");
1050 	if (btrfs_test_opt(info, NOTREELOG))
1051 		seq_puts(seq, ",notreelog");
1052 	if (btrfs_test_opt(info, NOLOGREPLAY))
1053 		print_rescue_option(seq, "nologreplay", &printed);
1054 	if (btrfs_test_opt(info, USEBACKUPROOT))
1055 		print_rescue_option(seq, "usebackuproot", &printed);
1056 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1057 		print_rescue_option(seq, "ignorebadroots", &printed);
1058 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1059 		print_rescue_option(seq, "ignoredatacsums", &printed);
1060 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1061 		seq_puts(seq, ",flushoncommit");
1062 	if (btrfs_test_opt(info, DISCARD_SYNC))
1063 		seq_puts(seq, ",discard");
1064 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1065 		seq_puts(seq, ",discard=async");
1066 	if (!(info->sb->s_flags & SB_POSIXACL))
1067 		seq_puts(seq, ",noacl");
1068 	if (btrfs_free_space_cache_v1_active(info))
1069 		seq_puts(seq, ",space_cache");
1070 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1071 		seq_puts(seq, ",space_cache=v2");
1072 	else
1073 		seq_puts(seq, ",nospace_cache");
1074 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1075 		seq_puts(seq, ",rescan_uuid_tree");
1076 	if (btrfs_test_opt(info, CLEAR_CACHE))
1077 		seq_puts(seq, ",clear_cache");
1078 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1079 		seq_puts(seq, ",user_subvol_rm_allowed");
1080 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1081 		seq_puts(seq, ",enospc_debug");
1082 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1083 		seq_puts(seq, ",autodefrag");
1084 	if (btrfs_test_opt(info, SKIP_BALANCE))
1085 		seq_puts(seq, ",skip_balance");
1086 	if (info->metadata_ratio)
1087 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1088 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1089 		seq_puts(seq, ",fatal_errors=panic");
1090 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091 		seq_printf(seq, ",commit=%u", info->commit_interval);
1092 #ifdef CONFIG_BTRFS_DEBUG
1093 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1094 		seq_puts(seq, ",fragment=data");
1095 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1096 		seq_puts(seq, ",fragment=metadata");
1097 #endif
1098 	if (btrfs_test_opt(info, REF_VERIFY))
1099 		seq_puts(seq, ",ref_verify");
1100 	seq_printf(seq, ",subvolid=%llu",
1101 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1102 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1103 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104 	if (!IS_ERR(subvol_name)) {
1105 		seq_puts(seq, ",subvol=");
1106 		seq_escape(seq, subvol_name, " \t\n\\");
1107 		kfree(subvol_name);
1108 	}
1109 	return 0;
1110 }
1111 
1112 /*
1113  * subvolumes are identified by ino 256
1114  */
1115 static inline int is_subvolume_inode(struct inode *inode)
1116 {
1117 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1118 		return 1;
1119 	return 0;
1120 }
1121 
1122 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1123 				   struct vfsmount *mnt)
1124 {
1125 	struct dentry *root;
1126 	int ret;
1127 
1128 	if (!subvol_name) {
1129 		if (!subvol_objectid) {
1130 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1131 							  &subvol_objectid);
1132 			if (ret) {
1133 				root = ERR_PTR(ret);
1134 				goto out;
1135 			}
1136 		}
1137 		subvol_name = btrfs_get_subvol_name_from_objectid(
1138 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1139 		if (IS_ERR(subvol_name)) {
1140 			root = ERR_CAST(subvol_name);
1141 			subvol_name = NULL;
1142 			goto out;
1143 		}
1144 
1145 	}
1146 
1147 	root = mount_subtree(mnt, subvol_name);
1148 	/* mount_subtree() drops our reference on the vfsmount. */
1149 	mnt = NULL;
1150 
1151 	if (!IS_ERR(root)) {
1152 		struct super_block *s = root->d_sb;
1153 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1154 		struct inode *root_inode = d_inode(root);
1155 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1156 
1157 		ret = 0;
1158 		if (!is_subvolume_inode(root_inode)) {
1159 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1160 			       subvol_name);
1161 			ret = -EINVAL;
1162 		}
1163 		if (subvol_objectid && root_objectid != subvol_objectid) {
1164 			/*
1165 			 * This will also catch a race condition where a
1166 			 * subvolume which was passed by ID is renamed and
1167 			 * another subvolume is renamed over the old location.
1168 			 */
1169 			btrfs_err(fs_info,
1170 				  "subvol '%s' does not match subvolid %llu",
1171 				  subvol_name, subvol_objectid);
1172 			ret = -EINVAL;
1173 		}
1174 		if (ret) {
1175 			dput(root);
1176 			root = ERR_PTR(ret);
1177 			deactivate_locked_super(s);
1178 		}
1179 	}
1180 
1181 out:
1182 	mntput(mnt);
1183 	kfree(subvol_name);
1184 	return root;
1185 }
1186 
1187 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1188 				     u32 new_pool_size, u32 old_pool_size)
1189 {
1190 	if (new_pool_size == old_pool_size)
1191 		return;
1192 
1193 	fs_info->thread_pool_size = new_pool_size;
1194 
1195 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1196 	       old_pool_size, new_pool_size);
1197 
1198 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1199 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1200 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1201 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1202 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1203 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1204 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1205 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1206 }
1207 
1208 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1209 				       unsigned long old_opts, int flags)
1210 {
1211 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1212 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1213 	     (flags & SB_RDONLY))) {
1214 		/* wait for any defraggers to finish */
1215 		wait_event(fs_info->transaction_wait,
1216 			   (atomic_read(&fs_info->defrag_running) == 0));
1217 		if (flags & SB_RDONLY)
1218 			sync_filesystem(fs_info->sb);
1219 	}
1220 }
1221 
1222 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1223 					 unsigned long old_opts)
1224 {
1225 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1226 
1227 	/*
1228 	 * We need to cleanup all defragable inodes if the autodefragment is
1229 	 * close or the filesystem is read only.
1230 	 */
1231 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1232 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1233 		btrfs_cleanup_defrag_inodes(fs_info);
1234 	}
1235 
1236 	/* If we toggled discard async */
1237 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1238 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1239 		btrfs_discard_resume(fs_info);
1240 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1241 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1242 		btrfs_discard_cleanup(fs_info);
1243 
1244 	/* If we toggled space cache */
1245 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1246 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1247 }
1248 
1249 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1250 {
1251 	int ret;
1252 
1253 	if (BTRFS_FS_ERROR(fs_info)) {
1254 		btrfs_err(fs_info,
1255 			  "remounting read-write after error is not allowed");
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (fs_info->fs_devices->rw_devices == 0)
1260 		return -EACCES;
1261 
1262 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1263 		btrfs_warn(fs_info,
1264 			   "too many missing devices, writable remount is not allowed");
1265 		return -EACCES;
1266 	}
1267 
1268 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1269 		btrfs_warn(fs_info,
1270 			   "mount required to replay tree-log, cannot remount read-write");
1271 		return -EINVAL;
1272 	}
1273 
1274 	/*
1275 	 * NOTE: when remounting with a change that does writes, don't put it
1276 	 * anywhere above this point, as we are not sure to be safe to write
1277 	 * until we pass the above checks.
1278 	 */
1279 	ret = btrfs_start_pre_rw_mount(fs_info);
1280 	if (ret)
1281 		return ret;
1282 
1283 	btrfs_clear_sb_rdonly(fs_info->sb);
1284 
1285 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1286 
1287 	/*
1288 	 * If we've gone from readonly -> read-write, we need to get our
1289 	 * sync/async discard lists in the right state.
1290 	 */
1291 	btrfs_discard_resume(fs_info);
1292 
1293 	return 0;
1294 }
1295 
1296 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1297 {
1298 	/*
1299 	 * This also happens on 'umount -rf' or on shutdown, when the
1300 	 * filesystem is busy.
1301 	 */
1302 	cancel_work_sync(&fs_info->async_reclaim_work);
1303 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1304 
1305 	btrfs_discard_cleanup(fs_info);
1306 
1307 	/* Wait for the uuid_scan task to finish */
1308 	down(&fs_info->uuid_tree_rescan_sem);
1309 	/* Avoid complains from lockdep et al. */
1310 	up(&fs_info->uuid_tree_rescan_sem);
1311 
1312 	btrfs_set_sb_rdonly(fs_info->sb);
1313 
1314 	/*
1315 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1316 	 * loop if it's already active.  If it's already asleep, we'll leave
1317 	 * unused block groups on disk until we're mounted read-write again
1318 	 * unless we clean them up here.
1319 	 */
1320 	btrfs_delete_unused_bgs(fs_info);
1321 
1322 	/*
1323 	 * The cleaner task could be already running before we set the flag
1324 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1325 	 * sure that after we finish the remount, i.e. after we call
1326 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1327 	 * - either because it was dropping a dead root, running delayed iputs
1328 	 *   or deleting an unused block group (the cleaner picked a block
1329 	 *   group from the list of unused block groups before we were able to
1330 	 *   in the previous call to btrfs_delete_unused_bgs()).
1331 	 */
1332 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1333 
1334 	/*
1335 	 * We've set the superblock to RO mode, so we might have made the
1336 	 * cleaner task sleep without running all pending delayed iputs. Go
1337 	 * through all the delayed iputs here, so that if an unmount happens
1338 	 * without remounting RW we don't end up at finishing close_ctree()
1339 	 * with a non-empty list of delayed iputs.
1340 	 */
1341 	btrfs_run_delayed_iputs(fs_info);
1342 
1343 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1344 	btrfs_scrub_cancel(fs_info);
1345 	btrfs_pause_balance(fs_info);
1346 
1347 	/*
1348 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1349 	 * be still running after we are in RO mode, as after that, by the time
1350 	 * we unmount, it might have left a transaction open, so we would leak
1351 	 * the transaction and/or crash.
1352 	 */
1353 	btrfs_qgroup_wait_for_completion(fs_info, false);
1354 
1355 	return btrfs_commit_super(fs_info);
1356 }
1357 
1358 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1359 {
1360 	fs_info->max_inline = ctx->max_inline;
1361 	fs_info->commit_interval = ctx->commit_interval;
1362 	fs_info->metadata_ratio = ctx->metadata_ratio;
1363 	fs_info->thread_pool_size = ctx->thread_pool_size;
1364 	fs_info->mount_opt = ctx->mount_opt;
1365 	fs_info->compress_type = ctx->compress_type;
1366 	fs_info->compress_level = ctx->compress_level;
1367 }
1368 
1369 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1370 {
1371 	ctx->max_inline = fs_info->max_inline;
1372 	ctx->commit_interval = fs_info->commit_interval;
1373 	ctx->metadata_ratio = fs_info->metadata_ratio;
1374 	ctx->thread_pool_size = fs_info->thread_pool_size;
1375 	ctx->mount_opt = fs_info->mount_opt;
1376 	ctx->compress_type = fs_info->compress_type;
1377 	ctx->compress_level = fs_info->compress_level;
1378 }
1379 
1380 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1381 do {										\
1382 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1383 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1384 		btrfs_info(fs_info, fmt, ##args);				\
1385 } while (0)
1386 
1387 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1388 do {									\
1389 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1390 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1391 		btrfs_info(fs_info, fmt, ##args);			\
1392 } while (0)
1393 
1394 static void btrfs_emit_options(struct btrfs_fs_info *info,
1395 			       struct btrfs_fs_context *old)
1396 {
1397 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1398 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1399 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1401 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1402 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1403 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1404 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1405 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1406 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1407 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1408 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1409 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1410 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1411 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1412 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1413 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1414 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1415 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1416 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1417 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1418 
1419 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1420 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1421 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1422 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1423 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1424 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1425 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1426 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1427 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1428 
1429 	/* Did the compression settings change? */
1430 	if (btrfs_test_opt(info, COMPRESS) &&
1431 	    (!old ||
1432 	     old->compress_type != info->compress_type ||
1433 	     old->compress_level != info->compress_level ||
1434 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1435 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1436 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1437 
1438 		btrfs_info(info, "%s %s compression, level %d",
1439 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1440 			   compress_type, info->compress_level);
1441 	}
1442 
1443 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1444 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1445 }
1446 
1447 static int btrfs_reconfigure(struct fs_context *fc)
1448 {
1449 	struct super_block *sb = fc->root->d_sb;
1450 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1451 	struct btrfs_fs_context *ctx = fc->fs_private;
1452 	struct btrfs_fs_context old_ctx;
1453 	int ret = 0;
1454 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1455 
1456 	btrfs_info_to_ctx(fs_info, &old_ctx);
1457 
1458 	/*
1459 	 * This is our "bind mount" trick, we don't want to allow the user to do
1460 	 * anything other than mount a different ro/rw and a different subvol,
1461 	 * all of the mount options should be maintained.
1462 	 */
1463 	if (mount_reconfigure)
1464 		ctx->mount_opt = old_ctx.mount_opt;
1465 
1466 	sync_filesystem(sb);
1467 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1468 
1469 	if (!mount_reconfigure &&
1470 	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1471 		return -EINVAL;
1472 
1473 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1474 	if (ret < 0)
1475 		return ret;
1476 
1477 	btrfs_ctx_to_info(fs_info, ctx);
1478 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1479 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1480 				 old_ctx.thread_pool_size);
1481 
1482 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1483 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1484 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1485 		btrfs_warn(fs_info,
1486 		"remount supports changing free space tree only from RO to RW");
1487 		/* Make sure free space cache options match the state on disk. */
1488 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1489 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1490 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1491 		}
1492 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1493 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1494 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1495 		}
1496 	}
1497 
1498 	ret = 0;
1499 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1500 		ret = btrfs_remount_ro(fs_info);
1501 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1502 		ret = btrfs_remount_rw(fs_info);
1503 	if (ret)
1504 		goto restore;
1505 
1506 	/*
1507 	 * If we set the mask during the parameter parsing VFS would reject the
1508 	 * remount.  Here we can set the mask and the value will be updated
1509 	 * appropriately.
1510 	 */
1511 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1512 		fc->sb_flags_mask |= SB_POSIXACL;
1513 
1514 	btrfs_emit_options(fs_info, &old_ctx);
1515 	wake_up_process(fs_info->transaction_kthread);
1516 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1517 	btrfs_clear_oneshot_options(fs_info);
1518 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1519 
1520 	return 0;
1521 restore:
1522 	btrfs_ctx_to_info(fs_info, &old_ctx);
1523 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1524 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1525 	return ret;
1526 }
1527 
1528 /* Used to sort the devices by max_avail(descending sort) */
1529 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1530 {
1531 	const struct btrfs_device_info *dev_info1 = a;
1532 	const struct btrfs_device_info *dev_info2 = b;
1533 
1534 	if (dev_info1->max_avail > dev_info2->max_avail)
1535 		return -1;
1536 	else if (dev_info1->max_avail < dev_info2->max_avail)
1537 		return 1;
1538 	return 0;
1539 }
1540 
1541 /*
1542  * sort the devices by max_avail, in which max free extent size of each device
1543  * is stored.(Descending Sort)
1544  */
1545 static inline void btrfs_descending_sort_devices(
1546 					struct btrfs_device_info *devices,
1547 					size_t nr_devices)
1548 {
1549 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1550 	     btrfs_cmp_device_free_bytes, NULL);
1551 }
1552 
1553 /*
1554  * The helper to calc the free space on the devices that can be used to store
1555  * file data.
1556  */
1557 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1558 					      u64 *free_bytes)
1559 {
1560 	struct btrfs_device_info *devices_info;
1561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1562 	struct btrfs_device *device;
1563 	u64 type;
1564 	u64 avail_space;
1565 	u64 min_stripe_size;
1566 	int num_stripes = 1;
1567 	int i = 0, nr_devices;
1568 	const struct btrfs_raid_attr *rattr;
1569 
1570 	/*
1571 	 * We aren't under the device list lock, so this is racy-ish, but good
1572 	 * enough for our purposes.
1573 	 */
1574 	nr_devices = fs_info->fs_devices->open_devices;
1575 	if (!nr_devices) {
1576 		smp_mb();
1577 		nr_devices = fs_info->fs_devices->open_devices;
1578 		ASSERT(nr_devices);
1579 		if (!nr_devices) {
1580 			*free_bytes = 0;
1581 			return 0;
1582 		}
1583 	}
1584 
1585 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1586 			       GFP_KERNEL);
1587 	if (!devices_info)
1588 		return -ENOMEM;
1589 
1590 	/* calc min stripe number for data space allocation */
1591 	type = btrfs_data_alloc_profile(fs_info);
1592 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1593 
1594 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1595 		num_stripes = nr_devices;
1596 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1597 		num_stripes = rattr->ncopies;
1598 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1599 		num_stripes = 4;
1600 
1601 	/* Adjust for more than 1 stripe per device */
1602 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1603 
1604 	rcu_read_lock();
1605 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1606 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1607 						&device->dev_state) ||
1608 		    !device->bdev ||
1609 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1610 			continue;
1611 
1612 		if (i >= nr_devices)
1613 			break;
1614 
1615 		avail_space = device->total_bytes - device->bytes_used;
1616 
1617 		/* align with stripe_len */
1618 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1619 
1620 		/*
1621 		 * Ensure we have at least min_stripe_size on top of the
1622 		 * reserved space on the device.
1623 		 */
1624 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1625 			continue;
1626 
1627 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1628 
1629 		devices_info[i].dev = device;
1630 		devices_info[i].max_avail = avail_space;
1631 
1632 		i++;
1633 	}
1634 	rcu_read_unlock();
1635 
1636 	nr_devices = i;
1637 
1638 	btrfs_descending_sort_devices(devices_info, nr_devices);
1639 
1640 	i = nr_devices - 1;
1641 	avail_space = 0;
1642 	while (nr_devices >= rattr->devs_min) {
1643 		num_stripes = min(num_stripes, nr_devices);
1644 
1645 		if (devices_info[i].max_avail >= min_stripe_size) {
1646 			int j;
1647 			u64 alloc_size;
1648 
1649 			avail_space += devices_info[i].max_avail * num_stripes;
1650 			alloc_size = devices_info[i].max_avail;
1651 			for (j = i + 1 - num_stripes; j <= i; j++)
1652 				devices_info[j].max_avail -= alloc_size;
1653 		}
1654 		i--;
1655 		nr_devices--;
1656 	}
1657 
1658 	kfree(devices_info);
1659 	*free_bytes = avail_space;
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1665  *
1666  * If there's a redundant raid level at DATA block groups, use the respective
1667  * multiplier to scale the sizes.
1668  *
1669  * Unused device space usage is based on simulating the chunk allocator
1670  * algorithm that respects the device sizes and order of allocations.  This is
1671  * a close approximation of the actual use but there are other factors that may
1672  * change the result (like a new metadata chunk).
1673  *
1674  * If metadata is exhausted, f_bavail will be 0.
1675  */
1676 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1677 {
1678 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1679 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1680 	struct btrfs_space_info *found;
1681 	u64 total_used = 0;
1682 	u64 total_free_data = 0;
1683 	u64 total_free_meta = 0;
1684 	u32 bits = fs_info->sectorsize_bits;
1685 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1686 	unsigned factor = 1;
1687 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1688 	int ret;
1689 	u64 thresh = 0;
1690 	int mixed = 0;
1691 
1692 	list_for_each_entry(found, &fs_info->space_info, list) {
1693 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1694 			int i;
1695 
1696 			total_free_data += found->disk_total - found->disk_used;
1697 			total_free_data -=
1698 				btrfs_account_ro_block_groups_free_space(found);
1699 
1700 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1701 				if (!list_empty(&found->block_groups[i]))
1702 					factor = btrfs_bg_type_to_factor(
1703 						btrfs_raid_array[i].bg_flag);
1704 			}
1705 		}
1706 
1707 		/*
1708 		 * Metadata in mixed block group profiles are accounted in data
1709 		 */
1710 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1711 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1712 				mixed = 1;
1713 			else
1714 				total_free_meta += found->disk_total -
1715 					found->disk_used;
1716 		}
1717 
1718 		total_used += found->disk_used;
1719 	}
1720 
1721 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1722 	buf->f_blocks >>= bits;
1723 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1724 
1725 	/* Account global block reserve as used, it's in logical size already */
1726 	spin_lock(&block_rsv->lock);
1727 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1728 	if (buf->f_bfree >= block_rsv->size >> bits)
1729 		buf->f_bfree -= block_rsv->size >> bits;
1730 	else
1731 		buf->f_bfree = 0;
1732 	spin_unlock(&block_rsv->lock);
1733 
1734 	buf->f_bavail = div_u64(total_free_data, factor);
1735 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1736 	if (ret)
1737 		return ret;
1738 	buf->f_bavail += div_u64(total_free_data, factor);
1739 	buf->f_bavail = buf->f_bavail >> bits;
1740 
1741 	/*
1742 	 * We calculate the remaining metadata space minus global reserve. If
1743 	 * this is (supposedly) smaller than zero, there's no space. But this
1744 	 * does not hold in practice, the exhausted state happens where's still
1745 	 * some positive delta. So we apply some guesswork and compare the
1746 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1747 	 *
1748 	 * We probably cannot calculate the exact threshold value because this
1749 	 * depends on the internal reservations requested by various
1750 	 * operations, so some operations that consume a few metadata will
1751 	 * succeed even if the Avail is zero. But this is better than the other
1752 	 * way around.
1753 	 */
1754 	thresh = SZ_4M;
1755 
1756 	/*
1757 	 * We only want to claim there's no available space if we can no longer
1758 	 * allocate chunks for our metadata profile and our global reserve will
1759 	 * not fit in the free metadata space.  If we aren't ->full then we
1760 	 * still can allocate chunks and thus are fine using the currently
1761 	 * calculated f_bavail.
1762 	 */
1763 	if (!mixed && block_rsv->space_info->full &&
1764 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1765 		buf->f_bavail = 0;
1766 
1767 	buf->f_type = BTRFS_SUPER_MAGIC;
1768 	buf->f_bsize = fs_info->sectorsize;
1769 	buf->f_namelen = BTRFS_NAME_LEN;
1770 
1771 	/* We treat it as constant endianness (it doesn't matter _which_)
1772 	   because we want the fsid to come out the same whether mounted
1773 	   on a big-endian or little-endian host */
1774 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1775 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1776 	/* Mask in the root object ID too, to disambiguate subvols */
1777 	buf->f_fsid.val[0] ^=
1778 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1779 	buf->f_fsid.val[1] ^=
1780 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1781 
1782 	return 0;
1783 }
1784 
1785 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1786 {
1787 	struct btrfs_fs_info *p = fc->s_fs_info;
1788 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1789 
1790 	return fs_info->fs_devices == p->fs_devices;
1791 }
1792 
1793 static int btrfs_get_tree_super(struct fs_context *fc)
1794 {
1795 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1796 	struct btrfs_fs_context *ctx = fc->fs_private;
1797 	struct btrfs_fs_devices *fs_devices = NULL;
1798 	struct block_device *bdev;
1799 	struct btrfs_device *device;
1800 	struct super_block *sb;
1801 	blk_mode_t mode = btrfs_open_mode(fc);
1802 	int ret;
1803 
1804 	btrfs_ctx_to_info(fs_info, ctx);
1805 	mutex_lock(&uuid_mutex);
1806 
1807 	/*
1808 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1809 	 * either a valid device or an error.
1810 	 */
1811 	device = btrfs_scan_one_device(fc->source, mode, true);
1812 	ASSERT(device != NULL);
1813 	if (IS_ERR(device)) {
1814 		mutex_unlock(&uuid_mutex);
1815 		return PTR_ERR(device);
1816 	}
1817 
1818 	fs_devices = device->fs_devices;
1819 	fs_info->fs_devices = fs_devices;
1820 
1821 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1822 	mutex_unlock(&uuid_mutex);
1823 	if (ret)
1824 		return ret;
1825 
1826 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1827 		ret = -EACCES;
1828 		goto error;
1829 	}
1830 
1831 	bdev = fs_devices->latest_dev->bdev;
1832 
1833 	/*
1834 	 * From now on the error handling is not straightforward.
1835 	 *
1836 	 * If successful, this will transfer the fs_info into the super block,
1837 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1838 	 * super, we'll still have fc->s_fs_info populated.  If we error
1839 	 * completely out it'll be cleaned up when we drop the fs_context,
1840 	 * otherwise it's tied to the lifetime of the super_block.
1841 	 */
1842 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1843 	if (IS_ERR(sb)) {
1844 		ret = PTR_ERR(sb);
1845 		goto error;
1846 	}
1847 
1848 	set_device_specific_options(fs_info);
1849 
1850 	if (sb->s_root) {
1851 		btrfs_close_devices(fs_devices);
1852 		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1853 			ret = -EBUSY;
1854 	} else {
1855 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1856 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1857 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1858 		ret = btrfs_fill_super(sb, fs_devices, NULL);
1859 	}
1860 
1861 	if (ret) {
1862 		deactivate_locked_super(sb);
1863 		return ret;
1864 	}
1865 
1866 	btrfs_clear_oneshot_options(fs_info);
1867 
1868 	fc->root = dget(sb->s_root);
1869 	return 0;
1870 
1871 error:
1872 	btrfs_close_devices(fs_devices);
1873 	return ret;
1874 }
1875 
1876 /*
1877  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1878  * with different ro/rw options") the following works:
1879  *
1880  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1881  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1882  *
1883  * which looks nice and innocent but is actually pretty intricate and deserves
1884  * a long comment.
1885  *
1886  * On another filesystem a subvolume mount is close to something like:
1887  *
1888  *	(iii) # create rw superblock + initial mount
1889  *	      mount -t xfs /dev/sdb /opt/
1890  *
1891  *	      # create ro bind mount
1892  *	      mount --bind -o ro /opt/foo /mnt/foo
1893  *
1894  *	      # unmount initial mount
1895  *	      umount /opt
1896  *
1897  * Of course, there's some special subvolume sauce and there's the fact that the
1898  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1899  * it's very close and will help us understand the issue.
1900  *
1901  * The old mount API didn't cleanly distinguish between a mount being made ro
1902  * and a superblock being made ro.  The only way to change the ro state of
1903  * either object was by passing ms_rdonly. If a new mount was created via
1904  * mount(2) such as:
1905  *
1906  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1907  *
1908  * the MS_RDONLY flag being specified had two effects:
1909  *
1910  * (1) MNT_READONLY was raised -> the resulting mount got
1911  *     @mnt->mnt_flags |= MNT_READONLY raised.
1912  *
1913  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1914  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1915  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1916  *
1917  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1918  * subtree mounted ro.
1919  *
1920  * But consider the effect on the old mount API on btrfs subvolume mounting
1921  * which combines the distinct step in (iii) into a single step.
1922  *
1923  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1924  * is issued the superblock is ro and thus even if the mount created for (ii) is
1925  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1926  * to rw for (ii) which it did using an internal remount call.
1927  *
1928  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1929  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1930  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1931  * passed by mount(8) to mount(2).
1932  *
1933  * Enter the new mount API. The new mount API disambiguates making a mount ro
1934  * and making a superblock ro.
1935  *
1936  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1937  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1938  *     specific mount or mount tree that is never seen by the filesystem itself.
1939  *
1940  * (4) To turn a superblock ro the "ro" flag must be used with
1941  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1942  *     in fc->sb_flags.
1943  *
1944  * This disambiguation has rather positive consequences.  Mounting a subvolume
1945  * ro will not also turn the superblock ro. Only the mount for the subvolume
1946  * will become ro.
1947  *
1948  * So, if the superblock creation request comes from the new mount API the
1949  * caller must have explicitly done:
1950  *
1951  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1952  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1953  *
1954  * IOW, at some point the caller must have explicitly turned the whole
1955  * superblock ro and we shouldn't just undo it like we did for the old mount
1956  * API. In any case, it lets us avoid the hack in the new mount API.
1957  *
1958  * Consequently, the remounting hack must only be used for requests originating
1959  * from the old mount API and should be marked for full deprecation so it can be
1960  * turned off in a couple of years.
1961  *
1962  * The new mount API has no reason to support this hack.
1963  */
1964 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1965 {
1966 	struct vfsmount *mnt;
1967 	int ret;
1968 	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1969 
1970 	/*
1971 	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1972 	 * super block, so invert our setting here and retry the mount so we
1973 	 * can get our vfsmount.
1974 	 */
1975 	if (ro2rw)
1976 		fc->sb_flags |= SB_RDONLY;
1977 	else
1978 		fc->sb_flags &= ~SB_RDONLY;
1979 
1980 	mnt = fc_mount(fc);
1981 	if (IS_ERR(mnt))
1982 		return mnt;
1983 
1984 	if (!fc->oldapi || !ro2rw)
1985 		return mnt;
1986 
1987 	/* We need to convert to rw, call reconfigure. */
1988 	fc->sb_flags &= ~SB_RDONLY;
1989 	down_write(&mnt->mnt_sb->s_umount);
1990 	ret = btrfs_reconfigure(fc);
1991 	up_write(&mnt->mnt_sb->s_umount);
1992 	if (ret) {
1993 		mntput(mnt);
1994 		return ERR_PTR(ret);
1995 	}
1996 	return mnt;
1997 }
1998 
1999 static int btrfs_get_tree_subvol(struct fs_context *fc)
2000 {
2001 	struct btrfs_fs_info *fs_info = NULL;
2002 	struct btrfs_fs_context *ctx = fc->fs_private;
2003 	struct fs_context *dup_fc;
2004 	struct dentry *dentry;
2005 	struct vfsmount *mnt;
2006 
2007 	/*
2008 	 * Setup a dummy root and fs_info for test/set super.  This is because
2009 	 * we don't actually fill this stuff out until open_ctree, but we need
2010 	 * then open_ctree will properly initialize the file system specific
2011 	 * settings later.  btrfs_init_fs_info initializes the static elements
2012 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2013 	 * superblock with our given fs_devices later on at sget() time.
2014 	 */
2015 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2016 	if (!fs_info)
2017 		return -ENOMEM;
2018 
2019 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2020 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2021 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2022 		btrfs_free_fs_info(fs_info);
2023 		return -ENOMEM;
2024 	}
2025 	btrfs_init_fs_info(fs_info);
2026 
2027 	dup_fc = vfs_dup_fs_context(fc);
2028 	if (IS_ERR(dup_fc)) {
2029 		btrfs_free_fs_info(fs_info);
2030 		return PTR_ERR(dup_fc);
2031 	}
2032 
2033 	/*
2034 	 * When we do the sget_fc this gets transferred to the sb, so we only
2035 	 * need to set it on the dup_fc as this is what creates the super block.
2036 	 */
2037 	dup_fc->s_fs_info = fs_info;
2038 
2039 	/*
2040 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2041 	 * loop, they were duplicated into dup_fc, we can drop the originals
2042 	 * here.
2043 	 */
2044 	security_free_mnt_opts(&fc->security);
2045 	fc->security = NULL;
2046 
2047 	mnt = fc_mount(dup_fc);
2048 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2049 		mnt = btrfs_reconfigure_for_mount(dup_fc);
2050 	put_fs_context(dup_fc);
2051 	if (IS_ERR(mnt))
2052 		return PTR_ERR(mnt);
2053 
2054 	/*
2055 	 * This free's ->subvol_name, because if it isn't set we have to
2056 	 * allocate a buffer to hold the subvol_name, so we just drop our
2057 	 * reference to it here.
2058 	 */
2059 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2060 	ctx->subvol_name = NULL;
2061 	if (IS_ERR(dentry))
2062 		return PTR_ERR(dentry);
2063 
2064 	fc->root = dentry;
2065 	return 0;
2066 }
2067 
2068 static int btrfs_get_tree(struct fs_context *fc)
2069 {
2070 	/*
2071 	 * Since we use mount_subtree to mount the default/specified subvol, we
2072 	 * have to do mounts in two steps.
2073 	 *
2074 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2075 	 * wrapper around fc_mount() to call back into here again, and this time
2076 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2077 	 * everything to open the devices and file system.  Then we return back
2078 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2079 	 * from there we can do our mount_subvol() call, which will lookup
2080 	 * whichever subvol we're mounting and setup this fc with the
2081 	 * appropriate dentry for the subvol.
2082 	 */
2083 	if (fc->s_fs_info)
2084 		return btrfs_get_tree_super(fc);
2085 	return btrfs_get_tree_subvol(fc);
2086 }
2087 
2088 static void btrfs_kill_super(struct super_block *sb)
2089 {
2090 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2091 	kill_anon_super(sb);
2092 	btrfs_free_fs_info(fs_info);
2093 }
2094 
2095 static void btrfs_free_fs_context(struct fs_context *fc)
2096 {
2097 	struct btrfs_fs_context *ctx = fc->fs_private;
2098 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2099 
2100 	if (fs_info)
2101 		btrfs_free_fs_info(fs_info);
2102 
2103 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2104 		kfree(ctx->subvol_name);
2105 		kfree(ctx);
2106 	}
2107 }
2108 
2109 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2110 {
2111 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2112 
2113 	/*
2114 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2115 	 * our original fc so we can have the subvolume name or objectid.
2116 	 *
2117 	 * We unset ->source in the original fc because the dup needs it for
2118 	 * mounting, and then once we free the dup it'll free ->source, so we
2119 	 * need to make sure we're only pointing to it in one fc.
2120 	 */
2121 	refcount_inc(&ctx->refs);
2122 	fc->fs_private = ctx;
2123 	fc->source = src_fc->source;
2124 	src_fc->source = NULL;
2125 	return 0;
2126 }
2127 
2128 static const struct fs_context_operations btrfs_fs_context_ops = {
2129 	.parse_param	= btrfs_parse_param,
2130 	.reconfigure	= btrfs_reconfigure,
2131 	.get_tree	= btrfs_get_tree,
2132 	.dup		= btrfs_dup_fs_context,
2133 	.free		= btrfs_free_fs_context,
2134 };
2135 
2136 static int btrfs_init_fs_context(struct fs_context *fc)
2137 {
2138 	struct btrfs_fs_context *ctx;
2139 
2140 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2141 	if (!ctx)
2142 		return -ENOMEM;
2143 
2144 	refcount_set(&ctx->refs, 1);
2145 	fc->fs_private = ctx;
2146 	fc->ops = &btrfs_fs_context_ops;
2147 
2148 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2149 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2150 	} else {
2151 		ctx->thread_pool_size =
2152 			min_t(unsigned long, num_online_cpus() + 2, 8);
2153 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2154 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2155 	}
2156 
2157 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2158 	fc->sb_flags |= SB_POSIXACL;
2159 #endif
2160 	fc->sb_flags |= SB_I_VERSION;
2161 
2162 	return 0;
2163 }
2164 
2165 static struct file_system_type btrfs_fs_type = {
2166 	.owner			= THIS_MODULE,
2167 	.name			= "btrfs",
2168 	.init_fs_context	= btrfs_init_fs_context,
2169 	.parameters		= btrfs_fs_parameters,
2170 	.kill_sb		= btrfs_kill_super,
2171 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2172  };
2173 
2174 MODULE_ALIAS_FS("btrfs");
2175 
2176 static int btrfs_control_open(struct inode *inode, struct file *file)
2177 {
2178 	/*
2179 	 * The control file's private_data is used to hold the
2180 	 * transaction when it is started and is used to keep
2181 	 * track of whether a transaction is already in progress.
2182 	 */
2183 	file->private_data = NULL;
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Used by /dev/btrfs-control for devices ioctls.
2189  */
2190 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2191 				unsigned long arg)
2192 {
2193 	struct btrfs_ioctl_vol_args *vol;
2194 	struct btrfs_device *device = NULL;
2195 	dev_t devt = 0;
2196 	int ret = -ENOTTY;
2197 
2198 	if (!capable(CAP_SYS_ADMIN))
2199 		return -EPERM;
2200 
2201 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2202 	if (IS_ERR(vol))
2203 		return PTR_ERR(vol);
2204 	ret = btrfs_check_ioctl_vol_args_path(vol);
2205 	if (ret < 0)
2206 		goto out;
2207 
2208 	switch (cmd) {
2209 	case BTRFS_IOC_SCAN_DEV:
2210 		mutex_lock(&uuid_mutex);
2211 		/*
2212 		 * Scanning outside of mount can return NULL which would turn
2213 		 * into 0 error code.
2214 		 */
2215 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216 		ret = PTR_ERR_OR_ZERO(device);
2217 		mutex_unlock(&uuid_mutex);
2218 		break;
2219 	case BTRFS_IOC_FORGET_DEV:
2220 		if (vol->name[0] != 0) {
2221 			ret = lookup_bdev(vol->name, &devt);
2222 			if (ret)
2223 				break;
2224 		}
2225 		ret = btrfs_forget_devices(devt);
2226 		break;
2227 	case BTRFS_IOC_DEVICES_READY:
2228 		mutex_lock(&uuid_mutex);
2229 		/*
2230 		 * Scanning outside of mount can return NULL which would turn
2231 		 * into 0 error code.
2232 		 */
2233 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234 		if (IS_ERR_OR_NULL(device)) {
2235 			mutex_unlock(&uuid_mutex);
2236 			ret = PTR_ERR(device);
2237 			break;
2238 		}
2239 		ret = !(device->fs_devices->num_devices ==
2240 			device->fs_devices->total_devices);
2241 		mutex_unlock(&uuid_mutex);
2242 		break;
2243 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245 		break;
2246 	}
2247 
2248 out:
2249 	kfree(vol);
2250 	return ret;
2251 }
2252 
2253 static int btrfs_freeze(struct super_block *sb)
2254 {
2255 	struct btrfs_trans_handle *trans;
2256 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2257 	struct btrfs_root *root = fs_info->tree_root;
2258 
2259 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2260 	/*
2261 	 * We don't need a barrier here, we'll wait for any transaction that
2262 	 * could be in progress on other threads (and do delayed iputs that
2263 	 * we want to avoid on a frozen filesystem), or do the commit
2264 	 * ourselves.
2265 	 */
2266 	trans = btrfs_attach_transaction_barrier(root);
2267 	if (IS_ERR(trans)) {
2268 		/* no transaction, don't bother */
2269 		if (PTR_ERR(trans) == -ENOENT)
2270 			return 0;
2271 		return PTR_ERR(trans);
2272 	}
2273 	return btrfs_commit_transaction(trans);
2274 }
2275 
2276 static int check_dev_super(struct btrfs_device *dev)
2277 {
2278 	struct btrfs_fs_info *fs_info = dev->fs_info;
2279 	struct btrfs_super_block *sb;
2280 	u64 last_trans;
2281 	u16 csum_type;
2282 	int ret = 0;
2283 
2284 	/* This should be called with fs still frozen. */
2285 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2286 
2287 	/* Missing dev, no need to check. */
2288 	if (!dev->bdev)
2289 		return 0;
2290 
2291 	/* Only need to check the primary super block. */
2292 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2293 	if (IS_ERR(sb))
2294 		return PTR_ERR(sb);
2295 
2296 	/* Verify the checksum. */
2297 	csum_type = btrfs_super_csum_type(sb);
2298 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2299 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2300 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2301 		ret = -EUCLEAN;
2302 		goto out;
2303 	}
2304 
2305 	if (btrfs_check_super_csum(fs_info, sb)) {
2306 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2307 		ret = -EUCLEAN;
2308 		goto out;
2309 	}
2310 
2311 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2312 	ret = btrfs_validate_super(fs_info, sb, 0);
2313 	if (ret < 0)
2314 		goto out;
2315 
2316 	last_trans = btrfs_get_last_trans_committed(fs_info);
2317 	if (btrfs_super_generation(sb) != last_trans) {
2318 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2319 			  btrfs_super_generation(sb), last_trans);
2320 		ret = -EUCLEAN;
2321 		goto out;
2322 	}
2323 out:
2324 	btrfs_release_disk_super(sb);
2325 	return ret;
2326 }
2327 
2328 static int btrfs_unfreeze(struct super_block *sb)
2329 {
2330 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2331 	struct btrfs_device *device;
2332 	int ret = 0;
2333 
2334 	/*
2335 	 * Make sure the fs is not changed by accident (like hibernation then
2336 	 * modified by other OS).
2337 	 * If we found anything wrong, we mark the fs error immediately.
2338 	 *
2339 	 * And since the fs is frozen, no one can modify the fs yet, thus
2340 	 * we don't need to hold device_list_mutex.
2341 	 */
2342 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2343 		ret = check_dev_super(device);
2344 		if (ret < 0) {
2345 			btrfs_handle_fs_error(fs_info, ret,
2346 				"super block on devid %llu got modified unexpectedly",
2347 				device->devid);
2348 			break;
2349 		}
2350 	}
2351 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2352 
2353 	/*
2354 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2355 	 * above checks failed. Since the fs is either fine or read-only, we're
2356 	 * safe to continue, without causing further damage.
2357 	 */
2358 	return 0;
2359 }
2360 
2361 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2362 {
2363 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2364 
2365 	/*
2366 	 * There should be always a valid pointer in latest_dev, it may be stale
2367 	 * for a short moment in case it's being deleted but still valid until
2368 	 * the end of RCU grace period.
2369 	 */
2370 	rcu_read_lock();
2371 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2372 	rcu_read_unlock();
2373 
2374 	return 0;
2375 }
2376 
2377 static const struct super_operations btrfs_super_ops = {
2378 	.drop_inode	= btrfs_drop_inode,
2379 	.evict_inode	= btrfs_evict_inode,
2380 	.put_super	= btrfs_put_super,
2381 	.sync_fs	= btrfs_sync_fs,
2382 	.show_options	= btrfs_show_options,
2383 	.show_devname	= btrfs_show_devname,
2384 	.alloc_inode	= btrfs_alloc_inode,
2385 	.destroy_inode	= btrfs_destroy_inode,
2386 	.free_inode	= btrfs_free_inode,
2387 	.statfs		= btrfs_statfs,
2388 	.freeze_fs	= btrfs_freeze,
2389 	.unfreeze_fs	= btrfs_unfreeze,
2390 };
2391 
2392 static const struct file_operations btrfs_ctl_fops = {
2393 	.open = btrfs_control_open,
2394 	.unlocked_ioctl	 = btrfs_control_ioctl,
2395 	.compat_ioctl = compat_ptr_ioctl,
2396 	.owner	 = THIS_MODULE,
2397 	.llseek = noop_llseek,
2398 };
2399 
2400 static struct miscdevice btrfs_misc = {
2401 	.minor		= BTRFS_MINOR,
2402 	.name		= "btrfs-control",
2403 	.fops		= &btrfs_ctl_fops
2404 };
2405 
2406 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2407 MODULE_ALIAS("devname:btrfs-control");
2408 
2409 static int __init btrfs_interface_init(void)
2410 {
2411 	return misc_register(&btrfs_misc);
2412 }
2413 
2414 static __cold void btrfs_interface_exit(void)
2415 {
2416 	misc_deregister(&btrfs_misc);
2417 }
2418 
2419 static int __init btrfs_print_mod_info(void)
2420 {
2421 	static const char options[] = ""
2422 #ifdef CONFIG_BTRFS_DEBUG
2423 			", debug=on"
2424 #endif
2425 #ifdef CONFIG_BTRFS_ASSERT
2426 			", assert=on"
2427 #endif
2428 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2429 			", ref-verify=on"
2430 #endif
2431 #ifdef CONFIG_BLK_DEV_ZONED
2432 			", zoned=yes"
2433 #else
2434 			", zoned=no"
2435 #endif
2436 #ifdef CONFIG_FS_VERITY
2437 			", fsverity=yes"
2438 #else
2439 			", fsverity=no"
2440 #endif
2441 			;
2442 	pr_info("Btrfs loaded%s\n", options);
2443 	return 0;
2444 }
2445 
2446 static int register_btrfs(void)
2447 {
2448 	return register_filesystem(&btrfs_fs_type);
2449 }
2450 
2451 static void unregister_btrfs(void)
2452 {
2453 	unregister_filesystem(&btrfs_fs_type);
2454 }
2455 
2456 /* Helper structure for long init/exit functions. */
2457 struct init_sequence {
2458 	int (*init_func)(void);
2459 	/* Can be NULL if the init_func doesn't need cleanup. */
2460 	void (*exit_func)(void);
2461 };
2462 
2463 static const struct init_sequence mod_init_seq[] = {
2464 	{
2465 		.init_func = btrfs_props_init,
2466 		.exit_func = NULL,
2467 	}, {
2468 		.init_func = btrfs_init_sysfs,
2469 		.exit_func = btrfs_exit_sysfs,
2470 	}, {
2471 		.init_func = btrfs_init_compress,
2472 		.exit_func = btrfs_exit_compress,
2473 	}, {
2474 		.init_func = btrfs_init_cachep,
2475 		.exit_func = btrfs_destroy_cachep,
2476 	}, {
2477 		.init_func = btrfs_transaction_init,
2478 		.exit_func = btrfs_transaction_exit,
2479 	}, {
2480 		.init_func = btrfs_ctree_init,
2481 		.exit_func = btrfs_ctree_exit,
2482 	}, {
2483 		.init_func = btrfs_free_space_init,
2484 		.exit_func = btrfs_free_space_exit,
2485 	}, {
2486 		.init_func = extent_state_init_cachep,
2487 		.exit_func = extent_state_free_cachep,
2488 	}, {
2489 		.init_func = extent_buffer_init_cachep,
2490 		.exit_func = extent_buffer_free_cachep,
2491 	}, {
2492 		.init_func = btrfs_bioset_init,
2493 		.exit_func = btrfs_bioset_exit,
2494 	}, {
2495 		.init_func = extent_map_init,
2496 		.exit_func = extent_map_exit,
2497 	}, {
2498 		.init_func = ordered_data_init,
2499 		.exit_func = ordered_data_exit,
2500 	}, {
2501 		.init_func = btrfs_delayed_inode_init,
2502 		.exit_func = btrfs_delayed_inode_exit,
2503 	}, {
2504 		.init_func = btrfs_auto_defrag_init,
2505 		.exit_func = btrfs_auto_defrag_exit,
2506 	}, {
2507 		.init_func = btrfs_delayed_ref_init,
2508 		.exit_func = btrfs_delayed_ref_exit,
2509 	}, {
2510 		.init_func = btrfs_prelim_ref_init,
2511 		.exit_func = btrfs_prelim_ref_exit,
2512 	}, {
2513 		.init_func = btrfs_interface_init,
2514 		.exit_func = btrfs_interface_exit,
2515 	}, {
2516 		.init_func = btrfs_print_mod_info,
2517 		.exit_func = NULL,
2518 	}, {
2519 		.init_func = btrfs_run_sanity_tests,
2520 		.exit_func = NULL,
2521 	}, {
2522 		.init_func = register_btrfs,
2523 		.exit_func = unregister_btrfs,
2524 	}
2525 };
2526 
2527 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2528 
2529 static __always_inline void btrfs_exit_btrfs_fs(void)
2530 {
2531 	int i;
2532 
2533 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2534 		if (!mod_init_result[i])
2535 			continue;
2536 		if (mod_init_seq[i].exit_func)
2537 			mod_init_seq[i].exit_func();
2538 		mod_init_result[i] = false;
2539 	}
2540 }
2541 
2542 static void __exit exit_btrfs_fs(void)
2543 {
2544 	btrfs_exit_btrfs_fs();
2545 	btrfs_cleanup_fs_uuids();
2546 }
2547 
2548 static int __init init_btrfs_fs(void)
2549 {
2550 	int ret;
2551 	int i;
2552 
2553 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2554 		ASSERT(!mod_init_result[i]);
2555 		ret = mod_init_seq[i].init_func();
2556 		if (ret < 0) {
2557 			btrfs_exit_btrfs_fs();
2558 			return ret;
2559 		}
2560 		mod_init_result[i] = true;
2561 	}
2562 	return 0;
2563 }
2564 
2565 late_initcall(init_btrfs_fs);
2566 module_exit(exit_btrfs_fs)
2567 
2568 MODULE_LICENSE("GPL");
2569 MODULE_SOFTDEP("pre: crc32c");
2570 MODULE_SOFTDEP("pre: xxhash64");
2571 MODULE_SOFTDEP("pre: sha256");
2572 MODULE_SOFTDEP("pre: blake2b-256");
2573