xref: /linux/fs/btrfs/super.c (revision daa121128a2d2ac6006159e2c47676e4fcd21eab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "props.h"
38 #include "xattr.h"
39 #include "bio.h"
40 #include "export.h"
41 #include "compression.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #include "ioctl.h"
58 #include "scrub.h"
59 #include "verity.h"
60 #include "super.h"
61 #include "extent-tree.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/btrfs.h>
64 
65 static const struct super_operations btrfs_super_ops;
66 static struct file_system_type btrfs_fs_type;
67 
68 static void btrfs_put_super(struct super_block *sb)
69 {
70 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
71 
72 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
73 	close_ctree(fs_info);
74 }
75 
76 /* Store the mount options related information. */
77 struct btrfs_fs_context {
78 	char *subvol_name;
79 	u64 subvol_objectid;
80 	u64 max_inline;
81 	u32 commit_interval;
82 	u32 metadata_ratio;
83 	u32 thread_pool_size;
84 	unsigned long mount_opt;
85 	unsigned long compress_type:4;
86 	unsigned int compress_level;
87 	refcount_t refs;
88 };
89 
90 enum {
91 	Opt_acl,
92 	Opt_clear_cache,
93 	Opt_commit_interval,
94 	Opt_compress,
95 	Opt_compress_force,
96 	Opt_compress_force_type,
97 	Opt_compress_type,
98 	Opt_degraded,
99 	Opt_device,
100 	Opt_fatal_errors,
101 	Opt_flushoncommit,
102 	Opt_max_inline,
103 	Opt_barrier,
104 	Opt_datacow,
105 	Opt_datasum,
106 	Opt_defrag,
107 	Opt_discard,
108 	Opt_discard_mode,
109 	Opt_ratio,
110 	Opt_rescan_uuid_tree,
111 	Opt_skip_balance,
112 	Opt_space_cache,
113 	Opt_space_cache_version,
114 	Opt_ssd,
115 	Opt_ssd_spread,
116 	Opt_subvol,
117 	Opt_subvol_empty,
118 	Opt_subvolid,
119 	Opt_thread_pool,
120 	Opt_treelog,
121 	Opt_user_subvol_rm_allowed,
122 
123 	/* Rescue options */
124 	Opt_rescue,
125 	Opt_usebackuproot,
126 	Opt_nologreplay,
127 	Opt_ignorebadroots,
128 	Opt_ignoredatacsums,
129 	Opt_rescue_all,
130 
131 	/* Debugging options */
132 	Opt_enospc_debug,
133 #ifdef CONFIG_BTRFS_DEBUG
134 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
135 #endif
136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
137 	Opt_ref_verify,
138 #endif
139 	Opt_err,
140 };
141 
142 enum {
143 	Opt_fatal_errors_panic,
144 	Opt_fatal_errors_bug,
145 };
146 
147 static const struct constant_table btrfs_parameter_fatal_errors[] = {
148 	{ "panic", Opt_fatal_errors_panic },
149 	{ "bug", Opt_fatal_errors_bug },
150 	{}
151 };
152 
153 enum {
154 	Opt_discard_sync,
155 	Opt_discard_async,
156 };
157 
158 static const struct constant_table btrfs_parameter_discard[] = {
159 	{ "sync", Opt_discard_sync },
160 	{ "async", Opt_discard_async },
161 	{}
162 };
163 
164 enum {
165 	Opt_space_cache_v1,
166 	Opt_space_cache_v2,
167 };
168 
169 static const struct constant_table btrfs_parameter_space_cache[] = {
170 	{ "v1", Opt_space_cache_v1 },
171 	{ "v2", Opt_space_cache_v2 },
172 	{}
173 };
174 
175 enum {
176 	Opt_rescue_usebackuproot,
177 	Opt_rescue_nologreplay,
178 	Opt_rescue_ignorebadroots,
179 	Opt_rescue_ignoredatacsums,
180 	Opt_rescue_parameter_all,
181 };
182 
183 static const struct constant_table btrfs_parameter_rescue[] = {
184 	{ "usebackuproot", Opt_rescue_usebackuproot },
185 	{ "nologreplay", Opt_rescue_nologreplay },
186 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
187 	{ "ibadroots", Opt_rescue_ignorebadroots },
188 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
189 	{ "idatacsums", Opt_rescue_ignoredatacsums },
190 	{ "all", Opt_rescue_parameter_all },
191 	{}
192 };
193 
194 #ifdef CONFIG_BTRFS_DEBUG
195 enum {
196 	Opt_fragment_parameter_data,
197 	Opt_fragment_parameter_metadata,
198 	Opt_fragment_parameter_all,
199 };
200 
201 static const struct constant_table btrfs_parameter_fragment[] = {
202 	{ "data", Opt_fragment_parameter_data },
203 	{ "metadata", Opt_fragment_parameter_metadata },
204 	{ "all", Opt_fragment_parameter_all },
205 	{}
206 };
207 #endif
208 
209 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
210 	fsparam_flag_no("acl", Opt_acl),
211 	fsparam_flag_no("autodefrag", Opt_defrag),
212 	fsparam_flag_no("barrier", Opt_barrier),
213 	fsparam_flag("clear_cache", Opt_clear_cache),
214 	fsparam_u32("commit", Opt_commit_interval),
215 	fsparam_flag("compress", Opt_compress),
216 	fsparam_string("compress", Opt_compress_type),
217 	fsparam_flag("compress-force", Opt_compress_force),
218 	fsparam_string("compress-force", Opt_compress_force_type),
219 	fsparam_flag_no("datacow", Opt_datacow),
220 	fsparam_flag_no("datasum", Opt_datasum),
221 	fsparam_flag("degraded", Opt_degraded),
222 	fsparam_string("device", Opt_device),
223 	fsparam_flag_no("discard", Opt_discard),
224 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
225 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
226 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
227 	fsparam_string("max_inline", Opt_max_inline),
228 	fsparam_u32("metadata_ratio", Opt_ratio),
229 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
230 	fsparam_flag("skip_balance", Opt_skip_balance),
231 	fsparam_flag_no("space_cache", Opt_space_cache),
232 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
233 	fsparam_flag_no("ssd", Opt_ssd),
234 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
235 	fsparam_string("subvol", Opt_subvol),
236 	fsparam_flag("subvol=", Opt_subvol_empty),
237 	fsparam_u64("subvolid", Opt_subvolid),
238 	fsparam_u32("thread_pool", Opt_thread_pool),
239 	fsparam_flag_no("treelog", Opt_treelog),
240 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
241 
242 	/* Rescue options. */
243 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
244 	/* Deprecated, with alias rescue=nologreplay */
245 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
246 	/* Deprecated, with alias rescue=usebackuproot */
247 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
248 
249 	/* Debugging options. */
250 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
251 #ifdef CONFIG_BTRFS_DEBUG
252 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
253 #endif
254 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
255 	fsparam_flag("ref_verify", Opt_ref_verify),
256 #endif
257 	{}
258 };
259 
260 /* No support for restricting writes to btrfs devices yet... */
261 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
262 {
263 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
264 }
265 
266 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
267 {
268 	struct btrfs_fs_context *ctx = fc->fs_private;
269 	struct fs_parse_result result;
270 	int opt;
271 
272 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
273 	if (opt < 0)
274 		return opt;
275 
276 	switch (opt) {
277 	case Opt_degraded:
278 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
279 		break;
280 	case Opt_subvol_empty:
281 		/*
282 		 * This exists because we used to allow it on accident, so we're
283 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
284 		 * empty subvol= again").
285 		 */
286 		break;
287 	case Opt_subvol:
288 		kfree(ctx->subvol_name);
289 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
290 		if (!ctx->subvol_name)
291 			return -ENOMEM;
292 		break;
293 	case Opt_subvolid:
294 		ctx->subvol_objectid = result.uint_64;
295 
296 		/* subvolid=0 means give me the original fs_tree. */
297 		if (!ctx->subvol_objectid)
298 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
299 		break;
300 	case Opt_device: {
301 		struct btrfs_device *device;
302 		blk_mode_t mode = btrfs_open_mode(fc);
303 
304 		mutex_lock(&uuid_mutex);
305 		device = btrfs_scan_one_device(param->string, mode, false);
306 		mutex_unlock(&uuid_mutex);
307 		if (IS_ERR(device))
308 			return PTR_ERR(device);
309 		break;
310 	}
311 	case Opt_datasum:
312 		if (result.negated) {
313 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
314 		} else {
315 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
316 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
317 		}
318 		break;
319 	case Opt_datacow:
320 		if (result.negated) {
321 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
322 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
323 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
324 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
325 		} else {
326 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
327 		}
328 		break;
329 	case Opt_compress_force:
330 	case Opt_compress_force_type:
331 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
332 		fallthrough;
333 	case Opt_compress:
334 	case Opt_compress_type:
335 		if (opt == Opt_compress || opt == Opt_compress_force) {
336 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
337 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
338 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
339 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
340 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
341 		} else if (strncmp(param->string, "zlib", 4) == 0) {
342 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
343 			ctx->compress_level =
344 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
345 							 param->string + 4);
346 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
347 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
348 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
349 		} else if (strncmp(param->string, "lzo", 3) == 0) {
350 			ctx->compress_type = BTRFS_COMPRESS_LZO;
351 			ctx->compress_level = 0;
352 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
353 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
354 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
355 		} else if (strncmp(param->string, "zstd", 4) == 0) {
356 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
357 			ctx->compress_level =
358 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
359 							 param->string + 4);
360 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
361 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
362 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
363 		} else if (strncmp(param->string, "no", 2) == 0) {
364 			ctx->compress_level = 0;
365 			ctx->compress_type = 0;
366 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
367 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
368 		} else {
369 			btrfs_err(NULL, "unrecognized compression value %s",
370 				  param->string);
371 			return -EINVAL;
372 		}
373 		break;
374 	case Opt_ssd:
375 		if (result.negated) {
376 			btrfs_set_opt(ctx->mount_opt, NOSSD);
377 			btrfs_clear_opt(ctx->mount_opt, SSD);
378 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
379 		} else {
380 			btrfs_set_opt(ctx->mount_opt, SSD);
381 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
382 		}
383 		break;
384 	case Opt_ssd_spread:
385 		if (result.negated) {
386 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
387 		} else {
388 			btrfs_set_opt(ctx->mount_opt, SSD);
389 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
390 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
391 		}
392 		break;
393 	case Opt_barrier:
394 		if (result.negated)
395 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
396 		else
397 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
398 		break;
399 	case Opt_thread_pool:
400 		if (result.uint_32 == 0) {
401 			btrfs_err(NULL, "invalid value 0 for thread_pool");
402 			return -EINVAL;
403 		}
404 		ctx->thread_pool_size = result.uint_32;
405 		break;
406 	case Opt_max_inline:
407 		ctx->max_inline = memparse(param->string, NULL);
408 		break;
409 	case Opt_acl:
410 		if (result.negated) {
411 			fc->sb_flags &= ~SB_POSIXACL;
412 		} else {
413 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
414 			fc->sb_flags |= SB_POSIXACL;
415 #else
416 			btrfs_err(NULL, "support for ACL not compiled in");
417 			return -EINVAL;
418 #endif
419 		}
420 		/*
421 		 * VFS limits the ability to toggle ACL on and off via remount,
422 		 * despite every file system allowing this.  This seems to be
423 		 * an oversight since we all do, but it'll fail if we're
424 		 * remounting.  So don't set the mask here, we'll check it in
425 		 * btrfs_reconfigure and do the toggling ourselves.
426 		 */
427 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
428 			fc->sb_flags_mask |= SB_POSIXACL;
429 		break;
430 	case Opt_treelog:
431 		if (result.negated)
432 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
433 		else
434 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
435 		break;
436 	case Opt_nologreplay:
437 		btrfs_warn(NULL,
438 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
439 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
440 		break;
441 	case Opt_flushoncommit:
442 		if (result.negated)
443 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
444 		else
445 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
446 		break;
447 	case Opt_ratio:
448 		ctx->metadata_ratio = result.uint_32;
449 		break;
450 	case Opt_discard:
451 		if (result.negated) {
452 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
453 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
454 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
455 		} else {
456 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
457 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
458 		}
459 		break;
460 	case Opt_discard_mode:
461 		switch (result.uint_32) {
462 		case Opt_discard_sync:
463 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
464 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
465 			break;
466 		case Opt_discard_async:
467 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
468 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
469 			break;
470 		default:
471 			btrfs_err(NULL, "unrecognized discard mode value %s",
472 				  param->key);
473 			return -EINVAL;
474 		}
475 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
476 		break;
477 	case Opt_space_cache:
478 		if (result.negated) {
479 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
480 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
481 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
482 		} else {
483 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
484 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
485 		}
486 		break;
487 	case Opt_space_cache_version:
488 		switch (result.uint_32) {
489 		case Opt_space_cache_v1:
490 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
491 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
492 			break;
493 		case Opt_space_cache_v2:
494 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
495 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
496 			break;
497 		default:
498 			btrfs_err(NULL, "unrecognized space_cache value %s",
499 				  param->key);
500 			return -EINVAL;
501 		}
502 		break;
503 	case Opt_rescan_uuid_tree:
504 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
505 		break;
506 	case Opt_clear_cache:
507 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
508 		break;
509 	case Opt_user_subvol_rm_allowed:
510 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
511 		break;
512 	case Opt_enospc_debug:
513 		if (result.negated)
514 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
515 		else
516 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
517 		break;
518 	case Opt_defrag:
519 		if (result.negated)
520 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
521 		else
522 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
523 		break;
524 	case Opt_usebackuproot:
525 		btrfs_warn(NULL,
526 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
527 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
528 
529 		/* If we're loading the backup roots we can't trust the space cache. */
530 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
531 		break;
532 	case Opt_skip_balance:
533 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
534 		break;
535 	case Opt_fatal_errors:
536 		switch (result.uint_32) {
537 		case Opt_fatal_errors_panic:
538 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
539 			break;
540 		case Opt_fatal_errors_bug:
541 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
542 			break;
543 		default:
544 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
545 				  param->key);
546 			return -EINVAL;
547 		}
548 		break;
549 	case Opt_commit_interval:
550 		ctx->commit_interval = result.uint_32;
551 		if (ctx->commit_interval == 0)
552 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
553 		break;
554 	case Opt_rescue:
555 		switch (result.uint_32) {
556 		case Opt_rescue_usebackuproot:
557 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
558 			break;
559 		case Opt_rescue_nologreplay:
560 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
561 			break;
562 		case Opt_rescue_ignorebadroots:
563 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
564 			break;
565 		case Opt_rescue_ignoredatacsums:
566 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
567 			break;
568 		case Opt_rescue_parameter_all:
569 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
570 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
571 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
572 			break;
573 		default:
574 			btrfs_info(NULL, "unrecognized rescue option '%s'",
575 				   param->key);
576 			return -EINVAL;
577 		}
578 		break;
579 #ifdef CONFIG_BTRFS_DEBUG
580 	case Opt_fragment:
581 		switch (result.uint_32) {
582 		case Opt_fragment_parameter_all:
583 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
584 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
585 			break;
586 		case Opt_fragment_parameter_metadata:
587 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
588 			break;
589 		case Opt_fragment_parameter_data:
590 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
591 			break;
592 		default:
593 			btrfs_info(NULL, "unrecognized fragment option '%s'",
594 				   param->key);
595 			return -EINVAL;
596 		}
597 		break;
598 #endif
599 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
600 	case Opt_ref_verify:
601 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
602 		break;
603 #endif
604 	default:
605 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
606 		return -EINVAL;
607 	}
608 
609 	return 0;
610 }
611 
612 /*
613  * Some options only have meaning at mount time and shouldn't persist across
614  * remounts, or be displayed. Clear these at the end of mount and remount code
615  * paths.
616  */
617 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
618 {
619 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
620 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
621 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
622 }
623 
624 static bool check_ro_option(struct btrfs_fs_info *fs_info,
625 			    unsigned long mount_opt, unsigned long opt,
626 			    const char *opt_name)
627 {
628 	if (mount_opt & opt) {
629 		btrfs_err(fs_info, "%s must be used with ro mount option",
630 			  opt_name);
631 		return true;
632 	}
633 	return false;
634 }
635 
636 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
637 			 unsigned long flags)
638 {
639 	bool ret = true;
640 
641 	if (!(flags & SB_RDONLY) &&
642 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
643 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
644 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
645 		ret = false;
646 
647 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
648 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
649 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
650 		btrfs_err(info, "cannot disable free-space-tree");
651 		ret = false;
652 	}
653 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
654 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
655 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
656 		ret = false;
657 	}
658 
659 	if (btrfs_check_mountopts_zoned(info, mount_opt))
660 		ret = false;
661 
662 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
663 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
664 			btrfs_info(info, "disk space caching is enabled");
665 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
666 			btrfs_info(info, "using free-space-tree");
667 	}
668 
669 	return ret;
670 }
671 
672 /*
673  * This is subtle, we only call this during open_ctree().  We need to pre-load
674  * the mount options with the on-disk settings.  Before the new mount API took
675  * effect we would do this on mount and remount.  With the new mount API we'll
676  * only do this on the initial mount.
677  *
678  * This isn't a change in behavior, because we're using the current state of the
679  * file system to set the current mount options.  If you mounted with special
680  * options to disable these features and then remounted we wouldn't revert the
681  * settings, because mounting without these features cleared the on-disk
682  * settings, so this being called on re-mount is not needed.
683  */
684 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
685 {
686 	if (fs_info->sectorsize < PAGE_SIZE) {
687 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
688 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
689 			btrfs_info(fs_info,
690 				   "forcing free space tree for sector size %u with page size %lu",
691 				   fs_info->sectorsize, PAGE_SIZE);
692 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
693 		}
694 	}
695 
696 	/*
697 	 * At this point our mount options are populated, so we only mess with
698 	 * these settings if we don't have any settings already.
699 	 */
700 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
701 		return;
702 
703 	if (btrfs_is_zoned(fs_info) &&
704 	    btrfs_free_space_cache_v1_active(fs_info)) {
705 		btrfs_info(fs_info, "zoned: clearing existing space cache");
706 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
707 		return;
708 	}
709 
710 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
711 		return;
712 
713 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
714 		return;
715 
716 	/*
717 	 * At this point we don't have explicit options set by the user, set
718 	 * them ourselves based on the state of the file system.
719 	 */
720 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
721 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
722 	else if (btrfs_free_space_cache_v1_active(fs_info))
723 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
724 }
725 
726 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
727 {
728 	if (!btrfs_test_opt(fs_info, NOSSD) &&
729 	    !fs_info->fs_devices->rotating)
730 		btrfs_set_opt(fs_info->mount_opt, SSD);
731 
732 	/*
733 	 * For devices supporting discard turn on discard=async automatically,
734 	 * unless it's already set or disabled. This could be turned off by
735 	 * nodiscard for the same mount.
736 	 *
737 	 * The zoned mode piggy backs on the discard functionality for
738 	 * resetting a zone. There is no reason to delay the zone reset as it is
739 	 * fast enough. So, do not enable async discard for zoned mode.
740 	 */
741 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
742 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
743 	      btrfs_test_opt(fs_info, NODISCARD)) &&
744 	    fs_info->fs_devices->discardable &&
745 	    !btrfs_is_zoned(fs_info))
746 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
747 }
748 
749 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
750 					  u64 subvol_objectid)
751 {
752 	struct btrfs_root *root = fs_info->tree_root;
753 	struct btrfs_root *fs_root = NULL;
754 	struct btrfs_root_ref *root_ref;
755 	struct btrfs_inode_ref *inode_ref;
756 	struct btrfs_key key;
757 	struct btrfs_path *path = NULL;
758 	char *name = NULL, *ptr;
759 	u64 dirid;
760 	int len;
761 	int ret;
762 
763 	path = btrfs_alloc_path();
764 	if (!path) {
765 		ret = -ENOMEM;
766 		goto err;
767 	}
768 
769 	name = kmalloc(PATH_MAX, GFP_KERNEL);
770 	if (!name) {
771 		ret = -ENOMEM;
772 		goto err;
773 	}
774 	ptr = name + PATH_MAX - 1;
775 	ptr[0] = '\0';
776 
777 	/*
778 	 * Walk up the subvolume trees in the tree of tree roots by root
779 	 * backrefs until we hit the top-level subvolume.
780 	 */
781 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
782 		key.objectid = subvol_objectid;
783 		key.type = BTRFS_ROOT_BACKREF_KEY;
784 		key.offset = (u64)-1;
785 
786 		ret = btrfs_search_backwards(root, &key, path);
787 		if (ret < 0) {
788 			goto err;
789 		} else if (ret > 0) {
790 			ret = -ENOENT;
791 			goto err;
792 		}
793 
794 		subvol_objectid = key.offset;
795 
796 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
797 					  struct btrfs_root_ref);
798 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
799 		ptr -= len + 1;
800 		if (ptr < name) {
801 			ret = -ENAMETOOLONG;
802 			goto err;
803 		}
804 		read_extent_buffer(path->nodes[0], ptr + 1,
805 				   (unsigned long)(root_ref + 1), len);
806 		ptr[0] = '/';
807 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
808 		btrfs_release_path(path);
809 
810 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
811 		if (IS_ERR(fs_root)) {
812 			ret = PTR_ERR(fs_root);
813 			fs_root = NULL;
814 			goto err;
815 		}
816 
817 		/*
818 		 * Walk up the filesystem tree by inode refs until we hit the
819 		 * root directory.
820 		 */
821 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
822 			key.objectid = dirid;
823 			key.type = BTRFS_INODE_REF_KEY;
824 			key.offset = (u64)-1;
825 
826 			ret = btrfs_search_backwards(fs_root, &key, path);
827 			if (ret < 0) {
828 				goto err;
829 			} else if (ret > 0) {
830 				ret = -ENOENT;
831 				goto err;
832 			}
833 
834 			dirid = key.offset;
835 
836 			inode_ref = btrfs_item_ptr(path->nodes[0],
837 						   path->slots[0],
838 						   struct btrfs_inode_ref);
839 			len = btrfs_inode_ref_name_len(path->nodes[0],
840 						       inode_ref);
841 			ptr -= len + 1;
842 			if (ptr < name) {
843 				ret = -ENAMETOOLONG;
844 				goto err;
845 			}
846 			read_extent_buffer(path->nodes[0], ptr + 1,
847 					   (unsigned long)(inode_ref + 1), len);
848 			ptr[0] = '/';
849 			btrfs_release_path(path);
850 		}
851 		btrfs_put_root(fs_root);
852 		fs_root = NULL;
853 	}
854 
855 	btrfs_free_path(path);
856 	if (ptr == name + PATH_MAX - 1) {
857 		name[0] = '/';
858 		name[1] = '\0';
859 	} else {
860 		memmove(name, ptr, name + PATH_MAX - ptr);
861 	}
862 	return name;
863 
864 err:
865 	btrfs_put_root(fs_root);
866 	btrfs_free_path(path);
867 	kfree(name);
868 	return ERR_PTR(ret);
869 }
870 
871 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
872 {
873 	struct btrfs_root *root = fs_info->tree_root;
874 	struct btrfs_dir_item *di;
875 	struct btrfs_path *path;
876 	struct btrfs_key location;
877 	struct fscrypt_str name = FSTR_INIT("default", 7);
878 	u64 dir_id;
879 
880 	path = btrfs_alloc_path();
881 	if (!path)
882 		return -ENOMEM;
883 
884 	/*
885 	 * Find the "default" dir item which points to the root item that we
886 	 * will mount by default if we haven't been given a specific subvolume
887 	 * to mount.
888 	 */
889 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
890 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
891 	if (IS_ERR(di)) {
892 		btrfs_free_path(path);
893 		return PTR_ERR(di);
894 	}
895 	if (!di) {
896 		/*
897 		 * Ok the default dir item isn't there.  This is weird since
898 		 * it's always been there, but don't freak out, just try and
899 		 * mount the top-level subvolume.
900 		 */
901 		btrfs_free_path(path);
902 		*objectid = BTRFS_FS_TREE_OBJECTID;
903 		return 0;
904 	}
905 
906 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 	btrfs_free_path(path);
908 	*objectid = location.objectid;
909 	return 0;
910 }
911 
912 static int btrfs_fill_super(struct super_block *sb,
913 			    struct btrfs_fs_devices *fs_devices,
914 			    void *data)
915 {
916 	struct inode *inode;
917 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
918 	int err;
919 
920 	sb->s_maxbytes = MAX_LFS_FILESIZE;
921 	sb->s_magic = BTRFS_SUPER_MAGIC;
922 	sb->s_op = &btrfs_super_ops;
923 	sb->s_d_op = &btrfs_dentry_operations;
924 	sb->s_export_op = &btrfs_export_ops;
925 #ifdef CONFIG_FS_VERITY
926 	sb->s_vop = &btrfs_verityops;
927 #endif
928 	sb->s_xattr = btrfs_xattr_handlers;
929 	sb->s_time_gran = 1;
930 	sb->s_iflags |= SB_I_CGROUPWB;
931 
932 	err = super_setup_bdi(sb);
933 	if (err) {
934 		btrfs_err(fs_info, "super_setup_bdi failed");
935 		return err;
936 	}
937 
938 	err = open_ctree(sb, fs_devices, (char *)data);
939 	if (err) {
940 		btrfs_err(fs_info, "open_ctree failed");
941 		return err;
942 	}
943 
944 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
945 	if (IS_ERR(inode)) {
946 		err = PTR_ERR(inode);
947 		btrfs_handle_fs_error(fs_info, err, NULL);
948 		goto fail_close;
949 	}
950 
951 	sb->s_root = d_make_root(inode);
952 	if (!sb->s_root) {
953 		err = -ENOMEM;
954 		goto fail_close;
955 	}
956 
957 	sb->s_flags |= SB_ACTIVE;
958 	return 0;
959 
960 fail_close:
961 	close_ctree(fs_info);
962 	return err;
963 }
964 
965 int btrfs_sync_fs(struct super_block *sb, int wait)
966 {
967 	struct btrfs_trans_handle *trans;
968 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
969 	struct btrfs_root *root = fs_info->tree_root;
970 
971 	trace_btrfs_sync_fs(fs_info, wait);
972 
973 	if (!wait) {
974 		filemap_flush(fs_info->btree_inode->i_mapping);
975 		return 0;
976 	}
977 
978 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
979 
980 	trans = btrfs_attach_transaction_barrier(root);
981 	if (IS_ERR(trans)) {
982 		/* no transaction, don't bother */
983 		if (PTR_ERR(trans) == -ENOENT) {
984 			/*
985 			 * Exit unless we have some pending changes
986 			 * that need to go through commit
987 			 */
988 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
989 				      &fs_info->flags))
990 				return 0;
991 			/*
992 			 * A non-blocking test if the fs is frozen. We must not
993 			 * start a new transaction here otherwise a deadlock
994 			 * happens. The pending operations are delayed to the
995 			 * next commit after thawing.
996 			 */
997 			if (sb_start_write_trylock(sb))
998 				sb_end_write(sb);
999 			else
1000 				return 0;
1001 			trans = btrfs_start_transaction(root, 0);
1002 		}
1003 		if (IS_ERR(trans))
1004 			return PTR_ERR(trans);
1005 	}
1006 	return btrfs_commit_transaction(trans);
1007 }
1008 
1009 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1010 {
1011 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1012 	*printed = true;
1013 }
1014 
1015 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1016 {
1017 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1018 	const char *compress_type;
1019 	const char *subvol_name;
1020 	bool printed = false;
1021 
1022 	if (btrfs_test_opt(info, DEGRADED))
1023 		seq_puts(seq, ",degraded");
1024 	if (btrfs_test_opt(info, NODATASUM))
1025 		seq_puts(seq, ",nodatasum");
1026 	if (btrfs_test_opt(info, NODATACOW))
1027 		seq_puts(seq, ",nodatacow");
1028 	if (btrfs_test_opt(info, NOBARRIER))
1029 		seq_puts(seq, ",nobarrier");
1030 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1031 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032 	if (info->thread_pool_size !=  min_t(unsigned long,
1033 					     num_online_cpus() + 2, 8))
1034 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1035 	if (btrfs_test_opt(info, COMPRESS)) {
1036 		compress_type = btrfs_compress_type2str(info->compress_type);
1037 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1038 			seq_printf(seq, ",compress-force=%s", compress_type);
1039 		else
1040 			seq_printf(seq, ",compress=%s", compress_type);
1041 		if (info->compress_level)
1042 			seq_printf(seq, ":%d", info->compress_level);
1043 	}
1044 	if (btrfs_test_opt(info, NOSSD))
1045 		seq_puts(seq, ",nossd");
1046 	if (btrfs_test_opt(info, SSD_SPREAD))
1047 		seq_puts(seq, ",ssd_spread");
1048 	else if (btrfs_test_opt(info, SSD))
1049 		seq_puts(seq, ",ssd");
1050 	if (btrfs_test_opt(info, NOTREELOG))
1051 		seq_puts(seq, ",notreelog");
1052 	if (btrfs_test_opt(info, NOLOGREPLAY))
1053 		print_rescue_option(seq, "nologreplay", &printed);
1054 	if (btrfs_test_opt(info, USEBACKUPROOT))
1055 		print_rescue_option(seq, "usebackuproot", &printed);
1056 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1057 		print_rescue_option(seq, "ignorebadroots", &printed);
1058 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1059 		print_rescue_option(seq, "ignoredatacsums", &printed);
1060 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1061 		seq_puts(seq, ",flushoncommit");
1062 	if (btrfs_test_opt(info, DISCARD_SYNC))
1063 		seq_puts(seq, ",discard");
1064 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1065 		seq_puts(seq, ",discard=async");
1066 	if (!(info->sb->s_flags & SB_POSIXACL))
1067 		seq_puts(seq, ",noacl");
1068 	if (btrfs_free_space_cache_v1_active(info))
1069 		seq_puts(seq, ",space_cache");
1070 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1071 		seq_puts(seq, ",space_cache=v2");
1072 	else
1073 		seq_puts(seq, ",nospace_cache");
1074 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1075 		seq_puts(seq, ",rescan_uuid_tree");
1076 	if (btrfs_test_opt(info, CLEAR_CACHE))
1077 		seq_puts(seq, ",clear_cache");
1078 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1079 		seq_puts(seq, ",user_subvol_rm_allowed");
1080 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1081 		seq_puts(seq, ",enospc_debug");
1082 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1083 		seq_puts(seq, ",autodefrag");
1084 	if (btrfs_test_opt(info, SKIP_BALANCE))
1085 		seq_puts(seq, ",skip_balance");
1086 	if (info->metadata_ratio)
1087 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1088 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1089 		seq_puts(seq, ",fatal_errors=panic");
1090 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091 		seq_printf(seq, ",commit=%u", info->commit_interval);
1092 #ifdef CONFIG_BTRFS_DEBUG
1093 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1094 		seq_puts(seq, ",fragment=data");
1095 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1096 		seq_puts(seq, ",fragment=metadata");
1097 #endif
1098 	if (btrfs_test_opt(info, REF_VERIFY))
1099 		seq_puts(seq, ",ref_verify");
1100 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1101 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1102 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1103 	if (!IS_ERR(subvol_name)) {
1104 		seq_puts(seq, ",subvol=");
1105 		seq_escape(seq, subvol_name, " \t\n\\");
1106 		kfree(subvol_name);
1107 	}
1108 	return 0;
1109 }
1110 
1111 /*
1112  * subvolumes are identified by ino 256
1113  */
1114 static inline int is_subvolume_inode(struct inode *inode)
1115 {
1116 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1122 				   struct vfsmount *mnt)
1123 {
1124 	struct dentry *root;
1125 	int ret;
1126 
1127 	if (!subvol_name) {
1128 		if (!subvol_objectid) {
1129 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1130 							  &subvol_objectid);
1131 			if (ret) {
1132 				root = ERR_PTR(ret);
1133 				goto out;
1134 			}
1135 		}
1136 		subvol_name = btrfs_get_subvol_name_from_objectid(
1137 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1138 		if (IS_ERR(subvol_name)) {
1139 			root = ERR_CAST(subvol_name);
1140 			subvol_name = NULL;
1141 			goto out;
1142 		}
1143 
1144 	}
1145 
1146 	root = mount_subtree(mnt, subvol_name);
1147 	/* mount_subtree() drops our reference on the vfsmount. */
1148 	mnt = NULL;
1149 
1150 	if (!IS_ERR(root)) {
1151 		struct super_block *s = root->d_sb;
1152 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1153 		struct inode *root_inode = d_inode(root);
1154 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1155 
1156 		ret = 0;
1157 		if (!is_subvolume_inode(root_inode)) {
1158 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1159 			       subvol_name);
1160 			ret = -EINVAL;
1161 		}
1162 		if (subvol_objectid && root_objectid != subvol_objectid) {
1163 			/*
1164 			 * This will also catch a race condition where a
1165 			 * subvolume which was passed by ID is renamed and
1166 			 * another subvolume is renamed over the old location.
1167 			 */
1168 			btrfs_err(fs_info,
1169 				  "subvol '%s' does not match subvolid %llu",
1170 				  subvol_name, subvol_objectid);
1171 			ret = -EINVAL;
1172 		}
1173 		if (ret) {
1174 			dput(root);
1175 			root = ERR_PTR(ret);
1176 			deactivate_locked_super(s);
1177 		}
1178 	}
1179 
1180 out:
1181 	mntput(mnt);
1182 	kfree(subvol_name);
1183 	return root;
1184 }
1185 
1186 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1187 				     u32 new_pool_size, u32 old_pool_size)
1188 {
1189 	if (new_pool_size == old_pool_size)
1190 		return;
1191 
1192 	fs_info->thread_pool_size = new_pool_size;
1193 
1194 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1195 	       old_pool_size, new_pool_size);
1196 
1197 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1198 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1199 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1200 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1201 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1202 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1203 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1204 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1205 }
1206 
1207 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1208 				       unsigned long old_opts, int flags)
1209 {
1210 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1211 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1212 	     (flags & SB_RDONLY))) {
1213 		/* wait for any defraggers to finish */
1214 		wait_event(fs_info->transaction_wait,
1215 			   (atomic_read(&fs_info->defrag_running) == 0));
1216 		if (flags & SB_RDONLY)
1217 			sync_filesystem(fs_info->sb);
1218 	}
1219 }
1220 
1221 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1222 					 unsigned long old_opts)
1223 {
1224 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1225 
1226 	/*
1227 	 * We need to cleanup all defragable inodes if the autodefragment is
1228 	 * close or the filesystem is read only.
1229 	 */
1230 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1231 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1232 		btrfs_cleanup_defrag_inodes(fs_info);
1233 	}
1234 
1235 	/* If we toggled discard async */
1236 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1237 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1238 		btrfs_discard_resume(fs_info);
1239 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241 		btrfs_discard_cleanup(fs_info);
1242 
1243 	/* If we toggled space cache */
1244 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1245 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1246 }
1247 
1248 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1249 {
1250 	int ret;
1251 
1252 	if (BTRFS_FS_ERROR(fs_info)) {
1253 		btrfs_err(fs_info,
1254 			  "remounting read-write after error is not allowed");
1255 		return -EINVAL;
1256 	}
1257 
1258 	if (fs_info->fs_devices->rw_devices == 0)
1259 		return -EACCES;
1260 
1261 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1262 		btrfs_warn(fs_info,
1263 			   "too many missing devices, writable remount is not allowed");
1264 		return -EACCES;
1265 	}
1266 
1267 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1268 		btrfs_warn(fs_info,
1269 			   "mount required to replay tree-log, cannot remount read-write");
1270 		return -EINVAL;
1271 	}
1272 
1273 	/*
1274 	 * NOTE: when remounting with a change that does writes, don't put it
1275 	 * anywhere above this point, as we are not sure to be safe to write
1276 	 * until we pass the above checks.
1277 	 */
1278 	ret = btrfs_start_pre_rw_mount(fs_info);
1279 	if (ret)
1280 		return ret;
1281 
1282 	btrfs_clear_sb_rdonly(fs_info->sb);
1283 
1284 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1285 
1286 	/*
1287 	 * If we've gone from readonly -> read-write, we need to get our
1288 	 * sync/async discard lists in the right state.
1289 	 */
1290 	btrfs_discard_resume(fs_info);
1291 
1292 	return 0;
1293 }
1294 
1295 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1296 {
1297 	/*
1298 	 * This also happens on 'umount -rf' or on shutdown, when the
1299 	 * filesystem is busy.
1300 	 */
1301 	cancel_work_sync(&fs_info->async_reclaim_work);
1302 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1303 
1304 	btrfs_discard_cleanup(fs_info);
1305 
1306 	/* Wait for the uuid_scan task to finish */
1307 	down(&fs_info->uuid_tree_rescan_sem);
1308 	/* Avoid complains from lockdep et al. */
1309 	up(&fs_info->uuid_tree_rescan_sem);
1310 
1311 	btrfs_set_sb_rdonly(fs_info->sb);
1312 
1313 	/*
1314 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1315 	 * loop if it's already active.  If it's already asleep, we'll leave
1316 	 * unused block groups on disk until we're mounted read-write again
1317 	 * unless we clean them up here.
1318 	 */
1319 	btrfs_delete_unused_bgs(fs_info);
1320 
1321 	/*
1322 	 * The cleaner task could be already running before we set the flag
1323 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1324 	 * sure that after we finish the remount, i.e. after we call
1325 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1326 	 * - either because it was dropping a dead root, running delayed iputs
1327 	 *   or deleting an unused block group (the cleaner picked a block
1328 	 *   group from the list of unused block groups before we were able to
1329 	 *   in the previous call to btrfs_delete_unused_bgs()).
1330 	 */
1331 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1332 
1333 	/*
1334 	 * We've set the superblock to RO mode, so we might have made the
1335 	 * cleaner task sleep without running all pending delayed iputs. Go
1336 	 * through all the delayed iputs here, so that if an unmount happens
1337 	 * without remounting RW we don't end up at finishing close_ctree()
1338 	 * with a non-empty list of delayed iputs.
1339 	 */
1340 	btrfs_run_delayed_iputs(fs_info);
1341 
1342 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1343 	btrfs_scrub_cancel(fs_info);
1344 	btrfs_pause_balance(fs_info);
1345 
1346 	/*
1347 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1348 	 * be still running after we are in RO mode, as after that, by the time
1349 	 * we unmount, it might have left a transaction open, so we would leak
1350 	 * the transaction and/or crash.
1351 	 */
1352 	btrfs_qgroup_wait_for_completion(fs_info, false);
1353 
1354 	return btrfs_commit_super(fs_info);
1355 }
1356 
1357 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1358 {
1359 	fs_info->max_inline = ctx->max_inline;
1360 	fs_info->commit_interval = ctx->commit_interval;
1361 	fs_info->metadata_ratio = ctx->metadata_ratio;
1362 	fs_info->thread_pool_size = ctx->thread_pool_size;
1363 	fs_info->mount_opt = ctx->mount_opt;
1364 	fs_info->compress_type = ctx->compress_type;
1365 	fs_info->compress_level = ctx->compress_level;
1366 }
1367 
1368 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1369 {
1370 	ctx->max_inline = fs_info->max_inline;
1371 	ctx->commit_interval = fs_info->commit_interval;
1372 	ctx->metadata_ratio = fs_info->metadata_ratio;
1373 	ctx->thread_pool_size = fs_info->thread_pool_size;
1374 	ctx->mount_opt = fs_info->mount_opt;
1375 	ctx->compress_type = fs_info->compress_type;
1376 	ctx->compress_level = fs_info->compress_level;
1377 }
1378 
1379 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1380 do {										\
1381 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1382 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1383 		btrfs_info(fs_info, fmt, ##args);				\
1384 } while (0)
1385 
1386 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1387 do {									\
1388 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1389 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1390 		btrfs_info(fs_info, fmt, ##args);			\
1391 } while (0)
1392 
1393 static void btrfs_emit_options(struct btrfs_fs_info *info,
1394 			       struct btrfs_fs_context *old)
1395 {
1396 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1397 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1398 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1399 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1400 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1401 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1402 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1403 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1404 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1405 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1406 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1407 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1408 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1409 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1410 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1411 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1412 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1413 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1414 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1415 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1416 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1417 
1418 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1419 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1420 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1421 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1422 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1423 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1424 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1425 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1426 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1427 
1428 	/* Did the compression settings change? */
1429 	if (btrfs_test_opt(info, COMPRESS) &&
1430 	    (!old ||
1431 	     old->compress_type != info->compress_type ||
1432 	     old->compress_level != info->compress_level ||
1433 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1434 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1435 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1436 
1437 		btrfs_info(info, "%s %s compression, level %d",
1438 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1439 			   compress_type, info->compress_level);
1440 	}
1441 
1442 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1443 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1444 }
1445 
1446 static int btrfs_reconfigure(struct fs_context *fc)
1447 {
1448 	struct super_block *sb = fc->root->d_sb;
1449 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1450 	struct btrfs_fs_context *ctx = fc->fs_private;
1451 	struct btrfs_fs_context old_ctx;
1452 	int ret = 0;
1453 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1454 
1455 	btrfs_info_to_ctx(fs_info, &old_ctx);
1456 
1457 	/*
1458 	 * This is our "bind mount" trick, we don't want to allow the user to do
1459 	 * anything other than mount a different ro/rw and a different subvol,
1460 	 * all of the mount options should be maintained.
1461 	 */
1462 	if (mount_reconfigure)
1463 		ctx->mount_opt = old_ctx.mount_opt;
1464 
1465 	sync_filesystem(sb);
1466 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1467 
1468 	if (!mount_reconfigure &&
1469 	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1470 		return -EINVAL;
1471 
1472 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1473 	if (ret < 0)
1474 		return ret;
1475 
1476 	btrfs_ctx_to_info(fs_info, ctx);
1477 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1478 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1479 				 old_ctx.thread_pool_size);
1480 
1481 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1482 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1483 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1484 		btrfs_warn(fs_info,
1485 		"remount supports changing free space tree only from RO to RW");
1486 		/* Make sure free space cache options match the state on disk. */
1487 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1488 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1489 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1490 		}
1491 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1492 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1493 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1494 		}
1495 	}
1496 
1497 	ret = 0;
1498 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1499 		ret = btrfs_remount_ro(fs_info);
1500 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1501 		ret = btrfs_remount_rw(fs_info);
1502 	if (ret)
1503 		goto restore;
1504 
1505 	/*
1506 	 * If we set the mask during the parameter parsing VFS would reject the
1507 	 * remount.  Here we can set the mask and the value will be updated
1508 	 * appropriately.
1509 	 */
1510 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1511 		fc->sb_flags_mask |= SB_POSIXACL;
1512 
1513 	btrfs_emit_options(fs_info, &old_ctx);
1514 	wake_up_process(fs_info->transaction_kthread);
1515 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1516 	btrfs_clear_oneshot_options(fs_info);
1517 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1518 
1519 	return 0;
1520 restore:
1521 	btrfs_ctx_to_info(fs_info, &old_ctx);
1522 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1523 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1524 	return ret;
1525 }
1526 
1527 /* Used to sort the devices by max_avail(descending sort) */
1528 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1529 {
1530 	const struct btrfs_device_info *dev_info1 = a;
1531 	const struct btrfs_device_info *dev_info2 = b;
1532 
1533 	if (dev_info1->max_avail > dev_info2->max_avail)
1534 		return -1;
1535 	else if (dev_info1->max_avail < dev_info2->max_avail)
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 /*
1541  * sort the devices by max_avail, in which max free extent size of each device
1542  * is stored.(Descending Sort)
1543  */
1544 static inline void btrfs_descending_sort_devices(
1545 					struct btrfs_device_info *devices,
1546 					size_t nr_devices)
1547 {
1548 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1549 	     btrfs_cmp_device_free_bytes, NULL);
1550 }
1551 
1552 /*
1553  * The helper to calc the free space on the devices that can be used to store
1554  * file data.
1555  */
1556 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1557 					      u64 *free_bytes)
1558 {
1559 	struct btrfs_device_info *devices_info;
1560 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1561 	struct btrfs_device *device;
1562 	u64 type;
1563 	u64 avail_space;
1564 	u64 min_stripe_size;
1565 	int num_stripes = 1;
1566 	int i = 0, nr_devices;
1567 	const struct btrfs_raid_attr *rattr;
1568 
1569 	/*
1570 	 * We aren't under the device list lock, so this is racy-ish, but good
1571 	 * enough for our purposes.
1572 	 */
1573 	nr_devices = fs_info->fs_devices->open_devices;
1574 	if (!nr_devices) {
1575 		smp_mb();
1576 		nr_devices = fs_info->fs_devices->open_devices;
1577 		ASSERT(nr_devices);
1578 		if (!nr_devices) {
1579 			*free_bytes = 0;
1580 			return 0;
1581 		}
1582 	}
1583 
1584 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1585 			       GFP_KERNEL);
1586 	if (!devices_info)
1587 		return -ENOMEM;
1588 
1589 	/* calc min stripe number for data space allocation */
1590 	type = btrfs_data_alloc_profile(fs_info);
1591 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1592 
1593 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1594 		num_stripes = nr_devices;
1595 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1596 		num_stripes = rattr->ncopies;
1597 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1598 		num_stripes = 4;
1599 
1600 	/* Adjust for more than 1 stripe per device */
1601 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1602 
1603 	rcu_read_lock();
1604 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1605 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1606 						&device->dev_state) ||
1607 		    !device->bdev ||
1608 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1609 			continue;
1610 
1611 		if (i >= nr_devices)
1612 			break;
1613 
1614 		avail_space = device->total_bytes - device->bytes_used;
1615 
1616 		/* align with stripe_len */
1617 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1618 
1619 		/*
1620 		 * Ensure we have at least min_stripe_size on top of the
1621 		 * reserved space on the device.
1622 		 */
1623 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1624 			continue;
1625 
1626 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1627 
1628 		devices_info[i].dev = device;
1629 		devices_info[i].max_avail = avail_space;
1630 
1631 		i++;
1632 	}
1633 	rcu_read_unlock();
1634 
1635 	nr_devices = i;
1636 
1637 	btrfs_descending_sort_devices(devices_info, nr_devices);
1638 
1639 	i = nr_devices - 1;
1640 	avail_space = 0;
1641 	while (nr_devices >= rattr->devs_min) {
1642 		num_stripes = min(num_stripes, nr_devices);
1643 
1644 		if (devices_info[i].max_avail >= min_stripe_size) {
1645 			int j;
1646 			u64 alloc_size;
1647 
1648 			avail_space += devices_info[i].max_avail * num_stripes;
1649 			alloc_size = devices_info[i].max_avail;
1650 			for (j = i + 1 - num_stripes; j <= i; j++)
1651 				devices_info[j].max_avail -= alloc_size;
1652 		}
1653 		i--;
1654 		nr_devices--;
1655 	}
1656 
1657 	kfree(devices_info);
1658 	*free_bytes = avail_space;
1659 	return 0;
1660 }
1661 
1662 /*
1663  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1664  *
1665  * If there's a redundant raid level at DATA block groups, use the respective
1666  * multiplier to scale the sizes.
1667  *
1668  * Unused device space usage is based on simulating the chunk allocator
1669  * algorithm that respects the device sizes and order of allocations.  This is
1670  * a close approximation of the actual use but there are other factors that may
1671  * change the result (like a new metadata chunk).
1672  *
1673  * If metadata is exhausted, f_bavail will be 0.
1674  */
1675 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1676 {
1677 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1678 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1679 	struct btrfs_space_info *found;
1680 	u64 total_used = 0;
1681 	u64 total_free_data = 0;
1682 	u64 total_free_meta = 0;
1683 	u32 bits = fs_info->sectorsize_bits;
1684 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1685 	unsigned factor = 1;
1686 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1687 	int ret;
1688 	u64 thresh = 0;
1689 	int mixed = 0;
1690 
1691 	list_for_each_entry(found, &fs_info->space_info, list) {
1692 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1693 			int i;
1694 
1695 			total_free_data += found->disk_total - found->disk_used;
1696 			total_free_data -=
1697 				btrfs_account_ro_block_groups_free_space(found);
1698 
1699 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1700 				if (!list_empty(&found->block_groups[i]))
1701 					factor = btrfs_bg_type_to_factor(
1702 						btrfs_raid_array[i].bg_flag);
1703 			}
1704 		}
1705 
1706 		/*
1707 		 * Metadata in mixed block group profiles are accounted in data
1708 		 */
1709 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1710 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1711 				mixed = 1;
1712 			else
1713 				total_free_meta += found->disk_total -
1714 					found->disk_used;
1715 		}
1716 
1717 		total_used += found->disk_used;
1718 	}
1719 
1720 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1721 	buf->f_blocks >>= bits;
1722 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1723 
1724 	/* Account global block reserve as used, it's in logical size already */
1725 	spin_lock(&block_rsv->lock);
1726 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1727 	if (buf->f_bfree >= block_rsv->size >> bits)
1728 		buf->f_bfree -= block_rsv->size >> bits;
1729 	else
1730 		buf->f_bfree = 0;
1731 	spin_unlock(&block_rsv->lock);
1732 
1733 	buf->f_bavail = div_u64(total_free_data, factor);
1734 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1735 	if (ret)
1736 		return ret;
1737 	buf->f_bavail += div_u64(total_free_data, factor);
1738 	buf->f_bavail = buf->f_bavail >> bits;
1739 
1740 	/*
1741 	 * We calculate the remaining metadata space minus global reserve. If
1742 	 * this is (supposedly) smaller than zero, there's no space. But this
1743 	 * does not hold in practice, the exhausted state happens where's still
1744 	 * some positive delta. So we apply some guesswork and compare the
1745 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1746 	 *
1747 	 * We probably cannot calculate the exact threshold value because this
1748 	 * depends on the internal reservations requested by various
1749 	 * operations, so some operations that consume a few metadata will
1750 	 * succeed even if the Avail is zero. But this is better than the other
1751 	 * way around.
1752 	 */
1753 	thresh = SZ_4M;
1754 
1755 	/*
1756 	 * We only want to claim there's no available space if we can no longer
1757 	 * allocate chunks for our metadata profile and our global reserve will
1758 	 * not fit in the free metadata space.  If we aren't ->full then we
1759 	 * still can allocate chunks and thus are fine using the currently
1760 	 * calculated f_bavail.
1761 	 */
1762 	if (!mixed && block_rsv->space_info->full &&
1763 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1764 		buf->f_bavail = 0;
1765 
1766 	buf->f_type = BTRFS_SUPER_MAGIC;
1767 	buf->f_bsize = fs_info->sectorsize;
1768 	buf->f_namelen = BTRFS_NAME_LEN;
1769 
1770 	/* We treat it as constant endianness (it doesn't matter _which_)
1771 	   because we want the fsid to come out the same whether mounted
1772 	   on a big-endian or little-endian host */
1773 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1774 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1775 	/* Mask in the root object ID too, to disambiguate subvols */
1776 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1777 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1778 
1779 	return 0;
1780 }
1781 
1782 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1783 {
1784 	struct btrfs_fs_info *p = fc->s_fs_info;
1785 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1786 
1787 	return fs_info->fs_devices == p->fs_devices;
1788 }
1789 
1790 static int btrfs_get_tree_super(struct fs_context *fc)
1791 {
1792 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1793 	struct btrfs_fs_context *ctx = fc->fs_private;
1794 	struct btrfs_fs_devices *fs_devices = NULL;
1795 	struct block_device *bdev;
1796 	struct btrfs_device *device;
1797 	struct super_block *sb;
1798 	blk_mode_t mode = btrfs_open_mode(fc);
1799 	int ret;
1800 
1801 	btrfs_ctx_to_info(fs_info, ctx);
1802 	mutex_lock(&uuid_mutex);
1803 
1804 	/*
1805 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1806 	 * either a valid device or an error.
1807 	 */
1808 	device = btrfs_scan_one_device(fc->source, mode, true);
1809 	ASSERT(device != NULL);
1810 	if (IS_ERR(device)) {
1811 		mutex_unlock(&uuid_mutex);
1812 		return PTR_ERR(device);
1813 	}
1814 
1815 	fs_devices = device->fs_devices;
1816 	fs_info->fs_devices = fs_devices;
1817 
1818 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1819 	mutex_unlock(&uuid_mutex);
1820 	if (ret)
1821 		return ret;
1822 
1823 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1824 		ret = -EACCES;
1825 		goto error;
1826 	}
1827 
1828 	bdev = fs_devices->latest_dev->bdev;
1829 
1830 	/*
1831 	 * From now on the error handling is not straightforward.
1832 	 *
1833 	 * If successful, this will transfer the fs_info into the super block,
1834 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1835 	 * super, we'll still have fc->s_fs_info populated.  If we error
1836 	 * completely out it'll be cleaned up when we drop the fs_context,
1837 	 * otherwise it's tied to the lifetime of the super_block.
1838 	 */
1839 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1840 	if (IS_ERR(sb)) {
1841 		ret = PTR_ERR(sb);
1842 		goto error;
1843 	}
1844 
1845 	set_device_specific_options(fs_info);
1846 
1847 	if (sb->s_root) {
1848 		btrfs_close_devices(fs_devices);
1849 		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1850 			ret = -EBUSY;
1851 	} else {
1852 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1853 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1854 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1855 		ret = btrfs_fill_super(sb, fs_devices, NULL);
1856 	}
1857 
1858 	if (ret) {
1859 		deactivate_locked_super(sb);
1860 		return ret;
1861 	}
1862 
1863 	btrfs_clear_oneshot_options(fs_info);
1864 
1865 	fc->root = dget(sb->s_root);
1866 	return 0;
1867 
1868 error:
1869 	btrfs_close_devices(fs_devices);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1875  * with different ro/rw options") the following works:
1876  *
1877  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1878  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1879  *
1880  * which looks nice and innocent but is actually pretty intricate and deserves
1881  * a long comment.
1882  *
1883  * On another filesystem a subvolume mount is close to something like:
1884  *
1885  *	(iii) # create rw superblock + initial mount
1886  *	      mount -t xfs /dev/sdb /opt/
1887  *
1888  *	      # create ro bind mount
1889  *	      mount --bind -o ro /opt/foo /mnt/foo
1890  *
1891  *	      # unmount initial mount
1892  *	      umount /opt
1893  *
1894  * Of course, there's some special subvolume sauce and there's the fact that the
1895  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1896  * it's very close and will help us understand the issue.
1897  *
1898  * The old mount API didn't cleanly distinguish between a mount being made ro
1899  * and a superblock being made ro.  The only way to change the ro state of
1900  * either object was by passing ms_rdonly. If a new mount was created via
1901  * mount(2) such as:
1902  *
1903  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1904  *
1905  * the MS_RDONLY flag being specified had two effects:
1906  *
1907  * (1) MNT_READONLY was raised -> the resulting mount got
1908  *     @mnt->mnt_flags |= MNT_READONLY raised.
1909  *
1910  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1911  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1912  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1913  *
1914  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1915  * subtree mounted ro.
1916  *
1917  * But consider the effect on the old mount API on btrfs subvolume mounting
1918  * which combines the distinct step in (iii) into a single step.
1919  *
1920  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1921  * is issued the superblock is ro and thus even if the mount created for (ii) is
1922  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1923  * to rw for (ii) which it did using an internal remount call.
1924  *
1925  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1926  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1927  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1928  * passed by mount(8) to mount(2).
1929  *
1930  * Enter the new mount API. The new mount API disambiguates making a mount ro
1931  * and making a superblock ro.
1932  *
1933  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1934  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1935  *     specific mount or mount tree that is never seen by the filesystem itself.
1936  *
1937  * (4) To turn a superblock ro the "ro" flag must be used with
1938  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1939  *     in fc->sb_flags.
1940  *
1941  * This disambiguation has rather positive consequences.  Mounting a subvolume
1942  * ro will not also turn the superblock ro. Only the mount for the subvolume
1943  * will become ro.
1944  *
1945  * So, if the superblock creation request comes from the new mount API the
1946  * caller must have explicitly done:
1947  *
1948  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1949  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1950  *
1951  * IOW, at some point the caller must have explicitly turned the whole
1952  * superblock ro and we shouldn't just undo it like we did for the old mount
1953  * API. In any case, it lets us avoid the hack in the new mount API.
1954  *
1955  * Consequently, the remounting hack must only be used for requests originating
1956  * from the old mount API and should be marked for full deprecation so it can be
1957  * turned off in a couple of years.
1958  *
1959  * The new mount API has no reason to support this hack.
1960  */
1961 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1962 {
1963 	struct vfsmount *mnt;
1964 	int ret;
1965 	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1966 
1967 	/*
1968 	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1969 	 * super block, so invert our setting here and retry the mount so we
1970 	 * can get our vfsmount.
1971 	 */
1972 	if (ro2rw)
1973 		fc->sb_flags |= SB_RDONLY;
1974 	else
1975 		fc->sb_flags &= ~SB_RDONLY;
1976 
1977 	mnt = fc_mount(fc);
1978 	if (IS_ERR(mnt))
1979 		return mnt;
1980 
1981 	if (!fc->oldapi || !ro2rw)
1982 		return mnt;
1983 
1984 	/* We need to convert to rw, call reconfigure. */
1985 	fc->sb_flags &= ~SB_RDONLY;
1986 	down_write(&mnt->mnt_sb->s_umount);
1987 	ret = btrfs_reconfigure(fc);
1988 	up_write(&mnt->mnt_sb->s_umount);
1989 	if (ret) {
1990 		mntput(mnt);
1991 		return ERR_PTR(ret);
1992 	}
1993 	return mnt;
1994 }
1995 
1996 static int btrfs_get_tree_subvol(struct fs_context *fc)
1997 {
1998 	struct btrfs_fs_info *fs_info = NULL;
1999 	struct btrfs_fs_context *ctx = fc->fs_private;
2000 	struct fs_context *dup_fc;
2001 	struct dentry *dentry;
2002 	struct vfsmount *mnt;
2003 
2004 	/*
2005 	 * Setup a dummy root and fs_info for test/set super.  This is because
2006 	 * we don't actually fill this stuff out until open_ctree, but we need
2007 	 * then open_ctree will properly initialize the file system specific
2008 	 * settings later.  btrfs_init_fs_info initializes the static elements
2009 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2010 	 * superblock with our given fs_devices later on at sget() time.
2011 	 */
2012 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2013 	if (!fs_info)
2014 		return -ENOMEM;
2015 
2016 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2017 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2018 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2019 		btrfs_free_fs_info(fs_info);
2020 		return -ENOMEM;
2021 	}
2022 	btrfs_init_fs_info(fs_info);
2023 
2024 	dup_fc = vfs_dup_fs_context(fc);
2025 	if (IS_ERR(dup_fc)) {
2026 		btrfs_free_fs_info(fs_info);
2027 		return PTR_ERR(dup_fc);
2028 	}
2029 
2030 	/*
2031 	 * When we do the sget_fc this gets transferred to the sb, so we only
2032 	 * need to set it on the dup_fc as this is what creates the super block.
2033 	 */
2034 	dup_fc->s_fs_info = fs_info;
2035 
2036 	/*
2037 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2038 	 * loop, they were duplicated into dup_fc, we can drop the originals
2039 	 * here.
2040 	 */
2041 	security_free_mnt_opts(&fc->security);
2042 	fc->security = NULL;
2043 
2044 	mnt = fc_mount(dup_fc);
2045 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2046 		mnt = btrfs_reconfigure_for_mount(dup_fc);
2047 	put_fs_context(dup_fc);
2048 	if (IS_ERR(mnt))
2049 		return PTR_ERR(mnt);
2050 
2051 	/*
2052 	 * This free's ->subvol_name, because if it isn't set we have to
2053 	 * allocate a buffer to hold the subvol_name, so we just drop our
2054 	 * reference to it here.
2055 	 */
2056 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2057 	ctx->subvol_name = NULL;
2058 	if (IS_ERR(dentry))
2059 		return PTR_ERR(dentry);
2060 
2061 	fc->root = dentry;
2062 	return 0;
2063 }
2064 
2065 static int btrfs_get_tree(struct fs_context *fc)
2066 {
2067 	/*
2068 	 * Since we use mount_subtree to mount the default/specified subvol, we
2069 	 * have to do mounts in two steps.
2070 	 *
2071 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2072 	 * wrapper around fc_mount() to call back into here again, and this time
2073 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2074 	 * everything to open the devices and file system.  Then we return back
2075 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2076 	 * from there we can do our mount_subvol() call, which will lookup
2077 	 * whichever subvol we're mounting and setup this fc with the
2078 	 * appropriate dentry for the subvol.
2079 	 */
2080 	if (fc->s_fs_info)
2081 		return btrfs_get_tree_super(fc);
2082 	return btrfs_get_tree_subvol(fc);
2083 }
2084 
2085 static void btrfs_kill_super(struct super_block *sb)
2086 {
2087 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2088 	kill_anon_super(sb);
2089 	btrfs_free_fs_info(fs_info);
2090 }
2091 
2092 static void btrfs_free_fs_context(struct fs_context *fc)
2093 {
2094 	struct btrfs_fs_context *ctx = fc->fs_private;
2095 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2096 
2097 	if (fs_info)
2098 		btrfs_free_fs_info(fs_info);
2099 
2100 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2101 		kfree(ctx->subvol_name);
2102 		kfree(ctx);
2103 	}
2104 }
2105 
2106 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2107 {
2108 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2109 
2110 	/*
2111 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2112 	 * our original fc so we can have the subvolume name or objectid.
2113 	 *
2114 	 * We unset ->source in the original fc because the dup needs it for
2115 	 * mounting, and then once we free the dup it'll free ->source, so we
2116 	 * need to make sure we're only pointing to it in one fc.
2117 	 */
2118 	refcount_inc(&ctx->refs);
2119 	fc->fs_private = ctx;
2120 	fc->source = src_fc->source;
2121 	src_fc->source = NULL;
2122 	return 0;
2123 }
2124 
2125 static const struct fs_context_operations btrfs_fs_context_ops = {
2126 	.parse_param	= btrfs_parse_param,
2127 	.reconfigure	= btrfs_reconfigure,
2128 	.get_tree	= btrfs_get_tree,
2129 	.dup		= btrfs_dup_fs_context,
2130 	.free		= btrfs_free_fs_context,
2131 };
2132 
2133 static int btrfs_init_fs_context(struct fs_context *fc)
2134 {
2135 	struct btrfs_fs_context *ctx;
2136 
2137 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2138 	if (!ctx)
2139 		return -ENOMEM;
2140 
2141 	refcount_set(&ctx->refs, 1);
2142 	fc->fs_private = ctx;
2143 	fc->ops = &btrfs_fs_context_ops;
2144 
2145 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2146 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2147 	} else {
2148 		ctx->thread_pool_size =
2149 			min_t(unsigned long, num_online_cpus() + 2, 8);
2150 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2151 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2152 	}
2153 
2154 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2155 	fc->sb_flags |= SB_POSIXACL;
2156 #endif
2157 	fc->sb_flags |= SB_I_VERSION;
2158 
2159 	return 0;
2160 }
2161 
2162 static struct file_system_type btrfs_fs_type = {
2163 	.owner			= THIS_MODULE,
2164 	.name			= "btrfs",
2165 	.init_fs_context	= btrfs_init_fs_context,
2166 	.parameters		= btrfs_fs_parameters,
2167 	.kill_sb		= btrfs_kill_super,
2168 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2169  };
2170 
2171 MODULE_ALIAS_FS("btrfs");
2172 
2173 static int btrfs_control_open(struct inode *inode, struct file *file)
2174 {
2175 	/*
2176 	 * The control file's private_data is used to hold the
2177 	 * transaction when it is started and is used to keep
2178 	 * track of whether a transaction is already in progress.
2179 	 */
2180 	file->private_data = NULL;
2181 	return 0;
2182 }
2183 
2184 /*
2185  * Used by /dev/btrfs-control for devices ioctls.
2186  */
2187 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2188 				unsigned long arg)
2189 {
2190 	struct btrfs_ioctl_vol_args *vol;
2191 	struct btrfs_device *device = NULL;
2192 	dev_t devt = 0;
2193 	int ret = -ENOTTY;
2194 
2195 	if (!capable(CAP_SYS_ADMIN))
2196 		return -EPERM;
2197 
2198 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2199 	if (IS_ERR(vol))
2200 		return PTR_ERR(vol);
2201 	ret = btrfs_check_ioctl_vol_args_path(vol);
2202 	if (ret < 0)
2203 		goto out;
2204 
2205 	switch (cmd) {
2206 	case BTRFS_IOC_SCAN_DEV:
2207 		mutex_lock(&uuid_mutex);
2208 		/*
2209 		 * Scanning outside of mount can return NULL which would turn
2210 		 * into 0 error code.
2211 		 */
2212 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2213 		ret = PTR_ERR_OR_ZERO(device);
2214 		mutex_unlock(&uuid_mutex);
2215 		break;
2216 	case BTRFS_IOC_FORGET_DEV:
2217 		if (vol->name[0] != 0) {
2218 			ret = lookup_bdev(vol->name, &devt);
2219 			if (ret)
2220 				break;
2221 		}
2222 		ret = btrfs_forget_devices(devt);
2223 		break;
2224 	case BTRFS_IOC_DEVICES_READY:
2225 		mutex_lock(&uuid_mutex);
2226 		/*
2227 		 * Scanning outside of mount can return NULL which would turn
2228 		 * into 0 error code.
2229 		 */
2230 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2231 		if (IS_ERR_OR_NULL(device)) {
2232 			mutex_unlock(&uuid_mutex);
2233 			ret = PTR_ERR(device);
2234 			break;
2235 		}
2236 		ret = !(device->fs_devices->num_devices ==
2237 			device->fs_devices->total_devices);
2238 		mutex_unlock(&uuid_mutex);
2239 		break;
2240 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2241 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2242 		break;
2243 	}
2244 
2245 out:
2246 	kfree(vol);
2247 	return ret;
2248 }
2249 
2250 static int btrfs_freeze(struct super_block *sb)
2251 {
2252 	struct btrfs_trans_handle *trans;
2253 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2254 	struct btrfs_root *root = fs_info->tree_root;
2255 
2256 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2257 	/*
2258 	 * We don't need a barrier here, we'll wait for any transaction that
2259 	 * could be in progress on other threads (and do delayed iputs that
2260 	 * we want to avoid on a frozen filesystem), or do the commit
2261 	 * ourselves.
2262 	 */
2263 	trans = btrfs_attach_transaction_barrier(root);
2264 	if (IS_ERR(trans)) {
2265 		/* no transaction, don't bother */
2266 		if (PTR_ERR(trans) == -ENOENT)
2267 			return 0;
2268 		return PTR_ERR(trans);
2269 	}
2270 	return btrfs_commit_transaction(trans);
2271 }
2272 
2273 static int check_dev_super(struct btrfs_device *dev)
2274 {
2275 	struct btrfs_fs_info *fs_info = dev->fs_info;
2276 	struct btrfs_super_block *sb;
2277 	u64 last_trans;
2278 	u16 csum_type;
2279 	int ret = 0;
2280 
2281 	/* This should be called with fs still frozen. */
2282 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2283 
2284 	/* Missing dev, no need to check. */
2285 	if (!dev->bdev)
2286 		return 0;
2287 
2288 	/* Only need to check the primary super block. */
2289 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2290 	if (IS_ERR(sb))
2291 		return PTR_ERR(sb);
2292 
2293 	/* Verify the checksum. */
2294 	csum_type = btrfs_super_csum_type(sb);
2295 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2296 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2297 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2298 		ret = -EUCLEAN;
2299 		goto out;
2300 	}
2301 
2302 	if (btrfs_check_super_csum(fs_info, sb)) {
2303 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2304 		ret = -EUCLEAN;
2305 		goto out;
2306 	}
2307 
2308 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2309 	ret = btrfs_validate_super(fs_info, sb, 0);
2310 	if (ret < 0)
2311 		goto out;
2312 
2313 	last_trans = btrfs_get_last_trans_committed(fs_info);
2314 	if (btrfs_super_generation(sb) != last_trans) {
2315 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2316 			  btrfs_super_generation(sb), last_trans);
2317 		ret = -EUCLEAN;
2318 		goto out;
2319 	}
2320 out:
2321 	btrfs_release_disk_super(sb);
2322 	return ret;
2323 }
2324 
2325 static int btrfs_unfreeze(struct super_block *sb)
2326 {
2327 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2328 	struct btrfs_device *device;
2329 	int ret = 0;
2330 
2331 	/*
2332 	 * Make sure the fs is not changed by accident (like hibernation then
2333 	 * modified by other OS).
2334 	 * If we found anything wrong, we mark the fs error immediately.
2335 	 *
2336 	 * And since the fs is frozen, no one can modify the fs yet, thus
2337 	 * we don't need to hold device_list_mutex.
2338 	 */
2339 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2340 		ret = check_dev_super(device);
2341 		if (ret < 0) {
2342 			btrfs_handle_fs_error(fs_info, ret,
2343 				"super block on devid %llu got modified unexpectedly",
2344 				device->devid);
2345 			break;
2346 		}
2347 	}
2348 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2349 
2350 	/*
2351 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2352 	 * above checks failed. Since the fs is either fine or read-only, we're
2353 	 * safe to continue, without causing further damage.
2354 	 */
2355 	return 0;
2356 }
2357 
2358 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2359 {
2360 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2361 
2362 	/*
2363 	 * There should be always a valid pointer in latest_dev, it may be stale
2364 	 * for a short moment in case it's being deleted but still valid until
2365 	 * the end of RCU grace period.
2366 	 */
2367 	rcu_read_lock();
2368 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2369 	rcu_read_unlock();
2370 
2371 	return 0;
2372 }
2373 
2374 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2375 {
2376 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2377 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2378 
2379 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2380 
2381 	return nr;
2382 }
2383 
2384 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2385 {
2386 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2387 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2388 
2389 	return btrfs_free_extent_maps(fs_info, nr_to_scan);
2390 }
2391 
2392 static const struct super_operations btrfs_super_ops = {
2393 	.drop_inode	= btrfs_drop_inode,
2394 	.evict_inode	= btrfs_evict_inode,
2395 	.put_super	= btrfs_put_super,
2396 	.sync_fs	= btrfs_sync_fs,
2397 	.show_options	= btrfs_show_options,
2398 	.show_devname	= btrfs_show_devname,
2399 	.alloc_inode	= btrfs_alloc_inode,
2400 	.destroy_inode	= btrfs_destroy_inode,
2401 	.free_inode	= btrfs_free_inode,
2402 	.statfs		= btrfs_statfs,
2403 	.freeze_fs	= btrfs_freeze,
2404 	.unfreeze_fs	= btrfs_unfreeze,
2405 	.nr_cached_objects = btrfs_nr_cached_objects,
2406 	.free_cached_objects = btrfs_free_cached_objects,
2407 };
2408 
2409 static const struct file_operations btrfs_ctl_fops = {
2410 	.open = btrfs_control_open,
2411 	.unlocked_ioctl	 = btrfs_control_ioctl,
2412 	.compat_ioctl = compat_ptr_ioctl,
2413 	.owner	 = THIS_MODULE,
2414 	.llseek = noop_llseek,
2415 };
2416 
2417 static struct miscdevice btrfs_misc = {
2418 	.minor		= BTRFS_MINOR,
2419 	.name		= "btrfs-control",
2420 	.fops		= &btrfs_ctl_fops
2421 };
2422 
2423 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2424 MODULE_ALIAS("devname:btrfs-control");
2425 
2426 static int __init btrfs_interface_init(void)
2427 {
2428 	return misc_register(&btrfs_misc);
2429 }
2430 
2431 static __cold void btrfs_interface_exit(void)
2432 {
2433 	misc_deregister(&btrfs_misc);
2434 }
2435 
2436 static int __init btrfs_print_mod_info(void)
2437 {
2438 	static const char options[] = ""
2439 #ifdef CONFIG_BTRFS_DEBUG
2440 			", debug=on"
2441 #endif
2442 #ifdef CONFIG_BTRFS_ASSERT
2443 			", assert=on"
2444 #endif
2445 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2446 			", ref-verify=on"
2447 #endif
2448 #ifdef CONFIG_BLK_DEV_ZONED
2449 			", zoned=yes"
2450 #else
2451 			", zoned=no"
2452 #endif
2453 #ifdef CONFIG_FS_VERITY
2454 			", fsverity=yes"
2455 #else
2456 			", fsverity=no"
2457 #endif
2458 			;
2459 	pr_info("Btrfs loaded%s\n", options);
2460 	return 0;
2461 }
2462 
2463 static int register_btrfs(void)
2464 {
2465 	return register_filesystem(&btrfs_fs_type);
2466 }
2467 
2468 static void unregister_btrfs(void)
2469 {
2470 	unregister_filesystem(&btrfs_fs_type);
2471 }
2472 
2473 /* Helper structure for long init/exit functions. */
2474 struct init_sequence {
2475 	int (*init_func)(void);
2476 	/* Can be NULL if the init_func doesn't need cleanup. */
2477 	void (*exit_func)(void);
2478 };
2479 
2480 static const struct init_sequence mod_init_seq[] = {
2481 	{
2482 		.init_func = btrfs_props_init,
2483 		.exit_func = NULL,
2484 	}, {
2485 		.init_func = btrfs_init_sysfs,
2486 		.exit_func = btrfs_exit_sysfs,
2487 	}, {
2488 		.init_func = btrfs_init_compress,
2489 		.exit_func = btrfs_exit_compress,
2490 	}, {
2491 		.init_func = btrfs_init_cachep,
2492 		.exit_func = btrfs_destroy_cachep,
2493 	}, {
2494 		.init_func = btrfs_transaction_init,
2495 		.exit_func = btrfs_transaction_exit,
2496 	}, {
2497 		.init_func = btrfs_ctree_init,
2498 		.exit_func = btrfs_ctree_exit,
2499 	}, {
2500 		.init_func = btrfs_free_space_init,
2501 		.exit_func = btrfs_free_space_exit,
2502 	}, {
2503 		.init_func = extent_state_init_cachep,
2504 		.exit_func = extent_state_free_cachep,
2505 	}, {
2506 		.init_func = extent_buffer_init_cachep,
2507 		.exit_func = extent_buffer_free_cachep,
2508 	}, {
2509 		.init_func = btrfs_bioset_init,
2510 		.exit_func = btrfs_bioset_exit,
2511 	}, {
2512 		.init_func = extent_map_init,
2513 		.exit_func = extent_map_exit,
2514 	}, {
2515 		.init_func = ordered_data_init,
2516 		.exit_func = ordered_data_exit,
2517 	}, {
2518 		.init_func = btrfs_delayed_inode_init,
2519 		.exit_func = btrfs_delayed_inode_exit,
2520 	}, {
2521 		.init_func = btrfs_auto_defrag_init,
2522 		.exit_func = btrfs_auto_defrag_exit,
2523 	}, {
2524 		.init_func = btrfs_delayed_ref_init,
2525 		.exit_func = btrfs_delayed_ref_exit,
2526 	}, {
2527 		.init_func = btrfs_prelim_ref_init,
2528 		.exit_func = btrfs_prelim_ref_exit,
2529 	}, {
2530 		.init_func = btrfs_interface_init,
2531 		.exit_func = btrfs_interface_exit,
2532 	}, {
2533 		.init_func = btrfs_print_mod_info,
2534 		.exit_func = NULL,
2535 	}, {
2536 		.init_func = btrfs_run_sanity_tests,
2537 		.exit_func = NULL,
2538 	}, {
2539 		.init_func = register_btrfs,
2540 		.exit_func = unregister_btrfs,
2541 	}
2542 };
2543 
2544 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2545 
2546 static __always_inline void btrfs_exit_btrfs_fs(void)
2547 {
2548 	int i;
2549 
2550 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2551 		if (!mod_init_result[i])
2552 			continue;
2553 		if (mod_init_seq[i].exit_func)
2554 			mod_init_seq[i].exit_func();
2555 		mod_init_result[i] = false;
2556 	}
2557 }
2558 
2559 static void __exit exit_btrfs_fs(void)
2560 {
2561 	btrfs_exit_btrfs_fs();
2562 	btrfs_cleanup_fs_uuids();
2563 }
2564 
2565 static int __init init_btrfs_fs(void)
2566 {
2567 	int ret;
2568 	int i;
2569 
2570 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2571 		ASSERT(!mod_init_result[i]);
2572 		ret = mod_init_seq[i].init_func();
2573 		if (ret < 0) {
2574 			btrfs_exit_btrfs_fs();
2575 			return ret;
2576 		}
2577 		mod_init_result[i] = true;
2578 	}
2579 	return 0;
2580 }
2581 
2582 late_initcall(init_btrfs_fs);
2583 module_exit(exit_btrfs_fs)
2584 
2585 MODULE_LICENSE("GPL");
2586 MODULE_SOFTDEP("pre: crc32c");
2587 MODULE_SOFTDEP("pre: xxhash64");
2588 MODULE_SOFTDEP("pre: sha256");
2589 MODULE_SOFTDEP("pre: blake2b-256");
2590