xref: /linux/fs/btrfs/super.c (revision d2912cb15bdda8ba4a5dd73396ad62641af2f520)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
46 
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
50 
51 static const struct super_operations btrfs_super_ops;
52 
53 /*
54  * Types for mounting the default subvolume and a subvolume explicitly
55  * requested by subvol=/path. That way the callchain is straightforward and we
56  * don't have to play tricks with the mount options and recursive calls to
57  * btrfs_mount.
58  *
59  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60  */
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
63 
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65 
66 const char *btrfs_decode_error(int errno)
67 {
68 	char *errstr = "unknown";
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	case -ENOSPC:
84 		errstr = "No space left";
85 		break;
86 	case -ENOENT:
87 		errstr = "No such entry";
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 /*
95  * __btrfs_handle_fs_error decodes expected errors from the caller and
96  * invokes the appropriate error response.
97  */
98 __cold
99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 		       unsigned int line, int errno, const char *fmt, ...)
101 {
102 	struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104 	const char *errstr;
105 #endif
106 
107 	/*
108 	 * Special case: if the error is EROFS, and we're already
109 	 * under SB_RDONLY, then it is safe here.
110 	 */
111 	if (errno == -EROFS && sb_rdonly(sb))
112   		return;
113 
114 #ifdef CONFIG_PRINTK
115 	errstr = btrfs_decode_error(errno);
116 	if (fmt) {
117 		struct va_format vaf;
118 		va_list args;
119 
120 		va_start(args, fmt);
121 		vaf.fmt = fmt;
122 		vaf.va = &args;
123 
124 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 			sb->s_id, function, line, errno, errstr, &vaf);
126 		va_end(args);
127 	} else {
128 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 			sb->s_id, function, line, errno, errstr);
130 	}
131 #endif
132 
133 	/*
134 	 * Today we only save the error info to memory.  Long term we'll
135 	 * also send it down to the disk
136 	 */
137 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138 
139 	/* Don't go through full error handling during mount */
140 	if (!(sb->s_flags & SB_BORN))
141 		return;
142 
143 	if (sb_rdonly(sb))
144 		return;
145 
146 	/* btrfs handle error by forcing the filesystem readonly */
147 	sb->s_flags |= SB_RDONLY;
148 	btrfs_info(fs_info, "forced readonly");
149 	/*
150 	 * Note that a running device replace operation is not canceled here
151 	 * although there is no way to update the progress. It would add the
152 	 * risk of a deadlock, therefore the canceling is omitted. The only
153 	 * penalty is that some I/O remains active until the procedure
154 	 * completes. The next time when the filesystem is mounted writable
155 	 * again, the device replace operation continues.
156 	 */
157 }
158 
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161 	"emergency",
162 	"alert",
163 	"critical",
164 	"error",
165 	"warning",
166 	"notice",
167 	"info",
168 	"debug",
169 };
170 
171 
172 /*
173  * Use one ratelimit state per log level so that a flood of less important
174  * messages doesn't cause more important ones to be dropped.
175  */
176 static struct ratelimit_state printk_limits[] = {
177 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185 };
186 
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 	struct va_format vaf;
191 	va_list args;
192 	int kern_level;
193 	const char *type = logtypes[4];
194 	struct ratelimit_state *ratelimit = &printk_limits[4];
195 
196 	va_start(args, fmt);
197 
198 	while ((kern_level = printk_get_level(fmt)) != 0) {
199 		size_t size = printk_skip_level(fmt) - fmt;
200 
201 		if (kern_level >= '0' && kern_level <= '7') {
202 			memcpy(lvl, fmt,  size);
203 			lvl[size] = '\0';
204 			type = logtypes[kern_level - '0'];
205 			ratelimit = &printk_limits[kern_level - '0'];
206 		}
207 		fmt += size;
208 	}
209 
210 	vaf.fmt = fmt;
211 	vaf.va = &args;
212 
213 	if (__ratelimit(ratelimit))
214 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216 
217 	va_end(args);
218 }
219 #endif
220 
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 			       const char *function,
237 			       unsigned int line, int errno)
238 {
239 	struct btrfs_fs_info *fs_info = trans->fs_info;
240 
241 	trans->aborted = errno;
242 	/* Nothing used. The other threads that have joined this
243 	 * transaction may be able to continue. */
244 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 		const char *errstr;
246 
247 		errstr = btrfs_decode_error(errno);
248 		btrfs_warn(fs_info,
249 		           "%s:%d: Aborting unused transaction(%s).",
250 		           function, line, errstr);
251 		return;
252 	}
253 	WRITE_ONCE(trans->transaction->aborted, errno);
254 	/* Wake up anybody who may be waiting on this transaction */
255 	wake_up(&fs_info->transaction_wait);
256 	wake_up(&fs_info->transaction_blocked_wait);
257 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258 }
259 /*
260  * __btrfs_panic decodes unexpected, fatal errors from the caller,
261  * issues an alert, and either panics or BUGs, depending on mount options.
262  */
263 __cold
264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 		   unsigned int line, int errno, const char *fmt, ...)
266 {
267 	char *s_id = "<unknown>";
268 	const char *errstr;
269 	struct va_format vaf = { .fmt = fmt };
270 	va_list args;
271 
272 	if (fs_info)
273 		s_id = fs_info->sb->s_id;
274 
275 	va_start(args, fmt);
276 	vaf.va = &args;
277 
278 	errstr = btrfs_decode_error(errno);
279 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 			s_id, function, line, &vaf, errno, errstr);
282 
283 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 		   function, line, &vaf, errno, errstr);
285 	va_end(args);
286 	/* Caller calls BUG() */
287 }
288 
289 static void btrfs_put_super(struct super_block *sb)
290 {
291 	close_ctree(btrfs_sb(sb));
292 }
293 
294 enum {
295 	Opt_acl, Opt_noacl,
296 	Opt_clear_cache,
297 	Opt_commit_interval,
298 	Opt_compress,
299 	Opt_compress_force,
300 	Opt_compress_force_type,
301 	Opt_compress_type,
302 	Opt_degraded,
303 	Opt_device,
304 	Opt_fatal_errors,
305 	Opt_flushoncommit, Opt_noflushoncommit,
306 	Opt_inode_cache, Opt_noinode_cache,
307 	Opt_max_inline,
308 	Opt_barrier, Opt_nobarrier,
309 	Opt_datacow, Opt_nodatacow,
310 	Opt_datasum, Opt_nodatasum,
311 	Opt_defrag, Opt_nodefrag,
312 	Opt_discard, Opt_nodiscard,
313 	Opt_nologreplay,
314 	Opt_norecovery,
315 	Opt_ratio,
316 	Opt_rescan_uuid_tree,
317 	Opt_skip_balance,
318 	Opt_space_cache, Opt_no_space_cache,
319 	Opt_space_cache_version,
320 	Opt_ssd, Opt_nossd,
321 	Opt_ssd_spread, Opt_nossd_spread,
322 	Opt_subvol,
323 	Opt_subvol_empty,
324 	Opt_subvolid,
325 	Opt_thread_pool,
326 	Opt_treelog, Opt_notreelog,
327 	Opt_usebackuproot,
328 	Opt_user_subvol_rm_allowed,
329 
330 	/* Deprecated options */
331 	Opt_alloc_start,
332 	Opt_recovery,
333 	Opt_subvolrootid,
334 
335 	/* Debugging options */
336 	Opt_check_integrity,
337 	Opt_check_integrity_including_extent_data,
338 	Opt_check_integrity_print_mask,
339 	Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 	Opt_ref_verify,
345 #endif
346 	Opt_err,
347 };
348 
349 static const match_table_t tokens = {
350 	{Opt_acl, "acl"},
351 	{Opt_noacl, "noacl"},
352 	{Opt_clear_cache, "clear_cache"},
353 	{Opt_commit_interval, "commit=%u"},
354 	{Opt_compress, "compress"},
355 	{Opt_compress_type, "compress=%s"},
356 	{Opt_compress_force, "compress-force"},
357 	{Opt_compress_force_type, "compress-force=%s"},
358 	{Opt_degraded, "degraded"},
359 	{Opt_device, "device=%s"},
360 	{Opt_fatal_errors, "fatal_errors=%s"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_inode_cache, "inode_cache"},
364 	{Opt_noinode_cache, "noinode_cache"},
365 	{Opt_max_inline, "max_inline=%s"},
366 	{Opt_barrier, "barrier"},
367 	{Opt_nobarrier, "nobarrier"},
368 	{Opt_datacow, "datacow"},
369 	{Opt_nodatacow, "nodatacow"},
370 	{Opt_datasum, "datasum"},
371 	{Opt_nodatasum, "nodatasum"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_discard, "discard"},
375 	{Opt_nodiscard, "nodiscard"},
376 	{Opt_nologreplay, "nologreplay"},
377 	{Opt_norecovery, "norecovery"},
378 	{Opt_ratio, "metadata_ratio=%u"},
379 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 	{Opt_skip_balance, "skip_balance"},
381 	{Opt_space_cache, "space_cache"},
382 	{Opt_no_space_cache, "nospace_cache"},
383 	{Opt_space_cache_version, "space_cache=%s"},
384 	{Opt_ssd, "ssd"},
385 	{Opt_nossd, "nossd"},
386 	{Opt_ssd_spread, "ssd_spread"},
387 	{Opt_nossd_spread, "nossd_spread"},
388 	{Opt_subvol, "subvol=%s"},
389 	{Opt_subvol_empty, "subvol="},
390 	{Opt_subvolid, "subvolid=%s"},
391 	{Opt_thread_pool, "thread_pool=%u"},
392 	{Opt_treelog, "treelog"},
393 	{Opt_notreelog, "notreelog"},
394 	{Opt_usebackuproot, "usebackuproot"},
395 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396 
397 	/* Deprecated options */
398 	{Opt_alloc_start, "alloc_start=%s"},
399 	{Opt_recovery, "recovery"},
400 	{Opt_subvolrootid, "subvolrootid=%d"},
401 
402 	/* Debugging options */
403 	{Opt_check_integrity, "check_int"},
404 	{Opt_check_integrity_including_extent_data, "check_int_data"},
405 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 	{Opt_enospc_debug, "enospc_debug"},
407 	{Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 	{Opt_fragment_data, "fragment=data"},
410 	{Opt_fragment_metadata, "fragment=metadata"},
411 	{Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 	{Opt_ref_verify, "ref_verify"},
415 #endif
416 	{Opt_err, NULL},
417 };
418 
419 /*
420  * Regular mount options parser.  Everything that is needed only when
421  * reading in a new superblock is parsed here.
422  * XXX JDM: This needs to be cleaned up for remount.
423  */
424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 			unsigned long new_flags)
426 {
427 	substring_t args[MAX_OPT_ARGS];
428 	char *p, *num;
429 	u64 cache_gen;
430 	int intarg;
431 	int ret = 0;
432 	char *compress_type;
433 	bool compress_force = false;
434 	enum btrfs_compression_type saved_compress_type;
435 	bool saved_compress_force;
436 	int no_compress = 0;
437 
438 	cache_gen = btrfs_super_cache_generation(info->super_copy);
439 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
441 	else if (cache_gen)
442 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
443 
444 	/*
445 	 * Even the options are empty, we still need to do extra check
446 	 * against new flags
447 	 */
448 	if (!options)
449 		goto check;
450 
451 	while ((p = strsep(&options, ",")) != NULL) {
452 		int token;
453 		if (!*p)
454 			continue;
455 
456 		token = match_token(p, tokens, args);
457 		switch (token) {
458 		case Opt_degraded:
459 			btrfs_info(info, "allowing degraded mounts");
460 			btrfs_set_opt(info->mount_opt, DEGRADED);
461 			break;
462 		case Opt_subvol:
463 		case Opt_subvol_empty:
464 		case Opt_subvolid:
465 		case Opt_subvolrootid:
466 		case Opt_device:
467 			/*
468 			 * These are parsed by btrfs_parse_subvol_options or
469 			 * btrfs_parse_device_options and can be ignored here.
470 			 */
471 			break;
472 		case Opt_nodatasum:
473 			btrfs_set_and_info(info, NODATASUM,
474 					   "setting nodatasum");
475 			break;
476 		case Opt_datasum:
477 			if (btrfs_test_opt(info, NODATASUM)) {
478 				if (btrfs_test_opt(info, NODATACOW))
479 					btrfs_info(info,
480 						   "setting datasum, datacow enabled");
481 				else
482 					btrfs_info(info, "setting datasum");
483 			}
484 			btrfs_clear_opt(info->mount_opt, NODATACOW);
485 			btrfs_clear_opt(info->mount_opt, NODATASUM);
486 			break;
487 		case Opt_nodatacow:
488 			if (!btrfs_test_opt(info, NODATACOW)) {
489 				if (!btrfs_test_opt(info, COMPRESS) ||
490 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
491 					btrfs_info(info,
492 						   "setting nodatacow, compression disabled");
493 				} else {
494 					btrfs_info(info, "setting nodatacow");
495 				}
496 			}
497 			btrfs_clear_opt(info->mount_opt, COMPRESS);
498 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
499 			btrfs_set_opt(info->mount_opt, NODATACOW);
500 			btrfs_set_opt(info->mount_opt, NODATASUM);
501 			break;
502 		case Opt_datacow:
503 			btrfs_clear_and_info(info, NODATACOW,
504 					     "setting datacow");
505 			break;
506 		case Opt_compress_force:
507 		case Opt_compress_force_type:
508 			compress_force = true;
509 			/* Fallthrough */
510 		case Opt_compress:
511 		case Opt_compress_type:
512 			saved_compress_type = btrfs_test_opt(info,
513 							     COMPRESS) ?
514 				info->compress_type : BTRFS_COMPRESS_NONE;
515 			saved_compress_force =
516 				btrfs_test_opt(info, FORCE_COMPRESS);
517 			if (token == Opt_compress ||
518 			    token == Opt_compress_force ||
519 			    strncmp(args[0].from, "zlib", 4) == 0) {
520 				compress_type = "zlib";
521 
522 				info->compress_type = BTRFS_COMPRESS_ZLIB;
523 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
524 				/*
525 				 * args[0] contains uninitialized data since
526 				 * for these tokens we don't expect any
527 				 * parameter.
528 				 */
529 				if (token != Opt_compress &&
530 				    token != Opt_compress_force)
531 					info->compress_level =
532 					  btrfs_compress_str2level(
533 							BTRFS_COMPRESS_ZLIB,
534 							args[0].from + 4);
535 				btrfs_set_opt(info->mount_opt, COMPRESS);
536 				btrfs_clear_opt(info->mount_opt, NODATACOW);
537 				btrfs_clear_opt(info->mount_opt, NODATASUM);
538 				no_compress = 0;
539 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
540 				compress_type = "lzo";
541 				info->compress_type = BTRFS_COMPRESS_LZO;
542 				btrfs_set_opt(info->mount_opt, COMPRESS);
543 				btrfs_clear_opt(info->mount_opt, NODATACOW);
544 				btrfs_clear_opt(info->mount_opt, NODATASUM);
545 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
546 				no_compress = 0;
547 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
548 				compress_type = "zstd";
549 				info->compress_type = BTRFS_COMPRESS_ZSTD;
550 				info->compress_level =
551 					btrfs_compress_str2level(
552 							 BTRFS_COMPRESS_ZSTD,
553 							 args[0].from + 4);
554 				btrfs_set_opt(info->mount_opt, COMPRESS);
555 				btrfs_clear_opt(info->mount_opt, NODATACOW);
556 				btrfs_clear_opt(info->mount_opt, NODATASUM);
557 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
558 				no_compress = 0;
559 			} else if (strncmp(args[0].from, "no", 2) == 0) {
560 				compress_type = "no";
561 				btrfs_clear_opt(info->mount_opt, COMPRESS);
562 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
563 				compress_force = false;
564 				no_compress++;
565 			} else {
566 				ret = -EINVAL;
567 				goto out;
568 			}
569 
570 			if (compress_force) {
571 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
572 			} else {
573 				/*
574 				 * If we remount from compress-force=xxx to
575 				 * compress=xxx, we need clear FORCE_COMPRESS
576 				 * flag, otherwise, there is no way for users
577 				 * to disable forcible compression separately.
578 				 */
579 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
580 			}
581 			if ((btrfs_test_opt(info, COMPRESS) &&
582 			     (info->compress_type != saved_compress_type ||
583 			      compress_force != saved_compress_force)) ||
584 			    (!btrfs_test_opt(info, COMPRESS) &&
585 			     no_compress == 1)) {
586 				btrfs_info(info, "%s %s compression, level %d",
587 					   (compress_force) ? "force" : "use",
588 					   compress_type, info->compress_level);
589 			}
590 			compress_force = false;
591 			break;
592 		case Opt_ssd:
593 			btrfs_set_and_info(info, SSD,
594 					   "enabling ssd optimizations");
595 			btrfs_clear_opt(info->mount_opt, NOSSD);
596 			break;
597 		case Opt_ssd_spread:
598 			btrfs_set_and_info(info, SSD,
599 					   "enabling ssd optimizations");
600 			btrfs_set_and_info(info, SSD_SPREAD,
601 					   "using spread ssd allocation scheme");
602 			btrfs_clear_opt(info->mount_opt, NOSSD);
603 			break;
604 		case Opt_nossd:
605 			btrfs_set_opt(info->mount_opt, NOSSD);
606 			btrfs_clear_and_info(info, SSD,
607 					     "not using ssd optimizations");
608 			/* Fallthrough */
609 		case Opt_nossd_spread:
610 			btrfs_clear_and_info(info, SSD_SPREAD,
611 					     "not using spread ssd allocation scheme");
612 			break;
613 		case Opt_barrier:
614 			btrfs_clear_and_info(info, NOBARRIER,
615 					     "turning on barriers");
616 			break;
617 		case Opt_nobarrier:
618 			btrfs_set_and_info(info, NOBARRIER,
619 					   "turning off barriers");
620 			break;
621 		case Opt_thread_pool:
622 			ret = match_int(&args[0], &intarg);
623 			if (ret) {
624 				goto out;
625 			} else if (intarg == 0) {
626 				ret = -EINVAL;
627 				goto out;
628 			}
629 			info->thread_pool_size = intarg;
630 			break;
631 		case Opt_max_inline:
632 			num = match_strdup(&args[0]);
633 			if (num) {
634 				info->max_inline = memparse(num, NULL);
635 				kfree(num);
636 
637 				if (info->max_inline) {
638 					info->max_inline = min_t(u64,
639 						info->max_inline,
640 						info->sectorsize);
641 				}
642 				btrfs_info(info, "max_inline at %llu",
643 					   info->max_inline);
644 			} else {
645 				ret = -ENOMEM;
646 				goto out;
647 			}
648 			break;
649 		case Opt_alloc_start:
650 			btrfs_info(info,
651 				"option alloc_start is obsolete, ignored");
652 			break;
653 		case Opt_acl:
654 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
655 			info->sb->s_flags |= SB_POSIXACL;
656 			break;
657 #else
658 			btrfs_err(info, "support for ACL not compiled in!");
659 			ret = -EINVAL;
660 			goto out;
661 #endif
662 		case Opt_noacl:
663 			info->sb->s_flags &= ~SB_POSIXACL;
664 			break;
665 		case Opt_notreelog:
666 			btrfs_set_and_info(info, NOTREELOG,
667 					   "disabling tree log");
668 			break;
669 		case Opt_treelog:
670 			btrfs_clear_and_info(info, NOTREELOG,
671 					     "enabling tree log");
672 			break;
673 		case Opt_norecovery:
674 		case Opt_nologreplay:
675 			btrfs_set_and_info(info, NOLOGREPLAY,
676 					   "disabling log replay at mount time");
677 			break;
678 		case Opt_flushoncommit:
679 			btrfs_set_and_info(info, FLUSHONCOMMIT,
680 					   "turning on flush-on-commit");
681 			break;
682 		case Opt_noflushoncommit:
683 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
684 					     "turning off flush-on-commit");
685 			break;
686 		case Opt_ratio:
687 			ret = match_int(&args[0], &intarg);
688 			if (ret)
689 				goto out;
690 			info->metadata_ratio = intarg;
691 			btrfs_info(info, "metadata ratio %u",
692 				   info->metadata_ratio);
693 			break;
694 		case Opt_discard:
695 			btrfs_set_and_info(info, DISCARD,
696 					   "turning on discard");
697 			break;
698 		case Opt_nodiscard:
699 			btrfs_clear_and_info(info, DISCARD,
700 					     "turning off discard");
701 			break;
702 		case Opt_space_cache:
703 		case Opt_space_cache_version:
704 			if (token == Opt_space_cache ||
705 			    strcmp(args[0].from, "v1") == 0) {
706 				btrfs_clear_opt(info->mount_opt,
707 						FREE_SPACE_TREE);
708 				btrfs_set_and_info(info, SPACE_CACHE,
709 					   "enabling disk space caching");
710 			} else if (strcmp(args[0].from, "v2") == 0) {
711 				btrfs_clear_opt(info->mount_opt,
712 						SPACE_CACHE);
713 				btrfs_set_and_info(info, FREE_SPACE_TREE,
714 						   "enabling free space tree");
715 			} else {
716 				ret = -EINVAL;
717 				goto out;
718 			}
719 			break;
720 		case Opt_rescan_uuid_tree:
721 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
722 			break;
723 		case Opt_no_space_cache:
724 			if (btrfs_test_opt(info, SPACE_CACHE)) {
725 				btrfs_clear_and_info(info, SPACE_CACHE,
726 					     "disabling disk space caching");
727 			}
728 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
729 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
730 					     "disabling free space tree");
731 			}
732 			break;
733 		case Opt_inode_cache:
734 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
735 					   "enabling inode map caching");
736 			break;
737 		case Opt_noinode_cache:
738 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
739 					     "disabling inode map caching");
740 			break;
741 		case Opt_clear_cache:
742 			btrfs_set_and_info(info, CLEAR_CACHE,
743 					   "force clearing of disk cache");
744 			break;
745 		case Opt_user_subvol_rm_allowed:
746 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
747 			break;
748 		case Opt_enospc_debug:
749 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
750 			break;
751 		case Opt_noenospc_debug:
752 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
753 			break;
754 		case Opt_defrag:
755 			btrfs_set_and_info(info, AUTO_DEFRAG,
756 					   "enabling auto defrag");
757 			break;
758 		case Opt_nodefrag:
759 			btrfs_clear_and_info(info, AUTO_DEFRAG,
760 					     "disabling auto defrag");
761 			break;
762 		case Opt_recovery:
763 			btrfs_warn(info,
764 				   "'recovery' is deprecated, use 'usebackuproot' instead");
765 			/* fall through */
766 		case Opt_usebackuproot:
767 			btrfs_info(info,
768 				   "trying to use backup root at mount time");
769 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
770 			break;
771 		case Opt_skip_balance:
772 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
773 			break;
774 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
775 		case Opt_check_integrity_including_extent_data:
776 			btrfs_info(info,
777 				   "enabling check integrity including extent data");
778 			btrfs_set_opt(info->mount_opt,
779 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
780 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
781 			break;
782 		case Opt_check_integrity:
783 			btrfs_info(info, "enabling check integrity");
784 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
785 			break;
786 		case Opt_check_integrity_print_mask:
787 			ret = match_int(&args[0], &intarg);
788 			if (ret)
789 				goto out;
790 			info->check_integrity_print_mask = intarg;
791 			btrfs_info(info, "check_integrity_print_mask 0x%x",
792 				   info->check_integrity_print_mask);
793 			break;
794 #else
795 		case Opt_check_integrity_including_extent_data:
796 		case Opt_check_integrity:
797 		case Opt_check_integrity_print_mask:
798 			btrfs_err(info,
799 				  "support for check_integrity* not compiled in!");
800 			ret = -EINVAL;
801 			goto out;
802 #endif
803 		case Opt_fatal_errors:
804 			if (strcmp(args[0].from, "panic") == 0)
805 				btrfs_set_opt(info->mount_opt,
806 					      PANIC_ON_FATAL_ERROR);
807 			else if (strcmp(args[0].from, "bug") == 0)
808 				btrfs_clear_opt(info->mount_opt,
809 					      PANIC_ON_FATAL_ERROR);
810 			else {
811 				ret = -EINVAL;
812 				goto out;
813 			}
814 			break;
815 		case Opt_commit_interval:
816 			intarg = 0;
817 			ret = match_int(&args[0], &intarg);
818 			if (ret)
819 				goto out;
820 			if (intarg == 0) {
821 				btrfs_info(info,
822 					   "using default commit interval %us",
823 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
824 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
825 			} else if (intarg > 300) {
826 				btrfs_warn(info, "excessive commit interval %d",
827 					   intarg);
828 			}
829 			info->commit_interval = intarg;
830 			break;
831 #ifdef CONFIG_BTRFS_DEBUG
832 		case Opt_fragment_all:
833 			btrfs_info(info, "fragmenting all space");
834 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
835 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
836 			break;
837 		case Opt_fragment_metadata:
838 			btrfs_info(info, "fragmenting metadata");
839 			btrfs_set_opt(info->mount_opt,
840 				      FRAGMENT_METADATA);
841 			break;
842 		case Opt_fragment_data:
843 			btrfs_info(info, "fragmenting data");
844 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
845 			break;
846 #endif
847 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
848 		case Opt_ref_verify:
849 			btrfs_info(info, "doing ref verification");
850 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
851 			break;
852 #endif
853 		case Opt_err:
854 			btrfs_info(info, "unrecognized mount option '%s'", p);
855 			ret = -EINVAL;
856 			goto out;
857 		default:
858 			break;
859 		}
860 	}
861 check:
862 	/*
863 	 * Extra check for current option against current flag
864 	 */
865 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
866 		btrfs_err(info,
867 			  "nologreplay must be used with ro mount option");
868 		ret = -EINVAL;
869 	}
870 out:
871 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
872 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
873 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
874 		btrfs_err(info, "cannot disable free space tree");
875 		ret = -EINVAL;
876 
877 	}
878 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
879 		btrfs_info(info, "disk space caching is enabled");
880 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
881 		btrfs_info(info, "using free space tree");
882 	return ret;
883 }
884 
885 /*
886  * Parse mount options that are required early in the mount process.
887  *
888  * All other options will be parsed on much later in the mount process and
889  * only when we need to allocate a new super block.
890  */
891 static int btrfs_parse_device_options(const char *options, fmode_t flags,
892 				      void *holder)
893 {
894 	substring_t args[MAX_OPT_ARGS];
895 	char *device_name, *opts, *orig, *p;
896 	struct btrfs_device *device = NULL;
897 	int error = 0;
898 
899 	lockdep_assert_held(&uuid_mutex);
900 
901 	if (!options)
902 		return 0;
903 
904 	/*
905 	 * strsep changes the string, duplicate it because btrfs_parse_options
906 	 * gets called later
907 	 */
908 	opts = kstrdup(options, GFP_KERNEL);
909 	if (!opts)
910 		return -ENOMEM;
911 	orig = opts;
912 
913 	while ((p = strsep(&opts, ",")) != NULL) {
914 		int token;
915 
916 		if (!*p)
917 			continue;
918 
919 		token = match_token(p, tokens, args);
920 		if (token == Opt_device) {
921 			device_name = match_strdup(&args[0]);
922 			if (!device_name) {
923 				error = -ENOMEM;
924 				goto out;
925 			}
926 			device = btrfs_scan_one_device(device_name, flags,
927 					holder);
928 			kfree(device_name);
929 			if (IS_ERR(device)) {
930 				error = PTR_ERR(device);
931 				goto out;
932 			}
933 		}
934 	}
935 
936 out:
937 	kfree(orig);
938 	return error;
939 }
940 
941 /*
942  * Parse mount options that are related to subvolume id
943  *
944  * The value is later passed to mount_subvol()
945  */
946 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
947 		u64 *subvol_objectid)
948 {
949 	substring_t args[MAX_OPT_ARGS];
950 	char *opts, *orig, *p;
951 	int error = 0;
952 	u64 subvolid;
953 
954 	if (!options)
955 		return 0;
956 
957 	/*
958 	 * strsep changes the string, duplicate it because
959 	 * btrfs_parse_device_options gets called later
960 	 */
961 	opts = kstrdup(options, GFP_KERNEL);
962 	if (!opts)
963 		return -ENOMEM;
964 	orig = opts;
965 
966 	while ((p = strsep(&opts, ",")) != NULL) {
967 		int token;
968 		if (!*p)
969 			continue;
970 
971 		token = match_token(p, tokens, args);
972 		switch (token) {
973 		case Opt_subvol:
974 			kfree(*subvol_name);
975 			*subvol_name = match_strdup(&args[0]);
976 			if (!*subvol_name) {
977 				error = -ENOMEM;
978 				goto out;
979 			}
980 			break;
981 		case Opt_subvolid:
982 			error = match_u64(&args[0], &subvolid);
983 			if (error)
984 				goto out;
985 
986 			/* we want the original fs_tree */
987 			if (subvolid == 0)
988 				subvolid = BTRFS_FS_TREE_OBJECTID;
989 
990 			*subvol_objectid = subvolid;
991 			break;
992 		case Opt_subvolrootid:
993 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
994 			break;
995 		default:
996 			break;
997 		}
998 	}
999 
1000 out:
1001 	kfree(orig);
1002 	return error;
1003 }
1004 
1005 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1006 					   u64 subvol_objectid)
1007 {
1008 	struct btrfs_root *root = fs_info->tree_root;
1009 	struct btrfs_root *fs_root;
1010 	struct btrfs_root_ref *root_ref;
1011 	struct btrfs_inode_ref *inode_ref;
1012 	struct btrfs_key key;
1013 	struct btrfs_path *path = NULL;
1014 	char *name = NULL, *ptr;
1015 	u64 dirid;
1016 	int len;
1017 	int ret;
1018 
1019 	path = btrfs_alloc_path();
1020 	if (!path) {
1021 		ret = -ENOMEM;
1022 		goto err;
1023 	}
1024 	path->leave_spinning = 1;
1025 
1026 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1027 	if (!name) {
1028 		ret = -ENOMEM;
1029 		goto err;
1030 	}
1031 	ptr = name + PATH_MAX - 1;
1032 	ptr[0] = '\0';
1033 
1034 	/*
1035 	 * Walk up the subvolume trees in the tree of tree roots by root
1036 	 * backrefs until we hit the top-level subvolume.
1037 	 */
1038 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1039 		key.objectid = subvol_objectid;
1040 		key.type = BTRFS_ROOT_BACKREF_KEY;
1041 		key.offset = (u64)-1;
1042 
1043 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1044 		if (ret < 0) {
1045 			goto err;
1046 		} else if (ret > 0) {
1047 			ret = btrfs_previous_item(root, path, subvol_objectid,
1048 						  BTRFS_ROOT_BACKREF_KEY);
1049 			if (ret < 0) {
1050 				goto err;
1051 			} else if (ret > 0) {
1052 				ret = -ENOENT;
1053 				goto err;
1054 			}
1055 		}
1056 
1057 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1058 		subvol_objectid = key.offset;
1059 
1060 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1061 					  struct btrfs_root_ref);
1062 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1063 		ptr -= len + 1;
1064 		if (ptr < name) {
1065 			ret = -ENAMETOOLONG;
1066 			goto err;
1067 		}
1068 		read_extent_buffer(path->nodes[0], ptr + 1,
1069 				   (unsigned long)(root_ref + 1), len);
1070 		ptr[0] = '/';
1071 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1072 		btrfs_release_path(path);
1073 
1074 		key.objectid = subvol_objectid;
1075 		key.type = BTRFS_ROOT_ITEM_KEY;
1076 		key.offset = (u64)-1;
1077 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1078 		if (IS_ERR(fs_root)) {
1079 			ret = PTR_ERR(fs_root);
1080 			goto err;
1081 		}
1082 
1083 		/*
1084 		 * Walk up the filesystem tree by inode refs until we hit the
1085 		 * root directory.
1086 		 */
1087 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1088 			key.objectid = dirid;
1089 			key.type = BTRFS_INODE_REF_KEY;
1090 			key.offset = (u64)-1;
1091 
1092 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1093 			if (ret < 0) {
1094 				goto err;
1095 			} else if (ret > 0) {
1096 				ret = btrfs_previous_item(fs_root, path, dirid,
1097 							  BTRFS_INODE_REF_KEY);
1098 				if (ret < 0) {
1099 					goto err;
1100 				} else if (ret > 0) {
1101 					ret = -ENOENT;
1102 					goto err;
1103 				}
1104 			}
1105 
1106 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1107 			dirid = key.offset;
1108 
1109 			inode_ref = btrfs_item_ptr(path->nodes[0],
1110 						   path->slots[0],
1111 						   struct btrfs_inode_ref);
1112 			len = btrfs_inode_ref_name_len(path->nodes[0],
1113 						       inode_ref);
1114 			ptr -= len + 1;
1115 			if (ptr < name) {
1116 				ret = -ENAMETOOLONG;
1117 				goto err;
1118 			}
1119 			read_extent_buffer(path->nodes[0], ptr + 1,
1120 					   (unsigned long)(inode_ref + 1), len);
1121 			ptr[0] = '/';
1122 			btrfs_release_path(path);
1123 		}
1124 	}
1125 
1126 	btrfs_free_path(path);
1127 	if (ptr == name + PATH_MAX - 1) {
1128 		name[0] = '/';
1129 		name[1] = '\0';
1130 	} else {
1131 		memmove(name, ptr, name + PATH_MAX - ptr);
1132 	}
1133 	return name;
1134 
1135 err:
1136 	btrfs_free_path(path);
1137 	kfree(name);
1138 	return ERR_PTR(ret);
1139 }
1140 
1141 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1142 {
1143 	struct btrfs_root *root = fs_info->tree_root;
1144 	struct btrfs_dir_item *di;
1145 	struct btrfs_path *path;
1146 	struct btrfs_key location;
1147 	u64 dir_id;
1148 
1149 	path = btrfs_alloc_path();
1150 	if (!path)
1151 		return -ENOMEM;
1152 	path->leave_spinning = 1;
1153 
1154 	/*
1155 	 * Find the "default" dir item which points to the root item that we
1156 	 * will mount by default if we haven't been given a specific subvolume
1157 	 * to mount.
1158 	 */
1159 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1160 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1161 	if (IS_ERR(di)) {
1162 		btrfs_free_path(path);
1163 		return PTR_ERR(di);
1164 	}
1165 	if (!di) {
1166 		/*
1167 		 * Ok the default dir item isn't there.  This is weird since
1168 		 * it's always been there, but don't freak out, just try and
1169 		 * mount the top-level subvolume.
1170 		 */
1171 		btrfs_free_path(path);
1172 		*objectid = BTRFS_FS_TREE_OBJECTID;
1173 		return 0;
1174 	}
1175 
1176 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1177 	btrfs_free_path(path);
1178 	*objectid = location.objectid;
1179 	return 0;
1180 }
1181 
1182 static int btrfs_fill_super(struct super_block *sb,
1183 			    struct btrfs_fs_devices *fs_devices,
1184 			    void *data)
1185 {
1186 	struct inode *inode;
1187 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1188 	struct btrfs_key key;
1189 	int err;
1190 
1191 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1192 	sb->s_magic = BTRFS_SUPER_MAGIC;
1193 	sb->s_op = &btrfs_super_ops;
1194 	sb->s_d_op = &btrfs_dentry_operations;
1195 	sb->s_export_op = &btrfs_export_ops;
1196 	sb->s_xattr = btrfs_xattr_handlers;
1197 	sb->s_time_gran = 1;
1198 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1199 	sb->s_flags |= SB_POSIXACL;
1200 #endif
1201 	sb->s_flags |= SB_I_VERSION;
1202 	sb->s_iflags |= SB_I_CGROUPWB;
1203 
1204 	err = super_setup_bdi(sb);
1205 	if (err) {
1206 		btrfs_err(fs_info, "super_setup_bdi failed");
1207 		return err;
1208 	}
1209 
1210 	err = open_ctree(sb, fs_devices, (char *)data);
1211 	if (err) {
1212 		btrfs_err(fs_info, "open_ctree failed");
1213 		return err;
1214 	}
1215 
1216 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1217 	key.type = BTRFS_INODE_ITEM_KEY;
1218 	key.offset = 0;
1219 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1220 	if (IS_ERR(inode)) {
1221 		err = PTR_ERR(inode);
1222 		goto fail_close;
1223 	}
1224 
1225 	sb->s_root = d_make_root(inode);
1226 	if (!sb->s_root) {
1227 		err = -ENOMEM;
1228 		goto fail_close;
1229 	}
1230 
1231 	cleancache_init_fs(sb);
1232 	sb->s_flags |= SB_ACTIVE;
1233 	return 0;
1234 
1235 fail_close:
1236 	close_ctree(fs_info);
1237 	return err;
1238 }
1239 
1240 int btrfs_sync_fs(struct super_block *sb, int wait)
1241 {
1242 	struct btrfs_trans_handle *trans;
1243 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1244 	struct btrfs_root *root = fs_info->tree_root;
1245 
1246 	trace_btrfs_sync_fs(fs_info, wait);
1247 
1248 	if (!wait) {
1249 		filemap_flush(fs_info->btree_inode->i_mapping);
1250 		return 0;
1251 	}
1252 
1253 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1254 
1255 	trans = btrfs_attach_transaction_barrier(root);
1256 	if (IS_ERR(trans)) {
1257 		/* no transaction, don't bother */
1258 		if (PTR_ERR(trans) == -ENOENT) {
1259 			/*
1260 			 * Exit unless we have some pending changes
1261 			 * that need to go through commit
1262 			 */
1263 			if (fs_info->pending_changes == 0)
1264 				return 0;
1265 			/*
1266 			 * A non-blocking test if the fs is frozen. We must not
1267 			 * start a new transaction here otherwise a deadlock
1268 			 * happens. The pending operations are delayed to the
1269 			 * next commit after thawing.
1270 			 */
1271 			if (sb_start_write_trylock(sb))
1272 				sb_end_write(sb);
1273 			else
1274 				return 0;
1275 			trans = btrfs_start_transaction(root, 0);
1276 		}
1277 		if (IS_ERR(trans))
1278 			return PTR_ERR(trans);
1279 	}
1280 	return btrfs_commit_transaction(trans);
1281 }
1282 
1283 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1284 {
1285 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1286 	const char *compress_type;
1287 
1288 	if (btrfs_test_opt(info, DEGRADED))
1289 		seq_puts(seq, ",degraded");
1290 	if (btrfs_test_opt(info, NODATASUM))
1291 		seq_puts(seq, ",nodatasum");
1292 	if (btrfs_test_opt(info, NODATACOW))
1293 		seq_puts(seq, ",nodatacow");
1294 	if (btrfs_test_opt(info, NOBARRIER))
1295 		seq_puts(seq, ",nobarrier");
1296 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1297 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1298 	if (info->thread_pool_size !=  min_t(unsigned long,
1299 					     num_online_cpus() + 2, 8))
1300 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1301 	if (btrfs_test_opt(info, COMPRESS)) {
1302 		compress_type = btrfs_compress_type2str(info->compress_type);
1303 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1304 			seq_printf(seq, ",compress-force=%s", compress_type);
1305 		else
1306 			seq_printf(seq, ",compress=%s", compress_type);
1307 		if (info->compress_level)
1308 			seq_printf(seq, ":%d", info->compress_level);
1309 	}
1310 	if (btrfs_test_opt(info, NOSSD))
1311 		seq_puts(seq, ",nossd");
1312 	if (btrfs_test_opt(info, SSD_SPREAD))
1313 		seq_puts(seq, ",ssd_spread");
1314 	else if (btrfs_test_opt(info, SSD))
1315 		seq_puts(seq, ",ssd");
1316 	if (btrfs_test_opt(info, NOTREELOG))
1317 		seq_puts(seq, ",notreelog");
1318 	if (btrfs_test_opt(info, NOLOGREPLAY))
1319 		seq_puts(seq, ",nologreplay");
1320 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1321 		seq_puts(seq, ",flushoncommit");
1322 	if (btrfs_test_opt(info, DISCARD))
1323 		seq_puts(seq, ",discard");
1324 	if (!(info->sb->s_flags & SB_POSIXACL))
1325 		seq_puts(seq, ",noacl");
1326 	if (btrfs_test_opt(info, SPACE_CACHE))
1327 		seq_puts(seq, ",space_cache");
1328 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1329 		seq_puts(seq, ",space_cache=v2");
1330 	else
1331 		seq_puts(seq, ",nospace_cache");
1332 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1333 		seq_puts(seq, ",rescan_uuid_tree");
1334 	if (btrfs_test_opt(info, CLEAR_CACHE))
1335 		seq_puts(seq, ",clear_cache");
1336 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1337 		seq_puts(seq, ",user_subvol_rm_allowed");
1338 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1339 		seq_puts(seq, ",enospc_debug");
1340 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1341 		seq_puts(seq, ",autodefrag");
1342 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1343 		seq_puts(seq, ",inode_cache");
1344 	if (btrfs_test_opt(info, SKIP_BALANCE))
1345 		seq_puts(seq, ",skip_balance");
1346 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1347 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1348 		seq_puts(seq, ",check_int_data");
1349 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1350 		seq_puts(seq, ",check_int");
1351 	if (info->check_integrity_print_mask)
1352 		seq_printf(seq, ",check_int_print_mask=%d",
1353 				info->check_integrity_print_mask);
1354 #endif
1355 	if (info->metadata_ratio)
1356 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1357 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1358 		seq_puts(seq, ",fatal_errors=panic");
1359 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1360 		seq_printf(seq, ",commit=%u", info->commit_interval);
1361 #ifdef CONFIG_BTRFS_DEBUG
1362 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1363 		seq_puts(seq, ",fragment=data");
1364 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1365 		seq_puts(seq, ",fragment=metadata");
1366 #endif
1367 	if (btrfs_test_opt(info, REF_VERIFY))
1368 		seq_puts(seq, ",ref_verify");
1369 	seq_printf(seq, ",subvolid=%llu",
1370 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1371 	seq_puts(seq, ",subvol=");
1372 	seq_dentry(seq, dentry, " \t\n\\");
1373 	return 0;
1374 }
1375 
1376 static int btrfs_test_super(struct super_block *s, void *data)
1377 {
1378 	struct btrfs_fs_info *p = data;
1379 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1380 
1381 	return fs_info->fs_devices == p->fs_devices;
1382 }
1383 
1384 static int btrfs_set_super(struct super_block *s, void *data)
1385 {
1386 	int err = set_anon_super(s, data);
1387 	if (!err)
1388 		s->s_fs_info = data;
1389 	return err;
1390 }
1391 
1392 /*
1393  * subvolumes are identified by ino 256
1394  */
1395 static inline int is_subvolume_inode(struct inode *inode)
1396 {
1397 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1398 		return 1;
1399 	return 0;
1400 }
1401 
1402 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1403 				   struct vfsmount *mnt)
1404 {
1405 	struct dentry *root;
1406 	int ret;
1407 
1408 	if (!subvol_name) {
1409 		if (!subvol_objectid) {
1410 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1411 							  &subvol_objectid);
1412 			if (ret) {
1413 				root = ERR_PTR(ret);
1414 				goto out;
1415 			}
1416 		}
1417 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1418 							    subvol_objectid);
1419 		if (IS_ERR(subvol_name)) {
1420 			root = ERR_CAST(subvol_name);
1421 			subvol_name = NULL;
1422 			goto out;
1423 		}
1424 
1425 	}
1426 
1427 	root = mount_subtree(mnt, subvol_name);
1428 	/* mount_subtree() drops our reference on the vfsmount. */
1429 	mnt = NULL;
1430 
1431 	if (!IS_ERR(root)) {
1432 		struct super_block *s = root->d_sb;
1433 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1434 		struct inode *root_inode = d_inode(root);
1435 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1436 
1437 		ret = 0;
1438 		if (!is_subvolume_inode(root_inode)) {
1439 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1440 			       subvol_name);
1441 			ret = -EINVAL;
1442 		}
1443 		if (subvol_objectid && root_objectid != subvol_objectid) {
1444 			/*
1445 			 * This will also catch a race condition where a
1446 			 * subvolume which was passed by ID is renamed and
1447 			 * another subvolume is renamed over the old location.
1448 			 */
1449 			btrfs_err(fs_info,
1450 				  "subvol '%s' does not match subvolid %llu",
1451 				  subvol_name, subvol_objectid);
1452 			ret = -EINVAL;
1453 		}
1454 		if (ret) {
1455 			dput(root);
1456 			root = ERR_PTR(ret);
1457 			deactivate_locked_super(s);
1458 		}
1459 	}
1460 
1461 out:
1462 	mntput(mnt);
1463 	kfree(subvol_name);
1464 	return root;
1465 }
1466 
1467 /*
1468  * Find a superblock for the given device / mount point.
1469  *
1470  * Note: This is based on mount_bdev from fs/super.c with a few additions
1471  *       for multiple device setup.  Make sure to keep it in sync.
1472  */
1473 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1474 		int flags, const char *device_name, void *data)
1475 {
1476 	struct block_device *bdev = NULL;
1477 	struct super_block *s;
1478 	struct btrfs_device *device = NULL;
1479 	struct btrfs_fs_devices *fs_devices = NULL;
1480 	struct btrfs_fs_info *fs_info = NULL;
1481 	void *new_sec_opts = NULL;
1482 	fmode_t mode = FMODE_READ;
1483 	int error = 0;
1484 
1485 	if (!(flags & SB_RDONLY))
1486 		mode |= FMODE_WRITE;
1487 
1488 	if (data) {
1489 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1490 		if (error)
1491 			return ERR_PTR(error);
1492 	}
1493 
1494 	/*
1495 	 * Setup a dummy root and fs_info for test/set super.  This is because
1496 	 * we don't actually fill this stuff out until open_ctree, but we need
1497 	 * it for searching for existing supers, so this lets us do that and
1498 	 * then open_ctree will properly initialize everything later.
1499 	 */
1500 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1501 	if (!fs_info) {
1502 		error = -ENOMEM;
1503 		goto error_sec_opts;
1504 	}
1505 
1506 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1507 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1508 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1509 		error = -ENOMEM;
1510 		goto error_fs_info;
1511 	}
1512 
1513 	mutex_lock(&uuid_mutex);
1514 	error = btrfs_parse_device_options(data, mode, fs_type);
1515 	if (error) {
1516 		mutex_unlock(&uuid_mutex);
1517 		goto error_fs_info;
1518 	}
1519 
1520 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1521 	if (IS_ERR(device)) {
1522 		mutex_unlock(&uuid_mutex);
1523 		error = PTR_ERR(device);
1524 		goto error_fs_info;
1525 	}
1526 
1527 	fs_devices = device->fs_devices;
1528 	fs_info->fs_devices = fs_devices;
1529 
1530 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1531 	mutex_unlock(&uuid_mutex);
1532 	if (error)
1533 		goto error_fs_info;
1534 
1535 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1536 		error = -EACCES;
1537 		goto error_close_devices;
1538 	}
1539 
1540 	bdev = fs_devices->latest_bdev;
1541 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1542 		 fs_info);
1543 	if (IS_ERR(s)) {
1544 		error = PTR_ERR(s);
1545 		goto error_close_devices;
1546 	}
1547 
1548 	if (s->s_root) {
1549 		btrfs_close_devices(fs_devices);
1550 		free_fs_info(fs_info);
1551 		if ((flags ^ s->s_flags) & SB_RDONLY)
1552 			error = -EBUSY;
1553 	} else {
1554 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1555 		btrfs_sb(s)->bdev_holder = fs_type;
1556 		error = btrfs_fill_super(s, fs_devices, data);
1557 	}
1558 	if (!error)
1559 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1560 	security_free_mnt_opts(&new_sec_opts);
1561 	if (error) {
1562 		deactivate_locked_super(s);
1563 		return ERR_PTR(error);
1564 	}
1565 
1566 	return dget(s->s_root);
1567 
1568 error_close_devices:
1569 	btrfs_close_devices(fs_devices);
1570 error_fs_info:
1571 	free_fs_info(fs_info);
1572 error_sec_opts:
1573 	security_free_mnt_opts(&new_sec_opts);
1574 	return ERR_PTR(error);
1575 }
1576 
1577 /*
1578  * Mount function which is called by VFS layer.
1579  *
1580  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1581  * which needs vfsmount* of device's root (/).  This means device's root has to
1582  * be mounted internally in any case.
1583  *
1584  * Operation flow:
1585  *   1. Parse subvol id related options for later use in mount_subvol().
1586  *
1587  *   2. Mount device's root (/) by calling vfs_kern_mount().
1588  *
1589  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1590  *      first place. In order to avoid calling btrfs_mount() again, we use
1591  *      different file_system_type which is not registered to VFS by
1592  *      register_filesystem() (btrfs_root_fs_type). As a result,
1593  *      btrfs_mount_root() is called. The return value will be used by
1594  *      mount_subtree() in mount_subvol().
1595  *
1596  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1597  *      "btrfs subvolume set-default", mount_subvol() is called always.
1598  */
1599 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1600 		const char *device_name, void *data)
1601 {
1602 	struct vfsmount *mnt_root;
1603 	struct dentry *root;
1604 	fmode_t mode = FMODE_READ;
1605 	char *subvol_name = NULL;
1606 	u64 subvol_objectid = 0;
1607 	int error = 0;
1608 
1609 	if (!(flags & SB_RDONLY))
1610 		mode |= FMODE_WRITE;
1611 
1612 	error = btrfs_parse_subvol_options(data, &subvol_name,
1613 					&subvol_objectid);
1614 	if (error) {
1615 		kfree(subvol_name);
1616 		return ERR_PTR(error);
1617 	}
1618 
1619 	/* mount device's root (/) */
1620 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1621 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1622 		if (flags & SB_RDONLY) {
1623 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1624 				flags & ~SB_RDONLY, device_name, data);
1625 		} else {
1626 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1627 				flags | SB_RDONLY, device_name, data);
1628 			if (IS_ERR(mnt_root)) {
1629 				root = ERR_CAST(mnt_root);
1630 				kfree(subvol_name);
1631 				goto out;
1632 			}
1633 
1634 			down_write(&mnt_root->mnt_sb->s_umount);
1635 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1636 			up_write(&mnt_root->mnt_sb->s_umount);
1637 			if (error < 0) {
1638 				root = ERR_PTR(error);
1639 				mntput(mnt_root);
1640 				kfree(subvol_name);
1641 				goto out;
1642 			}
1643 		}
1644 	}
1645 	if (IS_ERR(mnt_root)) {
1646 		root = ERR_CAST(mnt_root);
1647 		kfree(subvol_name);
1648 		goto out;
1649 	}
1650 
1651 	/* mount_subvol() will free subvol_name and mnt_root */
1652 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1653 
1654 out:
1655 	return root;
1656 }
1657 
1658 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1659 				     u32 new_pool_size, u32 old_pool_size)
1660 {
1661 	if (new_pool_size == old_pool_size)
1662 		return;
1663 
1664 	fs_info->thread_pool_size = new_pool_size;
1665 
1666 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1667 	       old_pool_size, new_pool_size);
1668 
1669 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1670 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1672 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1673 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1674 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1675 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1676 				new_pool_size);
1677 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1678 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1679 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1680 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1681 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1682 				new_pool_size);
1683 }
1684 
1685 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1686 {
1687 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1688 }
1689 
1690 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1691 				       unsigned long old_opts, int flags)
1692 {
1693 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1694 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1695 	     (flags & SB_RDONLY))) {
1696 		/* wait for any defraggers to finish */
1697 		wait_event(fs_info->transaction_wait,
1698 			   (atomic_read(&fs_info->defrag_running) == 0));
1699 		if (flags & SB_RDONLY)
1700 			sync_filesystem(fs_info->sb);
1701 	}
1702 }
1703 
1704 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1705 					 unsigned long old_opts)
1706 {
1707 	/*
1708 	 * We need to cleanup all defragable inodes if the autodefragment is
1709 	 * close or the filesystem is read only.
1710 	 */
1711 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1712 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1713 		btrfs_cleanup_defrag_inodes(fs_info);
1714 	}
1715 
1716 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1717 }
1718 
1719 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1720 {
1721 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1722 	struct btrfs_root *root = fs_info->tree_root;
1723 	unsigned old_flags = sb->s_flags;
1724 	unsigned long old_opts = fs_info->mount_opt;
1725 	unsigned long old_compress_type = fs_info->compress_type;
1726 	u64 old_max_inline = fs_info->max_inline;
1727 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1728 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1729 	int ret;
1730 
1731 	sync_filesystem(sb);
1732 	btrfs_remount_prepare(fs_info);
1733 
1734 	if (data) {
1735 		void *new_sec_opts = NULL;
1736 
1737 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1738 		if (!ret)
1739 			ret = security_sb_remount(sb, new_sec_opts);
1740 		security_free_mnt_opts(&new_sec_opts);
1741 		if (ret)
1742 			goto restore;
1743 	}
1744 
1745 	ret = btrfs_parse_options(fs_info, data, *flags);
1746 	if (ret)
1747 		goto restore;
1748 
1749 	btrfs_remount_begin(fs_info, old_opts, *flags);
1750 	btrfs_resize_thread_pool(fs_info,
1751 		fs_info->thread_pool_size, old_thread_pool_size);
1752 
1753 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1754 		goto out;
1755 
1756 	if (*flags & SB_RDONLY) {
1757 		/*
1758 		 * this also happens on 'umount -rf' or on shutdown, when
1759 		 * the filesystem is busy.
1760 		 */
1761 		cancel_work_sync(&fs_info->async_reclaim_work);
1762 
1763 		/* wait for the uuid_scan task to finish */
1764 		down(&fs_info->uuid_tree_rescan_sem);
1765 		/* avoid complains from lockdep et al. */
1766 		up(&fs_info->uuid_tree_rescan_sem);
1767 
1768 		sb->s_flags |= SB_RDONLY;
1769 
1770 		/*
1771 		 * Setting SB_RDONLY will put the cleaner thread to
1772 		 * sleep at the next loop if it's already active.
1773 		 * If it's already asleep, we'll leave unused block
1774 		 * groups on disk until we're mounted read-write again
1775 		 * unless we clean them up here.
1776 		 */
1777 		btrfs_delete_unused_bgs(fs_info);
1778 
1779 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1780 		btrfs_scrub_cancel(fs_info);
1781 		btrfs_pause_balance(fs_info);
1782 
1783 		ret = btrfs_commit_super(fs_info);
1784 		if (ret)
1785 			goto restore;
1786 	} else {
1787 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1788 			btrfs_err(fs_info,
1789 				"Remounting read-write after error is not allowed");
1790 			ret = -EINVAL;
1791 			goto restore;
1792 		}
1793 		if (fs_info->fs_devices->rw_devices == 0) {
1794 			ret = -EACCES;
1795 			goto restore;
1796 		}
1797 
1798 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1799 			btrfs_warn(fs_info,
1800 		"too many missing devices, writable remount is not allowed");
1801 			ret = -EACCES;
1802 			goto restore;
1803 		}
1804 
1805 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1806 			ret = -EINVAL;
1807 			goto restore;
1808 		}
1809 
1810 		ret = btrfs_cleanup_fs_roots(fs_info);
1811 		if (ret)
1812 			goto restore;
1813 
1814 		/* recover relocation */
1815 		mutex_lock(&fs_info->cleaner_mutex);
1816 		ret = btrfs_recover_relocation(root);
1817 		mutex_unlock(&fs_info->cleaner_mutex);
1818 		if (ret)
1819 			goto restore;
1820 
1821 		ret = btrfs_resume_balance_async(fs_info);
1822 		if (ret)
1823 			goto restore;
1824 
1825 		ret = btrfs_resume_dev_replace_async(fs_info);
1826 		if (ret) {
1827 			btrfs_warn(fs_info, "failed to resume dev_replace");
1828 			goto restore;
1829 		}
1830 
1831 		btrfs_qgroup_rescan_resume(fs_info);
1832 
1833 		if (!fs_info->uuid_root) {
1834 			btrfs_info(fs_info, "creating UUID tree");
1835 			ret = btrfs_create_uuid_tree(fs_info);
1836 			if (ret) {
1837 				btrfs_warn(fs_info,
1838 					   "failed to create the UUID tree %d",
1839 					   ret);
1840 				goto restore;
1841 			}
1842 		}
1843 		sb->s_flags &= ~SB_RDONLY;
1844 
1845 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1846 	}
1847 out:
1848 	wake_up_process(fs_info->transaction_kthread);
1849 	btrfs_remount_cleanup(fs_info, old_opts);
1850 	return 0;
1851 
1852 restore:
1853 	/* We've hit an error - don't reset SB_RDONLY */
1854 	if (sb_rdonly(sb))
1855 		old_flags |= SB_RDONLY;
1856 	sb->s_flags = old_flags;
1857 	fs_info->mount_opt = old_opts;
1858 	fs_info->compress_type = old_compress_type;
1859 	fs_info->max_inline = old_max_inline;
1860 	btrfs_resize_thread_pool(fs_info,
1861 		old_thread_pool_size, fs_info->thread_pool_size);
1862 	fs_info->metadata_ratio = old_metadata_ratio;
1863 	btrfs_remount_cleanup(fs_info, old_opts);
1864 	return ret;
1865 }
1866 
1867 /* Used to sort the devices by max_avail(descending sort) */
1868 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1869 				       const void *dev_info2)
1870 {
1871 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1872 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1873 		return -1;
1874 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1875 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1876 		return 1;
1877 	else
1878 	return 0;
1879 }
1880 
1881 /*
1882  * sort the devices by max_avail, in which max free extent size of each device
1883  * is stored.(Descending Sort)
1884  */
1885 static inline void btrfs_descending_sort_devices(
1886 					struct btrfs_device_info *devices,
1887 					size_t nr_devices)
1888 {
1889 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1890 	     btrfs_cmp_device_free_bytes, NULL);
1891 }
1892 
1893 /*
1894  * The helper to calc the free space on the devices that can be used to store
1895  * file data.
1896  */
1897 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1898 					      u64 *free_bytes)
1899 {
1900 	struct btrfs_device_info *devices_info;
1901 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1902 	struct btrfs_device *device;
1903 	u64 skip_space;
1904 	u64 type;
1905 	u64 avail_space;
1906 	u64 min_stripe_size;
1907 	int min_stripes = 1, num_stripes = 1;
1908 	int i = 0, nr_devices;
1909 
1910 	/*
1911 	 * We aren't under the device list lock, so this is racy-ish, but good
1912 	 * enough for our purposes.
1913 	 */
1914 	nr_devices = fs_info->fs_devices->open_devices;
1915 	if (!nr_devices) {
1916 		smp_mb();
1917 		nr_devices = fs_info->fs_devices->open_devices;
1918 		ASSERT(nr_devices);
1919 		if (!nr_devices) {
1920 			*free_bytes = 0;
1921 			return 0;
1922 		}
1923 	}
1924 
1925 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1926 			       GFP_KERNEL);
1927 	if (!devices_info)
1928 		return -ENOMEM;
1929 
1930 	/* calc min stripe number for data space allocation */
1931 	type = btrfs_data_alloc_profile(fs_info);
1932 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1933 		min_stripes = 2;
1934 		num_stripes = nr_devices;
1935 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1936 		min_stripes = 2;
1937 		num_stripes = 2;
1938 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1939 		min_stripes = 4;
1940 		num_stripes = 4;
1941 	}
1942 
1943 	if (type & BTRFS_BLOCK_GROUP_DUP)
1944 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1945 	else
1946 		min_stripe_size = BTRFS_STRIPE_LEN;
1947 
1948 	rcu_read_lock();
1949 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1950 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1951 						&device->dev_state) ||
1952 		    !device->bdev ||
1953 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1954 			continue;
1955 
1956 		if (i >= nr_devices)
1957 			break;
1958 
1959 		avail_space = device->total_bytes - device->bytes_used;
1960 
1961 		/* align with stripe_len */
1962 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1963 		avail_space *= BTRFS_STRIPE_LEN;
1964 
1965 		/*
1966 		 * In order to avoid overwriting the superblock on the drive,
1967 		 * btrfs starts at an offset of at least 1MB when doing chunk
1968 		 * allocation.
1969 		 */
1970 		skip_space = SZ_1M;
1971 
1972 		/*
1973 		 * we can use the free space in [0, skip_space - 1], subtract
1974 		 * it from the total.
1975 		 */
1976 		if (avail_space && avail_space >= skip_space)
1977 			avail_space -= skip_space;
1978 		else
1979 			avail_space = 0;
1980 
1981 		if (avail_space < min_stripe_size)
1982 			continue;
1983 
1984 		devices_info[i].dev = device;
1985 		devices_info[i].max_avail = avail_space;
1986 
1987 		i++;
1988 	}
1989 	rcu_read_unlock();
1990 
1991 	nr_devices = i;
1992 
1993 	btrfs_descending_sort_devices(devices_info, nr_devices);
1994 
1995 	i = nr_devices - 1;
1996 	avail_space = 0;
1997 	while (nr_devices >= min_stripes) {
1998 		if (num_stripes > nr_devices)
1999 			num_stripes = nr_devices;
2000 
2001 		if (devices_info[i].max_avail >= min_stripe_size) {
2002 			int j;
2003 			u64 alloc_size;
2004 
2005 			avail_space += devices_info[i].max_avail * num_stripes;
2006 			alloc_size = devices_info[i].max_avail;
2007 			for (j = i + 1 - num_stripes; j <= i; j++)
2008 				devices_info[j].max_avail -= alloc_size;
2009 		}
2010 		i--;
2011 		nr_devices--;
2012 	}
2013 
2014 	kfree(devices_info);
2015 	*free_bytes = avail_space;
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2021  *
2022  * If there's a redundant raid level at DATA block groups, use the respective
2023  * multiplier to scale the sizes.
2024  *
2025  * Unused device space usage is based on simulating the chunk allocator
2026  * algorithm that respects the device sizes and order of allocations.  This is
2027  * a close approximation of the actual use but there are other factors that may
2028  * change the result (like a new metadata chunk).
2029  *
2030  * If metadata is exhausted, f_bavail will be 0.
2031  */
2032 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2033 {
2034 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2035 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2036 	struct list_head *head = &fs_info->space_info;
2037 	struct btrfs_space_info *found;
2038 	u64 total_used = 0;
2039 	u64 total_free_data = 0;
2040 	u64 total_free_meta = 0;
2041 	int bits = dentry->d_sb->s_blocksize_bits;
2042 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2043 	unsigned factor = 1;
2044 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2045 	int ret;
2046 	u64 thresh = 0;
2047 	int mixed = 0;
2048 
2049 	rcu_read_lock();
2050 	list_for_each_entry_rcu(found, head, list) {
2051 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2052 			int i;
2053 
2054 			total_free_data += found->disk_total - found->disk_used;
2055 			total_free_data -=
2056 				btrfs_account_ro_block_groups_free_space(found);
2057 
2058 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2059 				if (!list_empty(&found->block_groups[i]))
2060 					factor = btrfs_bg_type_to_factor(
2061 						btrfs_raid_array[i].bg_flag);
2062 			}
2063 		}
2064 
2065 		/*
2066 		 * Metadata in mixed block goup profiles are accounted in data
2067 		 */
2068 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2069 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2070 				mixed = 1;
2071 			else
2072 				total_free_meta += found->disk_total -
2073 					found->disk_used;
2074 		}
2075 
2076 		total_used += found->disk_used;
2077 	}
2078 
2079 	rcu_read_unlock();
2080 
2081 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2082 	buf->f_blocks >>= bits;
2083 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2084 
2085 	/* Account global block reserve as used, it's in logical size already */
2086 	spin_lock(&block_rsv->lock);
2087 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2088 	if (buf->f_bfree >= block_rsv->size >> bits)
2089 		buf->f_bfree -= block_rsv->size >> bits;
2090 	else
2091 		buf->f_bfree = 0;
2092 	spin_unlock(&block_rsv->lock);
2093 
2094 	buf->f_bavail = div_u64(total_free_data, factor);
2095 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2096 	if (ret)
2097 		return ret;
2098 	buf->f_bavail += div_u64(total_free_data, factor);
2099 	buf->f_bavail = buf->f_bavail >> bits;
2100 
2101 	/*
2102 	 * We calculate the remaining metadata space minus global reserve. If
2103 	 * this is (supposedly) smaller than zero, there's no space. But this
2104 	 * does not hold in practice, the exhausted state happens where's still
2105 	 * some positive delta. So we apply some guesswork and compare the
2106 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2107 	 *
2108 	 * We probably cannot calculate the exact threshold value because this
2109 	 * depends on the internal reservations requested by various
2110 	 * operations, so some operations that consume a few metadata will
2111 	 * succeed even if the Avail is zero. But this is better than the other
2112 	 * way around.
2113 	 */
2114 	thresh = SZ_4M;
2115 
2116 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2117 		buf->f_bavail = 0;
2118 
2119 	buf->f_type = BTRFS_SUPER_MAGIC;
2120 	buf->f_bsize = dentry->d_sb->s_blocksize;
2121 	buf->f_namelen = BTRFS_NAME_LEN;
2122 
2123 	/* We treat it as constant endianness (it doesn't matter _which_)
2124 	   because we want the fsid to come out the same whether mounted
2125 	   on a big-endian or little-endian host */
2126 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2127 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2128 	/* Mask in the root object ID too, to disambiguate subvols */
2129 	buf->f_fsid.val[0] ^=
2130 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2131 	buf->f_fsid.val[1] ^=
2132 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2133 
2134 	return 0;
2135 }
2136 
2137 static void btrfs_kill_super(struct super_block *sb)
2138 {
2139 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2140 	kill_anon_super(sb);
2141 	free_fs_info(fs_info);
2142 }
2143 
2144 static struct file_system_type btrfs_fs_type = {
2145 	.owner		= THIS_MODULE,
2146 	.name		= "btrfs",
2147 	.mount		= btrfs_mount,
2148 	.kill_sb	= btrfs_kill_super,
2149 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2150 };
2151 
2152 static struct file_system_type btrfs_root_fs_type = {
2153 	.owner		= THIS_MODULE,
2154 	.name		= "btrfs",
2155 	.mount		= btrfs_mount_root,
2156 	.kill_sb	= btrfs_kill_super,
2157 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2158 };
2159 
2160 MODULE_ALIAS_FS("btrfs");
2161 
2162 static int btrfs_control_open(struct inode *inode, struct file *file)
2163 {
2164 	/*
2165 	 * The control file's private_data is used to hold the
2166 	 * transaction when it is started and is used to keep
2167 	 * track of whether a transaction is already in progress.
2168 	 */
2169 	file->private_data = NULL;
2170 	return 0;
2171 }
2172 
2173 /*
2174  * used by btrfsctl to scan devices when no FS is mounted
2175  */
2176 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2177 				unsigned long arg)
2178 {
2179 	struct btrfs_ioctl_vol_args *vol;
2180 	struct btrfs_device *device = NULL;
2181 	int ret = -ENOTTY;
2182 
2183 	if (!capable(CAP_SYS_ADMIN))
2184 		return -EPERM;
2185 
2186 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2187 	if (IS_ERR(vol))
2188 		return PTR_ERR(vol);
2189 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2190 
2191 	switch (cmd) {
2192 	case BTRFS_IOC_SCAN_DEV:
2193 		mutex_lock(&uuid_mutex);
2194 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2195 					       &btrfs_root_fs_type);
2196 		ret = PTR_ERR_OR_ZERO(device);
2197 		mutex_unlock(&uuid_mutex);
2198 		break;
2199 	case BTRFS_IOC_FORGET_DEV:
2200 		ret = btrfs_forget_devices(vol->name);
2201 		break;
2202 	case BTRFS_IOC_DEVICES_READY:
2203 		mutex_lock(&uuid_mutex);
2204 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2205 					       &btrfs_root_fs_type);
2206 		if (IS_ERR(device)) {
2207 			mutex_unlock(&uuid_mutex);
2208 			ret = PTR_ERR(device);
2209 			break;
2210 		}
2211 		ret = !(device->fs_devices->num_devices ==
2212 			device->fs_devices->total_devices);
2213 		mutex_unlock(&uuid_mutex);
2214 		break;
2215 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2216 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2217 		break;
2218 	}
2219 
2220 	kfree(vol);
2221 	return ret;
2222 }
2223 
2224 static int btrfs_freeze(struct super_block *sb)
2225 {
2226 	struct btrfs_trans_handle *trans;
2227 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2228 	struct btrfs_root *root = fs_info->tree_root;
2229 
2230 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2231 	/*
2232 	 * We don't need a barrier here, we'll wait for any transaction that
2233 	 * could be in progress on other threads (and do delayed iputs that
2234 	 * we want to avoid on a frozen filesystem), or do the commit
2235 	 * ourselves.
2236 	 */
2237 	trans = btrfs_attach_transaction_barrier(root);
2238 	if (IS_ERR(trans)) {
2239 		/* no transaction, don't bother */
2240 		if (PTR_ERR(trans) == -ENOENT)
2241 			return 0;
2242 		return PTR_ERR(trans);
2243 	}
2244 	return btrfs_commit_transaction(trans);
2245 }
2246 
2247 static int btrfs_unfreeze(struct super_block *sb)
2248 {
2249 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2250 
2251 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2252 	return 0;
2253 }
2254 
2255 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2256 {
2257 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2258 	struct btrfs_fs_devices *cur_devices;
2259 	struct btrfs_device *dev, *first_dev = NULL;
2260 	struct list_head *head;
2261 
2262 	/*
2263 	 * Lightweight locking of the devices. We should not need
2264 	 * device_list_mutex here as we only read the device data and the list
2265 	 * is protected by RCU.  Even if a device is deleted during the list
2266 	 * traversals, we'll get valid data, the freeing callback will wait at
2267 	 * least until the rcu_read_unlock.
2268 	 */
2269 	rcu_read_lock();
2270 	cur_devices = fs_info->fs_devices;
2271 	while (cur_devices) {
2272 		head = &cur_devices->devices;
2273 		list_for_each_entry_rcu(dev, head, dev_list) {
2274 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2275 				continue;
2276 			if (!dev->name)
2277 				continue;
2278 			if (!first_dev || dev->devid < first_dev->devid)
2279 				first_dev = dev;
2280 		}
2281 		cur_devices = cur_devices->seed;
2282 	}
2283 
2284 	if (first_dev)
2285 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2286 	else
2287 		WARN_ON(1);
2288 	rcu_read_unlock();
2289 	return 0;
2290 }
2291 
2292 static const struct super_operations btrfs_super_ops = {
2293 	.drop_inode	= btrfs_drop_inode,
2294 	.evict_inode	= btrfs_evict_inode,
2295 	.put_super	= btrfs_put_super,
2296 	.sync_fs	= btrfs_sync_fs,
2297 	.show_options	= btrfs_show_options,
2298 	.show_devname	= btrfs_show_devname,
2299 	.alloc_inode	= btrfs_alloc_inode,
2300 	.destroy_inode	= btrfs_destroy_inode,
2301 	.free_inode	= btrfs_free_inode,
2302 	.statfs		= btrfs_statfs,
2303 	.remount_fs	= btrfs_remount,
2304 	.freeze_fs	= btrfs_freeze,
2305 	.unfreeze_fs	= btrfs_unfreeze,
2306 };
2307 
2308 static const struct file_operations btrfs_ctl_fops = {
2309 	.open = btrfs_control_open,
2310 	.unlocked_ioctl	 = btrfs_control_ioctl,
2311 	.compat_ioctl = btrfs_control_ioctl,
2312 	.owner	 = THIS_MODULE,
2313 	.llseek = noop_llseek,
2314 };
2315 
2316 static struct miscdevice btrfs_misc = {
2317 	.minor		= BTRFS_MINOR,
2318 	.name		= "btrfs-control",
2319 	.fops		= &btrfs_ctl_fops
2320 };
2321 
2322 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2323 MODULE_ALIAS("devname:btrfs-control");
2324 
2325 static int __init btrfs_interface_init(void)
2326 {
2327 	return misc_register(&btrfs_misc);
2328 }
2329 
2330 static __cold void btrfs_interface_exit(void)
2331 {
2332 	misc_deregister(&btrfs_misc);
2333 }
2334 
2335 static void __init btrfs_print_mod_info(void)
2336 {
2337 	static const char options[] = ""
2338 #ifdef CONFIG_BTRFS_DEBUG
2339 			", debug=on"
2340 #endif
2341 #ifdef CONFIG_BTRFS_ASSERT
2342 			", assert=on"
2343 #endif
2344 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2345 			", integrity-checker=on"
2346 #endif
2347 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2348 			", ref-verify=on"
2349 #endif
2350 			;
2351 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2352 }
2353 
2354 static int __init init_btrfs_fs(void)
2355 {
2356 	int err;
2357 
2358 	btrfs_props_init();
2359 
2360 	err = btrfs_init_sysfs();
2361 	if (err)
2362 		return err;
2363 
2364 	btrfs_init_compress();
2365 
2366 	err = btrfs_init_cachep();
2367 	if (err)
2368 		goto free_compress;
2369 
2370 	err = extent_io_init();
2371 	if (err)
2372 		goto free_cachep;
2373 
2374 	err = extent_map_init();
2375 	if (err)
2376 		goto free_extent_io;
2377 
2378 	err = ordered_data_init();
2379 	if (err)
2380 		goto free_extent_map;
2381 
2382 	err = btrfs_delayed_inode_init();
2383 	if (err)
2384 		goto free_ordered_data;
2385 
2386 	err = btrfs_auto_defrag_init();
2387 	if (err)
2388 		goto free_delayed_inode;
2389 
2390 	err = btrfs_delayed_ref_init();
2391 	if (err)
2392 		goto free_auto_defrag;
2393 
2394 	err = btrfs_prelim_ref_init();
2395 	if (err)
2396 		goto free_delayed_ref;
2397 
2398 	err = btrfs_end_io_wq_init();
2399 	if (err)
2400 		goto free_prelim_ref;
2401 
2402 	err = btrfs_interface_init();
2403 	if (err)
2404 		goto free_end_io_wq;
2405 
2406 	btrfs_init_lockdep();
2407 
2408 	btrfs_print_mod_info();
2409 
2410 	err = btrfs_run_sanity_tests();
2411 	if (err)
2412 		goto unregister_ioctl;
2413 
2414 	err = register_filesystem(&btrfs_fs_type);
2415 	if (err)
2416 		goto unregister_ioctl;
2417 
2418 	return 0;
2419 
2420 unregister_ioctl:
2421 	btrfs_interface_exit();
2422 free_end_io_wq:
2423 	btrfs_end_io_wq_exit();
2424 free_prelim_ref:
2425 	btrfs_prelim_ref_exit();
2426 free_delayed_ref:
2427 	btrfs_delayed_ref_exit();
2428 free_auto_defrag:
2429 	btrfs_auto_defrag_exit();
2430 free_delayed_inode:
2431 	btrfs_delayed_inode_exit();
2432 free_ordered_data:
2433 	ordered_data_exit();
2434 free_extent_map:
2435 	extent_map_exit();
2436 free_extent_io:
2437 	extent_io_exit();
2438 free_cachep:
2439 	btrfs_destroy_cachep();
2440 free_compress:
2441 	btrfs_exit_compress();
2442 	btrfs_exit_sysfs();
2443 
2444 	return err;
2445 }
2446 
2447 static void __exit exit_btrfs_fs(void)
2448 {
2449 	btrfs_destroy_cachep();
2450 	btrfs_delayed_ref_exit();
2451 	btrfs_auto_defrag_exit();
2452 	btrfs_delayed_inode_exit();
2453 	btrfs_prelim_ref_exit();
2454 	ordered_data_exit();
2455 	extent_map_exit();
2456 	extent_io_exit();
2457 	btrfs_interface_exit();
2458 	btrfs_end_io_wq_exit();
2459 	unregister_filesystem(&btrfs_fs_type);
2460 	btrfs_exit_sysfs();
2461 	btrfs_cleanup_fs_uuids();
2462 	btrfs_exit_compress();
2463 }
2464 
2465 late_initcall(init_btrfs_fs);
2466 module_exit(exit_btrfs_fs)
2467 
2468 MODULE_LICENSE("GPL");
2469