xref: /linux/fs/btrfs/super.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 /*
71  * Generally the error codes correspond to their respective errors, but there
72  * are a few special cases.
73  *
74  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75  *          instance will return EUCLEAN if any of the blocks are corrupted in
76  *          a way that is problematic.  We want to reserve EUCLEAN for these
77  *          sort of corruptions.
78  *
79  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80  *        need to use EROFS for this case.  We will have no idea of the
81  *        original failure, that will have been reported at the time we tripped
82  *        over the error.  Each subsequent error that doesn't have any context
83  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84  */
85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 	char *errstr = "unknown";
88 
89 	switch (errno) {
90 	case -ENOENT:		/* -2 */
91 		errstr = "No such entry";
92 		break;
93 	case -EIO:		/* -5 */
94 		errstr = "IO failure";
95 		break;
96 	case -ENOMEM:		/* -12*/
97 		errstr = "Out of memory";
98 		break;
99 	case -EEXIST:		/* -17 */
100 		errstr = "Object already exists";
101 		break;
102 	case -ENOSPC:		/* -28 */
103 		errstr = "No space left";
104 		break;
105 	case -EROFS:		/* -30 */
106 		errstr = "Readonly filesystem";
107 		break;
108 	case -EOPNOTSUPP:	/* -95 */
109 		errstr = "Operation not supported";
110 		break;
111 	case -EUCLEAN:		/* -117 */
112 		errstr = "Filesystem corrupted";
113 		break;
114 	case -EDQUOT:		/* -122 */
115 		errstr = "Quota exceeded";
116 		break;
117 	}
118 
119 	return errstr;
120 }
121 
122 /*
123  * __btrfs_handle_fs_error decodes expected errors from the caller and
124  * invokes the appropriate error response.
125  */
126 __cold
127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 		       unsigned int line, int errno, const char *fmt, ...)
129 {
130 	struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 	const char *errstr;
133 #endif
134 
135 	/*
136 	 * Special case: if the error is EROFS, and we're already
137 	 * under SB_RDONLY, then it is safe here.
138 	 */
139 	if (errno == -EROFS && sb_rdonly(sb))
140   		return;
141 
142 #ifdef CONFIG_PRINTK
143 	errstr = btrfs_decode_error(errno);
144 	if (fmt) {
145 		struct va_format vaf;
146 		va_list args;
147 
148 		va_start(args, fmt);
149 		vaf.fmt = fmt;
150 		vaf.va = &args;
151 
152 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 			sb->s_id, function, line, errno, errstr, &vaf);
154 		va_end(args);
155 	} else {
156 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 			sb->s_id, function, line, errno, errstr);
158 	}
159 #endif
160 
161 	/*
162 	 * Today we only save the error info to memory.  Long term we'll
163 	 * also send it down to the disk
164 	 */
165 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166 
167 	/* Don't go through full error handling during mount */
168 	if (!(sb->s_flags & SB_BORN))
169 		return;
170 
171 	if (sb_rdonly(sb))
172 		return;
173 
174 	btrfs_discard_stop(fs_info);
175 
176 	/* btrfs handle error by forcing the filesystem readonly */
177 	btrfs_set_sb_rdonly(sb);
178 	btrfs_info(fs_info, "forced readonly");
179 	/*
180 	 * Note that a running device replace operation is not canceled here
181 	 * although there is no way to update the progress. It would add the
182 	 * risk of a deadlock, therefore the canceling is omitted. The only
183 	 * penalty is that some I/O remains active until the procedure
184 	 * completes. The next time when the filesystem is mounted writable
185 	 * again, the device replace operation continues.
186 	 */
187 }
188 
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 	"emergency",
192 	"alert",
193 	"critical",
194 	"error",
195 	"warning",
196 	"notice",
197 	"info",
198 	"debug",
199 };
200 
201 
202 /*
203  * Use one ratelimit state per log level so that a flood of less important
204  * messages doesn't cause more important ones to be dropped.
205  */
206 static struct ratelimit_state printk_limits[] = {
207 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216 
217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 	struct va_format vaf;
221 	va_list args;
222 	int kern_level;
223 	const char *type = logtypes[4];
224 	struct ratelimit_state *ratelimit = &printk_limits[4];
225 
226 	va_start(args, fmt);
227 
228 	while ((kern_level = printk_get_level(fmt)) != 0) {
229 		size_t size = printk_skip_level(fmt) - fmt;
230 
231 		if (kern_level >= '0' && kern_level <= '7') {
232 			memcpy(lvl, fmt,  size);
233 			lvl[size] = '\0';
234 			type = logtypes[kern_level - '0'];
235 			ratelimit = &printk_limits[kern_level - '0'];
236 		}
237 		fmt += size;
238 	}
239 
240 	vaf.fmt = fmt;
241 	vaf.va = &args;
242 
243 	if (__ratelimit(ratelimit)) {
244 		if (fs_info)
245 			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
246 				fs_info->sb->s_id, &vaf);
247 		else
248 			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
249 	}
250 
251 	va_end(args);
252 }
253 #endif
254 
255 #if BITS_PER_LONG == 32
256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
257 {
258 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
259 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
260 		btrfs_warn(fs_info,
261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
262 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
263 		btrfs_warn(fs_info,
264 			   "please consider upgrading to 64bit kernel/hardware");
265 	}
266 }
267 
268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
269 {
270 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
271 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
272 		btrfs_err(fs_info,
273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
274 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
275 		btrfs_err(fs_info,
276 			   "please consider upgrading to 64bit kernel/hardware");
277 	}
278 }
279 #endif
280 
281 /*
282  * We only mark the transaction aborted and then set the file system read-only.
283  * This will prevent new transactions from starting or trying to join this
284  * one.
285  *
286  * This means that error recovery at the call site is limited to freeing
287  * any local memory allocations and passing the error code up without
288  * further cleanup. The transaction should complete as it normally would
289  * in the call path but will return -EIO.
290  *
291  * We'll complete the cleanup in btrfs_end_transaction and
292  * btrfs_commit_transaction.
293  */
294 __cold
295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
296 			       const char *function,
297 			       unsigned int line, int errno)
298 {
299 	struct btrfs_fs_info *fs_info = trans->fs_info;
300 
301 	WRITE_ONCE(trans->aborted, errno);
302 	WRITE_ONCE(trans->transaction->aborted, errno);
303 	/* Wake up anybody who may be waiting on this transaction */
304 	wake_up(&fs_info->transaction_wait);
305 	wake_up(&fs_info->transaction_blocked_wait);
306 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
307 }
308 /*
309  * __btrfs_panic decodes unexpected, fatal errors from the caller,
310  * issues an alert, and either panics or BUGs, depending on mount options.
311  */
312 __cold
313 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
314 		   unsigned int line, int errno, const char *fmt, ...)
315 {
316 	char *s_id = "<unknown>";
317 	const char *errstr;
318 	struct va_format vaf = { .fmt = fmt };
319 	va_list args;
320 
321 	if (fs_info)
322 		s_id = fs_info->sb->s_id;
323 
324 	va_start(args, fmt);
325 	vaf.va = &args;
326 
327 	errstr = btrfs_decode_error(errno);
328 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
329 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
330 			s_id, function, line, &vaf, errno, errstr);
331 
332 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
333 		   function, line, &vaf, errno, errstr);
334 	va_end(args);
335 	/* Caller calls BUG() */
336 }
337 
338 static void btrfs_put_super(struct super_block *sb)
339 {
340 	close_ctree(btrfs_sb(sb));
341 }
342 
343 enum {
344 	Opt_acl, Opt_noacl,
345 	Opt_clear_cache,
346 	Opt_commit_interval,
347 	Opt_compress,
348 	Opt_compress_force,
349 	Opt_compress_force_type,
350 	Opt_compress_type,
351 	Opt_degraded,
352 	Opt_device,
353 	Opt_fatal_errors,
354 	Opt_flushoncommit, Opt_noflushoncommit,
355 	Opt_max_inline,
356 	Opt_barrier, Opt_nobarrier,
357 	Opt_datacow, Opt_nodatacow,
358 	Opt_datasum, Opt_nodatasum,
359 	Opt_defrag, Opt_nodefrag,
360 	Opt_discard, Opt_nodiscard,
361 	Opt_discard_mode,
362 	Opt_norecovery,
363 	Opt_ratio,
364 	Opt_rescan_uuid_tree,
365 	Opt_skip_balance,
366 	Opt_space_cache, Opt_no_space_cache,
367 	Opt_space_cache_version,
368 	Opt_ssd, Opt_nossd,
369 	Opt_ssd_spread, Opt_nossd_spread,
370 	Opt_subvol,
371 	Opt_subvol_empty,
372 	Opt_subvolid,
373 	Opt_thread_pool,
374 	Opt_treelog, Opt_notreelog,
375 	Opt_user_subvol_rm_allowed,
376 
377 	/* Rescue options */
378 	Opt_rescue,
379 	Opt_usebackuproot,
380 	Opt_nologreplay,
381 	Opt_ignorebadroots,
382 	Opt_ignoredatacsums,
383 	Opt_rescue_all,
384 
385 	/* Deprecated options */
386 	Opt_recovery,
387 	Opt_inode_cache, Opt_noinode_cache,
388 
389 	/* Debugging options */
390 	Opt_check_integrity,
391 	Opt_check_integrity_including_extent_data,
392 	Opt_check_integrity_print_mask,
393 	Opt_enospc_debug, Opt_noenospc_debug,
394 #ifdef CONFIG_BTRFS_DEBUG
395 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
396 #endif
397 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
398 	Opt_ref_verify,
399 #endif
400 	Opt_err,
401 };
402 
403 static const match_table_t tokens = {
404 	{Opt_acl, "acl"},
405 	{Opt_noacl, "noacl"},
406 	{Opt_clear_cache, "clear_cache"},
407 	{Opt_commit_interval, "commit=%u"},
408 	{Opt_compress, "compress"},
409 	{Opt_compress_type, "compress=%s"},
410 	{Opt_compress_force, "compress-force"},
411 	{Opt_compress_force_type, "compress-force=%s"},
412 	{Opt_degraded, "degraded"},
413 	{Opt_device, "device=%s"},
414 	{Opt_fatal_errors, "fatal_errors=%s"},
415 	{Opt_flushoncommit, "flushoncommit"},
416 	{Opt_noflushoncommit, "noflushoncommit"},
417 	{Opt_inode_cache, "inode_cache"},
418 	{Opt_noinode_cache, "noinode_cache"},
419 	{Opt_max_inline, "max_inline=%s"},
420 	{Opt_barrier, "barrier"},
421 	{Opt_nobarrier, "nobarrier"},
422 	{Opt_datacow, "datacow"},
423 	{Opt_nodatacow, "nodatacow"},
424 	{Opt_datasum, "datasum"},
425 	{Opt_nodatasum, "nodatasum"},
426 	{Opt_defrag, "autodefrag"},
427 	{Opt_nodefrag, "noautodefrag"},
428 	{Opt_discard, "discard"},
429 	{Opt_discard_mode, "discard=%s"},
430 	{Opt_nodiscard, "nodiscard"},
431 	{Opt_norecovery, "norecovery"},
432 	{Opt_ratio, "metadata_ratio=%u"},
433 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
434 	{Opt_skip_balance, "skip_balance"},
435 	{Opt_space_cache, "space_cache"},
436 	{Opt_no_space_cache, "nospace_cache"},
437 	{Opt_space_cache_version, "space_cache=%s"},
438 	{Opt_ssd, "ssd"},
439 	{Opt_nossd, "nossd"},
440 	{Opt_ssd_spread, "ssd_spread"},
441 	{Opt_nossd_spread, "nossd_spread"},
442 	{Opt_subvol, "subvol=%s"},
443 	{Opt_subvol_empty, "subvol="},
444 	{Opt_subvolid, "subvolid=%s"},
445 	{Opt_thread_pool, "thread_pool=%u"},
446 	{Opt_treelog, "treelog"},
447 	{Opt_notreelog, "notreelog"},
448 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
449 
450 	/* Rescue options */
451 	{Opt_rescue, "rescue=%s"},
452 	/* Deprecated, with alias rescue=nologreplay */
453 	{Opt_nologreplay, "nologreplay"},
454 	/* Deprecated, with alias rescue=usebackuproot */
455 	{Opt_usebackuproot, "usebackuproot"},
456 
457 	/* Deprecated options */
458 	{Opt_recovery, "recovery"},
459 
460 	/* Debugging options */
461 	{Opt_check_integrity, "check_int"},
462 	{Opt_check_integrity_including_extent_data, "check_int_data"},
463 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
464 	{Opt_enospc_debug, "enospc_debug"},
465 	{Opt_noenospc_debug, "noenospc_debug"},
466 #ifdef CONFIG_BTRFS_DEBUG
467 	{Opt_fragment_data, "fragment=data"},
468 	{Opt_fragment_metadata, "fragment=metadata"},
469 	{Opt_fragment_all, "fragment=all"},
470 #endif
471 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
472 	{Opt_ref_verify, "ref_verify"},
473 #endif
474 	{Opt_err, NULL},
475 };
476 
477 static const match_table_t rescue_tokens = {
478 	{Opt_usebackuproot, "usebackuproot"},
479 	{Opt_nologreplay, "nologreplay"},
480 	{Opt_ignorebadroots, "ignorebadroots"},
481 	{Opt_ignorebadroots, "ibadroots"},
482 	{Opt_ignoredatacsums, "ignoredatacsums"},
483 	{Opt_ignoredatacsums, "idatacsums"},
484 	{Opt_rescue_all, "all"},
485 	{Opt_err, NULL},
486 };
487 
488 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
489 			    const char *opt_name)
490 {
491 	if (fs_info->mount_opt & opt) {
492 		btrfs_err(fs_info, "%s must be used with ro mount option",
493 			  opt_name);
494 		return true;
495 	}
496 	return false;
497 }
498 
499 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
500 {
501 	char *opts;
502 	char *orig;
503 	char *p;
504 	substring_t args[MAX_OPT_ARGS];
505 	int ret = 0;
506 
507 	opts = kstrdup(options, GFP_KERNEL);
508 	if (!opts)
509 		return -ENOMEM;
510 	orig = opts;
511 
512 	while ((p = strsep(&opts, ":")) != NULL) {
513 		int token;
514 
515 		if (!*p)
516 			continue;
517 		token = match_token(p, rescue_tokens, args);
518 		switch (token){
519 		case Opt_usebackuproot:
520 			btrfs_info(info,
521 				   "trying to use backup root at mount time");
522 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
523 			break;
524 		case Opt_nologreplay:
525 			btrfs_set_and_info(info, NOLOGREPLAY,
526 					   "disabling log replay at mount time");
527 			break;
528 		case Opt_ignorebadroots:
529 			btrfs_set_and_info(info, IGNOREBADROOTS,
530 					   "ignoring bad roots");
531 			break;
532 		case Opt_ignoredatacsums:
533 			btrfs_set_and_info(info, IGNOREDATACSUMS,
534 					   "ignoring data csums");
535 			break;
536 		case Opt_rescue_all:
537 			btrfs_info(info, "enabling all of the rescue options");
538 			btrfs_set_and_info(info, IGNOREDATACSUMS,
539 					   "ignoring data csums");
540 			btrfs_set_and_info(info, IGNOREBADROOTS,
541 					   "ignoring bad roots");
542 			btrfs_set_and_info(info, NOLOGREPLAY,
543 					   "disabling log replay at mount time");
544 			break;
545 		case Opt_err:
546 			btrfs_info(info, "unrecognized rescue option '%s'", p);
547 			ret = -EINVAL;
548 			goto out;
549 		default:
550 			break;
551 		}
552 
553 	}
554 out:
555 	kfree(orig);
556 	return ret;
557 }
558 
559 /*
560  * Regular mount options parser.  Everything that is needed only when
561  * reading in a new superblock is parsed here.
562  * XXX JDM: This needs to be cleaned up for remount.
563  */
564 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
565 			unsigned long new_flags)
566 {
567 	substring_t args[MAX_OPT_ARGS];
568 	char *p, *num;
569 	int intarg;
570 	int ret = 0;
571 	char *compress_type;
572 	bool compress_force = false;
573 	enum btrfs_compression_type saved_compress_type;
574 	int saved_compress_level;
575 	bool saved_compress_force;
576 	int no_compress = 0;
577 
578 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
579 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
580 	else if (btrfs_free_space_cache_v1_active(info)) {
581 		if (btrfs_is_zoned(info)) {
582 			btrfs_info(info,
583 			"zoned: clearing existing space cache");
584 			btrfs_set_super_cache_generation(info->super_copy, 0);
585 		} else {
586 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
587 		}
588 	}
589 
590 	/*
591 	 * Even the options are empty, we still need to do extra check
592 	 * against new flags
593 	 */
594 	if (!options)
595 		goto check;
596 
597 	while ((p = strsep(&options, ",")) != NULL) {
598 		int token;
599 		if (!*p)
600 			continue;
601 
602 		token = match_token(p, tokens, args);
603 		switch (token) {
604 		case Opt_degraded:
605 			btrfs_info(info, "allowing degraded mounts");
606 			btrfs_set_opt(info->mount_opt, DEGRADED);
607 			break;
608 		case Opt_subvol:
609 		case Opt_subvol_empty:
610 		case Opt_subvolid:
611 		case Opt_device:
612 			/*
613 			 * These are parsed by btrfs_parse_subvol_options or
614 			 * btrfs_parse_device_options and can be ignored here.
615 			 */
616 			break;
617 		case Opt_nodatasum:
618 			btrfs_set_and_info(info, NODATASUM,
619 					   "setting nodatasum");
620 			break;
621 		case Opt_datasum:
622 			if (btrfs_test_opt(info, NODATASUM)) {
623 				if (btrfs_test_opt(info, NODATACOW))
624 					btrfs_info(info,
625 						   "setting datasum, datacow enabled");
626 				else
627 					btrfs_info(info, "setting datasum");
628 			}
629 			btrfs_clear_opt(info->mount_opt, NODATACOW);
630 			btrfs_clear_opt(info->mount_opt, NODATASUM);
631 			break;
632 		case Opt_nodatacow:
633 			if (!btrfs_test_opt(info, NODATACOW)) {
634 				if (!btrfs_test_opt(info, COMPRESS) ||
635 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
636 					btrfs_info(info,
637 						   "setting nodatacow, compression disabled");
638 				} else {
639 					btrfs_info(info, "setting nodatacow");
640 				}
641 			}
642 			btrfs_clear_opt(info->mount_opt, COMPRESS);
643 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
644 			btrfs_set_opt(info->mount_opt, NODATACOW);
645 			btrfs_set_opt(info->mount_opt, NODATASUM);
646 			break;
647 		case Opt_datacow:
648 			btrfs_clear_and_info(info, NODATACOW,
649 					     "setting datacow");
650 			break;
651 		case Opt_compress_force:
652 		case Opt_compress_force_type:
653 			compress_force = true;
654 			fallthrough;
655 		case Opt_compress:
656 		case Opt_compress_type:
657 			saved_compress_type = btrfs_test_opt(info,
658 							     COMPRESS) ?
659 				info->compress_type : BTRFS_COMPRESS_NONE;
660 			saved_compress_force =
661 				btrfs_test_opt(info, FORCE_COMPRESS);
662 			saved_compress_level = info->compress_level;
663 			if (token == Opt_compress ||
664 			    token == Opt_compress_force ||
665 			    strncmp(args[0].from, "zlib", 4) == 0) {
666 				compress_type = "zlib";
667 
668 				info->compress_type = BTRFS_COMPRESS_ZLIB;
669 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
670 				/*
671 				 * args[0] contains uninitialized data since
672 				 * for these tokens we don't expect any
673 				 * parameter.
674 				 */
675 				if (token != Opt_compress &&
676 				    token != Opt_compress_force)
677 					info->compress_level =
678 					  btrfs_compress_str2level(
679 							BTRFS_COMPRESS_ZLIB,
680 							args[0].from + 4);
681 				btrfs_set_opt(info->mount_opt, COMPRESS);
682 				btrfs_clear_opt(info->mount_opt, NODATACOW);
683 				btrfs_clear_opt(info->mount_opt, NODATASUM);
684 				no_compress = 0;
685 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
686 				compress_type = "lzo";
687 				info->compress_type = BTRFS_COMPRESS_LZO;
688 				info->compress_level = 0;
689 				btrfs_set_opt(info->mount_opt, COMPRESS);
690 				btrfs_clear_opt(info->mount_opt, NODATACOW);
691 				btrfs_clear_opt(info->mount_opt, NODATASUM);
692 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
693 				no_compress = 0;
694 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
695 				compress_type = "zstd";
696 				info->compress_type = BTRFS_COMPRESS_ZSTD;
697 				info->compress_level =
698 					btrfs_compress_str2level(
699 							 BTRFS_COMPRESS_ZSTD,
700 							 args[0].from + 4);
701 				btrfs_set_opt(info->mount_opt, COMPRESS);
702 				btrfs_clear_opt(info->mount_opt, NODATACOW);
703 				btrfs_clear_opt(info->mount_opt, NODATASUM);
704 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
705 				no_compress = 0;
706 			} else if (strncmp(args[0].from, "no", 2) == 0) {
707 				compress_type = "no";
708 				info->compress_level = 0;
709 				info->compress_type = 0;
710 				btrfs_clear_opt(info->mount_opt, COMPRESS);
711 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
712 				compress_force = false;
713 				no_compress++;
714 			} else {
715 				ret = -EINVAL;
716 				goto out;
717 			}
718 
719 			if (compress_force) {
720 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
721 			} else {
722 				/*
723 				 * If we remount from compress-force=xxx to
724 				 * compress=xxx, we need clear FORCE_COMPRESS
725 				 * flag, otherwise, there is no way for users
726 				 * to disable forcible compression separately.
727 				 */
728 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
729 			}
730 			if (no_compress == 1) {
731 				btrfs_info(info, "use no compression");
732 			} else if ((info->compress_type != saved_compress_type) ||
733 				   (compress_force != saved_compress_force) ||
734 				   (info->compress_level != saved_compress_level)) {
735 				btrfs_info(info, "%s %s compression, level %d",
736 					   (compress_force) ? "force" : "use",
737 					   compress_type, info->compress_level);
738 			}
739 			compress_force = false;
740 			break;
741 		case Opt_ssd:
742 			btrfs_set_and_info(info, SSD,
743 					   "enabling ssd optimizations");
744 			btrfs_clear_opt(info->mount_opt, NOSSD);
745 			break;
746 		case Opt_ssd_spread:
747 			btrfs_set_and_info(info, SSD,
748 					   "enabling ssd optimizations");
749 			btrfs_set_and_info(info, SSD_SPREAD,
750 					   "using spread ssd allocation scheme");
751 			btrfs_clear_opt(info->mount_opt, NOSSD);
752 			break;
753 		case Opt_nossd:
754 			btrfs_set_opt(info->mount_opt, NOSSD);
755 			btrfs_clear_and_info(info, SSD,
756 					     "not using ssd optimizations");
757 			fallthrough;
758 		case Opt_nossd_spread:
759 			btrfs_clear_and_info(info, SSD_SPREAD,
760 					     "not using spread ssd allocation scheme");
761 			break;
762 		case Opt_barrier:
763 			btrfs_clear_and_info(info, NOBARRIER,
764 					     "turning on barriers");
765 			break;
766 		case Opt_nobarrier:
767 			btrfs_set_and_info(info, NOBARRIER,
768 					   "turning off barriers");
769 			break;
770 		case Opt_thread_pool:
771 			ret = match_int(&args[0], &intarg);
772 			if (ret) {
773 				goto out;
774 			} else if (intarg == 0) {
775 				ret = -EINVAL;
776 				goto out;
777 			}
778 			info->thread_pool_size = intarg;
779 			break;
780 		case Opt_max_inline:
781 			num = match_strdup(&args[0]);
782 			if (num) {
783 				info->max_inline = memparse(num, NULL);
784 				kfree(num);
785 
786 				if (info->max_inline) {
787 					info->max_inline = min_t(u64,
788 						info->max_inline,
789 						info->sectorsize);
790 				}
791 				btrfs_info(info, "max_inline at %llu",
792 					   info->max_inline);
793 			} else {
794 				ret = -ENOMEM;
795 				goto out;
796 			}
797 			break;
798 		case Opt_acl:
799 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
800 			info->sb->s_flags |= SB_POSIXACL;
801 			break;
802 #else
803 			btrfs_err(info, "support for ACL not compiled in!");
804 			ret = -EINVAL;
805 			goto out;
806 #endif
807 		case Opt_noacl:
808 			info->sb->s_flags &= ~SB_POSIXACL;
809 			break;
810 		case Opt_notreelog:
811 			btrfs_set_and_info(info, NOTREELOG,
812 					   "disabling tree log");
813 			break;
814 		case Opt_treelog:
815 			btrfs_clear_and_info(info, NOTREELOG,
816 					     "enabling tree log");
817 			break;
818 		case Opt_norecovery:
819 		case Opt_nologreplay:
820 			btrfs_warn(info,
821 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
822 			btrfs_set_and_info(info, NOLOGREPLAY,
823 					   "disabling log replay at mount time");
824 			break;
825 		case Opt_flushoncommit:
826 			btrfs_set_and_info(info, FLUSHONCOMMIT,
827 					   "turning on flush-on-commit");
828 			break;
829 		case Opt_noflushoncommit:
830 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
831 					     "turning off flush-on-commit");
832 			break;
833 		case Opt_ratio:
834 			ret = match_int(&args[0], &intarg);
835 			if (ret)
836 				goto out;
837 			info->metadata_ratio = intarg;
838 			btrfs_info(info, "metadata ratio %u",
839 				   info->metadata_ratio);
840 			break;
841 		case Opt_discard:
842 		case Opt_discard_mode:
843 			if (token == Opt_discard ||
844 			    strcmp(args[0].from, "sync") == 0) {
845 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
846 				btrfs_set_and_info(info, DISCARD_SYNC,
847 						   "turning on sync discard");
848 			} else if (strcmp(args[0].from, "async") == 0) {
849 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
850 				btrfs_set_and_info(info, DISCARD_ASYNC,
851 						   "turning on async discard");
852 			} else {
853 				ret = -EINVAL;
854 				goto out;
855 			}
856 			break;
857 		case Opt_nodiscard:
858 			btrfs_clear_and_info(info, DISCARD_SYNC,
859 					     "turning off discard");
860 			btrfs_clear_and_info(info, DISCARD_ASYNC,
861 					     "turning off async discard");
862 			break;
863 		case Opt_space_cache:
864 		case Opt_space_cache_version:
865 			if (token == Opt_space_cache ||
866 			    strcmp(args[0].from, "v1") == 0) {
867 				btrfs_clear_opt(info->mount_opt,
868 						FREE_SPACE_TREE);
869 				btrfs_set_and_info(info, SPACE_CACHE,
870 					   "enabling disk space caching");
871 			} else if (strcmp(args[0].from, "v2") == 0) {
872 				btrfs_clear_opt(info->mount_opt,
873 						SPACE_CACHE);
874 				btrfs_set_and_info(info, FREE_SPACE_TREE,
875 						   "enabling free space tree");
876 			} else {
877 				ret = -EINVAL;
878 				goto out;
879 			}
880 			break;
881 		case Opt_rescan_uuid_tree:
882 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
883 			break;
884 		case Opt_no_space_cache:
885 			if (btrfs_test_opt(info, SPACE_CACHE)) {
886 				btrfs_clear_and_info(info, SPACE_CACHE,
887 					     "disabling disk space caching");
888 			}
889 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
890 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
891 					     "disabling free space tree");
892 			}
893 			break;
894 		case Opt_inode_cache:
895 		case Opt_noinode_cache:
896 			btrfs_warn(info,
897 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
898 			break;
899 		case Opt_clear_cache:
900 			btrfs_set_and_info(info, CLEAR_CACHE,
901 					   "force clearing of disk cache");
902 			break;
903 		case Opt_user_subvol_rm_allowed:
904 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
905 			break;
906 		case Opt_enospc_debug:
907 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
908 			break;
909 		case Opt_noenospc_debug:
910 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
911 			break;
912 		case Opt_defrag:
913 			btrfs_set_and_info(info, AUTO_DEFRAG,
914 					   "enabling auto defrag");
915 			break;
916 		case Opt_nodefrag:
917 			btrfs_clear_and_info(info, AUTO_DEFRAG,
918 					     "disabling auto defrag");
919 			break;
920 		case Opt_recovery:
921 		case Opt_usebackuproot:
922 			btrfs_warn(info,
923 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
924 				   token == Opt_recovery ? "recovery" :
925 				   "usebackuproot");
926 			btrfs_info(info,
927 				   "trying to use backup root at mount time");
928 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
929 			break;
930 		case Opt_skip_balance:
931 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
932 			break;
933 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
934 		case Opt_check_integrity_including_extent_data:
935 			btrfs_info(info,
936 				   "enabling check integrity including extent data");
937 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
938 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
939 			break;
940 		case Opt_check_integrity:
941 			btrfs_info(info, "enabling check integrity");
942 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
943 			break;
944 		case Opt_check_integrity_print_mask:
945 			ret = match_int(&args[0], &intarg);
946 			if (ret)
947 				goto out;
948 			info->check_integrity_print_mask = intarg;
949 			btrfs_info(info, "check_integrity_print_mask 0x%x",
950 				   info->check_integrity_print_mask);
951 			break;
952 #else
953 		case Opt_check_integrity_including_extent_data:
954 		case Opt_check_integrity:
955 		case Opt_check_integrity_print_mask:
956 			btrfs_err(info,
957 				  "support for check_integrity* not compiled in!");
958 			ret = -EINVAL;
959 			goto out;
960 #endif
961 		case Opt_fatal_errors:
962 			if (strcmp(args[0].from, "panic") == 0)
963 				btrfs_set_opt(info->mount_opt,
964 					      PANIC_ON_FATAL_ERROR);
965 			else if (strcmp(args[0].from, "bug") == 0)
966 				btrfs_clear_opt(info->mount_opt,
967 					      PANIC_ON_FATAL_ERROR);
968 			else {
969 				ret = -EINVAL;
970 				goto out;
971 			}
972 			break;
973 		case Opt_commit_interval:
974 			intarg = 0;
975 			ret = match_int(&args[0], &intarg);
976 			if (ret)
977 				goto out;
978 			if (intarg == 0) {
979 				btrfs_info(info,
980 					   "using default commit interval %us",
981 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
982 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
983 			} else if (intarg > 300) {
984 				btrfs_warn(info, "excessive commit interval %d",
985 					   intarg);
986 			}
987 			info->commit_interval = intarg;
988 			break;
989 		case Opt_rescue:
990 			ret = parse_rescue_options(info, args[0].from);
991 			if (ret < 0)
992 				goto out;
993 			break;
994 #ifdef CONFIG_BTRFS_DEBUG
995 		case Opt_fragment_all:
996 			btrfs_info(info, "fragmenting all space");
997 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
998 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
999 			break;
1000 		case Opt_fragment_metadata:
1001 			btrfs_info(info, "fragmenting metadata");
1002 			btrfs_set_opt(info->mount_opt,
1003 				      FRAGMENT_METADATA);
1004 			break;
1005 		case Opt_fragment_data:
1006 			btrfs_info(info, "fragmenting data");
1007 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1008 			break;
1009 #endif
1010 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1011 		case Opt_ref_verify:
1012 			btrfs_info(info, "doing ref verification");
1013 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1014 			break;
1015 #endif
1016 		case Opt_err:
1017 			btrfs_err(info, "unrecognized mount option '%s'", p);
1018 			ret = -EINVAL;
1019 			goto out;
1020 		default:
1021 			break;
1022 		}
1023 	}
1024 check:
1025 	/* We're read-only, don't have to check. */
1026 	if (new_flags & SB_RDONLY)
1027 		goto out;
1028 
1029 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1030 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1031 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1032 		ret = -EINVAL;
1033 out:
1034 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1035 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1036 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1037 		btrfs_err(info, "cannot disable free space tree");
1038 		ret = -EINVAL;
1039 
1040 	}
1041 	if (!ret)
1042 		ret = btrfs_check_mountopts_zoned(info);
1043 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1044 		btrfs_info(info, "disk space caching is enabled");
1045 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1046 		btrfs_info(info, "using free space tree");
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Parse mount options that are required early in the mount process.
1052  *
1053  * All other options will be parsed on much later in the mount process and
1054  * only when we need to allocate a new super block.
1055  */
1056 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1057 				      void *holder)
1058 {
1059 	substring_t args[MAX_OPT_ARGS];
1060 	char *device_name, *opts, *orig, *p;
1061 	struct btrfs_device *device = NULL;
1062 	int error = 0;
1063 
1064 	lockdep_assert_held(&uuid_mutex);
1065 
1066 	if (!options)
1067 		return 0;
1068 
1069 	/*
1070 	 * strsep changes the string, duplicate it because btrfs_parse_options
1071 	 * gets called later
1072 	 */
1073 	opts = kstrdup(options, GFP_KERNEL);
1074 	if (!opts)
1075 		return -ENOMEM;
1076 	orig = opts;
1077 
1078 	while ((p = strsep(&opts, ",")) != NULL) {
1079 		int token;
1080 
1081 		if (!*p)
1082 			continue;
1083 
1084 		token = match_token(p, tokens, args);
1085 		if (token == Opt_device) {
1086 			device_name = match_strdup(&args[0]);
1087 			if (!device_name) {
1088 				error = -ENOMEM;
1089 				goto out;
1090 			}
1091 			device = btrfs_scan_one_device(device_name, flags,
1092 					holder);
1093 			kfree(device_name);
1094 			if (IS_ERR(device)) {
1095 				error = PTR_ERR(device);
1096 				goto out;
1097 			}
1098 		}
1099 	}
1100 
1101 out:
1102 	kfree(orig);
1103 	return error;
1104 }
1105 
1106 /*
1107  * Parse mount options that are related to subvolume id
1108  *
1109  * The value is later passed to mount_subvol()
1110  */
1111 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1112 		u64 *subvol_objectid)
1113 {
1114 	substring_t args[MAX_OPT_ARGS];
1115 	char *opts, *orig, *p;
1116 	int error = 0;
1117 	u64 subvolid;
1118 
1119 	if (!options)
1120 		return 0;
1121 
1122 	/*
1123 	 * strsep changes the string, duplicate it because
1124 	 * btrfs_parse_device_options gets called later
1125 	 */
1126 	opts = kstrdup(options, GFP_KERNEL);
1127 	if (!opts)
1128 		return -ENOMEM;
1129 	orig = opts;
1130 
1131 	while ((p = strsep(&opts, ",")) != NULL) {
1132 		int token;
1133 		if (!*p)
1134 			continue;
1135 
1136 		token = match_token(p, tokens, args);
1137 		switch (token) {
1138 		case Opt_subvol:
1139 			kfree(*subvol_name);
1140 			*subvol_name = match_strdup(&args[0]);
1141 			if (!*subvol_name) {
1142 				error = -ENOMEM;
1143 				goto out;
1144 			}
1145 			break;
1146 		case Opt_subvolid:
1147 			error = match_u64(&args[0], &subvolid);
1148 			if (error)
1149 				goto out;
1150 
1151 			/* we want the original fs_tree */
1152 			if (subvolid == 0)
1153 				subvolid = BTRFS_FS_TREE_OBJECTID;
1154 
1155 			*subvol_objectid = subvolid;
1156 			break;
1157 		default:
1158 			break;
1159 		}
1160 	}
1161 
1162 out:
1163 	kfree(orig);
1164 	return error;
1165 }
1166 
1167 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1168 					  u64 subvol_objectid)
1169 {
1170 	struct btrfs_root *root = fs_info->tree_root;
1171 	struct btrfs_root *fs_root = NULL;
1172 	struct btrfs_root_ref *root_ref;
1173 	struct btrfs_inode_ref *inode_ref;
1174 	struct btrfs_key key;
1175 	struct btrfs_path *path = NULL;
1176 	char *name = NULL, *ptr;
1177 	u64 dirid;
1178 	int len;
1179 	int ret;
1180 
1181 	path = btrfs_alloc_path();
1182 	if (!path) {
1183 		ret = -ENOMEM;
1184 		goto err;
1185 	}
1186 
1187 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1188 	if (!name) {
1189 		ret = -ENOMEM;
1190 		goto err;
1191 	}
1192 	ptr = name + PATH_MAX - 1;
1193 	ptr[0] = '\0';
1194 
1195 	/*
1196 	 * Walk up the subvolume trees in the tree of tree roots by root
1197 	 * backrefs until we hit the top-level subvolume.
1198 	 */
1199 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1200 		key.objectid = subvol_objectid;
1201 		key.type = BTRFS_ROOT_BACKREF_KEY;
1202 		key.offset = (u64)-1;
1203 
1204 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205 		if (ret < 0) {
1206 			goto err;
1207 		} else if (ret > 0) {
1208 			ret = btrfs_previous_item(root, path, subvol_objectid,
1209 						  BTRFS_ROOT_BACKREF_KEY);
1210 			if (ret < 0) {
1211 				goto err;
1212 			} else if (ret > 0) {
1213 				ret = -ENOENT;
1214 				goto err;
1215 			}
1216 		}
1217 
1218 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1219 		subvol_objectid = key.offset;
1220 
1221 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1222 					  struct btrfs_root_ref);
1223 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1224 		ptr -= len + 1;
1225 		if (ptr < name) {
1226 			ret = -ENAMETOOLONG;
1227 			goto err;
1228 		}
1229 		read_extent_buffer(path->nodes[0], ptr + 1,
1230 				   (unsigned long)(root_ref + 1), len);
1231 		ptr[0] = '/';
1232 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1233 		btrfs_release_path(path);
1234 
1235 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1236 		if (IS_ERR(fs_root)) {
1237 			ret = PTR_ERR(fs_root);
1238 			fs_root = NULL;
1239 			goto err;
1240 		}
1241 
1242 		/*
1243 		 * Walk up the filesystem tree by inode refs until we hit the
1244 		 * root directory.
1245 		 */
1246 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1247 			key.objectid = dirid;
1248 			key.type = BTRFS_INODE_REF_KEY;
1249 			key.offset = (u64)-1;
1250 
1251 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1252 			if (ret < 0) {
1253 				goto err;
1254 			} else if (ret > 0) {
1255 				ret = btrfs_previous_item(fs_root, path, dirid,
1256 							  BTRFS_INODE_REF_KEY);
1257 				if (ret < 0) {
1258 					goto err;
1259 				} else if (ret > 0) {
1260 					ret = -ENOENT;
1261 					goto err;
1262 				}
1263 			}
1264 
1265 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1266 			dirid = key.offset;
1267 
1268 			inode_ref = btrfs_item_ptr(path->nodes[0],
1269 						   path->slots[0],
1270 						   struct btrfs_inode_ref);
1271 			len = btrfs_inode_ref_name_len(path->nodes[0],
1272 						       inode_ref);
1273 			ptr -= len + 1;
1274 			if (ptr < name) {
1275 				ret = -ENAMETOOLONG;
1276 				goto err;
1277 			}
1278 			read_extent_buffer(path->nodes[0], ptr + 1,
1279 					   (unsigned long)(inode_ref + 1), len);
1280 			ptr[0] = '/';
1281 			btrfs_release_path(path);
1282 		}
1283 		btrfs_put_root(fs_root);
1284 		fs_root = NULL;
1285 	}
1286 
1287 	btrfs_free_path(path);
1288 	if (ptr == name + PATH_MAX - 1) {
1289 		name[0] = '/';
1290 		name[1] = '\0';
1291 	} else {
1292 		memmove(name, ptr, name + PATH_MAX - ptr);
1293 	}
1294 	return name;
1295 
1296 err:
1297 	btrfs_put_root(fs_root);
1298 	btrfs_free_path(path);
1299 	kfree(name);
1300 	return ERR_PTR(ret);
1301 }
1302 
1303 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1304 {
1305 	struct btrfs_root *root = fs_info->tree_root;
1306 	struct btrfs_dir_item *di;
1307 	struct btrfs_path *path;
1308 	struct btrfs_key location;
1309 	u64 dir_id;
1310 
1311 	path = btrfs_alloc_path();
1312 	if (!path)
1313 		return -ENOMEM;
1314 
1315 	/*
1316 	 * Find the "default" dir item which points to the root item that we
1317 	 * will mount by default if we haven't been given a specific subvolume
1318 	 * to mount.
1319 	 */
1320 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1321 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1322 	if (IS_ERR(di)) {
1323 		btrfs_free_path(path);
1324 		return PTR_ERR(di);
1325 	}
1326 	if (!di) {
1327 		/*
1328 		 * Ok the default dir item isn't there.  This is weird since
1329 		 * it's always been there, but don't freak out, just try and
1330 		 * mount the top-level subvolume.
1331 		 */
1332 		btrfs_free_path(path);
1333 		*objectid = BTRFS_FS_TREE_OBJECTID;
1334 		return 0;
1335 	}
1336 
1337 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1338 	btrfs_free_path(path);
1339 	*objectid = location.objectid;
1340 	return 0;
1341 }
1342 
1343 static int btrfs_fill_super(struct super_block *sb,
1344 			    struct btrfs_fs_devices *fs_devices,
1345 			    void *data)
1346 {
1347 	struct inode *inode;
1348 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1349 	int err;
1350 
1351 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1352 	sb->s_magic = BTRFS_SUPER_MAGIC;
1353 	sb->s_op = &btrfs_super_ops;
1354 	sb->s_d_op = &btrfs_dentry_operations;
1355 	sb->s_export_op = &btrfs_export_ops;
1356 	sb->s_xattr = btrfs_xattr_handlers;
1357 	sb->s_time_gran = 1;
1358 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1359 	sb->s_flags |= SB_POSIXACL;
1360 #endif
1361 	sb->s_flags |= SB_I_VERSION;
1362 	sb->s_iflags |= SB_I_CGROUPWB;
1363 
1364 	err = super_setup_bdi(sb);
1365 	if (err) {
1366 		btrfs_err(fs_info, "super_setup_bdi failed");
1367 		return err;
1368 	}
1369 
1370 	err = open_ctree(sb, fs_devices, (char *)data);
1371 	if (err) {
1372 		btrfs_err(fs_info, "open_ctree failed");
1373 		return err;
1374 	}
1375 
1376 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1377 	if (IS_ERR(inode)) {
1378 		err = PTR_ERR(inode);
1379 		goto fail_close;
1380 	}
1381 
1382 	sb->s_root = d_make_root(inode);
1383 	if (!sb->s_root) {
1384 		err = -ENOMEM;
1385 		goto fail_close;
1386 	}
1387 
1388 	cleancache_init_fs(sb);
1389 	sb->s_flags |= SB_ACTIVE;
1390 	return 0;
1391 
1392 fail_close:
1393 	close_ctree(fs_info);
1394 	return err;
1395 }
1396 
1397 int btrfs_sync_fs(struct super_block *sb, int wait)
1398 {
1399 	struct btrfs_trans_handle *trans;
1400 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1401 	struct btrfs_root *root = fs_info->tree_root;
1402 
1403 	trace_btrfs_sync_fs(fs_info, wait);
1404 
1405 	if (!wait) {
1406 		filemap_flush(fs_info->btree_inode->i_mapping);
1407 		return 0;
1408 	}
1409 
1410 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1411 
1412 	trans = btrfs_attach_transaction_barrier(root);
1413 	if (IS_ERR(trans)) {
1414 		/* no transaction, don't bother */
1415 		if (PTR_ERR(trans) == -ENOENT) {
1416 			/*
1417 			 * Exit unless we have some pending changes
1418 			 * that need to go through commit
1419 			 */
1420 			if (fs_info->pending_changes == 0)
1421 				return 0;
1422 			/*
1423 			 * A non-blocking test if the fs is frozen. We must not
1424 			 * start a new transaction here otherwise a deadlock
1425 			 * happens. The pending operations are delayed to the
1426 			 * next commit after thawing.
1427 			 */
1428 			if (sb_start_write_trylock(sb))
1429 				sb_end_write(sb);
1430 			else
1431 				return 0;
1432 			trans = btrfs_start_transaction(root, 0);
1433 		}
1434 		if (IS_ERR(trans))
1435 			return PTR_ERR(trans);
1436 	}
1437 	return btrfs_commit_transaction(trans);
1438 }
1439 
1440 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1441 {
1442 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1443 	*printed = true;
1444 }
1445 
1446 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1447 {
1448 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1449 	const char *compress_type;
1450 	const char *subvol_name;
1451 	bool printed = false;
1452 
1453 	if (btrfs_test_opt(info, DEGRADED))
1454 		seq_puts(seq, ",degraded");
1455 	if (btrfs_test_opt(info, NODATASUM))
1456 		seq_puts(seq, ",nodatasum");
1457 	if (btrfs_test_opt(info, NODATACOW))
1458 		seq_puts(seq, ",nodatacow");
1459 	if (btrfs_test_opt(info, NOBARRIER))
1460 		seq_puts(seq, ",nobarrier");
1461 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1462 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1463 	if (info->thread_pool_size !=  min_t(unsigned long,
1464 					     num_online_cpus() + 2, 8))
1465 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1466 	if (btrfs_test_opt(info, COMPRESS)) {
1467 		compress_type = btrfs_compress_type2str(info->compress_type);
1468 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1469 			seq_printf(seq, ",compress-force=%s", compress_type);
1470 		else
1471 			seq_printf(seq, ",compress=%s", compress_type);
1472 		if (info->compress_level)
1473 			seq_printf(seq, ":%d", info->compress_level);
1474 	}
1475 	if (btrfs_test_opt(info, NOSSD))
1476 		seq_puts(seq, ",nossd");
1477 	if (btrfs_test_opt(info, SSD_SPREAD))
1478 		seq_puts(seq, ",ssd_spread");
1479 	else if (btrfs_test_opt(info, SSD))
1480 		seq_puts(seq, ",ssd");
1481 	if (btrfs_test_opt(info, NOTREELOG))
1482 		seq_puts(seq, ",notreelog");
1483 	if (btrfs_test_opt(info, NOLOGREPLAY))
1484 		print_rescue_option(seq, "nologreplay", &printed);
1485 	if (btrfs_test_opt(info, USEBACKUPROOT))
1486 		print_rescue_option(seq, "usebackuproot", &printed);
1487 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1488 		print_rescue_option(seq, "ignorebadroots", &printed);
1489 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1490 		print_rescue_option(seq, "ignoredatacsums", &printed);
1491 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1492 		seq_puts(seq, ",flushoncommit");
1493 	if (btrfs_test_opt(info, DISCARD_SYNC))
1494 		seq_puts(seq, ",discard");
1495 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1496 		seq_puts(seq, ",discard=async");
1497 	if (!(info->sb->s_flags & SB_POSIXACL))
1498 		seq_puts(seq, ",noacl");
1499 	if (btrfs_free_space_cache_v1_active(info))
1500 		seq_puts(seq, ",space_cache");
1501 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1502 		seq_puts(seq, ",space_cache=v2");
1503 	else
1504 		seq_puts(seq, ",nospace_cache");
1505 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1506 		seq_puts(seq, ",rescan_uuid_tree");
1507 	if (btrfs_test_opt(info, CLEAR_CACHE))
1508 		seq_puts(seq, ",clear_cache");
1509 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1510 		seq_puts(seq, ",user_subvol_rm_allowed");
1511 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1512 		seq_puts(seq, ",enospc_debug");
1513 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1514 		seq_puts(seq, ",autodefrag");
1515 	if (btrfs_test_opt(info, SKIP_BALANCE))
1516 		seq_puts(seq, ",skip_balance");
1517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1518 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1519 		seq_puts(seq, ",check_int_data");
1520 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1521 		seq_puts(seq, ",check_int");
1522 	if (info->check_integrity_print_mask)
1523 		seq_printf(seq, ",check_int_print_mask=%d",
1524 				info->check_integrity_print_mask);
1525 #endif
1526 	if (info->metadata_ratio)
1527 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1528 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1529 		seq_puts(seq, ",fatal_errors=panic");
1530 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1531 		seq_printf(seq, ",commit=%u", info->commit_interval);
1532 #ifdef CONFIG_BTRFS_DEBUG
1533 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1534 		seq_puts(seq, ",fragment=data");
1535 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1536 		seq_puts(seq, ",fragment=metadata");
1537 #endif
1538 	if (btrfs_test_opt(info, REF_VERIFY))
1539 		seq_puts(seq, ",ref_verify");
1540 	seq_printf(seq, ",subvolid=%llu",
1541 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1542 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1543 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1544 	if (!IS_ERR(subvol_name)) {
1545 		seq_puts(seq, ",subvol=");
1546 		seq_escape(seq, subvol_name, " \t\n\\");
1547 		kfree(subvol_name);
1548 	}
1549 	return 0;
1550 }
1551 
1552 static int btrfs_test_super(struct super_block *s, void *data)
1553 {
1554 	struct btrfs_fs_info *p = data;
1555 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1556 
1557 	return fs_info->fs_devices == p->fs_devices;
1558 }
1559 
1560 static int btrfs_set_super(struct super_block *s, void *data)
1561 {
1562 	int err = set_anon_super(s, data);
1563 	if (!err)
1564 		s->s_fs_info = data;
1565 	return err;
1566 }
1567 
1568 /*
1569  * subvolumes are identified by ino 256
1570  */
1571 static inline int is_subvolume_inode(struct inode *inode)
1572 {
1573 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1574 		return 1;
1575 	return 0;
1576 }
1577 
1578 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1579 				   struct vfsmount *mnt)
1580 {
1581 	struct dentry *root;
1582 	int ret;
1583 
1584 	if (!subvol_name) {
1585 		if (!subvol_objectid) {
1586 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1587 							  &subvol_objectid);
1588 			if (ret) {
1589 				root = ERR_PTR(ret);
1590 				goto out;
1591 			}
1592 		}
1593 		subvol_name = btrfs_get_subvol_name_from_objectid(
1594 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1595 		if (IS_ERR(subvol_name)) {
1596 			root = ERR_CAST(subvol_name);
1597 			subvol_name = NULL;
1598 			goto out;
1599 		}
1600 
1601 	}
1602 
1603 	root = mount_subtree(mnt, subvol_name);
1604 	/* mount_subtree() drops our reference on the vfsmount. */
1605 	mnt = NULL;
1606 
1607 	if (!IS_ERR(root)) {
1608 		struct super_block *s = root->d_sb;
1609 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1610 		struct inode *root_inode = d_inode(root);
1611 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1612 
1613 		ret = 0;
1614 		if (!is_subvolume_inode(root_inode)) {
1615 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1616 			       subvol_name);
1617 			ret = -EINVAL;
1618 		}
1619 		if (subvol_objectid && root_objectid != subvol_objectid) {
1620 			/*
1621 			 * This will also catch a race condition where a
1622 			 * subvolume which was passed by ID is renamed and
1623 			 * another subvolume is renamed over the old location.
1624 			 */
1625 			btrfs_err(fs_info,
1626 				  "subvol '%s' does not match subvolid %llu",
1627 				  subvol_name, subvol_objectid);
1628 			ret = -EINVAL;
1629 		}
1630 		if (ret) {
1631 			dput(root);
1632 			root = ERR_PTR(ret);
1633 			deactivate_locked_super(s);
1634 		}
1635 	}
1636 
1637 out:
1638 	mntput(mnt);
1639 	kfree(subvol_name);
1640 	return root;
1641 }
1642 
1643 /*
1644  * Find a superblock for the given device / mount point.
1645  *
1646  * Note: This is based on mount_bdev from fs/super.c with a few additions
1647  *       for multiple device setup.  Make sure to keep it in sync.
1648  */
1649 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1650 		int flags, const char *device_name, void *data)
1651 {
1652 	struct block_device *bdev = NULL;
1653 	struct super_block *s;
1654 	struct btrfs_device *device = NULL;
1655 	struct btrfs_fs_devices *fs_devices = NULL;
1656 	struct btrfs_fs_info *fs_info = NULL;
1657 	void *new_sec_opts = NULL;
1658 	fmode_t mode = FMODE_READ;
1659 	int error = 0;
1660 
1661 	if (!(flags & SB_RDONLY))
1662 		mode |= FMODE_WRITE;
1663 
1664 	if (data) {
1665 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1666 		if (error)
1667 			return ERR_PTR(error);
1668 	}
1669 
1670 	/*
1671 	 * Setup a dummy root and fs_info for test/set super.  This is because
1672 	 * we don't actually fill this stuff out until open_ctree, but we need
1673 	 * then open_ctree will properly initialize the file system specific
1674 	 * settings later.  btrfs_init_fs_info initializes the static elements
1675 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1676 	 * superblock with our given fs_devices later on at sget() time.
1677 	 */
1678 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1679 	if (!fs_info) {
1680 		error = -ENOMEM;
1681 		goto error_sec_opts;
1682 	}
1683 	btrfs_init_fs_info(fs_info);
1684 
1685 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1686 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1687 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1688 		error = -ENOMEM;
1689 		goto error_fs_info;
1690 	}
1691 
1692 	mutex_lock(&uuid_mutex);
1693 	error = btrfs_parse_device_options(data, mode, fs_type);
1694 	if (error) {
1695 		mutex_unlock(&uuid_mutex);
1696 		goto error_fs_info;
1697 	}
1698 
1699 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1700 	if (IS_ERR(device)) {
1701 		mutex_unlock(&uuid_mutex);
1702 		error = PTR_ERR(device);
1703 		goto error_fs_info;
1704 	}
1705 
1706 	fs_devices = device->fs_devices;
1707 	fs_info->fs_devices = fs_devices;
1708 
1709 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1710 	mutex_unlock(&uuid_mutex);
1711 	if (error)
1712 		goto error_fs_info;
1713 
1714 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1715 		error = -EACCES;
1716 		goto error_close_devices;
1717 	}
1718 
1719 	bdev = fs_devices->latest_bdev;
1720 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1721 		 fs_info);
1722 	if (IS_ERR(s)) {
1723 		error = PTR_ERR(s);
1724 		goto error_close_devices;
1725 	}
1726 
1727 	if (s->s_root) {
1728 		btrfs_close_devices(fs_devices);
1729 		btrfs_free_fs_info(fs_info);
1730 		if ((flags ^ s->s_flags) & SB_RDONLY)
1731 			error = -EBUSY;
1732 	} else {
1733 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1734 		btrfs_sb(s)->bdev_holder = fs_type;
1735 		if (!strstr(crc32c_impl(), "generic"))
1736 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1737 		error = btrfs_fill_super(s, fs_devices, data);
1738 	}
1739 	if (!error)
1740 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1741 	security_free_mnt_opts(&new_sec_opts);
1742 	if (error) {
1743 		deactivate_locked_super(s);
1744 		return ERR_PTR(error);
1745 	}
1746 
1747 	return dget(s->s_root);
1748 
1749 error_close_devices:
1750 	btrfs_close_devices(fs_devices);
1751 error_fs_info:
1752 	btrfs_free_fs_info(fs_info);
1753 error_sec_opts:
1754 	security_free_mnt_opts(&new_sec_opts);
1755 	return ERR_PTR(error);
1756 }
1757 
1758 /*
1759  * Mount function which is called by VFS layer.
1760  *
1761  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1762  * which needs vfsmount* of device's root (/).  This means device's root has to
1763  * be mounted internally in any case.
1764  *
1765  * Operation flow:
1766  *   1. Parse subvol id related options for later use in mount_subvol().
1767  *
1768  *   2. Mount device's root (/) by calling vfs_kern_mount().
1769  *
1770  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1771  *      first place. In order to avoid calling btrfs_mount() again, we use
1772  *      different file_system_type which is not registered to VFS by
1773  *      register_filesystem() (btrfs_root_fs_type). As a result,
1774  *      btrfs_mount_root() is called. The return value will be used by
1775  *      mount_subtree() in mount_subvol().
1776  *
1777  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1778  *      "btrfs subvolume set-default", mount_subvol() is called always.
1779  */
1780 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1781 		const char *device_name, void *data)
1782 {
1783 	struct vfsmount *mnt_root;
1784 	struct dentry *root;
1785 	char *subvol_name = NULL;
1786 	u64 subvol_objectid = 0;
1787 	int error = 0;
1788 
1789 	error = btrfs_parse_subvol_options(data, &subvol_name,
1790 					&subvol_objectid);
1791 	if (error) {
1792 		kfree(subvol_name);
1793 		return ERR_PTR(error);
1794 	}
1795 
1796 	/* mount device's root (/) */
1797 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1798 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1799 		if (flags & SB_RDONLY) {
1800 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1801 				flags & ~SB_RDONLY, device_name, data);
1802 		} else {
1803 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1804 				flags | SB_RDONLY, device_name, data);
1805 			if (IS_ERR(mnt_root)) {
1806 				root = ERR_CAST(mnt_root);
1807 				kfree(subvol_name);
1808 				goto out;
1809 			}
1810 
1811 			down_write(&mnt_root->mnt_sb->s_umount);
1812 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1813 			up_write(&mnt_root->mnt_sb->s_umount);
1814 			if (error < 0) {
1815 				root = ERR_PTR(error);
1816 				mntput(mnt_root);
1817 				kfree(subvol_name);
1818 				goto out;
1819 			}
1820 		}
1821 	}
1822 	if (IS_ERR(mnt_root)) {
1823 		root = ERR_CAST(mnt_root);
1824 		kfree(subvol_name);
1825 		goto out;
1826 	}
1827 
1828 	/* mount_subvol() will free subvol_name and mnt_root */
1829 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1830 
1831 out:
1832 	return root;
1833 }
1834 
1835 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1836 				     u32 new_pool_size, u32 old_pool_size)
1837 {
1838 	if (new_pool_size == old_pool_size)
1839 		return;
1840 
1841 	fs_info->thread_pool_size = new_pool_size;
1842 
1843 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1844 	       old_pool_size, new_pool_size);
1845 
1846 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1847 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1848 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1849 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1850 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1851 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1852 				new_pool_size);
1853 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1854 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1855 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1856 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1857 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1858 				new_pool_size);
1859 }
1860 
1861 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1862 				       unsigned long old_opts, int flags)
1863 {
1864 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1865 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1866 	     (flags & SB_RDONLY))) {
1867 		/* wait for any defraggers to finish */
1868 		wait_event(fs_info->transaction_wait,
1869 			   (atomic_read(&fs_info->defrag_running) == 0));
1870 		if (flags & SB_RDONLY)
1871 			sync_filesystem(fs_info->sb);
1872 	}
1873 }
1874 
1875 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1876 					 unsigned long old_opts)
1877 {
1878 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1879 
1880 	/*
1881 	 * We need to cleanup all defragable inodes if the autodefragment is
1882 	 * close or the filesystem is read only.
1883 	 */
1884 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1885 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1886 		btrfs_cleanup_defrag_inodes(fs_info);
1887 	}
1888 
1889 	/* If we toggled discard async */
1890 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1891 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1892 		btrfs_discard_resume(fs_info);
1893 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1894 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1895 		btrfs_discard_cleanup(fs_info);
1896 
1897 	/* If we toggled space cache */
1898 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1899 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1900 }
1901 
1902 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1903 {
1904 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1905 	unsigned old_flags = sb->s_flags;
1906 	unsigned long old_opts = fs_info->mount_opt;
1907 	unsigned long old_compress_type = fs_info->compress_type;
1908 	u64 old_max_inline = fs_info->max_inline;
1909 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1910 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1911 	int ret;
1912 
1913 	sync_filesystem(sb);
1914 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1915 
1916 	if (data) {
1917 		void *new_sec_opts = NULL;
1918 
1919 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1920 		if (!ret)
1921 			ret = security_sb_remount(sb, new_sec_opts);
1922 		security_free_mnt_opts(&new_sec_opts);
1923 		if (ret)
1924 			goto restore;
1925 	}
1926 
1927 	ret = btrfs_parse_options(fs_info, data, *flags);
1928 	if (ret)
1929 		goto restore;
1930 
1931 	btrfs_remount_begin(fs_info, old_opts, *flags);
1932 	btrfs_resize_thread_pool(fs_info,
1933 		fs_info->thread_pool_size, old_thread_pool_size);
1934 
1935 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1936 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1937 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1938 		btrfs_warn(fs_info,
1939 		"remount supports changing free space tree only from ro to rw");
1940 		/* Make sure free space cache options match the state on disk */
1941 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1942 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1943 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1944 		}
1945 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1946 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1947 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1948 		}
1949 	}
1950 
1951 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1952 		goto out;
1953 
1954 	if (*flags & SB_RDONLY) {
1955 		/*
1956 		 * this also happens on 'umount -rf' or on shutdown, when
1957 		 * the filesystem is busy.
1958 		 */
1959 		cancel_work_sync(&fs_info->async_reclaim_work);
1960 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1961 
1962 		btrfs_discard_cleanup(fs_info);
1963 
1964 		/* wait for the uuid_scan task to finish */
1965 		down(&fs_info->uuid_tree_rescan_sem);
1966 		/* avoid complains from lockdep et al. */
1967 		up(&fs_info->uuid_tree_rescan_sem);
1968 
1969 		btrfs_set_sb_rdonly(sb);
1970 
1971 		/*
1972 		 * Setting SB_RDONLY will put the cleaner thread to
1973 		 * sleep at the next loop if it's already active.
1974 		 * If it's already asleep, we'll leave unused block
1975 		 * groups on disk until we're mounted read-write again
1976 		 * unless we clean them up here.
1977 		 */
1978 		btrfs_delete_unused_bgs(fs_info);
1979 
1980 		/*
1981 		 * The cleaner task could be already running before we set the
1982 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1983 		 * We must make sure that after we finish the remount, i.e. after
1984 		 * we call btrfs_commit_super(), the cleaner can no longer start
1985 		 * a transaction - either because it was dropping a dead root,
1986 		 * running delayed iputs or deleting an unused block group (the
1987 		 * cleaner picked a block group from the list of unused block
1988 		 * groups before we were able to in the previous call to
1989 		 * btrfs_delete_unused_bgs()).
1990 		 */
1991 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1992 			    TASK_UNINTERRUPTIBLE);
1993 
1994 		/*
1995 		 * We've set the superblock to RO mode, so we might have made
1996 		 * the cleaner task sleep without running all pending delayed
1997 		 * iputs. Go through all the delayed iputs here, so that if an
1998 		 * unmount happens without remounting RW we don't end up at
1999 		 * finishing close_ctree() with a non-empty list of delayed
2000 		 * iputs.
2001 		 */
2002 		btrfs_run_delayed_iputs(fs_info);
2003 
2004 		btrfs_dev_replace_suspend_for_unmount(fs_info);
2005 		btrfs_scrub_cancel(fs_info);
2006 		btrfs_pause_balance(fs_info);
2007 
2008 		/*
2009 		 * Pause the qgroup rescan worker if it is running. We don't want
2010 		 * it to be still running after we are in RO mode, as after that,
2011 		 * by the time we unmount, it might have left a transaction open,
2012 		 * so we would leak the transaction and/or crash.
2013 		 */
2014 		btrfs_qgroup_wait_for_completion(fs_info, false);
2015 
2016 		ret = btrfs_commit_super(fs_info);
2017 		if (ret)
2018 			goto restore;
2019 	} else {
2020 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2021 			btrfs_err(fs_info,
2022 				"Remounting read-write after error is not allowed");
2023 			ret = -EINVAL;
2024 			goto restore;
2025 		}
2026 		if (fs_info->fs_devices->rw_devices == 0) {
2027 			ret = -EACCES;
2028 			goto restore;
2029 		}
2030 
2031 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2032 			btrfs_warn(fs_info,
2033 		"too many missing devices, writable remount is not allowed");
2034 			ret = -EACCES;
2035 			goto restore;
2036 		}
2037 
2038 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2039 			btrfs_warn(fs_info,
2040 		"mount required to replay tree-log, cannot remount read-write");
2041 			ret = -EINVAL;
2042 			goto restore;
2043 		}
2044 		if (fs_info->sectorsize < PAGE_SIZE) {
2045 			btrfs_warn(fs_info,
2046 	"read-write mount is not yet allowed for sectorsize %u page size %lu",
2047 				   fs_info->sectorsize, PAGE_SIZE);
2048 			ret = -EINVAL;
2049 			goto restore;
2050 		}
2051 
2052 		/*
2053 		 * NOTE: when remounting with a change that does writes, don't
2054 		 * put it anywhere above this point, as we are not sure to be
2055 		 * safe to write until we pass the above checks.
2056 		 */
2057 		ret = btrfs_start_pre_rw_mount(fs_info);
2058 		if (ret)
2059 			goto restore;
2060 
2061 		btrfs_clear_sb_rdonly(sb);
2062 
2063 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2064 	}
2065 out:
2066 	/*
2067 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2068 	 * since the absence of the flag means it can be toggled off by remount.
2069 	 */
2070 	*flags |= SB_I_VERSION;
2071 
2072 	wake_up_process(fs_info->transaction_kthread);
2073 	btrfs_remount_cleanup(fs_info, old_opts);
2074 	btrfs_clear_oneshot_options(fs_info);
2075 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2076 
2077 	return 0;
2078 
2079 restore:
2080 	/* We've hit an error - don't reset SB_RDONLY */
2081 	if (sb_rdonly(sb))
2082 		old_flags |= SB_RDONLY;
2083 	if (!(old_flags & SB_RDONLY))
2084 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2085 	sb->s_flags = old_flags;
2086 	fs_info->mount_opt = old_opts;
2087 	fs_info->compress_type = old_compress_type;
2088 	fs_info->max_inline = old_max_inline;
2089 	btrfs_resize_thread_pool(fs_info,
2090 		old_thread_pool_size, fs_info->thread_pool_size);
2091 	fs_info->metadata_ratio = old_metadata_ratio;
2092 	btrfs_remount_cleanup(fs_info, old_opts);
2093 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2094 
2095 	return ret;
2096 }
2097 
2098 /* Used to sort the devices by max_avail(descending sort) */
2099 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2100 				       const void *dev_info2)
2101 {
2102 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2103 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2104 		return -1;
2105 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2106 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2107 		return 1;
2108 	else
2109 	return 0;
2110 }
2111 
2112 /*
2113  * sort the devices by max_avail, in which max free extent size of each device
2114  * is stored.(Descending Sort)
2115  */
2116 static inline void btrfs_descending_sort_devices(
2117 					struct btrfs_device_info *devices,
2118 					size_t nr_devices)
2119 {
2120 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2121 	     btrfs_cmp_device_free_bytes, NULL);
2122 }
2123 
2124 /*
2125  * The helper to calc the free space on the devices that can be used to store
2126  * file data.
2127  */
2128 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2129 					      u64 *free_bytes)
2130 {
2131 	struct btrfs_device_info *devices_info;
2132 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2133 	struct btrfs_device *device;
2134 	u64 type;
2135 	u64 avail_space;
2136 	u64 min_stripe_size;
2137 	int num_stripes = 1;
2138 	int i = 0, nr_devices;
2139 	const struct btrfs_raid_attr *rattr;
2140 
2141 	/*
2142 	 * We aren't under the device list lock, so this is racy-ish, but good
2143 	 * enough for our purposes.
2144 	 */
2145 	nr_devices = fs_info->fs_devices->open_devices;
2146 	if (!nr_devices) {
2147 		smp_mb();
2148 		nr_devices = fs_info->fs_devices->open_devices;
2149 		ASSERT(nr_devices);
2150 		if (!nr_devices) {
2151 			*free_bytes = 0;
2152 			return 0;
2153 		}
2154 	}
2155 
2156 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2157 			       GFP_KERNEL);
2158 	if (!devices_info)
2159 		return -ENOMEM;
2160 
2161 	/* calc min stripe number for data space allocation */
2162 	type = btrfs_data_alloc_profile(fs_info);
2163 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2164 
2165 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2166 		num_stripes = nr_devices;
2167 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2168 		num_stripes = 2;
2169 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2170 		num_stripes = 3;
2171 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2172 		num_stripes = 4;
2173 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2174 		num_stripes = 4;
2175 
2176 	/* Adjust for more than 1 stripe per device */
2177 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2178 
2179 	rcu_read_lock();
2180 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2181 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2182 						&device->dev_state) ||
2183 		    !device->bdev ||
2184 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2185 			continue;
2186 
2187 		if (i >= nr_devices)
2188 			break;
2189 
2190 		avail_space = device->total_bytes - device->bytes_used;
2191 
2192 		/* align with stripe_len */
2193 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2194 
2195 		/*
2196 		 * In order to avoid overwriting the superblock on the drive,
2197 		 * btrfs starts at an offset of at least 1MB when doing chunk
2198 		 * allocation.
2199 		 *
2200 		 * This ensures we have at least min_stripe_size free space
2201 		 * after excluding 1MB.
2202 		 */
2203 		if (avail_space <= SZ_1M + min_stripe_size)
2204 			continue;
2205 
2206 		avail_space -= SZ_1M;
2207 
2208 		devices_info[i].dev = device;
2209 		devices_info[i].max_avail = avail_space;
2210 
2211 		i++;
2212 	}
2213 	rcu_read_unlock();
2214 
2215 	nr_devices = i;
2216 
2217 	btrfs_descending_sort_devices(devices_info, nr_devices);
2218 
2219 	i = nr_devices - 1;
2220 	avail_space = 0;
2221 	while (nr_devices >= rattr->devs_min) {
2222 		num_stripes = min(num_stripes, nr_devices);
2223 
2224 		if (devices_info[i].max_avail >= min_stripe_size) {
2225 			int j;
2226 			u64 alloc_size;
2227 
2228 			avail_space += devices_info[i].max_avail * num_stripes;
2229 			alloc_size = devices_info[i].max_avail;
2230 			for (j = i + 1 - num_stripes; j <= i; j++)
2231 				devices_info[j].max_avail -= alloc_size;
2232 		}
2233 		i--;
2234 		nr_devices--;
2235 	}
2236 
2237 	kfree(devices_info);
2238 	*free_bytes = avail_space;
2239 	return 0;
2240 }
2241 
2242 /*
2243  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2244  *
2245  * If there's a redundant raid level at DATA block groups, use the respective
2246  * multiplier to scale the sizes.
2247  *
2248  * Unused device space usage is based on simulating the chunk allocator
2249  * algorithm that respects the device sizes and order of allocations.  This is
2250  * a close approximation of the actual use but there are other factors that may
2251  * change the result (like a new metadata chunk).
2252  *
2253  * If metadata is exhausted, f_bavail will be 0.
2254  */
2255 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2256 {
2257 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2258 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2259 	struct btrfs_space_info *found;
2260 	u64 total_used = 0;
2261 	u64 total_free_data = 0;
2262 	u64 total_free_meta = 0;
2263 	u32 bits = fs_info->sectorsize_bits;
2264 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2265 	unsigned factor = 1;
2266 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2267 	int ret;
2268 	u64 thresh = 0;
2269 	int mixed = 0;
2270 
2271 	list_for_each_entry(found, &fs_info->space_info, list) {
2272 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2273 			int i;
2274 
2275 			total_free_data += found->disk_total - found->disk_used;
2276 			total_free_data -=
2277 				btrfs_account_ro_block_groups_free_space(found);
2278 
2279 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2280 				if (!list_empty(&found->block_groups[i]))
2281 					factor = btrfs_bg_type_to_factor(
2282 						btrfs_raid_array[i].bg_flag);
2283 			}
2284 		}
2285 
2286 		/*
2287 		 * Metadata in mixed block goup profiles are accounted in data
2288 		 */
2289 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2290 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2291 				mixed = 1;
2292 			else
2293 				total_free_meta += found->disk_total -
2294 					found->disk_used;
2295 		}
2296 
2297 		total_used += found->disk_used;
2298 	}
2299 
2300 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2301 	buf->f_blocks >>= bits;
2302 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2303 
2304 	/* Account global block reserve as used, it's in logical size already */
2305 	spin_lock(&block_rsv->lock);
2306 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2307 	if (buf->f_bfree >= block_rsv->size >> bits)
2308 		buf->f_bfree -= block_rsv->size >> bits;
2309 	else
2310 		buf->f_bfree = 0;
2311 	spin_unlock(&block_rsv->lock);
2312 
2313 	buf->f_bavail = div_u64(total_free_data, factor);
2314 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2315 	if (ret)
2316 		return ret;
2317 	buf->f_bavail += div_u64(total_free_data, factor);
2318 	buf->f_bavail = buf->f_bavail >> bits;
2319 
2320 	/*
2321 	 * We calculate the remaining metadata space minus global reserve. If
2322 	 * this is (supposedly) smaller than zero, there's no space. But this
2323 	 * does not hold in practice, the exhausted state happens where's still
2324 	 * some positive delta. So we apply some guesswork and compare the
2325 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2326 	 *
2327 	 * We probably cannot calculate the exact threshold value because this
2328 	 * depends on the internal reservations requested by various
2329 	 * operations, so some operations that consume a few metadata will
2330 	 * succeed even if the Avail is zero. But this is better than the other
2331 	 * way around.
2332 	 */
2333 	thresh = SZ_4M;
2334 
2335 	/*
2336 	 * We only want to claim there's no available space if we can no longer
2337 	 * allocate chunks for our metadata profile and our global reserve will
2338 	 * not fit in the free metadata space.  If we aren't ->full then we
2339 	 * still can allocate chunks and thus are fine using the currently
2340 	 * calculated f_bavail.
2341 	 */
2342 	if (!mixed && block_rsv->space_info->full &&
2343 	    total_free_meta - thresh < block_rsv->size)
2344 		buf->f_bavail = 0;
2345 
2346 	buf->f_type = BTRFS_SUPER_MAGIC;
2347 	buf->f_bsize = dentry->d_sb->s_blocksize;
2348 	buf->f_namelen = BTRFS_NAME_LEN;
2349 
2350 	/* We treat it as constant endianness (it doesn't matter _which_)
2351 	   because we want the fsid to come out the same whether mounted
2352 	   on a big-endian or little-endian host */
2353 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2354 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2355 	/* Mask in the root object ID too, to disambiguate subvols */
2356 	buf->f_fsid.val[0] ^=
2357 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2358 	buf->f_fsid.val[1] ^=
2359 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2360 
2361 	return 0;
2362 }
2363 
2364 static void btrfs_kill_super(struct super_block *sb)
2365 {
2366 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2367 	kill_anon_super(sb);
2368 	btrfs_free_fs_info(fs_info);
2369 }
2370 
2371 static struct file_system_type btrfs_fs_type = {
2372 	.owner		= THIS_MODULE,
2373 	.name		= "btrfs",
2374 	.mount		= btrfs_mount,
2375 	.kill_sb	= btrfs_kill_super,
2376 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2377 };
2378 
2379 static struct file_system_type btrfs_root_fs_type = {
2380 	.owner		= THIS_MODULE,
2381 	.name		= "btrfs",
2382 	.mount		= btrfs_mount_root,
2383 	.kill_sb	= btrfs_kill_super,
2384 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2385 };
2386 
2387 MODULE_ALIAS_FS("btrfs");
2388 
2389 static int btrfs_control_open(struct inode *inode, struct file *file)
2390 {
2391 	/*
2392 	 * The control file's private_data is used to hold the
2393 	 * transaction when it is started and is used to keep
2394 	 * track of whether a transaction is already in progress.
2395 	 */
2396 	file->private_data = NULL;
2397 	return 0;
2398 }
2399 
2400 /*
2401  * Used by /dev/btrfs-control for devices ioctls.
2402  */
2403 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2404 				unsigned long arg)
2405 {
2406 	struct btrfs_ioctl_vol_args *vol;
2407 	struct btrfs_device *device = NULL;
2408 	int ret = -ENOTTY;
2409 
2410 	if (!capable(CAP_SYS_ADMIN))
2411 		return -EPERM;
2412 
2413 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2414 	if (IS_ERR(vol))
2415 		return PTR_ERR(vol);
2416 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2417 
2418 	switch (cmd) {
2419 	case BTRFS_IOC_SCAN_DEV:
2420 		mutex_lock(&uuid_mutex);
2421 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2422 					       &btrfs_root_fs_type);
2423 		ret = PTR_ERR_OR_ZERO(device);
2424 		mutex_unlock(&uuid_mutex);
2425 		break;
2426 	case BTRFS_IOC_FORGET_DEV:
2427 		ret = btrfs_forget_devices(vol->name);
2428 		break;
2429 	case BTRFS_IOC_DEVICES_READY:
2430 		mutex_lock(&uuid_mutex);
2431 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2432 					       &btrfs_root_fs_type);
2433 		if (IS_ERR(device)) {
2434 			mutex_unlock(&uuid_mutex);
2435 			ret = PTR_ERR(device);
2436 			break;
2437 		}
2438 		ret = !(device->fs_devices->num_devices ==
2439 			device->fs_devices->total_devices);
2440 		mutex_unlock(&uuid_mutex);
2441 		break;
2442 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2443 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2444 		break;
2445 	}
2446 
2447 	kfree(vol);
2448 	return ret;
2449 }
2450 
2451 static int btrfs_freeze(struct super_block *sb)
2452 {
2453 	struct btrfs_trans_handle *trans;
2454 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2455 	struct btrfs_root *root = fs_info->tree_root;
2456 
2457 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2458 	/*
2459 	 * We don't need a barrier here, we'll wait for any transaction that
2460 	 * could be in progress on other threads (and do delayed iputs that
2461 	 * we want to avoid on a frozen filesystem), or do the commit
2462 	 * ourselves.
2463 	 */
2464 	trans = btrfs_attach_transaction_barrier(root);
2465 	if (IS_ERR(trans)) {
2466 		/* no transaction, don't bother */
2467 		if (PTR_ERR(trans) == -ENOENT)
2468 			return 0;
2469 		return PTR_ERR(trans);
2470 	}
2471 	return btrfs_commit_transaction(trans);
2472 }
2473 
2474 static int btrfs_unfreeze(struct super_block *sb)
2475 {
2476 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2477 
2478 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2479 	return 0;
2480 }
2481 
2482 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2483 {
2484 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2485 	struct btrfs_device *dev, *first_dev = NULL;
2486 
2487 	/*
2488 	 * Lightweight locking of the devices. We should not need
2489 	 * device_list_mutex here as we only read the device data and the list
2490 	 * is protected by RCU.  Even if a device is deleted during the list
2491 	 * traversals, we'll get valid data, the freeing callback will wait at
2492 	 * least until the rcu_read_unlock.
2493 	 */
2494 	rcu_read_lock();
2495 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2496 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2497 			continue;
2498 		if (!dev->name)
2499 			continue;
2500 		if (!first_dev || dev->devid < first_dev->devid)
2501 			first_dev = dev;
2502 	}
2503 
2504 	if (first_dev)
2505 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2506 	else
2507 		WARN_ON(1);
2508 	rcu_read_unlock();
2509 	return 0;
2510 }
2511 
2512 static const struct super_operations btrfs_super_ops = {
2513 	.drop_inode	= btrfs_drop_inode,
2514 	.evict_inode	= btrfs_evict_inode,
2515 	.put_super	= btrfs_put_super,
2516 	.sync_fs	= btrfs_sync_fs,
2517 	.show_options	= btrfs_show_options,
2518 	.show_devname	= btrfs_show_devname,
2519 	.alloc_inode	= btrfs_alloc_inode,
2520 	.destroy_inode	= btrfs_destroy_inode,
2521 	.free_inode	= btrfs_free_inode,
2522 	.statfs		= btrfs_statfs,
2523 	.remount_fs	= btrfs_remount,
2524 	.freeze_fs	= btrfs_freeze,
2525 	.unfreeze_fs	= btrfs_unfreeze,
2526 };
2527 
2528 static const struct file_operations btrfs_ctl_fops = {
2529 	.open = btrfs_control_open,
2530 	.unlocked_ioctl	 = btrfs_control_ioctl,
2531 	.compat_ioctl = compat_ptr_ioctl,
2532 	.owner	 = THIS_MODULE,
2533 	.llseek = noop_llseek,
2534 };
2535 
2536 static struct miscdevice btrfs_misc = {
2537 	.minor		= BTRFS_MINOR,
2538 	.name		= "btrfs-control",
2539 	.fops		= &btrfs_ctl_fops
2540 };
2541 
2542 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2543 MODULE_ALIAS("devname:btrfs-control");
2544 
2545 static int __init btrfs_interface_init(void)
2546 {
2547 	return misc_register(&btrfs_misc);
2548 }
2549 
2550 static __cold void btrfs_interface_exit(void)
2551 {
2552 	misc_deregister(&btrfs_misc);
2553 }
2554 
2555 static void __init btrfs_print_mod_info(void)
2556 {
2557 	static const char options[] = ""
2558 #ifdef CONFIG_BTRFS_DEBUG
2559 			", debug=on"
2560 #endif
2561 #ifdef CONFIG_BTRFS_ASSERT
2562 			", assert=on"
2563 #endif
2564 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2565 			", integrity-checker=on"
2566 #endif
2567 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2568 			", ref-verify=on"
2569 #endif
2570 #ifdef CONFIG_BLK_DEV_ZONED
2571 			", zoned=yes"
2572 #else
2573 			", zoned=no"
2574 #endif
2575 			;
2576 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2577 }
2578 
2579 static int __init init_btrfs_fs(void)
2580 {
2581 	int err;
2582 
2583 	btrfs_props_init();
2584 
2585 	err = btrfs_init_sysfs();
2586 	if (err)
2587 		return err;
2588 
2589 	btrfs_init_compress();
2590 
2591 	err = btrfs_init_cachep();
2592 	if (err)
2593 		goto free_compress;
2594 
2595 	err = extent_io_init();
2596 	if (err)
2597 		goto free_cachep;
2598 
2599 	err = extent_state_cache_init();
2600 	if (err)
2601 		goto free_extent_io;
2602 
2603 	err = extent_map_init();
2604 	if (err)
2605 		goto free_extent_state_cache;
2606 
2607 	err = ordered_data_init();
2608 	if (err)
2609 		goto free_extent_map;
2610 
2611 	err = btrfs_delayed_inode_init();
2612 	if (err)
2613 		goto free_ordered_data;
2614 
2615 	err = btrfs_auto_defrag_init();
2616 	if (err)
2617 		goto free_delayed_inode;
2618 
2619 	err = btrfs_delayed_ref_init();
2620 	if (err)
2621 		goto free_auto_defrag;
2622 
2623 	err = btrfs_prelim_ref_init();
2624 	if (err)
2625 		goto free_delayed_ref;
2626 
2627 	err = btrfs_end_io_wq_init();
2628 	if (err)
2629 		goto free_prelim_ref;
2630 
2631 	err = btrfs_interface_init();
2632 	if (err)
2633 		goto free_end_io_wq;
2634 
2635 	btrfs_print_mod_info();
2636 
2637 	err = btrfs_run_sanity_tests();
2638 	if (err)
2639 		goto unregister_ioctl;
2640 
2641 	err = register_filesystem(&btrfs_fs_type);
2642 	if (err)
2643 		goto unregister_ioctl;
2644 
2645 	return 0;
2646 
2647 unregister_ioctl:
2648 	btrfs_interface_exit();
2649 free_end_io_wq:
2650 	btrfs_end_io_wq_exit();
2651 free_prelim_ref:
2652 	btrfs_prelim_ref_exit();
2653 free_delayed_ref:
2654 	btrfs_delayed_ref_exit();
2655 free_auto_defrag:
2656 	btrfs_auto_defrag_exit();
2657 free_delayed_inode:
2658 	btrfs_delayed_inode_exit();
2659 free_ordered_data:
2660 	ordered_data_exit();
2661 free_extent_map:
2662 	extent_map_exit();
2663 free_extent_state_cache:
2664 	extent_state_cache_exit();
2665 free_extent_io:
2666 	extent_io_exit();
2667 free_cachep:
2668 	btrfs_destroy_cachep();
2669 free_compress:
2670 	btrfs_exit_compress();
2671 	btrfs_exit_sysfs();
2672 
2673 	return err;
2674 }
2675 
2676 static void __exit exit_btrfs_fs(void)
2677 {
2678 	btrfs_destroy_cachep();
2679 	btrfs_delayed_ref_exit();
2680 	btrfs_auto_defrag_exit();
2681 	btrfs_delayed_inode_exit();
2682 	btrfs_prelim_ref_exit();
2683 	ordered_data_exit();
2684 	extent_map_exit();
2685 	extent_state_cache_exit();
2686 	extent_io_exit();
2687 	btrfs_interface_exit();
2688 	btrfs_end_io_wq_exit();
2689 	unregister_filesystem(&btrfs_fs_type);
2690 	btrfs_exit_sysfs();
2691 	btrfs_cleanup_fs_uuids();
2692 	btrfs_exit_compress();
2693 }
2694 
2695 late_initcall(init_btrfs_fs);
2696 module_exit(exit_btrfs_fs)
2697 
2698 MODULE_LICENSE("GPL");
2699 MODULE_SOFTDEP("pre: crc32c");
2700 MODULE_SOFTDEP("pre: xxhash64");
2701 MODULE_SOFTDEP("pre: sha256");
2702 MODULE_SOFTDEP("pre: blake2b-256");
2703