xref: /linux/fs/btrfs/super.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61 
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64 
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 				      char nbuf[16])
67 {
68 	char *errstr = NULL;
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	default:
84 		if (nbuf) {
85 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 				errstr = nbuf;
87 		}
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 	/*
97 	 * today we only save the error info into ram.  Long term we'll
98 	 * also send it down to the disk
99 	 */
100 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102 
103 /* NOTE:
104  *	We move write_super stuff at umount in order to avoid deadlock
105  *	for umount hold all lock.
106  */
107 static void save_error_info(struct btrfs_fs_info *fs_info)
108 {
109 	__save_error_info(fs_info);
110 }
111 
112 /* btrfs handle error by forcing the filesystem readonly */
113 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114 {
115 	struct super_block *sb = fs_info->sb;
116 
117 	if (sb->s_flags & MS_RDONLY)
118 		return;
119 
120 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121 		sb->s_flags |= MS_RDONLY;
122 		printk(KERN_INFO "btrfs is forced readonly\n");
123 		__btrfs_scrub_cancel(fs_info);
124 //		WARN_ON(1);
125 	}
126 }
127 
128 /*
129  * __btrfs_std_error decodes expected errors from the caller and
130  * invokes the approciate error response.
131  */
132 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133 		       unsigned int line, int errno, const char *fmt, ...)
134 {
135 	struct super_block *sb = fs_info->sb;
136 	char nbuf[16];
137 	const char *errstr;
138 	va_list args;
139 	va_start(args, fmt);
140 
141 	/*
142 	 * Special case: if the error is EROFS, and we're already
143 	 * under MS_RDONLY, then it is safe here.
144 	 */
145 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
146   		return;
147 
148   	errstr = btrfs_decode_error(fs_info, errno, nbuf);
149 	if (fmt) {
150 		struct va_format vaf = {
151 			.fmt = fmt,
152 			.va = &args,
153 		};
154 
155 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
156 			sb->s_id, function, line, errstr, &vaf);
157 	} else {
158 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
159 			sb->s_id, function, line, errstr);
160 	}
161 
162 	/* Don't go through full error handling during mount */
163 	if (sb->s_flags & MS_BORN) {
164 		save_error_info(fs_info);
165 		btrfs_handle_error(fs_info);
166 	}
167 	va_end(args);
168 }
169 
170 const char *logtypes[] = {
171 	"emergency",
172 	"alert",
173 	"critical",
174 	"error",
175 	"warning",
176 	"notice",
177 	"info",
178 	"debug",
179 };
180 
181 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 	struct super_block *sb = fs_info->sb;
184 	char lvl[4];
185 	struct va_format vaf;
186 	va_list args;
187 	const char *type = logtypes[4];
188 
189 	va_start(args, fmt);
190 
191 	if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
192 		memcpy(lvl, fmt, 3);
193 		lvl[3] = '\0';
194 		fmt += 3;
195 		type = logtypes[fmt[1] - '0'];
196 	} else
197 		*lvl = '\0';
198 
199 	vaf.fmt = fmt;
200 	vaf.va = &args;
201 	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
202 }
203 
204 /*
205  * We only mark the transaction aborted and then set the file system read-only.
206  * This will prevent new transactions from starting or trying to join this
207  * one.
208  *
209  * This means that error recovery at the call site is limited to freeing
210  * any local memory allocations and passing the error code up without
211  * further cleanup. The transaction should complete as it normally would
212  * in the call path but will return -EIO.
213  *
214  * We'll complete the cleanup in btrfs_end_transaction and
215  * btrfs_commit_transaction.
216  */
217 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
218 			       struct btrfs_root *root, const char *function,
219 			       unsigned int line, int errno)
220 {
221 	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
222 	trans->aborted = errno;
223 	/* Nothing used. The other threads that have joined this
224 	 * transaction may be able to continue. */
225 	if (!trans->blocks_used) {
226 		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
227 		return;
228 	}
229 	trans->transaction->aborted = errno;
230 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
231 }
232 /*
233  * __btrfs_panic decodes unexpected, fatal errors from the caller,
234  * issues an alert, and either panics or BUGs, depending on mount options.
235  */
236 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
237 		   unsigned int line, int errno, const char *fmt, ...)
238 {
239 	char nbuf[16];
240 	char *s_id = "<unknown>";
241 	const char *errstr;
242 	struct va_format vaf = { .fmt = fmt };
243 	va_list args;
244 
245 	if (fs_info)
246 		s_id = fs_info->sb->s_id;
247 
248 	va_start(args, fmt);
249 	vaf.va = &args;
250 
251 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
252 	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
253 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
254 			s_id, function, line, &vaf, errstr);
255 
256 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
257 	       s_id, function, line, &vaf, errstr);
258 	va_end(args);
259 	/* Caller calls BUG() */
260 }
261 
262 static void btrfs_put_super(struct super_block *sb)
263 {
264 	(void)close_ctree(btrfs_sb(sb)->tree_root);
265 	/* FIXME: need to fix VFS to return error? */
266 	/* AV: return it _where_?  ->put_super() can be triggered by any number
267 	 * of async events, up to and including delivery of SIGKILL to the
268 	 * last process that kept it busy.  Or segfault in the aforementioned
269 	 * process...  Whom would you report that to?
270 	 */
271 }
272 
273 enum {
274 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
275 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
276 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
277 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
278 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
279 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
280 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
281 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
282 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
283 	Opt_check_integrity_print_mask, Opt_fatal_errors,
284 	Opt_err,
285 };
286 
287 static match_table_t tokens = {
288 	{Opt_degraded, "degraded"},
289 	{Opt_subvol, "subvol=%s"},
290 	{Opt_subvolid, "subvolid=%d"},
291 	{Opt_device, "device=%s"},
292 	{Opt_nodatasum, "nodatasum"},
293 	{Opt_nodatacow, "nodatacow"},
294 	{Opt_nobarrier, "nobarrier"},
295 	{Opt_max_inline, "max_inline=%s"},
296 	{Opt_alloc_start, "alloc_start=%s"},
297 	{Opt_thread_pool, "thread_pool=%d"},
298 	{Opt_compress, "compress"},
299 	{Opt_compress_type, "compress=%s"},
300 	{Opt_compress_force, "compress-force"},
301 	{Opt_compress_force_type, "compress-force=%s"},
302 	{Opt_ssd, "ssd"},
303 	{Opt_ssd_spread, "ssd_spread"},
304 	{Opt_nossd, "nossd"},
305 	{Opt_noacl, "noacl"},
306 	{Opt_notreelog, "notreelog"},
307 	{Opt_flushoncommit, "flushoncommit"},
308 	{Opt_ratio, "metadata_ratio=%d"},
309 	{Opt_discard, "discard"},
310 	{Opt_space_cache, "space_cache"},
311 	{Opt_clear_cache, "clear_cache"},
312 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
313 	{Opt_enospc_debug, "enospc_debug"},
314 	{Opt_subvolrootid, "subvolrootid=%d"},
315 	{Opt_defrag, "autodefrag"},
316 	{Opt_inode_cache, "inode_cache"},
317 	{Opt_no_space_cache, "nospace_cache"},
318 	{Opt_recovery, "recovery"},
319 	{Opt_skip_balance, "skip_balance"},
320 	{Opt_check_integrity, "check_int"},
321 	{Opt_check_integrity_including_extent_data, "check_int_data"},
322 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
323 	{Opt_fatal_errors, "fatal_errors=%s"},
324 	{Opt_err, NULL},
325 };
326 
327 /*
328  * Regular mount options parser.  Everything that is needed only when
329  * reading in a new superblock is parsed here.
330  * XXX JDM: This needs to be cleaned up for remount.
331  */
332 int btrfs_parse_options(struct btrfs_root *root, char *options)
333 {
334 	struct btrfs_fs_info *info = root->fs_info;
335 	substring_t args[MAX_OPT_ARGS];
336 	char *p, *num, *orig = NULL;
337 	u64 cache_gen;
338 	int intarg;
339 	int ret = 0;
340 	char *compress_type;
341 	bool compress_force = false;
342 
343 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
344 	if (cache_gen)
345 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
346 
347 	if (!options)
348 		goto out;
349 
350 	/*
351 	 * strsep changes the string, duplicate it because parse_options
352 	 * gets called twice
353 	 */
354 	options = kstrdup(options, GFP_NOFS);
355 	if (!options)
356 		return -ENOMEM;
357 
358 	orig = options;
359 
360 	while ((p = strsep(&options, ",")) != NULL) {
361 		int token;
362 		if (!*p)
363 			continue;
364 
365 		token = match_token(p, tokens, args);
366 		switch (token) {
367 		case Opt_degraded:
368 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
369 			btrfs_set_opt(info->mount_opt, DEGRADED);
370 			break;
371 		case Opt_subvol:
372 		case Opt_subvolid:
373 		case Opt_subvolrootid:
374 		case Opt_device:
375 			/*
376 			 * These are parsed by btrfs_parse_early_options
377 			 * and can be happily ignored here.
378 			 */
379 			break;
380 		case Opt_nodatasum:
381 			printk(KERN_INFO "btrfs: setting nodatasum\n");
382 			btrfs_set_opt(info->mount_opt, NODATASUM);
383 			break;
384 		case Opt_nodatacow:
385 			printk(KERN_INFO "btrfs: setting nodatacow\n");
386 			btrfs_set_opt(info->mount_opt, NODATACOW);
387 			btrfs_set_opt(info->mount_opt, NODATASUM);
388 			break;
389 		case Opt_compress_force:
390 		case Opt_compress_force_type:
391 			compress_force = true;
392 		case Opt_compress:
393 		case Opt_compress_type:
394 			if (token == Opt_compress ||
395 			    token == Opt_compress_force ||
396 			    strcmp(args[0].from, "zlib") == 0) {
397 				compress_type = "zlib";
398 				info->compress_type = BTRFS_COMPRESS_ZLIB;
399 			} else if (strcmp(args[0].from, "lzo") == 0) {
400 				compress_type = "lzo";
401 				info->compress_type = BTRFS_COMPRESS_LZO;
402 			} else {
403 				ret = -EINVAL;
404 				goto out;
405 			}
406 
407 			btrfs_set_opt(info->mount_opt, COMPRESS);
408 			if (compress_force) {
409 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
410 				pr_info("btrfs: force %s compression\n",
411 					compress_type);
412 			} else
413 				pr_info("btrfs: use %s compression\n",
414 					compress_type);
415 			break;
416 		case Opt_ssd:
417 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
418 			btrfs_set_opt(info->mount_opt, SSD);
419 			break;
420 		case Opt_ssd_spread:
421 			printk(KERN_INFO "btrfs: use spread ssd "
422 			       "allocation scheme\n");
423 			btrfs_set_opt(info->mount_opt, SSD);
424 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
425 			break;
426 		case Opt_nossd:
427 			printk(KERN_INFO "btrfs: not using ssd allocation "
428 			       "scheme\n");
429 			btrfs_set_opt(info->mount_opt, NOSSD);
430 			btrfs_clear_opt(info->mount_opt, SSD);
431 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
432 			break;
433 		case Opt_nobarrier:
434 			printk(KERN_INFO "btrfs: turning off barriers\n");
435 			btrfs_set_opt(info->mount_opt, NOBARRIER);
436 			break;
437 		case Opt_thread_pool:
438 			intarg = 0;
439 			match_int(&args[0], &intarg);
440 			if (intarg)
441 				info->thread_pool_size = intarg;
442 			break;
443 		case Opt_max_inline:
444 			num = match_strdup(&args[0]);
445 			if (num) {
446 				info->max_inline = memparse(num, NULL);
447 				kfree(num);
448 
449 				if (info->max_inline) {
450 					info->max_inline = max_t(u64,
451 						info->max_inline,
452 						root->sectorsize);
453 				}
454 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
455 					(unsigned long long)info->max_inline);
456 			}
457 			break;
458 		case Opt_alloc_start:
459 			num = match_strdup(&args[0]);
460 			if (num) {
461 				info->alloc_start = memparse(num, NULL);
462 				kfree(num);
463 				printk(KERN_INFO
464 					"btrfs: allocations start at %llu\n",
465 					(unsigned long long)info->alloc_start);
466 			}
467 			break;
468 		case Opt_noacl:
469 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
470 			break;
471 		case Opt_notreelog:
472 			printk(KERN_INFO "btrfs: disabling tree log\n");
473 			btrfs_set_opt(info->mount_opt, NOTREELOG);
474 			break;
475 		case Opt_flushoncommit:
476 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
477 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
478 			break;
479 		case Opt_ratio:
480 			intarg = 0;
481 			match_int(&args[0], &intarg);
482 			if (intarg) {
483 				info->metadata_ratio = intarg;
484 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
485 				       info->metadata_ratio);
486 			}
487 			break;
488 		case Opt_discard:
489 			btrfs_set_opt(info->mount_opt, DISCARD);
490 			break;
491 		case Opt_space_cache:
492 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
493 			break;
494 		case Opt_no_space_cache:
495 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
496 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
497 			break;
498 		case Opt_inode_cache:
499 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
500 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
501 			break;
502 		case Opt_clear_cache:
503 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
504 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
505 			break;
506 		case Opt_user_subvol_rm_allowed:
507 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
508 			break;
509 		case Opt_enospc_debug:
510 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
511 			break;
512 		case Opt_defrag:
513 			printk(KERN_INFO "btrfs: enabling auto defrag");
514 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
515 			break;
516 		case Opt_recovery:
517 			printk(KERN_INFO "btrfs: enabling auto recovery");
518 			btrfs_set_opt(info->mount_opt, RECOVERY);
519 			break;
520 		case Opt_skip_balance:
521 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
522 			break;
523 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
524 		case Opt_check_integrity_including_extent_data:
525 			printk(KERN_INFO "btrfs: enabling check integrity"
526 			       " including extent data\n");
527 			btrfs_set_opt(info->mount_opt,
528 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
529 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
530 			break;
531 		case Opt_check_integrity:
532 			printk(KERN_INFO "btrfs: enabling check integrity\n");
533 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
534 			break;
535 		case Opt_check_integrity_print_mask:
536 			intarg = 0;
537 			match_int(&args[0], &intarg);
538 			if (intarg) {
539 				info->check_integrity_print_mask = intarg;
540 				printk(KERN_INFO "btrfs:"
541 				       " check_integrity_print_mask 0x%x\n",
542 				       info->check_integrity_print_mask);
543 			}
544 			break;
545 #else
546 		case Opt_check_integrity_including_extent_data:
547 		case Opt_check_integrity:
548 		case Opt_check_integrity_print_mask:
549 			printk(KERN_ERR "btrfs: support for check_integrity*"
550 			       " not compiled in!\n");
551 			ret = -EINVAL;
552 			goto out;
553 #endif
554 		case Opt_fatal_errors:
555 			if (strcmp(args[0].from, "panic") == 0)
556 				btrfs_set_opt(info->mount_opt,
557 					      PANIC_ON_FATAL_ERROR);
558 			else if (strcmp(args[0].from, "bug") == 0)
559 				btrfs_clear_opt(info->mount_opt,
560 					      PANIC_ON_FATAL_ERROR);
561 			else {
562 				ret = -EINVAL;
563 				goto out;
564 			}
565 			break;
566 		case Opt_err:
567 			printk(KERN_INFO "btrfs: unrecognized mount option "
568 			       "'%s'\n", p);
569 			ret = -EINVAL;
570 			goto out;
571 		default:
572 			break;
573 		}
574 	}
575 out:
576 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
577 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
578 	kfree(orig);
579 	return ret;
580 }
581 
582 /*
583  * Parse mount options that are required early in the mount process.
584  *
585  * All other options will be parsed on much later in the mount process and
586  * only when we need to allocate a new super block.
587  */
588 static int btrfs_parse_early_options(const char *options, fmode_t flags,
589 		void *holder, char **subvol_name, u64 *subvol_objectid,
590 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
591 {
592 	substring_t args[MAX_OPT_ARGS];
593 	char *device_name, *opts, *orig, *p;
594 	int error = 0;
595 	int intarg;
596 
597 	if (!options)
598 		return 0;
599 
600 	/*
601 	 * strsep changes the string, duplicate it because parse_options
602 	 * gets called twice
603 	 */
604 	opts = kstrdup(options, GFP_KERNEL);
605 	if (!opts)
606 		return -ENOMEM;
607 	orig = opts;
608 
609 	while ((p = strsep(&opts, ",")) != NULL) {
610 		int token;
611 		if (!*p)
612 			continue;
613 
614 		token = match_token(p, tokens, args);
615 		switch (token) {
616 		case Opt_subvol:
617 			kfree(*subvol_name);
618 			*subvol_name = match_strdup(&args[0]);
619 			break;
620 		case Opt_subvolid:
621 			intarg = 0;
622 			error = match_int(&args[0], &intarg);
623 			if (!error) {
624 				/* we want the original fs_tree */
625 				if (!intarg)
626 					*subvol_objectid =
627 						BTRFS_FS_TREE_OBJECTID;
628 				else
629 					*subvol_objectid = intarg;
630 			}
631 			break;
632 		case Opt_subvolrootid:
633 			intarg = 0;
634 			error = match_int(&args[0], &intarg);
635 			if (!error) {
636 				/* we want the original fs_tree */
637 				if (!intarg)
638 					*subvol_rootid =
639 						BTRFS_FS_TREE_OBJECTID;
640 				else
641 					*subvol_rootid = intarg;
642 			}
643 			break;
644 		case Opt_device:
645 			device_name = match_strdup(&args[0]);
646 			if (!device_name) {
647 				error = -ENOMEM;
648 				goto out;
649 			}
650 			error = btrfs_scan_one_device(device_name,
651 					flags, holder, fs_devices);
652 			kfree(device_name);
653 			if (error)
654 				goto out;
655 			break;
656 		default:
657 			break;
658 		}
659 	}
660 
661 out:
662 	kfree(orig);
663 	return error;
664 }
665 
666 static struct dentry *get_default_root(struct super_block *sb,
667 				       u64 subvol_objectid)
668 {
669 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
670 	struct btrfs_root *root = fs_info->tree_root;
671 	struct btrfs_root *new_root;
672 	struct btrfs_dir_item *di;
673 	struct btrfs_path *path;
674 	struct btrfs_key location;
675 	struct inode *inode;
676 	u64 dir_id;
677 	int new = 0;
678 
679 	/*
680 	 * We have a specific subvol we want to mount, just setup location and
681 	 * go look up the root.
682 	 */
683 	if (subvol_objectid) {
684 		location.objectid = subvol_objectid;
685 		location.type = BTRFS_ROOT_ITEM_KEY;
686 		location.offset = (u64)-1;
687 		goto find_root;
688 	}
689 
690 	path = btrfs_alloc_path();
691 	if (!path)
692 		return ERR_PTR(-ENOMEM);
693 	path->leave_spinning = 1;
694 
695 	/*
696 	 * Find the "default" dir item which points to the root item that we
697 	 * will mount by default if we haven't been given a specific subvolume
698 	 * to mount.
699 	 */
700 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
701 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
702 	if (IS_ERR(di)) {
703 		btrfs_free_path(path);
704 		return ERR_CAST(di);
705 	}
706 	if (!di) {
707 		/*
708 		 * Ok the default dir item isn't there.  This is weird since
709 		 * it's always been there, but don't freak out, just try and
710 		 * mount to root most subvolume.
711 		 */
712 		btrfs_free_path(path);
713 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
714 		new_root = fs_info->fs_root;
715 		goto setup_root;
716 	}
717 
718 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
719 	btrfs_free_path(path);
720 
721 find_root:
722 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
723 	if (IS_ERR(new_root))
724 		return ERR_CAST(new_root);
725 
726 	if (btrfs_root_refs(&new_root->root_item) == 0)
727 		return ERR_PTR(-ENOENT);
728 
729 	dir_id = btrfs_root_dirid(&new_root->root_item);
730 setup_root:
731 	location.objectid = dir_id;
732 	location.type = BTRFS_INODE_ITEM_KEY;
733 	location.offset = 0;
734 
735 	inode = btrfs_iget(sb, &location, new_root, &new);
736 	if (IS_ERR(inode))
737 		return ERR_CAST(inode);
738 
739 	/*
740 	 * If we're just mounting the root most subvol put the inode and return
741 	 * a reference to the dentry.  We will have already gotten a reference
742 	 * to the inode in btrfs_fill_super so we're good to go.
743 	 */
744 	if (!new && sb->s_root->d_inode == inode) {
745 		iput(inode);
746 		return dget(sb->s_root);
747 	}
748 
749 	return d_obtain_alias(inode);
750 }
751 
752 static int btrfs_fill_super(struct super_block *sb,
753 			    struct btrfs_fs_devices *fs_devices,
754 			    void *data, int silent)
755 {
756 	struct inode *inode;
757 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
758 	struct btrfs_key key;
759 	int err;
760 
761 	sb->s_maxbytes = MAX_LFS_FILESIZE;
762 	sb->s_magic = BTRFS_SUPER_MAGIC;
763 	sb->s_op = &btrfs_super_ops;
764 	sb->s_d_op = &btrfs_dentry_operations;
765 	sb->s_export_op = &btrfs_export_ops;
766 	sb->s_xattr = btrfs_xattr_handlers;
767 	sb->s_time_gran = 1;
768 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
769 	sb->s_flags |= MS_POSIXACL;
770 #endif
771 	sb->s_flags |= MS_I_VERSION;
772 	err = open_ctree(sb, fs_devices, (char *)data);
773 	if (err) {
774 		printk("btrfs: open_ctree failed\n");
775 		return err;
776 	}
777 
778 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
779 	key.type = BTRFS_INODE_ITEM_KEY;
780 	key.offset = 0;
781 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
782 	if (IS_ERR(inode)) {
783 		err = PTR_ERR(inode);
784 		goto fail_close;
785 	}
786 
787 	sb->s_root = d_make_root(inode);
788 	if (!sb->s_root) {
789 		err = -ENOMEM;
790 		goto fail_close;
791 	}
792 
793 	save_mount_options(sb, data);
794 	cleancache_init_fs(sb);
795 	sb->s_flags |= MS_ACTIVE;
796 	return 0;
797 
798 fail_close:
799 	close_ctree(fs_info->tree_root);
800 	return err;
801 }
802 
803 int btrfs_sync_fs(struct super_block *sb, int wait)
804 {
805 	struct btrfs_trans_handle *trans;
806 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
807 	struct btrfs_root *root = fs_info->tree_root;
808 	int ret;
809 
810 	trace_btrfs_sync_fs(wait);
811 
812 	if (!wait) {
813 		filemap_flush(fs_info->btree_inode->i_mapping);
814 		return 0;
815 	}
816 
817 	btrfs_wait_ordered_extents(root, 0, 0);
818 
819 	trans = btrfs_start_transaction(root, 0);
820 	if (IS_ERR(trans))
821 		return PTR_ERR(trans);
822 	ret = btrfs_commit_transaction(trans, root);
823 	return ret;
824 }
825 
826 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
827 {
828 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
829 	struct btrfs_root *root = info->tree_root;
830 	char *compress_type;
831 
832 	if (btrfs_test_opt(root, DEGRADED))
833 		seq_puts(seq, ",degraded");
834 	if (btrfs_test_opt(root, NODATASUM))
835 		seq_puts(seq, ",nodatasum");
836 	if (btrfs_test_opt(root, NODATACOW))
837 		seq_puts(seq, ",nodatacow");
838 	if (btrfs_test_opt(root, NOBARRIER))
839 		seq_puts(seq, ",nobarrier");
840 	if (info->max_inline != 8192 * 1024)
841 		seq_printf(seq, ",max_inline=%llu",
842 			   (unsigned long long)info->max_inline);
843 	if (info->alloc_start != 0)
844 		seq_printf(seq, ",alloc_start=%llu",
845 			   (unsigned long long)info->alloc_start);
846 	if (info->thread_pool_size !=  min_t(unsigned long,
847 					     num_online_cpus() + 2, 8))
848 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
849 	if (btrfs_test_opt(root, COMPRESS)) {
850 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
851 			compress_type = "zlib";
852 		else
853 			compress_type = "lzo";
854 		if (btrfs_test_opt(root, FORCE_COMPRESS))
855 			seq_printf(seq, ",compress-force=%s", compress_type);
856 		else
857 			seq_printf(seq, ",compress=%s", compress_type);
858 	}
859 	if (btrfs_test_opt(root, NOSSD))
860 		seq_puts(seq, ",nossd");
861 	if (btrfs_test_opt(root, SSD_SPREAD))
862 		seq_puts(seq, ",ssd_spread");
863 	else if (btrfs_test_opt(root, SSD))
864 		seq_puts(seq, ",ssd");
865 	if (btrfs_test_opt(root, NOTREELOG))
866 		seq_puts(seq, ",notreelog");
867 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
868 		seq_puts(seq, ",flushoncommit");
869 	if (btrfs_test_opt(root, DISCARD))
870 		seq_puts(seq, ",discard");
871 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
872 		seq_puts(seq, ",noacl");
873 	if (btrfs_test_opt(root, SPACE_CACHE))
874 		seq_puts(seq, ",space_cache");
875 	else
876 		seq_puts(seq, ",nospace_cache");
877 	if (btrfs_test_opt(root, CLEAR_CACHE))
878 		seq_puts(seq, ",clear_cache");
879 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
880 		seq_puts(seq, ",user_subvol_rm_allowed");
881 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
882 		seq_puts(seq, ",enospc_debug");
883 	if (btrfs_test_opt(root, AUTO_DEFRAG))
884 		seq_puts(seq, ",autodefrag");
885 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
886 		seq_puts(seq, ",inode_cache");
887 	if (btrfs_test_opt(root, SKIP_BALANCE))
888 		seq_puts(seq, ",skip_balance");
889 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
890 		seq_puts(seq, ",fatal_errors=panic");
891 	return 0;
892 }
893 
894 static int btrfs_test_super(struct super_block *s, void *data)
895 {
896 	struct btrfs_fs_info *p = data;
897 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
898 
899 	return fs_info->fs_devices == p->fs_devices;
900 }
901 
902 static int btrfs_set_super(struct super_block *s, void *data)
903 {
904 	int err = set_anon_super(s, data);
905 	if (!err)
906 		s->s_fs_info = data;
907 	return err;
908 }
909 
910 /*
911  * subvolumes are identified by ino 256
912  */
913 static inline int is_subvolume_inode(struct inode *inode)
914 {
915 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
916 		return 1;
917 	return 0;
918 }
919 
920 /*
921  * This will strip out the subvol=%s argument for an argument string and add
922  * subvolid=0 to make sure we get the actual tree root for path walking to the
923  * subvol we want.
924  */
925 static char *setup_root_args(char *args)
926 {
927 	unsigned len = strlen(args) + 2 + 1;
928 	char *src, *dst, *buf;
929 
930 	/*
931 	 * We need the same args as before, but with this substitution:
932 	 * s!subvol=[^,]+!subvolid=0!
933 	 *
934 	 * Since the replacement string is up to 2 bytes longer than the
935 	 * original, allocate strlen(args) + 2 + 1 bytes.
936 	 */
937 
938 	src = strstr(args, "subvol=");
939 	/* This shouldn't happen, but just in case.. */
940 	if (!src)
941 		return NULL;
942 
943 	buf = dst = kmalloc(len, GFP_NOFS);
944 	if (!buf)
945 		return NULL;
946 
947 	/*
948 	 * If the subvol= arg is not at the start of the string,
949 	 * copy whatever precedes it into buf.
950 	 */
951 	if (src != args) {
952 		*src++ = '\0';
953 		strcpy(buf, args);
954 		dst += strlen(args);
955 	}
956 
957 	strcpy(dst, "subvolid=0");
958 	dst += strlen("subvolid=0");
959 
960 	/*
961 	 * If there is a "," after the original subvol=... string,
962 	 * copy that suffix into our buffer.  Otherwise, we're done.
963 	 */
964 	src = strchr(src, ',');
965 	if (src)
966 		strcpy(dst, src);
967 
968 	return buf;
969 }
970 
971 static struct dentry *mount_subvol(const char *subvol_name, int flags,
972 				   const char *device_name, char *data)
973 {
974 	struct dentry *root;
975 	struct vfsmount *mnt;
976 	char *newargs;
977 
978 	newargs = setup_root_args(data);
979 	if (!newargs)
980 		return ERR_PTR(-ENOMEM);
981 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
982 			     newargs);
983 	kfree(newargs);
984 	if (IS_ERR(mnt))
985 		return ERR_CAST(mnt);
986 
987 	root = mount_subtree(mnt, subvol_name);
988 
989 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
990 		struct super_block *s = root->d_sb;
991 		dput(root);
992 		root = ERR_PTR(-EINVAL);
993 		deactivate_locked_super(s);
994 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
995 				subvol_name);
996 	}
997 
998 	return root;
999 }
1000 
1001 /*
1002  * Find a superblock for the given device / mount point.
1003  *
1004  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1005  *	  for multiple device setup.  Make sure to keep it in sync.
1006  */
1007 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1008 		const char *device_name, void *data)
1009 {
1010 	struct block_device *bdev = NULL;
1011 	struct super_block *s;
1012 	struct dentry *root;
1013 	struct btrfs_fs_devices *fs_devices = NULL;
1014 	struct btrfs_fs_info *fs_info = NULL;
1015 	fmode_t mode = FMODE_READ;
1016 	char *subvol_name = NULL;
1017 	u64 subvol_objectid = 0;
1018 	u64 subvol_rootid = 0;
1019 	int error = 0;
1020 
1021 	if (!(flags & MS_RDONLY))
1022 		mode |= FMODE_WRITE;
1023 
1024 	error = btrfs_parse_early_options(data, mode, fs_type,
1025 					  &subvol_name, &subvol_objectid,
1026 					  &subvol_rootid, &fs_devices);
1027 	if (error) {
1028 		kfree(subvol_name);
1029 		return ERR_PTR(error);
1030 	}
1031 
1032 	if (subvol_name) {
1033 		root = mount_subvol(subvol_name, flags, device_name, data);
1034 		kfree(subvol_name);
1035 		return root;
1036 	}
1037 
1038 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1039 	if (error)
1040 		return ERR_PTR(error);
1041 
1042 	/*
1043 	 * Setup a dummy root and fs_info for test/set super.  This is because
1044 	 * we don't actually fill this stuff out until open_ctree, but we need
1045 	 * it for searching for existing supers, so this lets us do that and
1046 	 * then open_ctree will properly initialize everything later.
1047 	 */
1048 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1049 	if (!fs_info)
1050 		return ERR_PTR(-ENOMEM);
1051 
1052 	fs_info->fs_devices = fs_devices;
1053 
1054 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1056 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1057 		error = -ENOMEM;
1058 		goto error_fs_info;
1059 	}
1060 
1061 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1062 	if (error)
1063 		goto error_fs_info;
1064 
1065 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1066 		error = -EACCES;
1067 		goto error_close_devices;
1068 	}
1069 
1070 	bdev = fs_devices->latest_bdev;
1071 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1072 	if (IS_ERR(s)) {
1073 		error = PTR_ERR(s);
1074 		goto error_close_devices;
1075 	}
1076 
1077 	if (s->s_root) {
1078 		btrfs_close_devices(fs_devices);
1079 		free_fs_info(fs_info);
1080 		if ((flags ^ s->s_flags) & MS_RDONLY)
1081 			error = -EBUSY;
1082 	} else {
1083 		char b[BDEVNAME_SIZE];
1084 
1085 		s->s_flags = flags | MS_NOSEC;
1086 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1087 		btrfs_sb(s)->bdev_holder = fs_type;
1088 		error = btrfs_fill_super(s, fs_devices, data,
1089 					 flags & MS_SILENT ? 1 : 0);
1090 	}
1091 
1092 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1093 	if (IS_ERR(root))
1094 		deactivate_locked_super(s);
1095 
1096 	return root;
1097 
1098 error_close_devices:
1099 	btrfs_close_devices(fs_devices);
1100 error_fs_info:
1101 	free_fs_info(fs_info);
1102 	return ERR_PTR(error);
1103 }
1104 
1105 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1106 {
1107 	spin_lock_irq(&workers->lock);
1108 	workers->max_workers = new_limit;
1109 	spin_unlock_irq(&workers->lock);
1110 }
1111 
1112 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1113 				     int new_pool_size, int old_pool_size)
1114 {
1115 	if (new_pool_size == old_pool_size)
1116 		return;
1117 
1118 	fs_info->thread_pool_size = new_pool_size;
1119 
1120 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1121 	       old_pool_size, new_pool_size);
1122 
1123 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1124 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1125 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1126 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1127 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1128 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1129 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1130 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1131 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1132 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1133 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1134 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1135 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1136 	btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1137 }
1138 
1139 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1140 {
1141 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1142 	struct btrfs_root *root = fs_info->tree_root;
1143 	unsigned old_flags = sb->s_flags;
1144 	unsigned long old_opts = fs_info->mount_opt;
1145 	unsigned long old_compress_type = fs_info->compress_type;
1146 	u64 old_max_inline = fs_info->max_inline;
1147 	u64 old_alloc_start = fs_info->alloc_start;
1148 	int old_thread_pool_size = fs_info->thread_pool_size;
1149 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1150 	int ret;
1151 
1152 	ret = btrfs_parse_options(root, data);
1153 	if (ret) {
1154 		ret = -EINVAL;
1155 		goto restore;
1156 	}
1157 
1158 	btrfs_resize_thread_pool(fs_info,
1159 		fs_info->thread_pool_size, old_thread_pool_size);
1160 
1161 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1162 		return 0;
1163 
1164 	if (*flags & MS_RDONLY) {
1165 		sb->s_flags |= MS_RDONLY;
1166 
1167 		ret = btrfs_commit_super(root);
1168 		if (ret)
1169 			goto restore;
1170 	} else {
1171 		if (fs_info->fs_devices->rw_devices == 0) {
1172 			ret = -EACCES;
1173 			goto restore;
1174 		}
1175 
1176 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1177 			ret = -EINVAL;
1178 			goto restore;
1179 		}
1180 
1181 		ret = btrfs_cleanup_fs_roots(fs_info);
1182 		if (ret)
1183 			goto restore;
1184 
1185 		/* recover relocation */
1186 		ret = btrfs_recover_relocation(root);
1187 		if (ret)
1188 			goto restore;
1189 
1190 		ret = btrfs_resume_balance_async(fs_info);
1191 		if (ret)
1192 			goto restore;
1193 
1194 		sb->s_flags &= ~MS_RDONLY;
1195 	}
1196 
1197 	return 0;
1198 
1199 restore:
1200 	/* We've hit an error - don't reset MS_RDONLY */
1201 	if (sb->s_flags & MS_RDONLY)
1202 		old_flags |= MS_RDONLY;
1203 	sb->s_flags = old_flags;
1204 	fs_info->mount_opt = old_opts;
1205 	fs_info->compress_type = old_compress_type;
1206 	fs_info->max_inline = old_max_inline;
1207 	fs_info->alloc_start = old_alloc_start;
1208 	btrfs_resize_thread_pool(fs_info,
1209 		old_thread_pool_size, fs_info->thread_pool_size);
1210 	fs_info->metadata_ratio = old_metadata_ratio;
1211 	return ret;
1212 }
1213 
1214 /* Used to sort the devices by max_avail(descending sort) */
1215 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1216 				       const void *dev_info2)
1217 {
1218 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1219 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1220 		return -1;
1221 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1222 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1223 		return 1;
1224 	else
1225 	return 0;
1226 }
1227 
1228 /*
1229  * sort the devices by max_avail, in which max free extent size of each device
1230  * is stored.(Descending Sort)
1231  */
1232 static inline void btrfs_descending_sort_devices(
1233 					struct btrfs_device_info *devices,
1234 					size_t nr_devices)
1235 {
1236 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1237 	     btrfs_cmp_device_free_bytes, NULL);
1238 }
1239 
1240 /*
1241  * The helper to calc the free space on the devices that can be used to store
1242  * file data.
1243  */
1244 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1245 {
1246 	struct btrfs_fs_info *fs_info = root->fs_info;
1247 	struct btrfs_device_info *devices_info;
1248 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1249 	struct btrfs_device *device;
1250 	u64 skip_space;
1251 	u64 type;
1252 	u64 avail_space;
1253 	u64 used_space;
1254 	u64 min_stripe_size;
1255 	int min_stripes = 1, num_stripes = 1;
1256 	int i = 0, nr_devices;
1257 	int ret;
1258 
1259 	nr_devices = fs_info->fs_devices->open_devices;
1260 	BUG_ON(!nr_devices);
1261 
1262 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1263 			       GFP_NOFS);
1264 	if (!devices_info)
1265 		return -ENOMEM;
1266 
1267 	/* calc min stripe number for data space alloction */
1268 	type = btrfs_get_alloc_profile(root, 1);
1269 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1270 		min_stripes = 2;
1271 		num_stripes = nr_devices;
1272 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1273 		min_stripes = 2;
1274 		num_stripes = 2;
1275 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1276 		min_stripes = 4;
1277 		num_stripes = 4;
1278 	}
1279 
1280 	if (type & BTRFS_BLOCK_GROUP_DUP)
1281 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1282 	else
1283 		min_stripe_size = BTRFS_STRIPE_LEN;
1284 
1285 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1286 		if (!device->in_fs_metadata || !device->bdev)
1287 			continue;
1288 
1289 		avail_space = device->total_bytes - device->bytes_used;
1290 
1291 		/* align with stripe_len */
1292 		do_div(avail_space, BTRFS_STRIPE_LEN);
1293 		avail_space *= BTRFS_STRIPE_LEN;
1294 
1295 		/*
1296 		 * In order to avoid overwritting the superblock on the drive,
1297 		 * btrfs starts at an offset of at least 1MB when doing chunk
1298 		 * allocation.
1299 		 */
1300 		skip_space = 1024 * 1024;
1301 
1302 		/* user can set the offset in fs_info->alloc_start. */
1303 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1304 		    device->total_bytes)
1305 			skip_space = max(fs_info->alloc_start, skip_space);
1306 
1307 		/*
1308 		 * btrfs can not use the free space in [0, skip_space - 1],
1309 		 * we must subtract it from the total. In order to implement
1310 		 * it, we account the used space in this range first.
1311 		 */
1312 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1313 						     &used_space);
1314 		if (ret) {
1315 			kfree(devices_info);
1316 			return ret;
1317 		}
1318 
1319 		/* calc the free space in [0, skip_space - 1] */
1320 		skip_space -= used_space;
1321 
1322 		/*
1323 		 * we can use the free space in [0, skip_space - 1], subtract
1324 		 * it from the total.
1325 		 */
1326 		if (avail_space && avail_space >= skip_space)
1327 			avail_space -= skip_space;
1328 		else
1329 			avail_space = 0;
1330 
1331 		if (avail_space < min_stripe_size)
1332 			continue;
1333 
1334 		devices_info[i].dev = device;
1335 		devices_info[i].max_avail = avail_space;
1336 
1337 		i++;
1338 	}
1339 
1340 	nr_devices = i;
1341 
1342 	btrfs_descending_sort_devices(devices_info, nr_devices);
1343 
1344 	i = nr_devices - 1;
1345 	avail_space = 0;
1346 	while (nr_devices >= min_stripes) {
1347 		if (num_stripes > nr_devices)
1348 			num_stripes = nr_devices;
1349 
1350 		if (devices_info[i].max_avail >= min_stripe_size) {
1351 			int j;
1352 			u64 alloc_size;
1353 
1354 			avail_space += devices_info[i].max_avail * num_stripes;
1355 			alloc_size = devices_info[i].max_avail;
1356 			for (j = i + 1 - num_stripes; j <= i; j++)
1357 				devices_info[j].max_avail -= alloc_size;
1358 		}
1359 		i--;
1360 		nr_devices--;
1361 	}
1362 
1363 	kfree(devices_info);
1364 	*free_bytes = avail_space;
1365 	return 0;
1366 }
1367 
1368 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1369 {
1370 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1371 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1372 	struct list_head *head = &fs_info->space_info;
1373 	struct btrfs_space_info *found;
1374 	u64 total_used = 0;
1375 	u64 total_free_data = 0;
1376 	int bits = dentry->d_sb->s_blocksize_bits;
1377 	__be32 *fsid = (__be32 *)fs_info->fsid;
1378 	int ret;
1379 
1380 	/* holding chunk_muext to avoid allocating new chunks */
1381 	mutex_lock(&fs_info->chunk_mutex);
1382 	rcu_read_lock();
1383 	list_for_each_entry_rcu(found, head, list) {
1384 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1385 			total_free_data += found->disk_total - found->disk_used;
1386 			total_free_data -=
1387 				btrfs_account_ro_block_groups_free_space(found);
1388 		}
1389 
1390 		total_used += found->disk_used;
1391 	}
1392 	rcu_read_unlock();
1393 
1394 	buf->f_namelen = BTRFS_NAME_LEN;
1395 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1396 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1397 	buf->f_bsize = dentry->d_sb->s_blocksize;
1398 	buf->f_type = BTRFS_SUPER_MAGIC;
1399 	buf->f_bavail = total_free_data;
1400 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1401 	if (ret) {
1402 		mutex_unlock(&fs_info->chunk_mutex);
1403 		return ret;
1404 	}
1405 	buf->f_bavail += total_free_data;
1406 	buf->f_bavail = buf->f_bavail >> bits;
1407 	mutex_unlock(&fs_info->chunk_mutex);
1408 
1409 	/* We treat it as constant endianness (it doesn't matter _which_)
1410 	   because we want the fsid to come out the same whether mounted
1411 	   on a big-endian or little-endian host */
1412 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1413 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1414 	/* Mask in the root object ID too, to disambiguate subvols */
1415 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1416 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1417 
1418 	return 0;
1419 }
1420 
1421 static void btrfs_kill_super(struct super_block *sb)
1422 {
1423 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1424 	kill_anon_super(sb);
1425 	free_fs_info(fs_info);
1426 }
1427 
1428 static struct file_system_type btrfs_fs_type = {
1429 	.owner		= THIS_MODULE,
1430 	.name		= "btrfs",
1431 	.mount		= btrfs_mount,
1432 	.kill_sb	= btrfs_kill_super,
1433 	.fs_flags	= FS_REQUIRES_DEV,
1434 };
1435 
1436 /*
1437  * used by btrfsctl to scan devices when no FS is mounted
1438  */
1439 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1440 				unsigned long arg)
1441 {
1442 	struct btrfs_ioctl_vol_args *vol;
1443 	struct btrfs_fs_devices *fs_devices;
1444 	int ret = -ENOTTY;
1445 
1446 	if (!capable(CAP_SYS_ADMIN))
1447 		return -EPERM;
1448 
1449 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1450 	if (IS_ERR(vol))
1451 		return PTR_ERR(vol);
1452 
1453 	switch (cmd) {
1454 	case BTRFS_IOC_SCAN_DEV:
1455 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1456 					    &btrfs_fs_type, &fs_devices);
1457 		break;
1458 	}
1459 
1460 	kfree(vol);
1461 	return ret;
1462 }
1463 
1464 static int btrfs_freeze(struct super_block *sb)
1465 {
1466 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1467 	mutex_lock(&fs_info->transaction_kthread_mutex);
1468 	mutex_lock(&fs_info->cleaner_mutex);
1469 	return 0;
1470 }
1471 
1472 static int btrfs_unfreeze(struct super_block *sb)
1473 {
1474 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1475 	mutex_unlock(&fs_info->cleaner_mutex);
1476 	mutex_unlock(&fs_info->transaction_kthread_mutex);
1477 	return 0;
1478 }
1479 
1480 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1481 {
1482 	int ret;
1483 
1484 	ret = btrfs_dirty_inode(inode);
1485 	if (ret)
1486 		printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1487 				   "error %d\n", btrfs_ino(inode), ret);
1488 }
1489 
1490 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1491 {
1492 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1493 	struct btrfs_fs_devices *cur_devices;
1494 	struct btrfs_device *dev, *first_dev = NULL;
1495 	struct list_head *head;
1496 	struct rcu_string *name;
1497 
1498 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1499 	cur_devices = fs_info->fs_devices;
1500 	while (cur_devices) {
1501 		head = &cur_devices->devices;
1502 		list_for_each_entry(dev, head, dev_list) {
1503 			if (!first_dev || dev->devid < first_dev->devid)
1504 				first_dev = dev;
1505 		}
1506 		cur_devices = cur_devices->seed;
1507 	}
1508 
1509 	if (first_dev) {
1510 		rcu_read_lock();
1511 		name = rcu_dereference(first_dev->name);
1512 		seq_escape(m, name->str, " \t\n\\");
1513 		rcu_read_unlock();
1514 	} else {
1515 		WARN_ON(1);
1516 	}
1517 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1518 	return 0;
1519 }
1520 
1521 static const struct super_operations btrfs_super_ops = {
1522 	.drop_inode	= btrfs_drop_inode,
1523 	.evict_inode	= btrfs_evict_inode,
1524 	.put_super	= btrfs_put_super,
1525 	.sync_fs	= btrfs_sync_fs,
1526 	.show_options	= btrfs_show_options,
1527 	.show_devname	= btrfs_show_devname,
1528 	.write_inode	= btrfs_write_inode,
1529 	.dirty_inode	= btrfs_fs_dirty_inode,
1530 	.alloc_inode	= btrfs_alloc_inode,
1531 	.destroy_inode	= btrfs_destroy_inode,
1532 	.statfs		= btrfs_statfs,
1533 	.remount_fs	= btrfs_remount,
1534 	.freeze_fs	= btrfs_freeze,
1535 	.unfreeze_fs	= btrfs_unfreeze,
1536 };
1537 
1538 static const struct file_operations btrfs_ctl_fops = {
1539 	.unlocked_ioctl	 = btrfs_control_ioctl,
1540 	.compat_ioctl = btrfs_control_ioctl,
1541 	.owner	 = THIS_MODULE,
1542 	.llseek = noop_llseek,
1543 };
1544 
1545 static struct miscdevice btrfs_misc = {
1546 	.minor		= BTRFS_MINOR,
1547 	.name		= "btrfs-control",
1548 	.fops		= &btrfs_ctl_fops
1549 };
1550 
1551 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1552 MODULE_ALIAS("devname:btrfs-control");
1553 
1554 static int btrfs_interface_init(void)
1555 {
1556 	return misc_register(&btrfs_misc);
1557 }
1558 
1559 static void btrfs_interface_exit(void)
1560 {
1561 	if (misc_deregister(&btrfs_misc) < 0)
1562 		printk(KERN_INFO "misc_deregister failed for control device");
1563 }
1564 
1565 static int __init init_btrfs_fs(void)
1566 {
1567 	int err;
1568 
1569 	err = btrfs_init_sysfs();
1570 	if (err)
1571 		return err;
1572 
1573 	btrfs_init_compress();
1574 
1575 	err = btrfs_init_cachep();
1576 	if (err)
1577 		goto free_compress;
1578 
1579 	err = extent_io_init();
1580 	if (err)
1581 		goto free_cachep;
1582 
1583 	err = extent_map_init();
1584 	if (err)
1585 		goto free_extent_io;
1586 
1587 	err = btrfs_delayed_inode_init();
1588 	if (err)
1589 		goto free_extent_map;
1590 
1591 	err = btrfs_interface_init();
1592 	if (err)
1593 		goto free_delayed_inode;
1594 
1595 	err = register_filesystem(&btrfs_fs_type);
1596 	if (err)
1597 		goto unregister_ioctl;
1598 
1599 	btrfs_init_lockdep();
1600 
1601 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1602 	return 0;
1603 
1604 unregister_ioctl:
1605 	btrfs_interface_exit();
1606 free_delayed_inode:
1607 	btrfs_delayed_inode_exit();
1608 free_extent_map:
1609 	extent_map_exit();
1610 free_extent_io:
1611 	extent_io_exit();
1612 free_cachep:
1613 	btrfs_destroy_cachep();
1614 free_compress:
1615 	btrfs_exit_compress();
1616 	btrfs_exit_sysfs();
1617 	return err;
1618 }
1619 
1620 static void __exit exit_btrfs_fs(void)
1621 {
1622 	btrfs_destroy_cachep();
1623 	btrfs_delayed_inode_exit();
1624 	extent_map_exit();
1625 	extent_io_exit();
1626 	btrfs_interface_exit();
1627 	unregister_filesystem(&btrfs_fs_type);
1628 	btrfs_exit_sysfs();
1629 	btrfs_cleanup_fs_uuids();
1630 	btrfs_exit_compress();
1631 }
1632 
1633 module_init(init_btrfs_fs)
1634 module_exit(exit_btrfs_fs)
1635 
1636 MODULE_LICENSE("GPL");
1637