xref: /linux/fs/btrfs/super.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
58 				      char nbuf[16])
59 {
60 	char *errstr = NULL;
61 
62 	switch (errno) {
63 	case -EIO:
64 		errstr = "IO failure";
65 		break;
66 	case -ENOMEM:
67 		errstr = "Out of memory";
68 		break;
69 	case -EROFS:
70 		errstr = "Readonly filesystem";
71 		break;
72 	default:
73 		if (nbuf) {
74 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
75 				errstr = nbuf;
76 		}
77 		break;
78 	}
79 
80 	return errstr;
81 }
82 
83 static void __save_error_info(struct btrfs_fs_info *fs_info)
84 {
85 	/*
86 	 * today we only save the error info into ram.  Long term we'll
87 	 * also send it down to the disk
88 	 */
89 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
90 }
91 
92 /* NOTE:
93  *	We move write_super stuff at umount in order to avoid deadlock
94  *	for umount hold all lock.
95  */
96 static void save_error_info(struct btrfs_fs_info *fs_info)
97 {
98 	__save_error_info(fs_info);
99 }
100 
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 	struct super_block *sb = fs_info->sb;
105 
106 	if (sb->s_flags & MS_RDONLY)
107 		return;
108 
109 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
110 		sb->s_flags |= MS_RDONLY;
111 		printk(KERN_INFO "btrfs is forced readonly\n");
112 	}
113 }
114 
115 /*
116  * __btrfs_std_error decodes expected errors from the caller and
117  * invokes the approciate error response.
118  */
119 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
120 		     unsigned int line, int errno)
121 {
122 	struct super_block *sb = fs_info->sb;
123 	char nbuf[16];
124 	const char *errstr;
125 
126 	/*
127 	 * Special case: if the error is EROFS, and we're already
128 	 * under MS_RDONLY, then it is safe here.
129 	 */
130 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
131 		return;
132 
133 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
134 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
135 		sb->s_id, function, line, errstr);
136 	save_error_info(fs_info);
137 
138 	btrfs_handle_error(fs_info);
139 }
140 
141 static void btrfs_put_super(struct super_block *sb)
142 {
143 	struct btrfs_root *root = btrfs_sb(sb);
144 	int ret;
145 
146 	ret = close_ctree(root);
147 	sb->s_fs_info = NULL;
148 
149 	(void)ret; /* FIXME: need to fix VFS to return error? */
150 }
151 
152 enum {
153 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
154 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
155 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
156 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
157 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
158 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, Opt_err,
159 };
160 
161 static match_table_t tokens = {
162 	{Opt_degraded, "degraded"},
163 	{Opt_subvol, "subvol=%s"},
164 	{Opt_subvolid, "subvolid=%d"},
165 	{Opt_device, "device=%s"},
166 	{Opt_nodatasum, "nodatasum"},
167 	{Opt_nodatacow, "nodatacow"},
168 	{Opt_nobarrier, "nobarrier"},
169 	{Opt_max_inline, "max_inline=%s"},
170 	{Opt_alloc_start, "alloc_start=%s"},
171 	{Opt_thread_pool, "thread_pool=%d"},
172 	{Opt_compress, "compress"},
173 	{Opt_compress_type, "compress=%s"},
174 	{Opt_compress_force, "compress-force"},
175 	{Opt_compress_force_type, "compress-force=%s"},
176 	{Opt_ssd, "ssd"},
177 	{Opt_ssd_spread, "ssd_spread"},
178 	{Opt_nossd, "nossd"},
179 	{Opt_noacl, "noacl"},
180 	{Opt_notreelog, "notreelog"},
181 	{Opt_flushoncommit, "flushoncommit"},
182 	{Opt_ratio, "metadata_ratio=%d"},
183 	{Opt_discard, "discard"},
184 	{Opt_space_cache, "space_cache"},
185 	{Opt_clear_cache, "clear_cache"},
186 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
187 	{Opt_err, NULL},
188 };
189 
190 /*
191  * Regular mount options parser.  Everything that is needed only when
192  * reading in a new superblock is parsed here.
193  */
194 int btrfs_parse_options(struct btrfs_root *root, char *options)
195 {
196 	struct btrfs_fs_info *info = root->fs_info;
197 	substring_t args[MAX_OPT_ARGS];
198 	char *p, *num, *orig;
199 	int intarg;
200 	int ret = 0;
201 	char *compress_type;
202 	bool compress_force = false;
203 
204 	if (!options)
205 		return 0;
206 
207 	/*
208 	 * strsep changes the string, duplicate it because parse_options
209 	 * gets called twice
210 	 */
211 	options = kstrdup(options, GFP_NOFS);
212 	if (!options)
213 		return -ENOMEM;
214 
215 	orig = options;
216 
217 	while ((p = strsep(&options, ",")) != NULL) {
218 		int token;
219 		if (!*p)
220 			continue;
221 
222 		token = match_token(p, tokens, args);
223 		switch (token) {
224 		case Opt_degraded:
225 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
226 			btrfs_set_opt(info->mount_opt, DEGRADED);
227 			break;
228 		case Opt_subvol:
229 		case Opt_subvolid:
230 		case Opt_device:
231 			/*
232 			 * These are parsed by btrfs_parse_early_options
233 			 * and can be happily ignored here.
234 			 */
235 			break;
236 		case Opt_nodatasum:
237 			printk(KERN_INFO "btrfs: setting nodatasum\n");
238 			btrfs_set_opt(info->mount_opt, NODATASUM);
239 			break;
240 		case Opt_nodatacow:
241 			printk(KERN_INFO "btrfs: setting nodatacow\n");
242 			btrfs_set_opt(info->mount_opt, NODATACOW);
243 			btrfs_set_opt(info->mount_opt, NODATASUM);
244 			break;
245 		case Opt_compress_force:
246 		case Opt_compress_force_type:
247 			compress_force = true;
248 		case Opt_compress:
249 		case Opt_compress_type:
250 			if (token == Opt_compress ||
251 			    token == Opt_compress_force ||
252 			    strcmp(args[0].from, "zlib") == 0) {
253 				compress_type = "zlib";
254 				info->compress_type = BTRFS_COMPRESS_ZLIB;
255 			} else if (strcmp(args[0].from, "lzo") == 0) {
256 				compress_type = "lzo";
257 				info->compress_type = BTRFS_COMPRESS_LZO;
258 			} else {
259 				ret = -EINVAL;
260 				goto out;
261 			}
262 
263 			btrfs_set_opt(info->mount_opt, COMPRESS);
264 			if (compress_force) {
265 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
266 				pr_info("btrfs: force %s compression\n",
267 					compress_type);
268 			} else
269 				pr_info("btrfs: use %s compression\n",
270 					compress_type);
271 			break;
272 		case Opt_ssd:
273 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
274 			btrfs_set_opt(info->mount_opt, SSD);
275 			break;
276 		case Opt_ssd_spread:
277 			printk(KERN_INFO "btrfs: use spread ssd "
278 			       "allocation scheme\n");
279 			btrfs_set_opt(info->mount_opt, SSD);
280 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
281 			break;
282 		case Opt_nossd:
283 			printk(KERN_INFO "btrfs: not using ssd allocation "
284 			       "scheme\n");
285 			btrfs_set_opt(info->mount_opt, NOSSD);
286 			btrfs_clear_opt(info->mount_opt, SSD);
287 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
288 			break;
289 		case Opt_nobarrier:
290 			printk(KERN_INFO "btrfs: turning off barriers\n");
291 			btrfs_set_opt(info->mount_opt, NOBARRIER);
292 			break;
293 		case Opt_thread_pool:
294 			intarg = 0;
295 			match_int(&args[0], &intarg);
296 			if (intarg) {
297 				info->thread_pool_size = intarg;
298 				printk(KERN_INFO "btrfs: thread pool %d\n",
299 				       info->thread_pool_size);
300 			}
301 			break;
302 		case Opt_max_inline:
303 			num = match_strdup(&args[0]);
304 			if (num) {
305 				info->max_inline = memparse(num, NULL);
306 				kfree(num);
307 
308 				if (info->max_inline) {
309 					info->max_inline = max_t(u64,
310 						info->max_inline,
311 						root->sectorsize);
312 				}
313 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
314 					(unsigned long long)info->max_inline);
315 			}
316 			break;
317 		case Opt_alloc_start:
318 			num = match_strdup(&args[0]);
319 			if (num) {
320 				info->alloc_start = memparse(num, NULL);
321 				kfree(num);
322 				printk(KERN_INFO
323 					"btrfs: allocations start at %llu\n",
324 					(unsigned long long)info->alloc_start);
325 			}
326 			break;
327 		case Opt_noacl:
328 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
329 			break;
330 		case Opt_notreelog:
331 			printk(KERN_INFO "btrfs: disabling tree log\n");
332 			btrfs_set_opt(info->mount_opt, NOTREELOG);
333 			break;
334 		case Opt_flushoncommit:
335 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
336 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
337 			break;
338 		case Opt_ratio:
339 			intarg = 0;
340 			match_int(&args[0], &intarg);
341 			if (intarg) {
342 				info->metadata_ratio = intarg;
343 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
344 				       info->metadata_ratio);
345 			}
346 			break;
347 		case Opt_discard:
348 			btrfs_set_opt(info->mount_opt, DISCARD);
349 			break;
350 		case Opt_space_cache:
351 			printk(KERN_INFO "btrfs: enabling disk space caching\n");
352 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
353 			break;
354 		case Opt_clear_cache:
355 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
356 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
357 			break;
358 		case Opt_user_subvol_rm_allowed:
359 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
360 			break;
361 		case Opt_err:
362 			printk(KERN_INFO "btrfs: unrecognized mount option "
363 			       "'%s'\n", p);
364 			ret = -EINVAL;
365 			goto out;
366 		default:
367 			break;
368 		}
369 	}
370 out:
371 	kfree(orig);
372 	return ret;
373 }
374 
375 /*
376  * Parse mount options that are required early in the mount process.
377  *
378  * All other options will be parsed on much later in the mount process and
379  * only when we need to allocate a new super block.
380  */
381 static int btrfs_parse_early_options(const char *options, fmode_t flags,
382 		void *holder, char **subvol_name, u64 *subvol_objectid,
383 		struct btrfs_fs_devices **fs_devices)
384 {
385 	substring_t args[MAX_OPT_ARGS];
386 	char *opts, *p;
387 	int error = 0;
388 	int intarg;
389 
390 	if (!options)
391 		goto out;
392 
393 	/*
394 	 * strsep changes the string, duplicate it because parse_options
395 	 * gets called twice
396 	 */
397 	opts = kstrdup(options, GFP_KERNEL);
398 	if (!opts)
399 		return -ENOMEM;
400 
401 	while ((p = strsep(&opts, ",")) != NULL) {
402 		int token;
403 		if (!*p)
404 			continue;
405 
406 		token = match_token(p, tokens, args);
407 		switch (token) {
408 		case Opt_subvol:
409 			*subvol_name = match_strdup(&args[0]);
410 			break;
411 		case Opt_subvolid:
412 			intarg = 0;
413 			error = match_int(&args[0], &intarg);
414 			if (!error) {
415 				/* we want the original fs_tree */
416 				if (!intarg)
417 					*subvol_objectid =
418 						BTRFS_FS_TREE_OBJECTID;
419 				else
420 					*subvol_objectid = intarg;
421 			}
422 			break;
423 		case Opt_device:
424 			error = btrfs_scan_one_device(match_strdup(&args[0]),
425 					flags, holder, fs_devices);
426 			if (error)
427 				goto out_free_opts;
428 			break;
429 		default:
430 			break;
431 		}
432 	}
433 
434  out_free_opts:
435 	kfree(opts);
436  out:
437 	/*
438 	 * If no subvolume name is specified we use the default one.  Allocate
439 	 * a copy of the string "." here so that code later in the
440 	 * mount path doesn't care if it's the default volume or another one.
441 	 */
442 	if (!*subvol_name) {
443 		*subvol_name = kstrdup(".", GFP_KERNEL);
444 		if (!*subvol_name)
445 			return -ENOMEM;
446 	}
447 	return error;
448 }
449 
450 static struct dentry *get_default_root(struct super_block *sb,
451 				       u64 subvol_objectid)
452 {
453 	struct btrfs_root *root = sb->s_fs_info;
454 	struct btrfs_root *new_root;
455 	struct btrfs_dir_item *di;
456 	struct btrfs_path *path;
457 	struct btrfs_key location;
458 	struct inode *inode;
459 	struct dentry *dentry;
460 	u64 dir_id;
461 	int new = 0;
462 
463 	/*
464 	 * We have a specific subvol we want to mount, just setup location and
465 	 * go look up the root.
466 	 */
467 	if (subvol_objectid) {
468 		location.objectid = subvol_objectid;
469 		location.type = BTRFS_ROOT_ITEM_KEY;
470 		location.offset = (u64)-1;
471 		goto find_root;
472 	}
473 
474 	path = btrfs_alloc_path();
475 	if (!path)
476 		return ERR_PTR(-ENOMEM);
477 	path->leave_spinning = 1;
478 
479 	/*
480 	 * Find the "default" dir item which points to the root item that we
481 	 * will mount by default if we haven't been given a specific subvolume
482 	 * to mount.
483 	 */
484 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
485 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
486 	if (IS_ERR(di))
487 		return ERR_CAST(di);
488 	if (!di) {
489 		/*
490 		 * Ok the default dir item isn't there.  This is weird since
491 		 * it's always been there, but don't freak out, just try and
492 		 * mount to root most subvolume.
493 		 */
494 		btrfs_free_path(path);
495 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
496 		new_root = root->fs_info->fs_root;
497 		goto setup_root;
498 	}
499 
500 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
501 	btrfs_free_path(path);
502 
503 find_root:
504 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
505 	if (IS_ERR(new_root))
506 		return ERR_CAST(new_root);
507 
508 	if (btrfs_root_refs(&new_root->root_item) == 0)
509 		return ERR_PTR(-ENOENT);
510 
511 	dir_id = btrfs_root_dirid(&new_root->root_item);
512 setup_root:
513 	location.objectid = dir_id;
514 	location.type = BTRFS_INODE_ITEM_KEY;
515 	location.offset = 0;
516 
517 	inode = btrfs_iget(sb, &location, new_root, &new);
518 	if (IS_ERR(inode))
519 		return ERR_CAST(inode);
520 
521 	/*
522 	 * If we're just mounting the root most subvol put the inode and return
523 	 * a reference to the dentry.  We will have already gotten a reference
524 	 * to the inode in btrfs_fill_super so we're good to go.
525 	 */
526 	if (!new && sb->s_root->d_inode == inode) {
527 		iput(inode);
528 		return dget(sb->s_root);
529 	}
530 
531 	if (new) {
532 		const struct qstr name = { .name = "/", .len = 1 };
533 
534 		/*
535 		 * New inode, we need to make the dentry a sibling of s_root so
536 		 * everything gets cleaned up properly on unmount.
537 		 */
538 		dentry = d_alloc(sb->s_root, &name);
539 		if (!dentry) {
540 			iput(inode);
541 			return ERR_PTR(-ENOMEM);
542 		}
543 		d_splice_alias(inode, dentry);
544 	} else {
545 		/*
546 		 * We found the inode in cache, just find a dentry for it and
547 		 * put the reference to the inode we just got.
548 		 */
549 		dentry = d_find_alias(inode);
550 		iput(inode);
551 	}
552 
553 	return dentry;
554 }
555 
556 static int btrfs_fill_super(struct super_block *sb,
557 			    struct btrfs_fs_devices *fs_devices,
558 			    void *data, int silent)
559 {
560 	struct inode *inode;
561 	struct dentry *root_dentry;
562 	struct btrfs_root *tree_root;
563 	struct btrfs_key key;
564 	int err;
565 
566 	sb->s_maxbytes = MAX_LFS_FILESIZE;
567 	sb->s_magic = BTRFS_SUPER_MAGIC;
568 	sb->s_op = &btrfs_super_ops;
569 	sb->s_d_op = &btrfs_dentry_operations;
570 	sb->s_export_op = &btrfs_export_ops;
571 	sb->s_xattr = btrfs_xattr_handlers;
572 	sb->s_time_gran = 1;
573 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
574 	sb->s_flags |= MS_POSIXACL;
575 #endif
576 
577 	tree_root = open_ctree(sb, fs_devices, (char *)data);
578 
579 	if (IS_ERR(tree_root)) {
580 		printk("btrfs: open_ctree failed\n");
581 		return PTR_ERR(tree_root);
582 	}
583 	sb->s_fs_info = tree_root;
584 
585 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
586 	key.type = BTRFS_INODE_ITEM_KEY;
587 	key.offset = 0;
588 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
589 	if (IS_ERR(inode)) {
590 		err = PTR_ERR(inode);
591 		goto fail_close;
592 	}
593 
594 	root_dentry = d_alloc_root(inode);
595 	if (!root_dentry) {
596 		iput(inode);
597 		err = -ENOMEM;
598 		goto fail_close;
599 	}
600 
601 	sb->s_root = root_dentry;
602 
603 	save_mount_options(sb, data);
604 	return 0;
605 
606 fail_close:
607 	close_ctree(tree_root);
608 	return err;
609 }
610 
611 int btrfs_sync_fs(struct super_block *sb, int wait)
612 {
613 	struct btrfs_trans_handle *trans;
614 	struct btrfs_root *root = btrfs_sb(sb);
615 	int ret;
616 
617 	if (!wait) {
618 		filemap_flush(root->fs_info->btree_inode->i_mapping);
619 		return 0;
620 	}
621 
622 	btrfs_start_delalloc_inodes(root, 0);
623 	btrfs_wait_ordered_extents(root, 0, 0);
624 
625 	trans = btrfs_start_transaction(root, 0);
626 	ret = btrfs_commit_transaction(trans, root);
627 	return ret;
628 }
629 
630 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
631 {
632 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
633 	struct btrfs_fs_info *info = root->fs_info;
634 
635 	if (btrfs_test_opt(root, DEGRADED))
636 		seq_puts(seq, ",degraded");
637 	if (btrfs_test_opt(root, NODATASUM))
638 		seq_puts(seq, ",nodatasum");
639 	if (btrfs_test_opt(root, NODATACOW))
640 		seq_puts(seq, ",nodatacow");
641 	if (btrfs_test_opt(root, NOBARRIER))
642 		seq_puts(seq, ",nobarrier");
643 	if (info->max_inline != 8192 * 1024)
644 		seq_printf(seq, ",max_inline=%llu",
645 			   (unsigned long long)info->max_inline);
646 	if (info->alloc_start != 0)
647 		seq_printf(seq, ",alloc_start=%llu",
648 			   (unsigned long long)info->alloc_start);
649 	if (info->thread_pool_size !=  min_t(unsigned long,
650 					     num_online_cpus() + 2, 8))
651 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
652 	if (btrfs_test_opt(root, COMPRESS))
653 		seq_puts(seq, ",compress");
654 	if (btrfs_test_opt(root, NOSSD))
655 		seq_puts(seq, ",nossd");
656 	if (btrfs_test_opt(root, SSD_SPREAD))
657 		seq_puts(seq, ",ssd_spread");
658 	else if (btrfs_test_opt(root, SSD))
659 		seq_puts(seq, ",ssd");
660 	if (btrfs_test_opt(root, NOTREELOG))
661 		seq_puts(seq, ",notreelog");
662 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
663 		seq_puts(seq, ",flushoncommit");
664 	if (btrfs_test_opt(root, DISCARD))
665 		seq_puts(seq, ",discard");
666 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
667 		seq_puts(seq, ",noacl");
668 	return 0;
669 }
670 
671 static int btrfs_test_super(struct super_block *s, void *data)
672 {
673 	struct btrfs_root *test_root = data;
674 	struct btrfs_root *root = btrfs_sb(s);
675 
676 	/*
677 	 * If this super block is going away, return false as it
678 	 * can't match as an existing super block.
679 	 */
680 	if (!atomic_read(&s->s_active))
681 		return 0;
682 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
683 }
684 
685 static int btrfs_set_super(struct super_block *s, void *data)
686 {
687 	s->s_fs_info = data;
688 
689 	return set_anon_super(s, data);
690 }
691 
692 
693 /*
694  * Find a superblock for the given device / mount point.
695  *
696  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
697  *	  for multiple device setup.  Make sure to keep it in sync.
698  */
699 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
700 		const char *dev_name, void *data)
701 {
702 	struct block_device *bdev = NULL;
703 	struct super_block *s;
704 	struct dentry *root;
705 	struct btrfs_fs_devices *fs_devices = NULL;
706 	struct btrfs_root *tree_root = NULL;
707 	struct btrfs_fs_info *fs_info = NULL;
708 	fmode_t mode = FMODE_READ;
709 	char *subvol_name = NULL;
710 	u64 subvol_objectid = 0;
711 	int error = 0;
712 
713 	if (!(flags & MS_RDONLY))
714 		mode |= FMODE_WRITE;
715 
716 	error = btrfs_parse_early_options(data, mode, fs_type,
717 					  &subvol_name, &subvol_objectid,
718 					  &fs_devices);
719 	if (error)
720 		return ERR_PTR(error);
721 
722 	error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
723 	if (error)
724 		goto error_free_subvol_name;
725 
726 	error = btrfs_open_devices(fs_devices, mode, fs_type);
727 	if (error)
728 		goto error_free_subvol_name;
729 
730 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
731 		error = -EACCES;
732 		goto error_close_devices;
733 	}
734 
735 	/*
736 	 * Setup a dummy root and fs_info for test/set super.  This is because
737 	 * we don't actually fill this stuff out until open_ctree, but we need
738 	 * it for searching for existing supers, so this lets us do that and
739 	 * then open_ctree will properly initialize everything later.
740 	 */
741 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
742 	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
743 	if (!fs_info || !tree_root) {
744 		error = -ENOMEM;
745 		goto error_close_devices;
746 	}
747 	fs_info->tree_root = tree_root;
748 	fs_info->fs_devices = fs_devices;
749 	tree_root->fs_info = fs_info;
750 
751 	bdev = fs_devices->latest_bdev;
752 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
753 	if (IS_ERR(s))
754 		goto error_s;
755 
756 	if (s->s_root) {
757 		if ((flags ^ s->s_flags) & MS_RDONLY) {
758 			deactivate_locked_super(s);
759 			error = -EBUSY;
760 			goto error_close_devices;
761 		}
762 
763 		btrfs_close_devices(fs_devices);
764 	} else {
765 		char b[BDEVNAME_SIZE];
766 
767 		s->s_flags = flags;
768 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
769 		error = btrfs_fill_super(s, fs_devices, data,
770 					 flags & MS_SILENT ? 1 : 0);
771 		if (error) {
772 			deactivate_locked_super(s);
773 			goto error_free_subvol_name;
774 		}
775 
776 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
777 		s->s_flags |= MS_ACTIVE;
778 	}
779 
780 	root = get_default_root(s, subvol_objectid);
781 	if (IS_ERR(root)) {
782 		error = PTR_ERR(root);
783 		deactivate_locked_super(s);
784 		goto error_free_subvol_name;
785 	}
786 	/* if they gave us a subvolume name bind mount into that */
787 	if (strcmp(subvol_name, ".")) {
788 		struct dentry *new_root;
789 		mutex_lock(&root->d_inode->i_mutex);
790 		new_root = lookup_one_len(subvol_name, root,
791 				      strlen(subvol_name));
792 		mutex_unlock(&root->d_inode->i_mutex);
793 
794 		if (IS_ERR(new_root)) {
795 			dput(root);
796 			deactivate_locked_super(s);
797 			error = PTR_ERR(new_root);
798 			goto error_free_subvol_name;
799 		}
800 		if (!new_root->d_inode) {
801 			dput(root);
802 			dput(new_root);
803 			deactivate_locked_super(s);
804 			error = -ENXIO;
805 			goto error_free_subvol_name;
806 		}
807 		dput(root);
808 		root = new_root;
809 	}
810 
811 	kfree(subvol_name);
812 	return root;
813 
814 error_s:
815 	error = PTR_ERR(s);
816 error_close_devices:
817 	btrfs_close_devices(fs_devices);
818 	kfree(fs_info);
819 	kfree(tree_root);
820 error_free_subvol_name:
821 	kfree(subvol_name);
822 	return ERR_PTR(error);
823 }
824 
825 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
826 {
827 	struct btrfs_root *root = btrfs_sb(sb);
828 	int ret;
829 
830 	ret = btrfs_parse_options(root, data);
831 	if (ret)
832 		return -EINVAL;
833 
834 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
835 		return 0;
836 
837 	if (*flags & MS_RDONLY) {
838 		sb->s_flags |= MS_RDONLY;
839 
840 		ret =  btrfs_commit_super(root);
841 		WARN_ON(ret);
842 	} else {
843 		if (root->fs_info->fs_devices->rw_devices == 0)
844 			return -EACCES;
845 
846 		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
847 			return -EINVAL;
848 
849 		ret = btrfs_cleanup_fs_roots(root->fs_info);
850 		WARN_ON(ret);
851 
852 		/* recover relocation */
853 		ret = btrfs_recover_relocation(root);
854 		WARN_ON(ret);
855 
856 		sb->s_flags &= ~MS_RDONLY;
857 	}
858 
859 	return 0;
860 }
861 
862 /*
863  * The helper to calc the free space on the devices that can be used to store
864  * file data.
865  */
866 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
867 {
868 	struct btrfs_fs_info *fs_info = root->fs_info;
869 	struct btrfs_device_info *devices_info;
870 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
871 	struct btrfs_device *device;
872 	u64 skip_space;
873 	u64 type;
874 	u64 avail_space;
875 	u64 used_space;
876 	u64 min_stripe_size;
877 	int min_stripes = 1;
878 	int i = 0, nr_devices;
879 	int ret;
880 
881 	nr_devices = fs_info->fs_devices->rw_devices;
882 	BUG_ON(!nr_devices);
883 
884 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
885 			       GFP_NOFS);
886 	if (!devices_info)
887 		return -ENOMEM;
888 
889 	/* calc min stripe number for data space alloction */
890 	type = btrfs_get_alloc_profile(root, 1);
891 	if (type & BTRFS_BLOCK_GROUP_RAID0)
892 		min_stripes = 2;
893 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
894 		min_stripes = 2;
895 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
896 		min_stripes = 4;
897 
898 	if (type & BTRFS_BLOCK_GROUP_DUP)
899 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
900 	else
901 		min_stripe_size = BTRFS_STRIPE_LEN;
902 
903 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
904 		if (!device->in_fs_metadata)
905 			continue;
906 
907 		avail_space = device->total_bytes - device->bytes_used;
908 
909 		/* align with stripe_len */
910 		do_div(avail_space, BTRFS_STRIPE_LEN);
911 		avail_space *= BTRFS_STRIPE_LEN;
912 
913 		/*
914 		 * In order to avoid overwritting the superblock on the drive,
915 		 * btrfs starts at an offset of at least 1MB when doing chunk
916 		 * allocation.
917 		 */
918 		skip_space = 1024 * 1024;
919 
920 		/* user can set the offset in fs_info->alloc_start. */
921 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
922 		    device->total_bytes)
923 			skip_space = max(fs_info->alloc_start, skip_space);
924 
925 		/*
926 		 * btrfs can not use the free space in [0, skip_space - 1],
927 		 * we must subtract it from the total. In order to implement
928 		 * it, we account the used space in this range first.
929 		 */
930 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
931 						     &used_space);
932 		if (ret) {
933 			kfree(devices_info);
934 			return ret;
935 		}
936 
937 		/* calc the free space in [0, skip_space - 1] */
938 		skip_space -= used_space;
939 
940 		/*
941 		 * we can use the free space in [0, skip_space - 1], subtract
942 		 * it from the total.
943 		 */
944 		if (avail_space && avail_space >= skip_space)
945 			avail_space -= skip_space;
946 		else
947 			avail_space = 0;
948 
949 		if (avail_space < min_stripe_size)
950 			continue;
951 
952 		devices_info[i].dev = device;
953 		devices_info[i].max_avail = avail_space;
954 
955 		i++;
956 	}
957 
958 	nr_devices = i;
959 
960 	btrfs_descending_sort_devices(devices_info, nr_devices);
961 
962 	i = nr_devices - 1;
963 	avail_space = 0;
964 	while (nr_devices >= min_stripes) {
965 		if (devices_info[i].max_avail >= min_stripe_size) {
966 			int j;
967 			u64 alloc_size;
968 
969 			avail_space += devices_info[i].max_avail * min_stripes;
970 			alloc_size = devices_info[i].max_avail;
971 			for (j = i + 1 - min_stripes; j <= i; j++)
972 				devices_info[j].max_avail -= alloc_size;
973 		}
974 		i--;
975 		nr_devices--;
976 	}
977 
978 	kfree(devices_info);
979 	*free_bytes = avail_space;
980 	return 0;
981 }
982 
983 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
984 {
985 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
986 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
987 	struct list_head *head = &root->fs_info->space_info;
988 	struct btrfs_space_info *found;
989 	u64 total_used = 0;
990 	u64 total_free_data = 0;
991 	int bits = dentry->d_sb->s_blocksize_bits;
992 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
993 	int ret;
994 
995 	/* holding chunk_muext to avoid allocating new chunks */
996 	mutex_lock(&root->fs_info->chunk_mutex);
997 	rcu_read_lock();
998 	list_for_each_entry_rcu(found, head, list) {
999 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1000 			total_free_data += found->disk_total - found->disk_used;
1001 			total_free_data -=
1002 				btrfs_account_ro_block_groups_free_space(found);
1003 		}
1004 
1005 		total_used += found->disk_used;
1006 	}
1007 	rcu_read_unlock();
1008 
1009 	buf->f_namelen = BTRFS_NAME_LEN;
1010 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1011 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1012 	buf->f_bsize = dentry->d_sb->s_blocksize;
1013 	buf->f_type = BTRFS_SUPER_MAGIC;
1014 	buf->f_bavail = total_free_data;
1015 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1016 	if (ret) {
1017 		mutex_unlock(&root->fs_info->chunk_mutex);
1018 		return ret;
1019 	}
1020 	buf->f_bavail += total_free_data;
1021 	buf->f_bavail = buf->f_bavail >> bits;
1022 	mutex_unlock(&root->fs_info->chunk_mutex);
1023 
1024 	/* We treat it as constant endianness (it doesn't matter _which_)
1025 	   because we want the fsid to come out the same whether mounted
1026 	   on a big-endian or little-endian host */
1027 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1028 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1029 	/* Mask in the root object ID too, to disambiguate subvols */
1030 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1031 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1032 
1033 	return 0;
1034 }
1035 
1036 static struct file_system_type btrfs_fs_type = {
1037 	.owner		= THIS_MODULE,
1038 	.name		= "btrfs",
1039 	.mount		= btrfs_mount,
1040 	.kill_sb	= kill_anon_super,
1041 	.fs_flags	= FS_REQUIRES_DEV,
1042 };
1043 
1044 /*
1045  * used by btrfsctl to scan devices when no FS is mounted
1046  */
1047 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1048 				unsigned long arg)
1049 {
1050 	struct btrfs_ioctl_vol_args *vol;
1051 	struct btrfs_fs_devices *fs_devices;
1052 	int ret = -ENOTTY;
1053 
1054 	if (!capable(CAP_SYS_ADMIN))
1055 		return -EPERM;
1056 
1057 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1058 	if (IS_ERR(vol))
1059 		return PTR_ERR(vol);
1060 
1061 	switch (cmd) {
1062 	case BTRFS_IOC_SCAN_DEV:
1063 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1064 					    &btrfs_fs_type, &fs_devices);
1065 		break;
1066 	}
1067 
1068 	kfree(vol);
1069 	return ret;
1070 }
1071 
1072 static int btrfs_freeze(struct super_block *sb)
1073 {
1074 	struct btrfs_root *root = btrfs_sb(sb);
1075 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1076 	mutex_lock(&root->fs_info->cleaner_mutex);
1077 	return 0;
1078 }
1079 
1080 static int btrfs_unfreeze(struct super_block *sb)
1081 {
1082 	struct btrfs_root *root = btrfs_sb(sb);
1083 	mutex_unlock(&root->fs_info->cleaner_mutex);
1084 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1085 	return 0;
1086 }
1087 
1088 static const struct super_operations btrfs_super_ops = {
1089 	.drop_inode	= btrfs_drop_inode,
1090 	.evict_inode	= btrfs_evict_inode,
1091 	.put_super	= btrfs_put_super,
1092 	.sync_fs	= btrfs_sync_fs,
1093 	.show_options	= btrfs_show_options,
1094 	.write_inode	= btrfs_write_inode,
1095 	.dirty_inode	= btrfs_dirty_inode,
1096 	.alloc_inode	= btrfs_alloc_inode,
1097 	.destroy_inode	= btrfs_destroy_inode,
1098 	.statfs		= btrfs_statfs,
1099 	.remount_fs	= btrfs_remount,
1100 	.freeze_fs	= btrfs_freeze,
1101 	.unfreeze_fs	= btrfs_unfreeze,
1102 };
1103 
1104 static const struct file_operations btrfs_ctl_fops = {
1105 	.unlocked_ioctl	 = btrfs_control_ioctl,
1106 	.compat_ioctl = btrfs_control_ioctl,
1107 	.owner	 = THIS_MODULE,
1108 	.llseek = noop_llseek,
1109 };
1110 
1111 static struct miscdevice btrfs_misc = {
1112 	.minor		= BTRFS_MINOR,
1113 	.name		= "btrfs-control",
1114 	.fops		= &btrfs_ctl_fops
1115 };
1116 
1117 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1118 MODULE_ALIAS("devname:btrfs-control");
1119 
1120 static int btrfs_interface_init(void)
1121 {
1122 	return misc_register(&btrfs_misc);
1123 }
1124 
1125 static void btrfs_interface_exit(void)
1126 {
1127 	if (misc_deregister(&btrfs_misc) < 0)
1128 		printk(KERN_INFO "misc_deregister failed for control device");
1129 }
1130 
1131 static int __init init_btrfs_fs(void)
1132 {
1133 	int err;
1134 
1135 	err = btrfs_init_sysfs();
1136 	if (err)
1137 		return err;
1138 
1139 	err = btrfs_init_compress();
1140 	if (err)
1141 		goto free_sysfs;
1142 
1143 	err = btrfs_init_cachep();
1144 	if (err)
1145 		goto free_compress;
1146 
1147 	err = extent_io_init();
1148 	if (err)
1149 		goto free_cachep;
1150 
1151 	err = extent_map_init();
1152 	if (err)
1153 		goto free_extent_io;
1154 
1155 	err = btrfs_interface_init();
1156 	if (err)
1157 		goto free_extent_map;
1158 
1159 	err = register_filesystem(&btrfs_fs_type);
1160 	if (err)
1161 		goto unregister_ioctl;
1162 
1163 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1164 	return 0;
1165 
1166 unregister_ioctl:
1167 	btrfs_interface_exit();
1168 free_extent_map:
1169 	extent_map_exit();
1170 free_extent_io:
1171 	extent_io_exit();
1172 free_cachep:
1173 	btrfs_destroy_cachep();
1174 free_compress:
1175 	btrfs_exit_compress();
1176 free_sysfs:
1177 	btrfs_exit_sysfs();
1178 	return err;
1179 }
1180 
1181 static void __exit exit_btrfs_fs(void)
1182 {
1183 	btrfs_destroy_cachep();
1184 	extent_map_exit();
1185 	extent_io_exit();
1186 	btrfs_interface_exit();
1187 	unregister_filesystem(&btrfs_fs_type);
1188 	btrfs_exit_sysfs();
1189 	btrfs_cleanup_fs_uuids();
1190 	btrfs_exit_compress();
1191 }
1192 
1193 module_init(init_btrfs_fs)
1194 module_exit(exit_btrfs_fs)
1195 
1196 MODULE_LICENSE("GPL");
1197