1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "props.h" 39 #include "xattr.h" 40 #include "bio.h" 41 #include "export.h" 42 #include "compression.h" 43 #include "rcu-string.h" 44 #include "dev-replace.h" 45 #include "free-space-cache.h" 46 #include "backref.h" 47 #include "space-info.h" 48 #include "sysfs.h" 49 #include "zoned.h" 50 #include "tests/btrfs-tests.h" 51 #include "block-group.h" 52 #include "discard.h" 53 #include "qgroup.h" 54 #include "raid56.h" 55 #include "fs.h" 56 #include "accessors.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "ioctl.h" 60 #include "scrub.h" 61 #include "verity.h" 62 #include "super.h" 63 #include "extent-tree.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static void btrfs_put_super(struct super_block *sb) 71 { 72 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 73 74 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 75 close_ctree(fs_info); 76 } 77 78 /* Store the mount options related information. */ 79 struct btrfs_fs_context { 80 char *subvol_name; 81 u64 subvol_objectid; 82 u64 max_inline; 83 u32 commit_interval; 84 u32 metadata_ratio; 85 u32 thread_pool_size; 86 unsigned long mount_opt; 87 unsigned long compress_type:4; 88 unsigned int compress_level; 89 refcount_t refs; 90 }; 91 92 enum { 93 Opt_acl, 94 Opt_clear_cache, 95 Opt_commit_interval, 96 Opt_compress, 97 Opt_compress_force, 98 Opt_compress_force_type, 99 Opt_compress_type, 100 Opt_degraded, 101 Opt_device, 102 Opt_fatal_errors, 103 Opt_flushoncommit, 104 Opt_max_inline, 105 Opt_barrier, 106 Opt_datacow, 107 Opt_datasum, 108 Opt_defrag, 109 Opt_discard, 110 Opt_discard_mode, 111 Opt_ratio, 112 Opt_rescan_uuid_tree, 113 Opt_skip_balance, 114 Opt_space_cache, 115 Opt_space_cache_version, 116 Opt_ssd, 117 Opt_ssd_spread, 118 Opt_subvol, 119 Opt_subvol_empty, 120 Opt_subvolid, 121 Opt_thread_pool, 122 Opt_treelog, 123 Opt_user_subvol_rm_allowed, 124 125 /* Rescue options */ 126 Opt_rescue, 127 Opt_usebackuproot, 128 Opt_nologreplay, 129 Opt_ignorebadroots, 130 Opt_ignoredatacsums, 131 Opt_rescue_all, 132 133 /* Debugging options */ 134 Opt_enospc_debug, 135 #ifdef CONFIG_BTRFS_DEBUG 136 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 137 #endif 138 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 139 Opt_ref_verify, 140 #endif 141 Opt_err, 142 }; 143 144 enum { 145 Opt_fatal_errors_panic, 146 Opt_fatal_errors_bug, 147 }; 148 149 static const struct constant_table btrfs_parameter_fatal_errors[] = { 150 { "panic", Opt_fatal_errors_panic }, 151 { "bug", Opt_fatal_errors_bug }, 152 {} 153 }; 154 155 enum { 156 Opt_discard_sync, 157 Opt_discard_async, 158 }; 159 160 static const struct constant_table btrfs_parameter_discard[] = { 161 { "sync", Opt_discard_sync }, 162 { "async", Opt_discard_async }, 163 {} 164 }; 165 166 enum { 167 Opt_space_cache_v1, 168 Opt_space_cache_v2, 169 }; 170 171 static const struct constant_table btrfs_parameter_space_cache[] = { 172 { "v1", Opt_space_cache_v1 }, 173 { "v2", Opt_space_cache_v2 }, 174 {} 175 }; 176 177 enum { 178 Opt_rescue_usebackuproot, 179 Opt_rescue_nologreplay, 180 Opt_rescue_ignorebadroots, 181 Opt_rescue_ignoredatacsums, 182 Opt_rescue_parameter_all, 183 }; 184 185 static const struct constant_table btrfs_parameter_rescue[] = { 186 { "usebackuproot", Opt_rescue_usebackuproot }, 187 { "nologreplay", Opt_rescue_nologreplay }, 188 { "ignorebadroots", Opt_rescue_ignorebadroots }, 189 { "ibadroots", Opt_rescue_ignorebadroots }, 190 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 191 { "idatacsums", Opt_rescue_ignoredatacsums }, 192 { "all", Opt_rescue_parameter_all }, 193 {} 194 }; 195 196 #ifdef CONFIG_BTRFS_DEBUG 197 enum { 198 Opt_fragment_parameter_data, 199 Opt_fragment_parameter_metadata, 200 Opt_fragment_parameter_all, 201 }; 202 203 static const struct constant_table btrfs_parameter_fragment[] = { 204 { "data", Opt_fragment_parameter_data }, 205 { "metadata", Opt_fragment_parameter_metadata }, 206 { "all", Opt_fragment_parameter_all }, 207 {} 208 }; 209 #endif 210 211 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 212 fsparam_flag_no("acl", Opt_acl), 213 fsparam_flag_no("autodefrag", Opt_defrag), 214 fsparam_flag_no("barrier", Opt_barrier), 215 fsparam_flag("clear_cache", Opt_clear_cache), 216 fsparam_u32("commit", Opt_commit_interval), 217 fsparam_flag("compress", Opt_compress), 218 fsparam_string("compress", Opt_compress_type), 219 fsparam_flag("compress-force", Opt_compress_force), 220 fsparam_string("compress-force", Opt_compress_force_type), 221 fsparam_flag_no("datacow", Opt_datacow), 222 fsparam_flag_no("datasum", Opt_datasum), 223 fsparam_flag("degraded", Opt_degraded), 224 fsparam_string("device", Opt_device), 225 fsparam_flag_no("discard", Opt_discard), 226 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 227 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 228 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 229 fsparam_string("max_inline", Opt_max_inline), 230 fsparam_u32("metadata_ratio", Opt_ratio), 231 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 232 fsparam_flag("skip_balance", Opt_skip_balance), 233 fsparam_flag_no("space_cache", Opt_space_cache), 234 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 235 fsparam_flag_no("ssd", Opt_ssd), 236 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 237 fsparam_string("subvol", Opt_subvol), 238 fsparam_flag("subvol=", Opt_subvol_empty), 239 fsparam_u64("subvolid", Opt_subvolid), 240 fsparam_u32("thread_pool", Opt_thread_pool), 241 fsparam_flag_no("treelog", Opt_treelog), 242 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 243 244 /* Rescue options. */ 245 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 246 /* Deprecated, with alias rescue=nologreplay */ 247 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL), 248 /* Deprecated, with alias rescue=usebackuproot */ 249 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 250 251 /* Debugging options. */ 252 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 253 #ifdef CONFIG_BTRFS_DEBUG 254 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 255 #endif 256 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 257 fsparam_flag("ref_verify", Opt_ref_verify), 258 #endif 259 {} 260 }; 261 262 /* No support for restricting writes to btrfs devices yet... */ 263 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 264 { 265 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 266 } 267 268 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 269 { 270 struct btrfs_fs_context *ctx = fc->fs_private; 271 struct fs_parse_result result; 272 int opt; 273 274 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 275 if (opt < 0) 276 return opt; 277 278 switch (opt) { 279 case Opt_degraded: 280 btrfs_set_opt(ctx->mount_opt, DEGRADED); 281 break; 282 case Opt_subvol_empty: 283 /* 284 * This exists because we used to allow it on accident, so we're 285 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 286 * empty subvol= again"). 287 */ 288 break; 289 case Opt_subvol: 290 kfree(ctx->subvol_name); 291 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 292 if (!ctx->subvol_name) 293 return -ENOMEM; 294 break; 295 case Opt_subvolid: 296 ctx->subvol_objectid = result.uint_64; 297 298 /* subvolid=0 means give me the original fs_tree. */ 299 if (!ctx->subvol_objectid) 300 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 301 break; 302 case Opt_device: { 303 struct btrfs_device *device; 304 blk_mode_t mode = btrfs_open_mode(fc); 305 306 mutex_lock(&uuid_mutex); 307 device = btrfs_scan_one_device(param->string, mode, false); 308 mutex_unlock(&uuid_mutex); 309 if (IS_ERR(device)) 310 return PTR_ERR(device); 311 break; 312 } 313 case Opt_datasum: 314 if (result.negated) { 315 btrfs_set_opt(ctx->mount_opt, NODATASUM); 316 } else { 317 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 318 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 319 } 320 break; 321 case Opt_datacow: 322 if (result.negated) { 323 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 324 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 325 btrfs_set_opt(ctx->mount_opt, NODATACOW); 326 btrfs_set_opt(ctx->mount_opt, NODATASUM); 327 } else { 328 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 329 } 330 break; 331 case Opt_compress_force: 332 case Opt_compress_force_type: 333 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 334 fallthrough; 335 case Opt_compress: 336 case Opt_compress_type: 337 if (opt == Opt_compress || opt == Opt_compress_force) { 338 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 339 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 340 btrfs_set_opt(ctx->mount_opt, COMPRESS); 341 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 342 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 343 } else if (strncmp(param->string, "zlib", 4) == 0) { 344 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 345 ctx->compress_level = 346 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 347 param->string + 4); 348 btrfs_set_opt(ctx->mount_opt, COMPRESS); 349 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 350 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 351 } else if (strncmp(param->string, "lzo", 3) == 0) { 352 ctx->compress_type = BTRFS_COMPRESS_LZO; 353 ctx->compress_level = 0; 354 btrfs_set_opt(ctx->mount_opt, COMPRESS); 355 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 356 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 357 } else if (strncmp(param->string, "zstd", 4) == 0) { 358 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 359 ctx->compress_level = 360 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 361 param->string + 4); 362 btrfs_set_opt(ctx->mount_opt, COMPRESS); 363 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 364 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 365 } else if (strncmp(param->string, "no", 2) == 0) { 366 ctx->compress_level = 0; 367 ctx->compress_type = 0; 368 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 369 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 370 } else { 371 btrfs_err(NULL, "unrecognized compression value %s", 372 param->string); 373 return -EINVAL; 374 } 375 break; 376 case Opt_ssd: 377 if (result.negated) { 378 btrfs_set_opt(ctx->mount_opt, NOSSD); 379 btrfs_clear_opt(ctx->mount_opt, SSD); 380 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 381 } else { 382 btrfs_set_opt(ctx->mount_opt, SSD); 383 btrfs_clear_opt(ctx->mount_opt, NOSSD); 384 } 385 break; 386 case Opt_ssd_spread: 387 if (result.negated) { 388 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 389 } else { 390 btrfs_set_opt(ctx->mount_opt, SSD); 391 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 392 btrfs_clear_opt(ctx->mount_opt, NOSSD); 393 } 394 break; 395 case Opt_barrier: 396 if (result.negated) 397 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 398 else 399 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 400 break; 401 case Opt_thread_pool: 402 if (result.uint_32 == 0) { 403 btrfs_err(NULL, "invalid value 0 for thread_pool"); 404 return -EINVAL; 405 } 406 ctx->thread_pool_size = result.uint_32; 407 break; 408 case Opt_max_inline: 409 ctx->max_inline = memparse(param->string, NULL); 410 break; 411 case Opt_acl: 412 if (result.negated) { 413 fc->sb_flags &= ~SB_POSIXACL; 414 } else { 415 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 416 fc->sb_flags |= SB_POSIXACL; 417 #else 418 btrfs_err(NULL, "support for ACL not compiled in"); 419 return -EINVAL; 420 #endif 421 } 422 /* 423 * VFS limits the ability to toggle ACL on and off via remount, 424 * despite every file system allowing this. This seems to be 425 * an oversight since we all do, but it'll fail if we're 426 * remounting. So don't set the mask here, we'll check it in 427 * btrfs_reconfigure and do the toggling ourselves. 428 */ 429 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 430 fc->sb_flags_mask |= SB_POSIXACL; 431 break; 432 case Opt_treelog: 433 if (result.negated) 434 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 435 else 436 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 437 break; 438 case Opt_nologreplay: 439 btrfs_warn(NULL, 440 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 441 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 442 break; 443 case Opt_flushoncommit: 444 if (result.negated) 445 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 446 else 447 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 448 break; 449 case Opt_ratio: 450 ctx->metadata_ratio = result.uint_32; 451 break; 452 case Opt_discard: 453 if (result.negated) { 454 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 455 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 456 btrfs_set_opt(ctx->mount_opt, NODISCARD); 457 } else { 458 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 459 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 460 } 461 break; 462 case Opt_discard_mode: 463 switch (result.uint_32) { 464 case Opt_discard_sync: 465 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 466 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 467 break; 468 case Opt_discard_async: 469 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 470 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 471 break; 472 default: 473 btrfs_err(NULL, "unrecognized discard mode value %s", 474 param->key); 475 return -EINVAL; 476 } 477 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 478 break; 479 case Opt_space_cache: 480 if (result.negated) { 481 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 482 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 483 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 484 } else { 485 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 486 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 487 } 488 break; 489 case Opt_space_cache_version: 490 switch (result.uint_32) { 491 case Opt_space_cache_v1: 492 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 493 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 494 break; 495 case Opt_space_cache_v2: 496 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 497 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 498 break; 499 default: 500 btrfs_err(NULL, "unrecognized space_cache value %s", 501 param->key); 502 return -EINVAL; 503 } 504 break; 505 case Opt_rescan_uuid_tree: 506 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 507 break; 508 case Opt_clear_cache: 509 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 510 break; 511 case Opt_user_subvol_rm_allowed: 512 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 513 break; 514 case Opt_enospc_debug: 515 if (result.negated) 516 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 517 else 518 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 519 break; 520 case Opt_defrag: 521 if (result.negated) 522 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 523 else 524 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 525 break; 526 case Opt_usebackuproot: 527 btrfs_warn(NULL, 528 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 529 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 530 531 /* If we're loading the backup roots we can't trust the space cache. */ 532 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 533 break; 534 case Opt_skip_balance: 535 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 536 break; 537 case Opt_fatal_errors: 538 switch (result.uint_32) { 539 case Opt_fatal_errors_panic: 540 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 541 break; 542 case Opt_fatal_errors_bug: 543 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 544 break; 545 default: 546 btrfs_err(NULL, "unrecognized fatal_errors value %s", 547 param->key); 548 return -EINVAL; 549 } 550 break; 551 case Opt_commit_interval: 552 ctx->commit_interval = result.uint_32; 553 if (ctx->commit_interval == 0) 554 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 555 break; 556 case Opt_rescue: 557 switch (result.uint_32) { 558 case Opt_rescue_usebackuproot: 559 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 560 break; 561 case Opt_rescue_nologreplay: 562 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 563 break; 564 case Opt_rescue_ignorebadroots: 565 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 566 break; 567 case Opt_rescue_ignoredatacsums: 568 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 569 break; 570 case Opt_rescue_parameter_all: 571 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 572 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 573 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 574 break; 575 default: 576 btrfs_info(NULL, "unrecognized rescue option '%s'", 577 param->key); 578 return -EINVAL; 579 } 580 break; 581 #ifdef CONFIG_BTRFS_DEBUG 582 case Opt_fragment: 583 switch (result.uint_32) { 584 case Opt_fragment_parameter_all: 585 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 586 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 587 break; 588 case Opt_fragment_parameter_metadata: 589 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 590 break; 591 case Opt_fragment_parameter_data: 592 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 593 break; 594 default: 595 btrfs_info(NULL, "unrecognized fragment option '%s'", 596 param->key); 597 return -EINVAL; 598 } 599 break; 600 #endif 601 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 602 case Opt_ref_verify: 603 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 604 break; 605 #endif 606 default: 607 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 608 return -EINVAL; 609 } 610 611 return 0; 612 } 613 614 /* 615 * Some options only have meaning at mount time and shouldn't persist across 616 * remounts, or be displayed. Clear these at the end of mount and remount code 617 * paths. 618 */ 619 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 620 { 621 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 622 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 623 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 624 } 625 626 static bool check_ro_option(struct btrfs_fs_info *fs_info, 627 unsigned long mount_opt, unsigned long opt, 628 const char *opt_name) 629 { 630 if (mount_opt & opt) { 631 btrfs_err(fs_info, "%s must be used with ro mount option", 632 opt_name); 633 return true; 634 } 635 return false; 636 } 637 638 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt, 639 unsigned long flags) 640 { 641 bool ret = true; 642 643 if (!(flags & SB_RDONLY) && 644 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 645 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 646 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))) 647 ret = false; 648 649 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 650 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 651 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 652 btrfs_err(info, "cannot disable free-space-tree"); 653 ret = false; 654 } 655 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 656 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 657 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 658 ret = false; 659 } 660 661 if (btrfs_check_mountopts_zoned(info, mount_opt)) 662 ret = false; 663 664 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 665 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) 666 btrfs_info(info, "disk space caching is enabled"); 667 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 668 btrfs_info(info, "using free-space-tree"); 669 } 670 671 return ret; 672 } 673 674 /* 675 * This is subtle, we only call this during open_ctree(). We need to pre-load 676 * the mount options with the on-disk settings. Before the new mount API took 677 * effect we would do this on mount and remount. With the new mount API we'll 678 * only do this on the initial mount. 679 * 680 * This isn't a change in behavior, because we're using the current state of the 681 * file system to set the current mount options. If you mounted with special 682 * options to disable these features and then remounted we wouldn't revert the 683 * settings, because mounting without these features cleared the on-disk 684 * settings, so this being called on re-mount is not needed. 685 */ 686 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 687 { 688 if (fs_info->sectorsize < PAGE_SIZE) { 689 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 690 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 691 btrfs_info(fs_info, 692 "forcing free space tree for sector size %u with page size %lu", 693 fs_info->sectorsize, PAGE_SIZE); 694 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 695 } 696 } 697 698 /* 699 * At this point our mount options are populated, so we only mess with 700 * these settings if we don't have any settings already. 701 */ 702 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 703 return; 704 705 if (btrfs_is_zoned(fs_info) && 706 btrfs_free_space_cache_v1_active(fs_info)) { 707 btrfs_info(fs_info, "zoned: clearing existing space cache"); 708 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 709 return; 710 } 711 712 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 713 return; 714 715 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 716 return; 717 718 /* 719 * At this point we don't have explicit options set by the user, set 720 * them ourselves based on the state of the file system. 721 */ 722 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 723 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 724 else if (btrfs_free_space_cache_v1_active(fs_info)) 725 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 726 } 727 728 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 729 { 730 if (!btrfs_test_opt(fs_info, NOSSD) && 731 !fs_info->fs_devices->rotating) 732 btrfs_set_opt(fs_info->mount_opt, SSD); 733 734 /* 735 * For devices supporting discard turn on discard=async automatically, 736 * unless it's already set or disabled. This could be turned off by 737 * nodiscard for the same mount. 738 * 739 * The zoned mode piggy backs on the discard functionality for 740 * resetting a zone. There is no reason to delay the zone reset as it is 741 * fast enough. So, do not enable async discard for zoned mode. 742 */ 743 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 744 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 745 btrfs_test_opt(fs_info, NODISCARD)) && 746 fs_info->fs_devices->discardable && 747 !btrfs_is_zoned(fs_info)) 748 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 749 } 750 751 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 752 u64 subvol_objectid) 753 { 754 struct btrfs_root *root = fs_info->tree_root; 755 struct btrfs_root *fs_root = NULL; 756 struct btrfs_root_ref *root_ref; 757 struct btrfs_inode_ref *inode_ref; 758 struct btrfs_key key; 759 struct btrfs_path *path = NULL; 760 char *name = NULL, *ptr; 761 u64 dirid; 762 int len; 763 int ret; 764 765 path = btrfs_alloc_path(); 766 if (!path) { 767 ret = -ENOMEM; 768 goto err; 769 } 770 771 name = kmalloc(PATH_MAX, GFP_KERNEL); 772 if (!name) { 773 ret = -ENOMEM; 774 goto err; 775 } 776 ptr = name + PATH_MAX - 1; 777 ptr[0] = '\0'; 778 779 /* 780 * Walk up the subvolume trees in the tree of tree roots by root 781 * backrefs until we hit the top-level subvolume. 782 */ 783 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 784 key.objectid = subvol_objectid; 785 key.type = BTRFS_ROOT_BACKREF_KEY; 786 key.offset = (u64)-1; 787 788 ret = btrfs_search_backwards(root, &key, path); 789 if (ret < 0) { 790 goto err; 791 } else if (ret > 0) { 792 ret = -ENOENT; 793 goto err; 794 } 795 796 subvol_objectid = key.offset; 797 798 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 799 struct btrfs_root_ref); 800 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 801 ptr -= len + 1; 802 if (ptr < name) { 803 ret = -ENAMETOOLONG; 804 goto err; 805 } 806 read_extent_buffer(path->nodes[0], ptr + 1, 807 (unsigned long)(root_ref + 1), len); 808 ptr[0] = '/'; 809 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 810 btrfs_release_path(path); 811 812 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 813 if (IS_ERR(fs_root)) { 814 ret = PTR_ERR(fs_root); 815 fs_root = NULL; 816 goto err; 817 } 818 819 /* 820 * Walk up the filesystem tree by inode refs until we hit the 821 * root directory. 822 */ 823 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 824 key.objectid = dirid; 825 key.type = BTRFS_INODE_REF_KEY; 826 key.offset = (u64)-1; 827 828 ret = btrfs_search_backwards(fs_root, &key, path); 829 if (ret < 0) { 830 goto err; 831 } else if (ret > 0) { 832 ret = -ENOENT; 833 goto err; 834 } 835 836 dirid = key.offset; 837 838 inode_ref = btrfs_item_ptr(path->nodes[0], 839 path->slots[0], 840 struct btrfs_inode_ref); 841 len = btrfs_inode_ref_name_len(path->nodes[0], 842 inode_ref); 843 ptr -= len + 1; 844 if (ptr < name) { 845 ret = -ENAMETOOLONG; 846 goto err; 847 } 848 read_extent_buffer(path->nodes[0], ptr + 1, 849 (unsigned long)(inode_ref + 1), len); 850 ptr[0] = '/'; 851 btrfs_release_path(path); 852 } 853 btrfs_put_root(fs_root); 854 fs_root = NULL; 855 } 856 857 btrfs_free_path(path); 858 if (ptr == name + PATH_MAX - 1) { 859 name[0] = '/'; 860 name[1] = '\0'; 861 } else { 862 memmove(name, ptr, name + PATH_MAX - ptr); 863 } 864 return name; 865 866 err: 867 btrfs_put_root(fs_root); 868 btrfs_free_path(path); 869 kfree(name); 870 return ERR_PTR(ret); 871 } 872 873 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 874 { 875 struct btrfs_root *root = fs_info->tree_root; 876 struct btrfs_dir_item *di; 877 struct btrfs_path *path; 878 struct btrfs_key location; 879 struct fscrypt_str name = FSTR_INIT("default", 7); 880 u64 dir_id; 881 882 path = btrfs_alloc_path(); 883 if (!path) 884 return -ENOMEM; 885 886 /* 887 * Find the "default" dir item which points to the root item that we 888 * will mount by default if we haven't been given a specific subvolume 889 * to mount. 890 */ 891 dir_id = btrfs_super_root_dir(fs_info->super_copy); 892 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 893 if (IS_ERR(di)) { 894 btrfs_free_path(path); 895 return PTR_ERR(di); 896 } 897 if (!di) { 898 /* 899 * Ok the default dir item isn't there. This is weird since 900 * it's always been there, but don't freak out, just try and 901 * mount the top-level subvolume. 902 */ 903 btrfs_free_path(path); 904 *objectid = BTRFS_FS_TREE_OBJECTID; 905 return 0; 906 } 907 908 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 909 btrfs_free_path(path); 910 *objectid = location.objectid; 911 return 0; 912 } 913 914 static int btrfs_fill_super(struct super_block *sb, 915 struct btrfs_fs_devices *fs_devices, 916 void *data) 917 { 918 struct inode *inode; 919 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 920 int err; 921 922 sb->s_maxbytes = MAX_LFS_FILESIZE; 923 sb->s_magic = BTRFS_SUPER_MAGIC; 924 sb->s_op = &btrfs_super_ops; 925 sb->s_d_op = &btrfs_dentry_operations; 926 sb->s_export_op = &btrfs_export_ops; 927 #ifdef CONFIG_FS_VERITY 928 sb->s_vop = &btrfs_verityops; 929 #endif 930 sb->s_xattr = btrfs_xattr_handlers; 931 sb->s_time_gran = 1; 932 sb->s_iflags |= SB_I_CGROUPWB; 933 934 err = super_setup_bdi(sb); 935 if (err) { 936 btrfs_err(fs_info, "super_setup_bdi failed"); 937 return err; 938 } 939 940 err = open_ctree(sb, fs_devices, (char *)data); 941 if (err) { 942 btrfs_err(fs_info, "open_ctree failed"); 943 return err; 944 } 945 946 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 947 if (IS_ERR(inode)) { 948 err = PTR_ERR(inode); 949 btrfs_handle_fs_error(fs_info, err, NULL); 950 goto fail_close; 951 } 952 953 sb->s_root = d_make_root(inode); 954 if (!sb->s_root) { 955 err = -ENOMEM; 956 goto fail_close; 957 } 958 959 sb->s_flags |= SB_ACTIVE; 960 return 0; 961 962 fail_close: 963 close_ctree(fs_info); 964 return err; 965 } 966 967 int btrfs_sync_fs(struct super_block *sb, int wait) 968 { 969 struct btrfs_trans_handle *trans; 970 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 971 struct btrfs_root *root = fs_info->tree_root; 972 973 trace_btrfs_sync_fs(fs_info, wait); 974 975 if (!wait) { 976 filemap_flush(fs_info->btree_inode->i_mapping); 977 return 0; 978 } 979 980 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 981 982 trans = btrfs_attach_transaction_barrier(root); 983 if (IS_ERR(trans)) { 984 /* no transaction, don't bother */ 985 if (PTR_ERR(trans) == -ENOENT) { 986 /* 987 * Exit unless we have some pending changes 988 * that need to go through commit 989 */ 990 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 991 &fs_info->flags)) 992 return 0; 993 /* 994 * A non-blocking test if the fs is frozen. We must not 995 * start a new transaction here otherwise a deadlock 996 * happens. The pending operations are delayed to the 997 * next commit after thawing. 998 */ 999 if (sb_start_write_trylock(sb)) 1000 sb_end_write(sb); 1001 else 1002 return 0; 1003 trans = btrfs_start_transaction(root, 0); 1004 } 1005 if (IS_ERR(trans)) 1006 return PTR_ERR(trans); 1007 } 1008 return btrfs_commit_transaction(trans); 1009 } 1010 1011 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1012 { 1013 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1014 *printed = true; 1015 } 1016 1017 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1018 { 1019 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1020 const char *compress_type; 1021 const char *subvol_name; 1022 bool printed = false; 1023 1024 if (btrfs_test_opt(info, DEGRADED)) 1025 seq_puts(seq, ",degraded"); 1026 if (btrfs_test_opt(info, NODATASUM)) 1027 seq_puts(seq, ",nodatasum"); 1028 if (btrfs_test_opt(info, NODATACOW)) 1029 seq_puts(seq, ",nodatacow"); 1030 if (btrfs_test_opt(info, NOBARRIER)) 1031 seq_puts(seq, ",nobarrier"); 1032 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1033 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1034 if (info->thread_pool_size != min_t(unsigned long, 1035 num_online_cpus() + 2, 8)) 1036 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1037 if (btrfs_test_opt(info, COMPRESS)) { 1038 compress_type = btrfs_compress_type2str(info->compress_type); 1039 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1040 seq_printf(seq, ",compress-force=%s", compress_type); 1041 else 1042 seq_printf(seq, ",compress=%s", compress_type); 1043 if (info->compress_level) 1044 seq_printf(seq, ":%d", info->compress_level); 1045 } 1046 if (btrfs_test_opt(info, NOSSD)) 1047 seq_puts(seq, ",nossd"); 1048 if (btrfs_test_opt(info, SSD_SPREAD)) 1049 seq_puts(seq, ",ssd_spread"); 1050 else if (btrfs_test_opt(info, SSD)) 1051 seq_puts(seq, ",ssd"); 1052 if (btrfs_test_opt(info, NOTREELOG)) 1053 seq_puts(seq, ",notreelog"); 1054 if (btrfs_test_opt(info, NOLOGREPLAY)) 1055 print_rescue_option(seq, "nologreplay", &printed); 1056 if (btrfs_test_opt(info, USEBACKUPROOT)) 1057 print_rescue_option(seq, "usebackuproot", &printed); 1058 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1059 print_rescue_option(seq, "ignorebadroots", &printed); 1060 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1061 print_rescue_option(seq, "ignoredatacsums", &printed); 1062 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1063 seq_puts(seq, ",flushoncommit"); 1064 if (btrfs_test_opt(info, DISCARD_SYNC)) 1065 seq_puts(seq, ",discard"); 1066 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1067 seq_puts(seq, ",discard=async"); 1068 if (!(info->sb->s_flags & SB_POSIXACL)) 1069 seq_puts(seq, ",noacl"); 1070 if (btrfs_free_space_cache_v1_active(info)) 1071 seq_puts(seq, ",space_cache"); 1072 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1073 seq_puts(seq, ",space_cache=v2"); 1074 else 1075 seq_puts(seq, ",nospace_cache"); 1076 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1077 seq_puts(seq, ",rescan_uuid_tree"); 1078 if (btrfs_test_opt(info, CLEAR_CACHE)) 1079 seq_puts(seq, ",clear_cache"); 1080 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1081 seq_puts(seq, ",user_subvol_rm_allowed"); 1082 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1083 seq_puts(seq, ",enospc_debug"); 1084 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1085 seq_puts(seq, ",autodefrag"); 1086 if (btrfs_test_opt(info, SKIP_BALANCE)) 1087 seq_puts(seq, ",skip_balance"); 1088 if (info->metadata_ratio) 1089 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1090 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1091 seq_puts(seq, ",fatal_errors=panic"); 1092 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1093 seq_printf(seq, ",commit=%u", info->commit_interval); 1094 #ifdef CONFIG_BTRFS_DEBUG 1095 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1096 seq_puts(seq, ",fragment=data"); 1097 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1098 seq_puts(seq, ",fragment=metadata"); 1099 #endif 1100 if (btrfs_test_opt(info, REF_VERIFY)) 1101 seq_puts(seq, ",ref_verify"); 1102 seq_printf(seq, ",subvolid=%llu", 1103 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1104 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1105 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1106 if (!IS_ERR(subvol_name)) { 1107 seq_puts(seq, ",subvol="); 1108 seq_escape(seq, subvol_name, " \t\n\\"); 1109 kfree(subvol_name); 1110 } 1111 return 0; 1112 } 1113 1114 /* 1115 * subvolumes are identified by ino 256 1116 */ 1117 static inline int is_subvolume_inode(struct inode *inode) 1118 { 1119 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1120 return 1; 1121 return 0; 1122 } 1123 1124 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1125 struct vfsmount *mnt) 1126 { 1127 struct dentry *root; 1128 int ret; 1129 1130 if (!subvol_name) { 1131 if (!subvol_objectid) { 1132 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1133 &subvol_objectid); 1134 if (ret) { 1135 root = ERR_PTR(ret); 1136 goto out; 1137 } 1138 } 1139 subvol_name = btrfs_get_subvol_name_from_objectid( 1140 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1141 if (IS_ERR(subvol_name)) { 1142 root = ERR_CAST(subvol_name); 1143 subvol_name = NULL; 1144 goto out; 1145 } 1146 1147 } 1148 1149 root = mount_subtree(mnt, subvol_name); 1150 /* mount_subtree() drops our reference on the vfsmount. */ 1151 mnt = NULL; 1152 1153 if (!IS_ERR(root)) { 1154 struct super_block *s = root->d_sb; 1155 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1156 struct inode *root_inode = d_inode(root); 1157 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1158 1159 ret = 0; 1160 if (!is_subvolume_inode(root_inode)) { 1161 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1162 subvol_name); 1163 ret = -EINVAL; 1164 } 1165 if (subvol_objectid && root_objectid != subvol_objectid) { 1166 /* 1167 * This will also catch a race condition where a 1168 * subvolume which was passed by ID is renamed and 1169 * another subvolume is renamed over the old location. 1170 */ 1171 btrfs_err(fs_info, 1172 "subvol '%s' does not match subvolid %llu", 1173 subvol_name, subvol_objectid); 1174 ret = -EINVAL; 1175 } 1176 if (ret) { 1177 dput(root); 1178 root = ERR_PTR(ret); 1179 deactivate_locked_super(s); 1180 } 1181 } 1182 1183 out: 1184 mntput(mnt); 1185 kfree(subvol_name); 1186 return root; 1187 } 1188 1189 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1190 u32 new_pool_size, u32 old_pool_size) 1191 { 1192 if (new_pool_size == old_pool_size) 1193 return; 1194 1195 fs_info->thread_pool_size = new_pool_size; 1196 1197 btrfs_info(fs_info, "resize thread pool %d -> %d", 1198 old_pool_size, new_pool_size); 1199 1200 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1201 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1202 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1203 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1204 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1205 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1206 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1207 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1208 } 1209 1210 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1211 unsigned long old_opts, int flags) 1212 { 1213 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1214 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1215 (flags & SB_RDONLY))) { 1216 /* wait for any defraggers to finish */ 1217 wait_event(fs_info->transaction_wait, 1218 (atomic_read(&fs_info->defrag_running) == 0)); 1219 if (flags & SB_RDONLY) 1220 sync_filesystem(fs_info->sb); 1221 } 1222 } 1223 1224 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1225 unsigned long old_opts) 1226 { 1227 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1228 1229 /* 1230 * We need to cleanup all defragable inodes if the autodefragment is 1231 * close or the filesystem is read only. 1232 */ 1233 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1234 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1235 btrfs_cleanup_defrag_inodes(fs_info); 1236 } 1237 1238 /* If we toggled discard async */ 1239 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1240 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1241 btrfs_discard_resume(fs_info); 1242 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1243 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1244 btrfs_discard_cleanup(fs_info); 1245 1246 /* If we toggled space cache */ 1247 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1248 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1249 } 1250 1251 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1252 { 1253 int ret; 1254 1255 if (BTRFS_FS_ERROR(fs_info)) { 1256 btrfs_err(fs_info, 1257 "remounting read-write after error is not allowed"); 1258 return -EINVAL; 1259 } 1260 1261 if (fs_info->fs_devices->rw_devices == 0) 1262 return -EACCES; 1263 1264 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1265 btrfs_warn(fs_info, 1266 "too many missing devices, writable remount is not allowed"); 1267 return -EACCES; 1268 } 1269 1270 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1271 btrfs_warn(fs_info, 1272 "mount required to replay tree-log, cannot remount read-write"); 1273 return -EINVAL; 1274 } 1275 1276 /* 1277 * NOTE: when remounting with a change that does writes, don't put it 1278 * anywhere above this point, as we are not sure to be safe to write 1279 * until we pass the above checks. 1280 */ 1281 ret = btrfs_start_pre_rw_mount(fs_info); 1282 if (ret) 1283 return ret; 1284 1285 btrfs_clear_sb_rdonly(fs_info->sb); 1286 1287 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1288 1289 /* 1290 * If we've gone from readonly -> read-write, we need to get our 1291 * sync/async discard lists in the right state. 1292 */ 1293 btrfs_discard_resume(fs_info); 1294 1295 return 0; 1296 } 1297 1298 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1299 { 1300 /* 1301 * This also happens on 'umount -rf' or on shutdown, when the 1302 * filesystem is busy. 1303 */ 1304 cancel_work_sync(&fs_info->async_reclaim_work); 1305 cancel_work_sync(&fs_info->async_data_reclaim_work); 1306 1307 btrfs_discard_cleanup(fs_info); 1308 1309 /* Wait for the uuid_scan task to finish */ 1310 down(&fs_info->uuid_tree_rescan_sem); 1311 /* Avoid complains from lockdep et al. */ 1312 up(&fs_info->uuid_tree_rescan_sem); 1313 1314 btrfs_set_sb_rdonly(fs_info->sb); 1315 1316 /* 1317 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1318 * loop if it's already active. If it's already asleep, we'll leave 1319 * unused block groups on disk until we're mounted read-write again 1320 * unless we clean them up here. 1321 */ 1322 btrfs_delete_unused_bgs(fs_info); 1323 1324 /* 1325 * The cleaner task could be already running before we set the flag 1326 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1327 * sure that after we finish the remount, i.e. after we call 1328 * btrfs_commit_super(), the cleaner can no longer start a transaction 1329 * - either because it was dropping a dead root, running delayed iputs 1330 * or deleting an unused block group (the cleaner picked a block 1331 * group from the list of unused block groups before we were able to 1332 * in the previous call to btrfs_delete_unused_bgs()). 1333 */ 1334 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1335 1336 /* 1337 * We've set the superblock to RO mode, so we might have made the 1338 * cleaner task sleep without running all pending delayed iputs. Go 1339 * through all the delayed iputs here, so that if an unmount happens 1340 * without remounting RW we don't end up at finishing close_ctree() 1341 * with a non-empty list of delayed iputs. 1342 */ 1343 btrfs_run_delayed_iputs(fs_info); 1344 1345 btrfs_dev_replace_suspend_for_unmount(fs_info); 1346 btrfs_scrub_cancel(fs_info); 1347 btrfs_pause_balance(fs_info); 1348 1349 /* 1350 * Pause the qgroup rescan worker if it is running. We don't want it to 1351 * be still running after we are in RO mode, as after that, by the time 1352 * we unmount, it might have left a transaction open, so we would leak 1353 * the transaction and/or crash. 1354 */ 1355 btrfs_qgroup_wait_for_completion(fs_info, false); 1356 1357 return btrfs_commit_super(fs_info); 1358 } 1359 1360 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1361 { 1362 fs_info->max_inline = ctx->max_inline; 1363 fs_info->commit_interval = ctx->commit_interval; 1364 fs_info->metadata_ratio = ctx->metadata_ratio; 1365 fs_info->thread_pool_size = ctx->thread_pool_size; 1366 fs_info->mount_opt = ctx->mount_opt; 1367 fs_info->compress_type = ctx->compress_type; 1368 fs_info->compress_level = ctx->compress_level; 1369 } 1370 1371 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1372 { 1373 ctx->max_inline = fs_info->max_inline; 1374 ctx->commit_interval = fs_info->commit_interval; 1375 ctx->metadata_ratio = fs_info->metadata_ratio; 1376 ctx->thread_pool_size = fs_info->thread_pool_size; 1377 ctx->mount_opt = fs_info->mount_opt; 1378 ctx->compress_type = fs_info->compress_type; 1379 ctx->compress_level = fs_info->compress_level; 1380 } 1381 1382 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1383 do { \ 1384 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1385 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1386 btrfs_info(fs_info, fmt, ##args); \ 1387 } while (0) 1388 1389 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1390 do { \ 1391 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1392 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1393 btrfs_info(fs_info, fmt, ##args); \ 1394 } while (0) 1395 1396 static void btrfs_emit_options(struct btrfs_fs_info *info, 1397 struct btrfs_fs_context *old) 1398 { 1399 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1400 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1401 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1402 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1403 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1404 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1405 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1406 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1407 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1408 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1409 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1410 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1411 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1412 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1413 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1414 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1415 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1416 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1417 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1418 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1419 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1420 1421 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1422 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1423 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1424 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1425 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1426 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1427 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1428 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1429 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1430 1431 /* Did the compression settings change? */ 1432 if (btrfs_test_opt(info, COMPRESS) && 1433 (!old || 1434 old->compress_type != info->compress_type || 1435 old->compress_level != info->compress_level || 1436 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1437 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1438 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1439 1440 btrfs_info(info, "%s %s compression, level %d", 1441 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1442 compress_type, info->compress_level); 1443 } 1444 1445 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1446 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1447 } 1448 1449 static int btrfs_reconfigure(struct fs_context *fc) 1450 { 1451 struct super_block *sb = fc->root->d_sb; 1452 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1453 struct btrfs_fs_context *ctx = fc->fs_private; 1454 struct btrfs_fs_context old_ctx; 1455 int ret = 0; 1456 bool mount_reconfigure = (fc->s_fs_info != NULL); 1457 1458 btrfs_info_to_ctx(fs_info, &old_ctx); 1459 1460 sync_filesystem(sb); 1461 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1462 1463 if (!mount_reconfigure && 1464 !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1465 return -EINVAL; 1466 1467 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1468 if (ret < 0) 1469 return ret; 1470 1471 btrfs_ctx_to_info(fs_info, ctx); 1472 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1473 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1474 old_ctx.thread_pool_size); 1475 1476 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1477 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1478 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1479 btrfs_warn(fs_info, 1480 "remount supports changing free space tree only from RO to RW"); 1481 /* Make sure free space cache options match the state on disk. */ 1482 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1483 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1484 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1485 } 1486 if (btrfs_free_space_cache_v1_active(fs_info)) { 1487 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1488 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1489 } 1490 } 1491 1492 ret = 0; 1493 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1494 ret = btrfs_remount_ro(fs_info); 1495 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1496 ret = btrfs_remount_rw(fs_info); 1497 if (ret) 1498 goto restore; 1499 1500 /* 1501 * If we set the mask during the parameter parsing VFS would reject the 1502 * remount. Here we can set the mask and the value will be updated 1503 * appropriately. 1504 */ 1505 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1506 fc->sb_flags_mask |= SB_POSIXACL; 1507 1508 btrfs_emit_options(fs_info, &old_ctx); 1509 wake_up_process(fs_info->transaction_kthread); 1510 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1511 btrfs_clear_oneshot_options(fs_info); 1512 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1513 1514 return 0; 1515 restore: 1516 btrfs_ctx_to_info(fs_info, &old_ctx); 1517 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1518 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1519 return ret; 1520 } 1521 1522 /* Used to sort the devices by max_avail(descending sort) */ 1523 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1524 { 1525 const struct btrfs_device_info *dev_info1 = a; 1526 const struct btrfs_device_info *dev_info2 = b; 1527 1528 if (dev_info1->max_avail > dev_info2->max_avail) 1529 return -1; 1530 else if (dev_info1->max_avail < dev_info2->max_avail) 1531 return 1; 1532 return 0; 1533 } 1534 1535 /* 1536 * sort the devices by max_avail, in which max free extent size of each device 1537 * is stored.(Descending Sort) 1538 */ 1539 static inline void btrfs_descending_sort_devices( 1540 struct btrfs_device_info *devices, 1541 size_t nr_devices) 1542 { 1543 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1544 btrfs_cmp_device_free_bytes, NULL); 1545 } 1546 1547 /* 1548 * The helper to calc the free space on the devices that can be used to store 1549 * file data. 1550 */ 1551 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1552 u64 *free_bytes) 1553 { 1554 struct btrfs_device_info *devices_info; 1555 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1556 struct btrfs_device *device; 1557 u64 type; 1558 u64 avail_space; 1559 u64 min_stripe_size; 1560 int num_stripes = 1; 1561 int i = 0, nr_devices; 1562 const struct btrfs_raid_attr *rattr; 1563 1564 /* 1565 * We aren't under the device list lock, so this is racy-ish, but good 1566 * enough for our purposes. 1567 */ 1568 nr_devices = fs_info->fs_devices->open_devices; 1569 if (!nr_devices) { 1570 smp_mb(); 1571 nr_devices = fs_info->fs_devices->open_devices; 1572 ASSERT(nr_devices); 1573 if (!nr_devices) { 1574 *free_bytes = 0; 1575 return 0; 1576 } 1577 } 1578 1579 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1580 GFP_KERNEL); 1581 if (!devices_info) 1582 return -ENOMEM; 1583 1584 /* calc min stripe number for data space allocation */ 1585 type = btrfs_data_alloc_profile(fs_info); 1586 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1587 1588 if (type & BTRFS_BLOCK_GROUP_RAID0) 1589 num_stripes = nr_devices; 1590 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1591 num_stripes = rattr->ncopies; 1592 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1593 num_stripes = 4; 1594 1595 /* Adjust for more than 1 stripe per device */ 1596 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1597 1598 rcu_read_lock(); 1599 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1600 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1601 &device->dev_state) || 1602 !device->bdev || 1603 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1604 continue; 1605 1606 if (i >= nr_devices) 1607 break; 1608 1609 avail_space = device->total_bytes - device->bytes_used; 1610 1611 /* align with stripe_len */ 1612 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1613 1614 /* 1615 * Ensure we have at least min_stripe_size on top of the 1616 * reserved space on the device. 1617 */ 1618 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1619 continue; 1620 1621 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1622 1623 devices_info[i].dev = device; 1624 devices_info[i].max_avail = avail_space; 1625 1626 i++; 1627 } 1628 rcu_read_unlock(); 1629 1630 nr_devices = i; 1631 1632 btrfs_descending_sort_devices(devices_info, nr_devices); 1633 1634 i = nr_devices - 1; 1635 avail_space = 0; 1636 while (nr_devices >= rattr->devs_min) { 1637 num_stripes = min(num_stripes, nr_devices); 1638 1639 if (devices_info[i].max_avail >= min_stripe_size) { 1640 int j; 1641 u64 alloc_size; 1642 1643 avail_space += devices_info[i].max_avail * num_stripes; 1644 alloc_size = devices_info[i].max_avail; 1645 for (j = i + 1 - num_stripes; j <= i; j++) 1646 devices_info[j].max_avail -= alloc_size; 1647 } 1648 i--; 1649 nr_devices--; 1650 } 1651 1652 kfree(devices_info); 1653 *free_bytes = avail_space; 1654 return 0; 1655 } 1656 1657 /* 1658 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1659 * 1660 * If there's a redundant raid level at DATA block groups, use the respective 1661 * multiplier to scale the sizes. 1662 * 1663 * Unused device space usage is based on simulating the chunk allocator 1664 * algorithm that respects the device sizes and order of allocations. This is 1665 * a close approximation of the actual use but there are other factors that may 1666 * change the result (like a new metadata chunk). 1667 * 1668 * If metadata is exhausted, f_bavail will be 0. 1669 */ 1670 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1671 { 1672 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1673 struct btrfs_super_block *disk_super = fs_info->super_copy; 1674 struct btrfs_space_info *found; 1675 u64 total_used = 0; 1676 u64 total_free_data = 0; 1677 u64 total_free_meta = 0; 1678 u32 bits = fs_info->sectorsize_bits; 1679 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1680 unsigned factor = 1; 1681 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1682 int ret; 1683 u64 thresh = 0; 1684 int mixed = 0; 1685 1686 list_for_each_entry(found, &fs_info->space_info, list) { 1687 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1688 int i; 1689 1690 total_free_data += found->disk_total - found->disk_used; 1691 total_free_data -= 1692 btrfs_account_ro_block_groups_free_space(found); 1693 1694 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1695 if (!list_empty(&found->block_groups[i])) 1696 factor = btrfs_bg_type_to_factor( 1697 btrfs_raid_array[i].bg_flag); 1698 } 1699 } 1700 1701 /* 1702 * Metadata in mixed block group profiles are accounted in data 1703 */ 1704 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1705 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1706 mixed = 1; 1707 else 1708 total_free_meta += found->disk_total - 1709 found->disk_used; 1710 } 1711 1712 total_used += found->disk_used; 1713 } 1714 1715 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1716 buf->f_blocks >>= bits; 1717 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1718 1719 /* Account global block reserve as used, it's in logical size already */ 1720 spin_lock(&block_rsv->lock); 1721 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1722 if (buf->f_bfree >= block_rsv->size >> bits) 1723 buf->f_bfree -= block_rsv->size >> bits; 1724 else 1725 buf->f_bfree = 0; 1726 spin_unlock(&block_rsv->lock); 1727 1728 buf->f_bavail = div_u64(total_free_data, factor); 1729 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1730 if (ret) 1731 return ret; 1732 buf->f_bavail += div_u64(total_free_data, factor); 1733 buf->f_bavail = buf->f_bavail >> bits; 1734 1735 /* 1736 * We calculate the remaining metadata space minus global reserve. If 1737 * this is (supposedly) smaller than zero, there's no space. But this 1738 * does not hold in practice, the exhausted state happens where's still 1739 * some positive delta. So we apply some guesswork and compare the 1740 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1741 * 1742 * We probably cannot calculate the exact threshold value because this 1743 * depends on the internal reservations requested by various 1744 * operations, so some operations that consume a few metadata will 1745 * succeed even if the Avail is zero. But this is better than the other 1746 * way around. 1747 */ 1748 thresh = SZ_4M; 1749 1750 /* 1751 * We only want to claim there's no available space if we can no longer 1752 * allocate chunks for our metadata profile and our global reserve will 1753 * not fit in the free metadata space. If we aren't ->full then we 1754 * still can allocate chunks and thus are fine using the currently 1755 * calculated f_bavail. 1756 */ 1757 if (!mixed && block_rsv->space_info->full && 1758 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1759 buf->f_bavail = 0; 1760 1761 buf->f_type = BTRFS_SUPER_MAGIC; 1762 buf->f_bsize = dentry->d_sb->s_blocksize; 1763 buf->f_namelen = BTRFS_NAME_LEN; 1764 1765 /* We treat it as constant endianness (it doesn't matter _which_) 1766 because we want the fsid to come out the same whether mounted 1767 on a big-endian or little-endian host */ 1768 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1769 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1770 /* Mask in the root object ID too, to disambiguate subvols */ 1771 buf->f_fsid.val[0] ^= 1772 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 1773 buf->f_fsid.val[1] ^= 1774 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 1775 1776 return 0; 1777 } 1778 1779 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1780 { 1781 struct btrfs_fs_info *p = fc->s_fs_info; 1782 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1783 1784 return fs_info->fs_devices == p->fs_devices; 1785 } 1786 1787 static int btrfs_get_tree_super(struct fs_context *fc) 1788 { 1789 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1790 struct btrfs_fs_context *ctx = fc->fs_private; 1791 struct btrfs_fs_devices *fs_devices = NULL; 1792 struct block_device *bdev; 1793 struct btrfs_device *device; 1794 struct super_block *sb; 1795 blk_mode_t mode = btrfs_open_mode(fc); 1796 int ret; 1797 1798 btrfs_ctx_to_info(fs_info, ctx); 1799 mutex_lock(&uuid_mutex); 1800 1801 /* 1802 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1803 * either a valid device or an error. 1804 */ 1805 device = btrfs_scan_one_device(fc->source, mode, true); 1806 ASSERT(device != NULL); 1807 if (IS_ERR(device)) { 1808 mutex_unlock(&uuid_mutex); 1809 return PTR_ERR(device); 1810 } 1811 1812 fs_devices = device->fs_devices; 1813 fs_info->fs_devices = fs_devices; 1814 1815 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1816 mutex_unlock(&uuid_mutex); 1817 if (ret) 1818 return ret; 1819 1820 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1821 ret = -EACCES; 1822 goto error; 1823 } 1824 1825 bdev = fs_devices->latest_dev->bdev; 1826 1827 /* 1828 * From now on the error handling is not straightforward. 1829 * 1830 * If successful, this will transfer the fs_info into the super block, 1831 * and fc->s_fs_info will be NULL. However if there's an existing 1832 * super, we'll still have fc->s_fs_info populated. If we error 1833 * completely out it'll be cleaned up when we drop the fs_context, 1834 * otherwise it's tied to the lifetime of the super_block. 1835 */ 1836 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1837 if (IS_ERR(sb)) { 1838 ret = PTR_ERR(sb); 1839 goto error; 1840 } 1841 1842 set_device_specific_options(fs_info); 1843 1844 if (sb->s_root) { 1845 btrfs_close_devices(fs_devices); 1846 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY) 1847 ret = -EBUSY; 1848 } else { 1849 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1850 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1851 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1852 ret = btrfs_fill_super(sb, fs_devices, NULL); 1853 } 1854 1855 if (ret) { 1856 deactivate_locked_super(sb); 1857 return ret; 1858 } 1859 1860 btrfs_clear_oneshot_options(fs_info); 1861 1862 fc->root = dget(sb->s_root); 1863 return 0; 1864 1865 error: 1866 btrfs_close_devices(fs_devices); 1867 return ret; 1868 } 1869 1870 /* 1871 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1872 * with different ro/rw options") the following works: 1873 * 1874 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1875 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1876 * 1877 * which looks nice and innocent but is actually pretty intricate and deserves 1878 * a long comment. 1879 * 1880 * On another filesystem a subvolume mount is close to something like: 1881 * 1882 * (iii) # create rw superblock + initial mount 1883 * mount -t xfs /dev/sdb /opt/ 1884 * 1885 * # create ro bind mount 1886 * mount --bind -o ro /opt/foo /mnt/foo 1887 * 1888 * # unmount initial mount 1889 * umount /opt 1890 * 1891 * Of course, there's some special subvolume sauce and there's the fact that the 1892 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1893 * it's very close and will help us understand the issue. 1894 * 1895 * The old mount API didn't cleanly distinguish between a mount being made ro 1896 * and a superblock being made ro. The only way to change the ro state of 1897 * either object was by passing ms_rdonly. If a new mount was created via 1898 * mount(2) such as: 1899 * 1900 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1901 * 1902 * the MS_RDONLY flag being specified had two effects: 1903 * 1904 * (1) MNT_READONLY was raised -> the resulting mount got 1905 * @mnt->mnt_flags |= MNT_READONLY raised. 1906 * 1907 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1908 * made the superblock ro. Note, how SB_RDONLY has the same value as 1909 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1910 * 1911 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1912 * subtree mounted ro. 1913 * 1914 * But consider the effect on the old mount API on btrfs subvolume mounting 1915 * which combines the distinct step in (iii) into a single step. 1916 * 1917 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1918 * is issued the superblock is ro and thus even if the mount created for (ii) is 1919 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1920 * to rw for (ii) which it did using an internal remount call. 1921 * 1922 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1923 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1924 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1925 * passed by mount(8) to mount(2). 1926 * 1927 * Enter the new mount API. The new mount API disambiguates making a mount ro 1928 * and making a superblock ro. 1929 * 1930 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1931 * fsmount() or mount_setattr() this is a pure VFS level change for a 1932 * specific mount or mount tree that is never seen by the filesystem itself. 1933 * 1934 * (4) To turn a superblock ro the "ro" flag must be used with 1935 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1936 * in fc->sb_flags. 1937 * 1938 * This disambiguation has rather positive consequences. Mounting a subvolume 1939 * ro will not also turn the superblock ro. Only the mount for the subvolume 1940 * will become ro. 1941 * 1942 * So, if the superblock creation request comes from the new mount API the 1943 * caller must have explicitly done: 1944 * 1945 * fsconfig(FSCONFIG_SET_FLAG, "ro") 1946 * fsmount/mount_setattr(MOUNT_ATTR_RDONLY) 1947 * 1948 * IOW, at some point the caller must have explicitly turned the whole 1949 * superblock ro and we shouldn't just undo it like we did for the old mount 1950 * API. In any case, it lets us avoid the hack in the new mount API. 1951 * 1952 * Consequently, the remounting hack must only be used for requests originating 1953 * from the old mount API and should be marked for full deprecation so it can be 1954 * turned off in a couple of years. 1955 * 1956 * The new mount API has no reason to support this hack. 1957 */ 1958 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc) 1959 { 1960 struct vfsmount *mnt; 1961 int ret; 1962 const bool ro2rw = !(fc->sb_flags & SB_RDONLY); 1963 1964 /* 1965 * We got an EBUSY because our SB_RDONLY flag didn't match the existing 1966 * super block, so invert our setting here and retry the mount so we 1967 * can get our vfsmount. 1968 */ 1969 if (ro2rw) 1970 fc->sb_flags |= SB_RDONLY; 1971 else 1972 fc->sb_flags &= ~SB_RDONLY; 1973 1974 mnt = fc_mount(fc); 1975 if (IS_ERR(mnt)) 1976 return mnt; 1977 1978 if (!fc->oldapi || !ro2rw) 1979 return mnt; 1980 1981 /* We need to convert to rw, call reconfigure. */ 1982 fc->sb_flags &= ~SB_RDONLY; 1983 down_write(&mnt->mnt_sb->s_umount); 1984 ret = btrfs_reconfigure(fc); 1985 up_write(&mnt->mnt_sb->s_umount); 1986 if (ret) { 1987 mntput(mnt); 1988 return ERR_PTR(ret); 1989 } 1990 return mnt; 1991 } 1992 1993 static int btrfs_get_tree_subvol(struct fs_context *fc) 1994 { 1995 struct btrfs_fs_info *fs_info = NULL; 1996 struct btrfs_fs_context *ctx = fc->fs_private; 1997 struct fs_context *dup_fc; 1998 struct dentry *dentry; 1999 struct vfsmount *mnt; 2000 2001 /* 2002 * Setup a dummy root and fs_info for test/set super. This is because 2003 * we don't actually fill this stuff out until open_ctree, but we need 2004 * then open_ctree will properly initialize the file system specific 2005 * settings later. btrfs_init_fs_info initializes the static elements 2006 * of the fs_info (locks and such) to make cleanup easier if we find a 2007 * superblock with our given fs_devices later on at sget() time. 2008 */ 2009 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2010 if (!fs_info) 2011 return -ENOMEM; 2012 2013 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2014 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2015 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2016 btrfs_free_fs_info(fs_info); 2017 return -ENOMEM; 2018 } 2019 btrfs_init_fs_info(fs_info); 2020 2021 dup_fc = vfs_dup_fs_context(fc); 2022 if (IS_ERR(dup_fc)) { 2023 btrfs_free_fs_info(fs_info); 2024 return PTR_ERR(dup_fc); 2025 } 2026 2027 /* 2028 * When we do the sget_fc this gets transferred to the sb, so we only 2029 * need to set it on the dup_fc as this is what creates the super block. 2030 */ 2031 dup_fc->s_fs_info = fs_info; 2032 2033 /* 2034 * We'll do the security settings in our btrfs_get_tree_super() mount 2035 * loop, they were duplicated into dup_fc, we can drop the originals 2036 * here. 2037 */ 2038 security_free_mnt_opts(&fc->security); 2039 fc->security = NULL; 2040 2041 mnt = fc_mount(dup_fc); 2042 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) 2043 mnt = btrfs_reconfigure_for_mount(dup_fc); 2044 put_fs_context(dup_fc); 2045 if (IS_ERR(mnt)) 2046 return PTR_ERR(mnt); 2047 2048 /* 2049 * This free's ->subvol_name, because if it isn't set we have to 2050 * allocate a buffer to hold the subvol_name, so we just drop our 2051 * reference to it here. 2052 */ 2053 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2054 ctx->subvol_name = NULL; 2055 if (IS_ERR(dentry)) 2056 return PTR_ERR(dentry); 2057 2058 fc->root = dentry; 2059 return 0; 2060 } 2061 2062 static int btrfs_get_tree(struct fs_context *fc) 2063 { 2064 /* 2065 * Since we use mount_subtree to mount the default/specified subvol, we 2066 * have to do mounts in two steps. 2067 * 2068 * First pass through we call btrfs_get_tree_subvol(), this is just a 2069 * wrapper around fc_mount() to call back into here again, and this time 2070 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2071 * everything to open the devices and file system. Then we return back 2072 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2073 * from there we can do our mount_subvol() call, which will lookup 2074 * whichever subvol we're mounting and setup this fc with the 2075 * appropriate dentry for the subvol. 2076 */ 2077 if (fc->s_fs_info) 2078 return btrfs_get_tree_super(fc); 2079 return btrfs_get_tree_subvol(fc); 2080 } 2081 2082 static void btrfs_kill_super(struct super_block *sb) 2083 { 2084 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2085 kill_anon_super(sb); 2086 btrfs_free_fs_info(fs_info); 2087 } 2088 2089 static void btrfs_free_fs_context(struct fs_context *fc) 2090 { 2091 struct btrfs_fs_context *ctx = fc->fs_private; 2092 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2093 2094 if (fs_info) 2095 btrfs_free_fs_info(fs_info); 2096 2097 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2098 kfree(ctx->subvol_name); 2099 kfree(ctx); 2100 } 2101 } 2102 2103 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2104 { 2105 struct btrfs_fs_context *ctx = src_fc->fs_private; 2106 2107 /* 2108 * Give a ref to our ctx to this dup, as we want to keep it around for 2109 * our original fc so we can have the subvolume name or objectid. 2110 * 2111 * We unset ->source in the original fc because the dup needs it for 2112 * mounting, and then once we free the dup it'll free ->source, so we 2113 * need to make sure we're only pointing to it in one fc. 2114 */ 2115 refcount_inc(&ctx->refs); 2116 fc->fs_private = ctx; 2117 fc->source = src_fc->source; 2118 src_fc->source = NULL; 2119 return 0; 2120 } 2121 2122 static const struct fs_context_operations btrfs_fs_context_ops = { 2123 .parse_param = btrfs_parse_param, 2124 .reconfigure = btrfs_reconfigure, 2125 .get_tree = btrfs_get_tree, 2126 .dup = btrfs_dup_fs_context, 2127 .free = btrfs_free_fs_context, 2128 }; 2129 2130 static int btrfs_init_fs_context(struct fs_context *fc) 2131 { 2132 struct btrfs_fs_context *ctx; 2133 2134 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2135 if (!ctx) 2136 return -ENOMEM; 2137 2138 refcount_set(&ctx->refs, 1); 2139 fc->fs_private = ctx; 2140 fc->ops = &btrfs_fs_context_ops; 2141 2142 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2143 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2144 } else { 2145 ctx->thread_pool_size = 2146 min_t(unsigned long, num_online_cpus() + 2, 8); 2147 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2148 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2149 } 2150 2151 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2152 fc->sb_flags |= SB_POSIXACL; 2153 #endif 2154 fc->sb_flags |= SB_I_VERSION; 2155 2156 return 0; 2157 } 2158 2159 static struct file_system_type btrfs_fs_type = { 2160 .owner = THIS_MODULE, 2161 .name = "btrfs", 2162 .init_fs_context = btrfs_init_fs_context, 2163 .parameters = btrfs_fs_parameters, 2164 .kill_sb = btrfs_kill_super, 2165 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2166 }; 2167 2168 MODULE_ALIAS_FS("btrfs"); 2169 2170 static int btrfs_control_open(struct inode *inode, struct file *file) 2171 { 2172 /* 2173 * The control file's private_data is used to hold the 2174 * transaction when it is started and is used to keep 2175 * track of whether a transaction is already in progress. 2176 */ 2177 file->private_data = NULL; 2178 return 0; 2179 } 2180 2181 /* 2182 * Used by /dev/btrfs-control for devices ioctls. 2183 */ 2184 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2185 unsigned long arg) 2186 { 2187 struct btrfs_ioctl_vol_args *vol; 2188 struct btrfs_device *device = NULL; 2189 dev_t devt = 0; 2190 int ret = -ENOTTY; 2191 2192 if (!capable(CAP_SYS_ADMIN)) 2193 return -EPERM; 2194 2195 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2196 if (IS_ERR(vol)) 2197 return PTR_ERR(vol); 2198 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2199 2200 switch (cmd) { 2201 case BTRFS_IOC_SCAN_DEV: 2202 mutex_lock(&uuid_mutex); 2203 /* 2204 * Scanning outside of mount can return NULL which would turn 2205 * into 0 error code. 2206 */ 2207 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2208 ret = PTR_ERR_OR_ZERO(device); 2209 mutex_unlock(&uuid_mutex); 2210 break; 2211 case BTRFS_IOC_FORGET_DEV: 2212 if (vol->name[0] != 0) { 2213 ret = lookup_bdev(vol->name, &devt); 2214 if (ret) 2215 break; 2216 } 2217 ret = btrfs_forget_devices(devt); 2218 break; 2219 case BTRFS_IOC_DEVICES_READY: 2220 mutex_lock(&uuid_mutex); 2221 /* 2222 * Scanning outside of mount can return NULL which would turn 2223 * into 0 error code. 2224 */ 2225 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2226 if (IS_ERR_OR_NULL(device)) { 2227 mutex_unlock(&uuid_mutex); 2228 ret = PTR_ERR(device); 2229 break; 2230 } 2231 ret = !(device->fs_devices->num_devices == 2232 device->fs_devices->total_devices); 2233 mutex_unlock(&uuid_mutex); 2234 break; 2235 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2236 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2237 break; 2238 } 2239 2240 kfree(vol); 2241 return ret; 2242 } 2243 2244 static int btrfs_freeze(struct super_block *sb) 2245 { 2246 struct btrfs_trans_handle *trans; 2247 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2248 struct btrfs_root *root = fs_info->tree_root; 2249 2250 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2251 /* 2252 * We don't need a barrier here, we'll wait for any transaction that 2253 * could be in progress on other threads (and do delayed iputs that 2254 * we want to avoid on a frozen filesystem), or do the commit 2255 * ourselves. 2256 */ 2257 trans = btrfs_attach_transaction_barrier(root); 2258 if (IS_ERR(trans)) { 2259 /* no transaction, don't bother */ 2260 if (PTR_ERR(trans) == -ENOENT) 2261 return 0; 2262 return PTR_ERR(trans); 2263 } 2264 return btrfs_commit_transaction(trans); 2265 } 2266 2267 static int check_dev_super(struct btrfs_device *dev) 2268 { 2269 struct btrfs_fs_info *fs_info = dev->fs_info; 2270 struct btrfs_super_block *sb; 2271 u64 last_trans; 2272 u16 csum_type; 2273 int ret = 0; 2274 2275 /* This should be called with fs still frozen. */ 2276 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2277 2278 /* Missing dev, no need to check. */ 2279 if (!dev->bdev) 2280 return 0; 2281 2282 /* Only need to check the primary super block. */ 2283 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2284 if (IS_ERR(sb)) 2285 return PTR_ERR(sb); 2286 2287 /* Verify the checksum. */ 2288 csum_type = btrfs_super_csum_type(sb); 2289 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2290 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2291 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2292 ret = -EUCLEAN; 2293 goto out; 2294 } 2295 2296 if (btrfs_check_super_csum(fs_info, sb)) { 2297 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2298 ret = -EUCLEAN; 2299 goto out; 2300 } 2301 2302 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2303 ret = btrfs_validate_super(fs_info, sb, 0); 2304 if (ret < 0) 2305 goto out; 2306 2307 last_trans = btrfs_get_last_trans_committed(fs_info); 2308 if (btrfs_super_generation(sb) != last_trans) { 2309 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2310 btrfs_super_generation(sb), last_trans); 2311 ret = -EUCLEAN; 2312 goto out; 2313 } 2314 out: 2315 btrfs_release_disk_super(sb); 2316 return ret; 2317 } 2318 2319 static int btrfs_unfreeze(struct super_block *sb) 2320 { 2321 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2322 struct btrfs_device *device; 2323 int ret = 0; 2324 2325 /* 2326 * Make sure the fs is not changed by accident (like hibernation then 2327 * modified by other OS). 2328 * If we found anything wrong, we mark the fs error immediately. 2329 * 2330 * And since the fs is frozen, no one can modify the fs yet, thus 2331 * we don't need to hold device_list_mutex. 2332 */ 2333 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2334 ret = check_dev_super(device); 2335 if (ret < 0) { 2336 btrfs_handle_fs_error(fs_info, ret, 2337 "super block on devid %llu got modified unexpectedly", 2338 device->devid); 2339 break; 2340 } 2341 } 2342 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2343 2344 /* 2345 * We still return 0, to allow VFS layer to unfreeze the fs even the 2346 * above checks failed. Since the fs is either fine or read-only, we're 2347 * safe to continue, without causing further damage. 2348 */ 2349 return 0; 2350 } 2351 2352 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2353 { 2354 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2355 2356 /* 2357 * There should be always a valid pointer in latest_dev, it may be stale 2358 * for a short moment in case it's being deleted but still valid until 2359 * the end of RCU grace period. 2360 */ 2361 rcu_read_lock(); 2362 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2363 rcu_read_unlock(); 2364 2365 return 0; 2366 } 2367 2368 static const struct super_operations btrfs_super_ops = { 2369 .drop_inode = btrfs_drop_inode, 2370 .evict_inode = btrfs_evict_inode, 2371 .put_super = btrfs_put_super, 2372 .sync_fs = btrfs_sync_fs, 2373 .show_options = btrfs_show_options, 2374 .show_devname = btrfs_show_devname, 2375 .alloc_inode = btrfs_alloc_inode, 2376 .destroy_inode = btrfs_destroy_inode, 2377 .free_inode = btrfs_free_inode, 2378 .statfs = btrfs_statfs, 2379 .freeze_fs = btrfs_freeze, 2380 .unfreeze_fs = btrfs_unfreeze, 2381 }; 2382 2383 static const struct file_operations btrfs_ctl_fops = { 2384 .open = btrfs_control_open, 2385 .unlocked_ioctl = btrfs_control_ioctl, 2386 .compat_ioctl = compat_ptr_ioctl, 2387 .owner = THIS_MODULE, 2388 .llseek = noop_llseek, 2389 }; 2390 2391 static struct miscdevice btrfs_misc = { 2392 .minor = BTRFS_MINOR, 2393 .name = "btrfs-control", 2394 .fops = &btrfs_ctl_fops 2395 }; 2396 2397 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2398 MODULE_ALIAS("devname:btrfs-control"); 2399 2400 static int __init btrfs_interface_init(void) 2401 { 2402 return misc_register(&btrfs_misc); 2403 } 2404 2405 static __cold void btrfs_interface_exit(void) 2406 { 2407 misc_deregister(&btrfs_misc); 2408 } 2409 2410 static int __init btrfs_print_mod_info(void) 2411 { 2412 static const char options[] = "" 2413 #ifdef CONFIG_BTRFS_DEBUG 2414 ", debug=on" 2415 #endif 2416 #ifdef CONFIG_BTRFS_ASSERT 2417 ", assert=on" 2418 #endif 2419 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2420 ", ref-verify=on" 2421 #endif 2422 #ifdef CONFIG_BLK_DEV_ZONED 2423 ", zoned=yes" 2424 #else 2425 ", zoned=no" 2426 #endif 2427 #ifdef CONFIG_FS_VERITY 2428 ", fsverity=yes" 2429 #else 2430 ", fsverity=no" 2431 #endif 2432 ; 2433 pr_info("Btrfs loaded%s\n", options); 2434 return 0; 2435 } 2436 2437 static int register_btrfs(void) 2438 { 2439 return register_filesystem(&btrfs_fs_type); 2440 } 2441 2442 static void unregister_btrfs(void) 2443 { 2444 unregister_filesystem(&btrfs_fs_type); 2445 } 2446 2447 /* Helper structure for long init/exit functions. */ 2448 struct init_sequence { 2449 int (*init_func)(void); 2450 /* Can be NULL if the init_func doesn't need cleanup. */ 2451 void (*exit_func)(void); 2452 }; 2453 2454 static const struct init_sequence mod_init_seq[] = { 2455 { 2456 .init_func = btrfs_props_init, 2457 .exit_func = NULL, 2458 }, { 2459 .init_func = btrfs_init_sysfs, 2460 .exit_func = btrfs_exit_sysfs, 2461 }, { 2462 .init_func = btrfs_init_compress, 2463 .exit_func = btrfs_exit_compress, 2464 }, { 2465 .init_func = btrfs_init_cachep, 2466 .exit_func = btrfs_destroy_cachep, 2467 }, { 2468 .init_func = btrfs_transaction_init, 2469 .exit_func = btrfs_transaction_exit, 2470 }, { 2471 .init_func = btrfs_ctree_init, 2472 .exit_func = btrfs_ctree_exit, 2473 }, { 2474 .init_func = btrfs_free_space_init, 2475 .exit_func = btrfs_free_space_exit, 2476 }, { 2477 .init_func = extent_state_init_cachep, 2478 .exit_func = extent_state_free_cachep, 2479 }, { 2480 .init_func = extent_buffer_init_cachep, 2481 .exit_func = extent_buffer_free_cachep, 2482 }, { 2483 .init_func = btrfs_bioset_init, 2484 .exit_func = btrfs_bioset_exit, 2485 }, { 2486 .init_func = extent_map_init, 2487 .exit_func = extent_map_exit, 2488 }, { 2489 .init_func = ordered_data_init, 2490 .exit_func = ordered_data_exit, 2491 }, { 2492 .init_func = btrfs_delayed_inode_init, 2493 .exit_func = btrfs_delayed_inode_exit, 2494 }, { 2495 .init_func = btrfs_auto_defrag_init, 2496 .exit_func = btrfs_auto_defrag_exit, 2497 }, { 2498 .init_func = btrfs_delayed_ref_init, 2499 .exit_func = btrfs_delayed_ref_exit, 2500 }, { 2501 .init_func = btrfs_prelim_ref_init, 2502 .exit_func = btrfs_prelim_ref_exit, 2503 }, { 2504 .init_func = btrfs_interface_init, 2505 .exit_func = btrfs_interface_exit, 2506 }, { 2507 .init_func = btrfs_print_mod_info, 2508 .exit_func = NULL, 2509 }, { 2510 .init_func = btrfs_run_sanity_tests, 2511 .exit_func = NULL, 2512 }, { 2513 .init_func = register_btrfs, 2514 .exit_func = unregister_btrfs, 2515 } 2516 }; 2517 2518 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2519 2520 static __always_inline void btrfs_exit_btrfs_fs(void) 2521 { 2522 int i; 2523 2524 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2525 if (!mod_init_result[i]) 2526 continue; 2527 if (mod_init_seq[i].exit_func) 2528 mod_init_seq[i].exit_func(); 2529 mod_init_result[i] = false; 2530 } 2531 } 2532 2533 static void __exit exit_btrfs_fs(void) 2534 { 2535 btrfs_exit_btrfs_fs(); 2536 btrfs_cleanup_fs_uuids(); 2537 } 2538 2539 static int __init init_btrfs_fs(void) 2540 { 2541 int ret; 2542 int i; 2543 2544 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2545 ASSERT(!mod_init_result[i]); 2546 ret = mod_init_seq[i].init_func(); 2547 if (ret < 0) { 2548 btrfs_exit_btrfs_fs(); 2549 return ret; 2550 } 2551 mod_init_result[i] = true; 2552 } 2553 return 0; 2554 } 2555 2556 late_initcall(init_btrfs_fs); 2557 module_exit(exit_btrfs_fs) 2558 2559 MODULE_LICENSE("GPL"); 2560 MODULE_SOFTDEP("pre: crc32c"); 2561 MODULE_SOFTDEP("pre: xxhash64"); 2562 MODULE_SOFTDEP("pre: sha256"); 2563 MODULE_SOFTDEP("pre: blake2b-256"); 2564