xref: /linux/fs/btrfs/super.c (revision ba199dc909a20fe62270ae4e93f263987bb9d119)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	unsigned int compress_level;
88 	refcount_t refs;
89 };
90 
91 enum {
92 	Opt_acl,
93 	Opt_clear_cache,
94 	Opt_commit_interval,
95 	Opt_compress,
96 	Opt_compress_force,
97 	Opt_compress_force_type,
98 	Opt_compress_type,
99 	Opt_degraded,
100 	Opt_device,
101 	Opt_fatal_errors,
102 	Opt_flushoncommit,
103 	Opt_max_inline,
104 	Opt_barrier,
105 	Opt_datacow,
106 	Opt_datasum,
107 	Opt_defrag,
108 	Opt_discard,
109 	Opt_discard_mode,
110 	Opt_ratio,
111 	Opt_rescan_uuid_tree,
112 	Opt_skip_balance,
113 	Opt_space_cache,
114 	Opt_space_cache_version,
115 	Opt_ssd,
116 	Opt_ssd_spread,
117 	Opt_subvol,
118 	Opt_subvol_empty,
119 	Opt_subvolid,
120 	Opt_thread_pool,
121 	Opt_treelog,
122 	Opt_user_subvol_rm_allowed,
123 	Opt_norecovery,
124 
125 	/* Rescue options */
126 	Opt_rescue,
127 	Opt_usebackuproot,
128 	Opt_nologreplay,
129 
130 	/* Debugging options */
131 	Opt_enospc_debug,
132 #ifdef CONFIG_BTRFS_DEBUG
133 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
134 #endif
135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
136 	Opt_ref_verify,
137 #endif
138 	Opt_err,
139 };
140 
141 enum {
142 	Opt_fatal_errors_panic,
143 	Opt_fatal_errors_bug,
144 };
145 
146 static const struct constant_table btrfs_parameter_fatal_errors[] = {
147 	{ "panic", Opt_fatal_errors_panic },
148 	{ "bug", Opt_fatal_errors_bug },
149 	{}
150 };
151 
152 enum {
153 	Opt_discard_sync,
154 	Opt_discard_async,
155 };
156 
157 static const struct constant_table btrfs_parameter_discard[] = {
158 	{ "sync", Opt_discard_sync },
159 	{ "async", Opt_discard_async },
160 	{}
161 };
162 
163 enum {
164 	Opt_space_cache_v1,
165 	Opt_space_cache_v2,
166 };
167 
168 static const struct constant_table btrfs_parameter_space_cache[] = {
169 	{ "v1", Opt_space_cache_v1 },
170 	{ "v2", Opt_space_cache_v2 },
171 	{}
172 };
173 
174 enum {
175 	Opt_rescue_usebackuproot,
176 	Opt_rescue_nologreplay,
177 	Opt_rescue_ignorebadroots,
178 	Opt_rescue_ignoredatacsums,
179 	Opt_rescue_ignoremetacsums,
180 	Opt_rescue_ignoresuperflags,
181 	Opt_rescue_parameter_all,
182 };
183 
184 static const struct constant_table btrfs_parameter_rescue[] = {
185 	{ "usebackuproot", Opt_rescue_usebackuproot },
186 	{ "nologreplay", Opt_rescue_nologreplay },
187 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
188 	{ "ibadroots", Opt_rescue_ignorebadroots },
189 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
190 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
191 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
192 	{ "idatacsums", Opt_rescue_ignoredatacsums },
193 	{ "imetacsums", Opt_rescue_ignoremetacsums},
194 	{ "isuperflags", Opt_rescue_ignoresuperflags},
195 	{ "all", Opt_rescue_parameter_all },
196 	{}
197 };
198 
199 #ifdef CONFIG_BTRFS_DEBUG
200 enum {
201 	Opt_fragment_parameter_data,
202 	Opt_fragment_parameter_metadata,
203 	Opt_fragment_parameter_all,
204 };
205 
206 static const struct constant_table btrfs_parameter_fragment[] = {
207 	{ "data", Opt_fragment_parameter_data },
208 	{ "metadata", Opt_fragment_parameter_metadata },
209 	{ "all", Opt_fragment_parameter_all },
210 	{}
211 };
212 #endif
213 
214 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
215 	fsparam_flag_no("acl", Opt_acl),
216 	fsparam_flag_no("autodefrag", Opt_defrag),
217 	fsparam_flag_no("barrier", Opt_barrier),
218 	fsparam_flag("clear_cache", Opt_clear_cache),
219 	fsparam_u32("commit", Opt_commit_interval),
220 	fsparam_flag("compress", Opt_compress),
221 	fsparam_string("compress", Opt_compress_type),
222 	fsparam_flag("compress-force", Opt_compress_force),
223 	fsparam_string("compress-force", Opt_compress_force_type),
224 	fsparam_flag_no("datacow", Opt_datacow),
225 	fsparam_flag_no("datasum", Opt_datasum),
226 	fsparam_flag("degraded", Opt_degraded),
227 	fsparam_string("device", Opt_device),
228 	fsparam_flag_no("discard", Opt_discard),
229 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
230 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
231 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
232 	fsparam_string("max_inline", Opt_max_inline),
233 	fsparam_u32("metadata_ratio", Opt_ratio),
234 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
235 	fsparam_flag("skip_balance", Opt_skip_balance),
236 	fsparam_flag_no("space_cache", Opt_space_cache),
237 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
238 	fsparam_flag_no("ssd", Opt_ssd),
239 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
240 	fsparam_string("subvol", Opt_subvol),
241 	fsparam_flag("subvol=", Opt_subvol_empty),
242 	fsparam_u64("subvolid", Opt_subvolid),
243 	fsparam_u32("thread_pool", Opt_thread_pool),
244 	fsparam_flag_no("treelog", Opt_treelog),
245 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
246 
247 	/* Rescue options. */
248 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
249 	/* Deprecated, with alias rescue=nologreplay */
250 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
251 	/* Deprecated, with alias rescue=usebackuproot */
252 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 	/* For compatibility only, alias for "rescue=nologreplay". */
254 	fsparam_flag("norecovery", Opt_norecovery),
255 
256 	/* Debugging options. */
257 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 	fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 	{}
265 };
266 
267 /* No support for restricting writes to btrfs devices yet... */
268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
269 {
270 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
271 }
272 
273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
274 {
275 	struct btrfs_fs_context *ctx = fc->fs_private;
276 	struct fs_parse_result result;
277 	int opt;
278 
279 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280 	if (opt < 0)
281 		return opt;
282 
283 	switch (opt) {
284 	case Opt_degraded:
285 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
286 		break;
287 	case Opt_subvol_empty:
288 		/*
289 		 * This exists because we used to allow it on accident, so we're
290 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
291 		 * empty subvol= again").
292 		 */
293 		break;
294 	case Opt_subvol:
295 		kfree(ctx->subvol_name);
296 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
297 		if (!ctx->subvol_name)
298 			return -ENOMEM;
299 		break;
300 	case Opt_subvolid:
301 		ctx->subvol_objectid = result.uint_64;
302 
303 		/* subvolid=0 means give me the original fs_tree. */
304 		if (!ctx->subvol_objectid)
305 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
306 		break;
307 	case Opt_device: {
308 		struct btrfs_device *device;
309 		blk_mode_t mode = btrfs_open_mode(fc);
310 
311 		mutex_lock(&uuid_mutex);
312 		device = btrfs_scan_one_device(param->string, mode, false);
313 		mutex_unlock(&uuid_mutex);
314 		if (IS_ERR(device))
315 			return PTR_ERR(device);
316 		break;
317 	}
318 	case Opt_datasum:
319 		if (result.negated) {
320 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
321 		} else {
322 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
323 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
324 		}
325 		break;
326 	case Opt_datacow:
327 		if (result.negated) {
328 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
329 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
330 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
331 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
332 		} else {
333 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
334 		}
335 		break;
336 	case Opt_compress_force:
337 	case Opt_compress_force_type:
338 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
339 		fallthrough;
340 	case Opt_compress:
341 	case Opt_compress_type:
342 		if (opt == Opt_compress || opt == Opt_compress_force) {
343 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
344 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
345 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
346 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
347 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
348 		} else if (strncmp(param->string, "zlib", 4) == 0) {
349 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
350 			ctx->compress_level =
351 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
352 							 param->string + 4);
353 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
354 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
355 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
356 		} else if (strncmp(param->string, "lzo", 3) == 0) {
357 			ctx->compress_type = BTRFS_COMPRESS_LZO;
358 			ctx->compress_level = 0;
359 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
360 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
361 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
362 		} else if (strncmp(param->string, "zstd", 4) == 0) {
363 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
364 			ctx->compress_level =
365 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
366 							 param->string + 4);
367 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
368 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
369 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
370 		} else if (strncmp(param->string, "no", 2) == 0) {
371 			ctx->compress_level = 0;
372 			ctx->compress_type = 0;
373 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
374 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
375 		} else {
376 			btrfs_err(NULL, "unrecognized compression value %s",
377 				  param->string);
378 			return -EINVAL;
379 		}
380 		break;
381 	case Opt_ssd:
382 		if (result.negated) {
383 			btrfs_set_opt(ctx->mount_opt, NOSSD);
384 			btrfs_clear_opt(ctx->mount_opt, SSD);
385 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
386 		} else {
387 			btrfs_set_opt(ctx->mount_opt, SSD);
388 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
389 		}
390 		break;
391 	case Opt_ssd_spread:
392 		if (result.negated) {
393 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
394 		} else {
395 			btrfs_set_opt(ctx->mount_opt, SSD);
396 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
397 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
398 		}
399 		break;
400 	case Opt_barrier:
401 		if (result.negated)
402 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
403 		else
404 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
405 		break;
406 	case Opt_thread_pool:
407 		if (result.uint_32 == 0) {
408 			btrfs_err(NULL, "invalid value 0 for thread_pool");
409 			return -EINVAL;
410 		}
411 		ctx->thread_pool_size = result.uint_32;
412 		break;
413 	case Opt_max_inline:
414 		ctx->max_inline = memparse(param->string, NULL);
415 		break;
416 	case Opt_acl:
417 		if (result.negated) {
418 			fc->sb_flags &= ~SB_POSIXACL;
419 		} else {
420 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
421 			fc->sb_flags |= SB_POSIXACL;
422 #else
423 			btrfs_err(NULL, "support for ACL not compiled in");
424 			return -EINVAL;
425 #endif
426 		}
427 		/*
428 		 * VFS limits the ability to toggle ACL on and off via remount,
429 		 * despite every file system allowing this.  This seems to be
430 		 * an oversight since we all do, but it'll fail if we're
431 		 * remounting.  So don't set the mask here, we'll check it in
432 		 * btrfs_reconfigure and do the toggling ourselves.
433 		 */
434 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
435 			fc->sb_flags_mask |= SB_POSIXACL;
436 		break;
437 	case Opt_treelog:
438 		if (result.negated)
439 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
440 		else
441 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
442 		break;
443 	case Opt_nologreplay:
444 		btrfs_warn(NULL,
445 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
446 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
447 		break;
448 	case Opt_norecovery:
449 		btrfs_info(NULL,
450 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
451 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
452 		break;
453 	case Opt_flushoncommit:
454 		if (result.negated)
455 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
456 		else
457 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
458 		break;
459 	case Opt_ratio:
460 		ctx->metadata_ratio = result.uint_32;
461 		break;
462 	case Opt_discard:
463 		if (result.negated) {
464 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
465 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
466 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
467 		} else {
468 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
469 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
470 		}
471 		break;
472 	case Opt_discard_mode:
473 		switch (result.uint_32) {
474 		case Opt_discard_sync:
475 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
476 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
477 			break;
478 		case Opt_discard_async:
479 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
480 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
481 			break;
482 		default:
483 			btrfs_err(NULL, "unrecognized discard mode value %s",
484 				  param->key);
485 			return -EINVAL;
486 		}
487 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
488 		break;
489 	case Opt_space_cache:
490 		if (result.negated) {
491 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
492 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
493 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
494 		} else {
495 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
496 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
497 		}
498 		break;
499 	case Opt_space_cache_version:
500 		switch (result.uint_32) {
501 		case Opt_space_cache_v1:
502 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
503 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
504 			break;
505 		case Opt_space_cache_v2:
506 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
507 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
508 			break;
509 		default:
510 			btrfs_err(NULL, "unrecognized space_cache value %s",
511 				  param->key);
512 			return -EINVAL;
513 		}
514 		break;
515 	case Opt_rescan_uuid_tree:
516 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
517 		break;
518 	case Opt_clear_cache:
519 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
520 		break;
521 	case Opt_user_subvol_rm_allowed:
522 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
523 		break;
524 	case Opt_enospc_debug:
525 		if (result.negated)
526 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
527 		else
528 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
529 		break;
530 	case Opt_defrag:
531 		if (result.negated)
532 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
533 		else
534 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
535 		break;
536 	case Opt_usebackuproot:
537 		btrfs_warn(NULL,
538 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
539 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
540 
541 		/* If we're loading the backup roots we can't trust the space cache. */
542 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
543 		break;
544 	case Opt_skip_balance:
545 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
546 		break;
547 	case Opt_fatal_errors:
548 		switch (result.uint_32) {
549 		case Opt_fatal_errors_panic:
550 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
551 			break;
552 		case Opt_fatal_errors_bug:
553 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
554 			break;
555 		default:
556 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
557 				  param->key);
558 			return -EINVAL;
559 		}
560 		break;
561 	case Opt_commit_interval:
562 		ctx->commit_interval = result.uint_32;
563 		if (ctx->commit_interval == 0)
564 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
565 		break;
566 	case Opt_rescue:
567 		switch (result.uint_32) {
568 		case Opt_rescue_usebackuproot:
569 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
570 			break;
571 		case Opt_rescue_nologreplay:
572 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
573 			break;
574 		case Opt_rescue_ignorebadroots:
575 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
576 			break;
577 		case Opt_rescue_ignoredatacsums:
578 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
579 			break;
580 		case Opt_rescue_ignoremetacsums:
581 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
582 			break;
583 		case Opt_rescue_ignoresuperflags:
584 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
585 			break;
586 		case Opt_rescue_parameter_all:
587 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
588 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
589 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
590 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
591 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
592 			break;
593 		default:
594 			btrfs_info(NULL, "unrecognized rescue option '%s'",
595 				   param->key);
596 			return -EINVAL;
597 		}
598 		break;
599 #ifdef CONFIG_BTRFS_DEBUG
600 	case Opt_fragment:
601 		switch (result.uint_32) {
602 		case Opt_fragment_parameter_all:
603 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
604 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
605 			break;
606 		case Opt_fragment_parameter_metadata:
607 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
608 			break;
609 		case Opt_fragment_parameter_data:
610 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
611 			break;
612 		default:
613 			btrfs_info(NULL, "unrecognized fragment option '%s'",
614 				   param->key);
615 			return -EINVAL;
616 		}
617 		break;
618 #endif
619 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
620 	case Opt_ref_verify:
621 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
622 		break;
623 #endif
624 	default:
625 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
626 		return -EINVAL;
627 	}
628 
629 	return 0;
630 }
631 
632 /*
633  * Some options only have meaning at mount time and shouldn't persist across
634  * remounts, or be displayed. Clear these at the end of mount and remount code
635  * paths.
636  */
637 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
638 {
639 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
640 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
641 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
642 }
643 
644 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
645 			    unsigned long long mount_opt, unsigned long long opt,
646 			    const char *opt_name)
647 {
648 	if (mount_opt & opt) {
649 		btrfs_err(fs_info, "%s must be used with ro mount option",
650 			  opt_name);
651 		return true;
652 	}
653 	return false;
654 }
655 
656 bool btrfs_check_options(const struct btrfs_fs_info *info,
657 			 unsigned long long *mount_opt,
658 			 unsigned long flags)
659 {
660 	bool ret = true;
661 
662 	if (!(flags & SB_RDONLY) &&
663 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
664 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
665 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
666 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
667 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
668 		ret = false;
669 
670 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
671 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
672 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
673 		btrfs_err(info, "cannot disable free-space-tree");
674 		ret = false;
675 	}
676 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
677 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
678 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
679 		ret = false;
680 	}
681 
682 	if (btrfs_check_mountopts_zoned(info, mount_opt))
683 		ret = false;
684 
685 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
686 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
687 			btrfs_info(info, "disk space caching is enabled");
688 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
689 			btrfs_info(info, "using free-space-tree");
690 	}
691 
692 	return ret;
693 }
694 
695 /*
696  * This is subtle, we only call this during open_ctree().  We need to pre-load
697  * the mount options with the on-disk settings.  Before the new mount API took
698  * effect we would do this on mount and remount.  With the new mount API we'll
699  * only do this on the initial mount.
700  *
701  * This isn't a change in behavior, because we're using the current state of the
702  * file system to set the current mount options.  If you mounted with special
703  * options to disable these features and then remounted we wouldn't revert the
704  * settings, because mounting without these features cleared the on-disk
705  * settings, so this being called on re-mount is not needed.
706  */
707 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
708 {
709 	if (fs_info->sectorsize < PAGE_SIZE) {
710 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
711 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
712 			btrfs_info(fs_info,
713 				   "forcing free space tree for sector size %u with page size %lu",
714 				   fs_info->sectorsize, PAGE_SIZE);
715 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
716 		}
717 	}
718 
719 	/*
720 	 * At this point our mount options are populated, so we only mess with
721 	 * these settings if we don't have any settings already.
722 	 */
723 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
724 		return;
725 
726 	if (btrfs_is_zoned(fs_info) &&
727 	    btrfs_free_space_cache_v1_active(fs_info)) {
728 		btrfs_info(fs_info, "zoned: clearing existing space cache");
729 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
730 		return;
731 	}
732 
733 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
734 		return;
735 
736 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
737 		return;
738 
739 	/*
740 	 * At this point we don't have explicit options set by the user, set
741 	 * them ourselves based on the state of the file system.
742 	 */
743 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
744 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
745 	else if (btrfs_free_space_cache_v1_active(fs_info))
746 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
747 }
748 
749 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
750 {
751 	if (!btrfs_test_opt(fs_info, NOSSD) &&
752 	    !fs_info->fs_devices->rotating)
753 		btrfs_set_opt(fs_info->mount_opt, SSD);
754 
755 	/*
756 	 * For devices supporting discard turn on discard=async automatically,
757 	 * unless it's already set or disabled. This could be turned off by
758 	 * nodiscard for the same mount.
759 	 *
760 	 * The zoned mode piggy backs on the discard functionality for
761 	 * resetting a zone. There is no reason to delay the zone reset as it is
762 	 * fast enough. So, do not enable async discard for zoned mode.
763 	 */
764 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
765 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
766 	      btrfs_test_opt(fs_info, NODISCARD)) &&
767 	    fs_info->fs_devices->discardable &&
768 	    !btrfs_is_zoned(fs_info))
769 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
770 }
771 
772 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
773 					  u64 subvol_objectid)
774 {
775 	struct btrfs_root *root = fs_info->tree_root;
776 	struct btrfs_root *fs_root = NULL;
777 	struct btrfs_root_ref *root_ref;
778 	struct btrfs_inode_ref *inode_ref;
779 	struct btrfs_key key;
780 	struct btrfs_path *path = NULL;
781 	char *name = NULL, *ptr;
782 	u64 dirid;
783 	int len;
784 	int ret;
785 
786 	path = btrfs_alloc_path();
787 	if (!path) {
788 		ret = -ENOMEM;
789 		goto err;
790 	}
791 
792 	name = kmalloc(PATH_MAX, GFP_KERNEL);
793 	if (!name) {
794 		ret = -ENOMEM;
795 		goto err;
796 	}
797 	ptr = name + PATH_MAX - 1;
798 	ptr[0] = '\0';
799 
800 	/*
801 	 * Walk up the subvolume trees in the tree of tree roots by root
802 	 * backrefs until we hit the top-level subvolume.
803 	 */
804 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
805 		key.objectid = subvol_objectid;
806 		key.type = BTRFS_ROOT_BACKREF_KEY;
807 		key.offset = (u64)-1;
808 
809 		ret = btrfs_search_backwards(root, &key, path);
810 		if (ret < 0) {
811 			goto err;
812 		} else if (ret > 0) {
813 			ret = -ENOENT;
814 			goto err;
815 		}
816 
817 		subvol_objectid = key.offset;
818 
819 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 					  struct btrfs_root_ref);
821 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
822 		ptr -= len + 1;
823 		if (ptr < name) {
824 			ret = -ENAMETOOLONG;
825 			goto err;
826 		}
827 		read_extent_buffer(path->nodes[0], ptr + 1,
828 				   (unsigned long)(root_ref + 1), len);
829 		ptr[0] = '/';
830 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
831 		btrfs_release_path(path);
832 
833 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
834 		if (IS_ERR(fs_root)) {
835 			ret = PTR_ERR(fs_root);
836 			fs_root = NULL;
837 			goto err;
838 		}
839 
840 		/*
841 		 * Walk up the filesystem tree by inode refs until we hit the
842 		 * root directory.
843 		 */
844 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
845 			key.objectid = dirid;
846 			key.type = BTRFS_INODE_REF_KEY;
847 			key.offset = (u64)-1;
848 
849 			ret = btrfs_search_backwards(fs_root, &key, path);
850 			if (ret < 0) {
851 				goto err;
852 			} else if (ret > 0) {
853 				ret = -ENOENT;
854 				goto err;
855 			}
856 
857 			dirid = key.offset;
858 
859 			inode_ref = btrfs_item_ptr(path->nodes[0],
860 						   path->slots[0],
861 						   struct btrfs_inode_ref);
862 			len = btrfs_inode_ref_name_len(path->nodes[0],
863 						       inode_ref);
864 			ptr -= len + 1;
865 			if (ptr < name) {
866 				ret = -ENAMETOOLONG;
867 				goto err;
868 			}
869 			read_extent_buffer(path->nodes[0], ptr + 1,
870 					   (unsigned long)(inode_ref + 1), len);
871 			ptr[0] = '/';
872 			btrfs_release_path(path);
873 		}
874 		btrfs_put_root(fs_root);
875 		fs_root = NULL;
876 	}
877 
878 	btrfs_free_path(path);
879 	if (ptr == name + PATH_MAX - 1) {
880 		name[0] = '/';
881 		name[1] = '\0';
882 	} else {
883 		memmove(name, ptr, name + PATH_MAX - ptr);
884 	}
885 	return name;
886 
887 err:
888 	btrfs_put_root(fs_root);
889 	btrfs_free_path(path);
890 	kfree(name);
891 	return ERR_PTR(ret);
892 }
893 
894 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
895 {
896 	struct btrfs_root *root = fs_info->tree_root;
897 	struct btrfs_dir_item *di;
898 	struct btrfs_path *path;
899 	struct btrfs_key location;
900 	struct fscrypt_str name = FSTR_INIT("default", 7);
901 	u64 dir_id;
902 
903 	path = btrfs_alloc_path();
904 	if (!path)
905 		return -ENOMEM;
906 
907 	/*
908 	 * Find the "default" dir item which points to the root item that we
909 	 * will mount by default if we haven't been given a specific subvolume
910 	 * to mount.
911 	 */
912 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
913 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
914 	if (IS_ERR(di)) {
915 		btrfs_free_path(path);
916 		return PTR_ERR(di);
917 	}
918 	if (!di) {
919 		/*
920 		 * Ok the default dir item isn't there.  This is weird since
921 		 * it's always been there, but don't freak out, just try and
922 		 * mount the top-level subvolume.
923 		 */
924 		btrfs_free_path(path);
925 		*objectid = BTRFS_FS_TREE_OBJECTID;
926 		return 0;
927 	}
928 
929 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
930 	btrfs_free_path(path);
931 	*objectid = location.objectid;
932 	return 0;
933 }
934 
935 static int btrfs_fill_super(struct super_block *sb,
936 			    struct btrfs_fs_devices *fs_devices,
937 			    void *data)
938 {
939 	struct inode *inode;
940 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
941 	int err;
942 
943 	sb->s_maxbytes = MAX_LFS_FILESIZE;
944 	sb->s_magic = BTRFS_SUPER_MAGIC;
945 	sb->s_op = &btrfs_super_ops;
946 	sb->s_d_op = &btrfs_dentry_operations;
947 	sb->s_export_op = &btrfs_export_ops;
948 #ifdef CONFIG_FS_VERITY
949 	sb->s_vop = &btrfs_verityops;
950 #endif
951 	sb->s_xattr = btrfs_xattr_handlers;
952 	sb->s_time_gran = 1;
953 	sb->s_iflags |= SB_I_CGROUPWB;
954 
955 	err = super_setup_bdi(sb);
956 	if (err) {
957 		btrfs_err(fs_info, "super_setup_bdi failed");
958 		return err;
959 	}
960 
961 	err = open_ctree(sb, fs_devices, (char *)data);
962 	if (err) {
963 		btrfs_err(fs_info, "open_ctree failed");
964 		return err;
965 	}
966 
967 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
968 	if (IS_ERR(inode)) {
969 		err = PTR_ERR(inode);
970 		btrfs_handle_fs_error(fs_info, err, NULL);
971 		goto fail_close;
972 	}
973 
974 	sb->s_root = d_make_root(inode);
975 	if (!sb->s_root) {
976 		err = -ENOMEM;
977 		goto fail_close;
978 	}
979 
980 	sb->s_flags |= SB_ACTIVE;
981 	return 0;
982 
983 fail_close:
984 	close_ctree(fs_info);
985 	return err;
986 }
987 
988 int btrfs_sync_fs(struct super_block *sb, int wait)
989 {
990 	struct btrfs_trans_handle *trans;
991 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
992 	struct btrfs_root *root = fs_info->tree_root;
993 
994 	trace_btrfs_sync_fs(fs_info, wait);
995 
996 	if (!wait) {
997 		filemap_flush(fs_info->btree_inode->i_mapping);
998 		return 0;
999 	}
1000 
1001 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1002 
1003 	trans = btrfs_attach_transaction_barrier(root);
1004 	if (IS_ERR(trans)) {
1005 		/* no transaction, don't bother */
1006 		if (PTR_ERR(trans) == -ENOENT) {
1007 			/*
1008 			 * Exit unless we have some pending changes
1009 			 * that need to go through commit
1010 			 */
1011 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1012 				      &fs_info->flags))
1013 				return 0;
1014 			/*
1015 			 * A non-blocking test if the fs is frozen. We must not
1016 			 * start a new transaction here otherwise a deadlock
1017 			 * happens. The pending operations are delayed to the
1018 			 * next commit after thawing.
1019 			 */
1020 			if (sb_start_write_trylock(sb))
1021 				sb_end_write(sb);
1022 			else
1023 				return 0;
1024 			trans = btrfs_start_transaction(root, 0);
1025 		}
1026 		if (IS_ERR(trans))
1027 			return PTR_ERR(trans);
1028 	}
1029 	return btrfs_commit_transaction(trans);
1030 }
1031 
1032 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1033 {
1034 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1035 	*printed = true;
1036 }
1037 
1038 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1039 {
1040 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1041 	const char *compress_type;
1042 	const char *subvol_name;
1043 	bool printed = false;
1044 
1045 	if (btrfs_test_opt(info, DEGRADED))
1046 		seq_puts(seq, ",degraded");
1047 	if (btrfs_test_opt(info, NODATASUM))
1048 		seq_puts(seq, ",nodatasum");
1049 	if (btrfs_test_opt(info, NODATACOW))
1050 		seq_puts(seq, ",nodatacow");
1051 	if (btrfs_test_opt(info, NOBARRIER))
1052 		seq_puts(seq, ",nobarrier");
1053 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1054 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1055 	if (info->thread_pool_size !=  min_t(unsigned long,
1056 					     num_online_cpus() + 2, 8))
1057 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1058 	if (btrfs_test_opt(info, COMPRESS)) {
1059 		compress_type = btrfs_compress_type2str(info->compress_type);
1060 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1061 			seq_printf(seq, ",compress-force=%s", compress_type);
1062 		else
1063 			seq_printf(seq, ",compress=%s", compress_type);
1064 		if (info->compress_level)
1065 			seq_printf(seq, ":%d", info->compress_level);
1066 	}
1067 	if (btrfs_test_opt(info, NOSSD))
1068 		seq_puts(seq, ",nossd");
1069 	if (btrfs_test_opt(info, SSD_SPREAD))
1070 		seq_puts(seq, ",ssd_spread");
1071 	else if (btrfs_test_opt(info, SSD))
1072 		seq_puts(seq, ",ssd");
1073 	if (btrfs_test_opt(info, NOTREELOG))
1074 		seq_puts(seq, ",notreelog");
1075 	if (btrfs_test_opt(info, NOLOGREPLAY))
1076 		print_rescue_option(seq, "nologreplay", &printed);
1077 	if (btrfs_test_opt(info, USEBACKUPROOT))
1078 		print_rescue_option(seq, "usebackuproot", &printed);
1079 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1080 		print_rescue_option(seq, "ignorebadroots", &printed);
1081 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1082 		print_rescue_option(seq, "ignoredatacsums", &printed);
1083 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1084 		print_rescue_option(seq, "ignoremetacsums", &printed);
1085 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1086 		print_rescue_option(seq, "ignoresuperflags", &printed);
1087 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1088 		seq_puts(seq, ",flushoncommit");
1089 	if (btrfs_test_opt(info, DISCARD_SYNC))
1090 		seq_puts(seq, ",discard");
1091 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1092 		seq_puts(seq, ",discard=async");
1093 	if (!(info->sb->s_flags & SB_POSIXACL))
1094 		seq_puts(seq, ",noacl");
1095 	if (btrfs_free_space_cache_v1_active(info))
1096 		seq_puts(seq, ",space_cache");
1097 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1098 		seq_puts(seq, ",space_cache=v2");
1099 	else
1100 		seq_puts(seq, ",nospace_cache");
1101 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1102 		seq_puts(seq, ",rescan_uuid_tree");
1103 	if (btrfs_test_opt(info, CLEAR_CACHE))
1104 		seq_puts(seq, ",clear_cache");
1105 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1106 		seq_puts(seq, ",user_subvol_rm_allowed");
1107 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1108 		seq_puts(seq, ",enospc_debug");
1109 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1110 		seq_puts(seq, ",autodefrag");
1111 	if (btrfs_test_opt(info, SKIP_BALANCE))
1112 		seq_puts(seq, ",skip_balance");
1113 	if (info->metadata_ratio)
1114 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1115 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1116 		seq_puts(seq, ",fatal_errors=panic");
1117 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1118 		seq_printf(seq, ",commit=%u", info->commit_interval);
1119 #ifdef CONFIG_BTRFS_DEBUG
1120 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1121 		seq_puts(seq, ",fragment=data");
1122 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1123 		seq_puts(seq, ",fragment=metadata");
1124 #endif
1125 	if (btrfs_test_opt(info, REF_VERIFY))
1126 		seq_puts(seq, ",ref_verify");
1127 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1128 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1129 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1130 	if (!IS_ERR(subvol_name)) {
1131 		seq_puts(seq, ",subvol=");
1132 		seq_escape(seq, subvol_name, " \t\n\\");
1133 		kfree(subvol_name);
1134 	}
1135 	return 0;
1136 }
1137 
1138 /*
1139  * subvolumes are identified by ino 256
1140  */
1141 static inline int is_subvolume_inode(struct inode *inode)
1142 {
1143 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1144 		return 1;
1145 	return 0;
1146 }
1147 
1148 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1149 				   struct vfsmount *mnt)
1150 {
1151 	struct dentry *root;
1152 	int ret;
1153 
1154 	if (!subvol_name) {
1155 		if (!subvol_objectid) {
1156 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1157 							  &subvol_objectid);
1158 			if (ret) {
1159 				root = ERR_PTR(ret);
1160 				goto out;
1161 			}
1162 		}
1163 		subvol_name = btrfs_get_subvol_name_from_objectid(
1164 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1165 		if (IS_ERR(subvol_name)) {
1166 			root = ERR_CAST(subvol_name);
1167 			subvol_name = NULL;
1168 			goto out;
1169 		}
1170 
1171 	}
1172 
1173 	root = mount_subtree(mnt, subvol_name);
1174 	/* mount_subtree() drops our reference on the vfsmount. */
1175 	mnt = NULL;
1176 
1177 	if (!IS_ERR(root)) {
1178 		struct super_block *s = root->d_sb;
1179 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1180 		struct inode *root_inode = d_inode(root);
1181 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1182 
1183 		ret = 0;
1184 		if (!is_subvolume_inode(root_inode)) {
1185 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1186 			       subvol_name);
1187 			ret = -EINVAL;
1188 		}
1189 		if (subvol_objectid && root_objectid != subvol_objectid) {
1190 			/*
1191 			 * This will also catch a race condition where a
1192 			 * subvolume which was passed by ID is renamed and
1193 			 * another subvolume is renamed over the old location.
1194 			 */
1195 			btrfs_err(fs_info,
1196 				  "subvol '%s' does not match subvolid %llu",
1197 				  subvol_name, subvol_objectid);
1198 			ret = -EINVAL;
1199 		}
1200 		if (ret) {
1201 			dput(root);
1202 			root = ERR_PTR(ret);
1203 			deactivate_locked_super(s);
1204 		}
1205 	}
1206 
1207 out:
1208 	mntput(mnt);
1209 	kfree(subvol_name);
1210 	return root;
1211 }
1212 
1213 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1214 				     u32 new_pool_size, u32 old_pool_size)
1215 {
1216 	if (new_pool_size == old_pool_size)
1217 		return;
1218 
1219 	fs_info->thread_pool_size = new_pool_size;
1220 
1221 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1222 	       old_pool_size, new_pool_size);
1223 
1224 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1225 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1226 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1227 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1228 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1229 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1230 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1231 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1232 }
1233 
1234 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1235 				       unsigned long long old_opts, int flags)
1236 {
1237 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1238 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1239 	     (flags & SB_RDONLY))) {
1240 		/* wait for any defraggers to finish */
1241 		wait_event(fs_info->transaction_wait,
1242 			   (atomic_read(&fs_info->defrag_running) == 0));
1243 		if (flags & SB_RDONLY)
1244 			sync_filesystem(fs_info->sb);
1245 	}
1246 }
1247 
1248 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1249 					 unsigned long long old_opts)
1250 {
1251 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1252 
1253 	/*
1254 	 * We need to cleanup all defragable inodes if the autodefragment is
1255 	 * close or the filesystem is read only.
1256 	 */
1257 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1258 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1259 		btrfs_cleanup_defrag_inodes(fs_info);
1260 	}
1261 
1262 	/* If we toggled discard async */
1263 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1264 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1265 		btrfs_discard_resume(fs_info);
1266 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1267 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1268 		btrfs_discard_cleanup(fs_info);
1269 
1270 	/* If we toggled space cache */
1271 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1272 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1273 }
1274 
1275 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1276 {
1277 	int ret;
1278 
1279 	if (BTRFS_FS_ERROR(fs_info)) {
1280 		btrfs_err(fs_info,
1281 			  "remounting read-write after error is not allowed");
1282 		return -EINVAL;
1283 	}
1284 
1285 	if (fs_info->fs_devices->rw_devices == 0)
1286 		return -EACCES;
1287 
1288 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1289 		btrfs_warn(fs_info,
1290 			   "too many missing devices, writable remount is not allowed");
1291 		return -EACCES;
1292 	}
1293 
1294 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1295 		btrfs_warn(fs_info,
1296 			   "mount required to replay tree-log, cannot remount read-write");
1297 		return -EINVAL;
1298 	}
1299 
1300 	/*
1301 	 * NOTE: when remounting with a change that does writes, don't put it
1302 	 * anywhere above this point, as we are not sure to be safe to write
1303 	 * until we pass the above checks.
1304 	 */
1305 	ret = btrfs_start_pre_rw_mount(fs_info);
1306 	if (ret)
1307 		return ret;
1308 
1309 	btrfs_clear_sb_rdonly(fs_info->sb);
1310 
1311 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1312 
1313 	/*
1314 	 * If we've gone from readonly -> read-write, we need to get our
1315 	 * sync/async discard lists in the right state.
1316 	 */
1317 	btrfs_discard_resume(fs_info);
1318 
1319 	return 0;
1320 }
1321 
1322 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1323 {
1324 	/*
1325 	 * This also happens on 'umount -rf' or on shutdown, when the
1326 	 * filesystem is busy.
1327 	 */
1328 	cancel_work_sync(&fs_info->async_reclaim_work);
1329 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1330 
1331 	btrfs_discard_cleanup(fs_info);
1332 
1333 	/* Wait for the uuid_scan task to finish */
1334 	down(&fs_info->uuid_tree_rescan_sem);
1335 	/* Avoid complains from lockdep et al. */
1336 	up(&fs_info->uuid_tree_rescan_sem);
1337 
1338 	btrfs_set_sb_rdonly(fs_info->sb);
1339 
1340 	/*
1341 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1342 	 * loop if it's already active.  If it's already asleep, we'll leave
1343 	 * unused block groups on disk until we're mounted read-write again
1344 	 * unless we clean them up here.
1345 	 */
1346 	btrfs_delete_unused_bgs(fs_info);
1347 
1348 	/*
1349 	 * The cleaner task could be already running before we set the flag
1350 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1351 	 * sure that after we finish the remount, i.e. after we call
1352 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1353 	 * - either because it was dropping a dead root, running delayed iputs
1354 	 *   or deleting an unused block group (the cleaner picked a block
1355 	 *   group from the list of unused block groups before we were able to
1356 	 *   in the previous call to btrfs_delete_unused_bgs()).
1357 	 */
1358 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1359 
1360 	/*
1361 	 * We've set the superblock to RO mode, so we might have made the
1362 	 * cleaner task sleep without running all pending delayed iputs. Go
1363 	 * through all the delayed iputs here, so that if an unmount happens
1364 	 * without remounting RW we don't end up at finishing close_ctree()
1365 	 * with a non-empty list of delayed iputs.
1366 	 */
1367 	btrfs_run_delayed_iputs(fs_info);
1368 
1369 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1370 	btrfs_scrub_cancel(fs_info);
1371 	btrfs_pause_balance(fs_info);
1372 
1373 	/*
1374 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1375 	 * be still running after we are in RO mode, as after that, by the time
1376 	 * we unmount, it might have left a transaction open, so we would leak
1377 	 * the transaction and/or crash.
1378 	 */
1379 	btrfs_qgroup_wait_for_completion(fs_info, false);
1380 
1381 	return btrfs_commit_super(fs_info);
1382 }
1383 
1384 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1385 {
1386 	fs_info->max_inline = ctx->max_inline;
1387 	fs_info->commit_interval = ctx->commit_interval;
1388 	fs_info->metadata_ratio = ctx->metadata_ratio;
1389 	fs_info->thread_pool_size = ctx->thread_pool_size;
1390 	fs_info->mount_opt = ctx->mount_opt;
1391 	fs_info->compress_type = ctx->compress_type;
1392 	fs_info->compress_level = ctx->compress_level;
1393 }
1394 
1395 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1396 {
1397 	ctx->max_inline = fs_info->max_inline;
1398 	ctx->commit_interval = fs_info->commit_interval;
1399 	ctx->metadata_ratio = fs_info->metadata_ratio;
1400 	ctx->thread_pool_size = fs_info->thread_pool_size;
1401 	ctx->mount_opt = fs_info->mount_opt;
1402 	ctx->compress_type = fs_info->compress_type;
1403 	ctx->compress_level = fs_info->compress_level;
1404 }
1405 
1406 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1407 do {										\
1408 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1409 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1410 		btrfs_info(fs_info, fmt, ##args);				\
1411 } while (0)
1412 
1413 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1414 do {									\
1415 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1416 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1417 		btrfs_info(fs_info, fmt, ##args);			\
1418 } while (0)
1419 
1420 static void btrfs_emit_options(struct btrfs_fs_info *info,
1421 			       struct btrfs_fs_context *old)
1422 {
1423 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1424 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1425 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1426 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1427 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1428 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1429 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1430 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1431 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1432 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1433 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1434 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1435 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1436 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1437 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1438 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1439 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1440 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1441 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1442 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1443 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1444 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1445 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1446 
1447 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1448 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1449 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1450 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1451 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1452 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1453 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1454 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1455 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1456 
1457 	/* Did the compression settings change? */
1458 	if (btrfs_test_opt(info, COMPRESS) &&
1459 	    (!old ||
1460 	     old->compress_type != info->compress_type ||
1461 	     old->compress_level != info->compress_level ||
1462 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1463 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1464 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1465 
1466 		btrfs_info(info, "%s %s compression, level %d",
1467 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1468 			   compress_type, info->compress_level);
1469 	}
1470 
1471 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1472 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1473 }
1474 
1475 static int btrfs_reconfigure(struct fs_context *fc)
1476 {
1477 	struct super_block *sb = fc->root->d_sb;
1478 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1479 	struct btrfs_fs_context *ctx = fc->fs_private;
1480 	struct btrfs_fs_context old_ctx;
1481 	int ret = 0;
1482 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1483 
1484 	btrfs_info_to_ctx(fs_info, &old_ctx);
1485 
1486 	/*
1487 	 * This is our "bind mount" trick, we don't want to allow the user to do
1488 	 * anything other than mount a different ro/rw and a different subvol,
1489 	 * all of the mount options should be maintained.
1490 	 */
1491 	if (mount_reconfigure)
1492 		ctx->mount_opt = old_ctx.mount_opt;
1493 
1494 	sync_filesystem(sb);
1495 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1496 
1497 	if (!mount_reconfigure &&
1498 	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1499 		return -EINVAL;
1500 
1501 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1502 	if (ret < 0)
1503 		return ret;
1504 
1505 	btrfs_ctx_to_info(fs_info, ctx);
1506 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1507 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1508 				 old_ctx.thread_pool_size);
1509 
1510 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1511 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1512 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1513 		btrfs_warn(fs_info,
1514 		"remount supports changing free space tree only from RO to RW");
1515 		/* Make sure free space cache options match the state on disk. */
1516 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1517 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1518 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1519 		}
1520 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1521 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1522 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1523 		}
1524 	}
1525 
1526 	ret = 0;
1527 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1528 		ret = btrfs_remount_ro(fs_info);
1529 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1530 		ret = btrfs_remount_rw(fs_info);
1531 	if (ret)
1532 		goto restore;
1533 
1534 	/*
1535 	 * If we set the mask during the parameter parsing VFS would reject the
1536 	 * remount.  Here we can set the mask and the value will be updated
1537 	 * appropriately.
1538 	 */
1539 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1540 		fc->sb_flags_mask |= SB_POSIXACL;
1541 
1542 	btrfs_emit_options(fs_info, &old_ctx);
1543 	wake_up_process(fs_info->transaction_kthread);
1544 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1545 	btrfs_clear_oneshot_options(fs_info);
1546 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1547 
1548 	return 0;
1549 restore:
1550 	btrfs_ctx_to_info(fs_info, &old_ctx);
1551 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1552 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1553 	return ret;
1554 }
1555 
1556 /* Used to sort the devices by max_avail(descending sort) */
1557 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1558 {
1559 	const struct btrfs_device_info *dev_info1 = a;
1560 	const struct btrfs_device_info *dev_info2 = b;
1561 
1562 	if (dev_info1->max_avail > dev_info2->max_avail)
1563 		return -1;
1564 	else if (dev_info1->max_avail < dev_info2->max_avail)
1565 		return 1;
1566 	return 0;
1567 }
1568 
1569 /*
1570  * sort the devices by max_avail, in which max free extent size of each device
1571  * is stored.(Descending Sort)
1572  */
1573 static inline void btrfs_descending_sort_devices(
1574 					struct btrfs_device_info *devices,
1575 					size_t nr_devices)
1576 {
1577 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1578 	     btrfs_cmp_device_free_bytes, NULL);
1579 }
1580 
1581 /*
1582  * The helper to calc the free space on the devices that can be used to store
1583  * file data.
1584  */
1585 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1586 					      u64 *free_bytes)
1587 {
1588 	struct btrfs_device_info *devices_info;
1589 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1590 	struct btrfs_device *device;
1591 	u64 type;
1592 	u64 avail_space;
1593 	u64 min_stripe_size;
1594 	int num_stripes = 1;
1595 	int i = 0, nr_devices;
1596 	const struct btrfs_raid_attr *rattr;
1597 
1598 	/*
1599 	 * We aren't under the device list lock, so this is racy-ish, but good
1600 	 * enough for our purposes.
1601 	 */
1602 	nr_devices = fs_info->fs_devices->open_devices;
1603 	if (!nr_devices) {
1604 		smp_mb();
1605 		nr_devices = fs_info->fs_devices->open_devices;
1606 		ASSERT(nr_devices);
1607 		if (!nr_devices) {
1608 			*free_bytes = 0;
1609 			return 0;
1610 		}
1611 	}
1612 
1613 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1614 			       GFP_KERNEL);
1615 	if (!devices_info)
1616 		return -ENOMEM;
1617 
1618 	/* calc min stripe number for data space allocation */
1619 	type = btrfs_data_alloc_profile(fs_info);
1620 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1621 
1622 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1623 		num_stripes = nr_devices;
1624 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1625 		num_stripes = rattr->ncopies;
1626 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1627 		num_stripes = 4;
1628 
1629 	/* Adjust for more than 1 stripe per device */
1630 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1631 
1632 	rcu_read_lock();
1633 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1634 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1635 						&device->dev_state) ||
1636 		    !device->bdev ||
1637 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1638 			continue;
1639 
1640 		if (i >= nr_devices)
1641 			break;
1642 
1643 		avail_space = device->total_bytes - device->bytes_used;
1644 
1645 		/* align with stripe_len */
1646 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1647 
1648 		/*
1649 		 * Ensure we have at least min_stripe_size on top of the
1650 		 * reserved space on the device.
1651 		 */
1652 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1653 			continue;
1654 
1655 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1656 
1657 		devices_info[i].dev = device;
1658 		devices_info[i].max_avail = avail_space;
1659 
1660 		i++;
1661 	}
1662 	rcu_read_unlock();
1663 
1664 	nr_devices = i;
1665 
1666 	btrfs_descending_sort_devices(devices_info, nr_devices);
1667 
1668 	i = nr_devices - 1;
1669 	avail_space = 0;
1670 	while (nr_devices >= rattr->devs_min) {
1671 		num_stripes = min(num_stripes, nr_devices);
1672 
1673 		if (devices_info[i].max_avail >= min_stripe_size) {
1674 			int j;
1675 			u64 alloc_size;
1676 
1677 			avail_space += devices_info[i].max_avail * num_stripes;
1678 			alloc_size = devices_info[i].max_avail;
1679 			for (j = i + 1 - num_stripes; j <= i; j++)
1680 				devices_info[j].max_avail -= alloc_size;
1681 		}
1682 		i--;
1683 		nr_devices--;
1684 	}
1685 
1686 	kfree(devices_info);
1687 	*free_bytes = avail_space;
1688 	return 0;
1689 }
1690 
1691 /*
1692  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1693  *
1694  * If there's a redundant raid level at DATA block groups, use the respective
1695  * multiplier to scale the sizes.
1696  *
1697  * Unused device space usage is based on simulating the chunk allocator
1698  * algorithm that respects the device sizes and order of allocations.  This is
1699  * a close approximation of the actual use but there are other factors that may
1700  * change the result (like a new metadata chunk).
1701  *
1702  * If metadata is exhausted, f_bavail will be 0.
1703  */
1704 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1705 {
1706 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1707 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1708 	struct btrfs_space_info *found;
1709 	u64 total_used = 0;
1710 	u64 total_free_data = 0;
1711 	u64 total_free_meta = 0;
1712 	u32 bits = fs_info->sectorsize_bits;
1713 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1714 	unsigned factor = 1;
1715 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1716 	int ret;
1717 	u64 thresh = 0;
1718 	int mixed = 0;
1719 
1720 	list_for_each_entry(found, &fs_info->space_info, list) {
1721 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1722 			int i;
1723 
1724 			total_free_data += found->disk_total - found->disk_used;
1725 			total_free_data -=
1726 				btrfs_account_ro_block_groups_free_space(found);
1727 
1728 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1729 				if (!list_empty(&found->block_groups[i]))
1730 					factor = btrfs_bg_type_to_factor(
1731 						btrfs_raid_array[i].bg_flag);
1732 			}
1733 		}
1734 
1735 		/*
1736 		 * Metadata in mixed block group profiles are accounted in data
1737 		 */
1738 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1739 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1740 				mixed = 1;
1741 			else
1742 				total_free_meta += found->disk_total -
1743 					found->disk_used;
1744 		}
1745 
1746 		total_used += found->disk_used;
1747 	}
1748 
1749 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1750 	buf->f_blocks >>= bits;
1751 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1752 
1753 	/* Account global block reserve as used, it's in logical size already */
1754 	spin_lock(&block_rsv->lock);
1755 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1756 	if (buf->f_bfree >= block_rsv->size >> bits)
1757 		buf->f_bfree -= block_rsv->size >> bits;
1758 	else
1759 		buf->f_bfree = 0;
1760 	spin_unlock(&block_rsv->lock);
1761 
1762 	buf->f_bavail = div_u64(total_free_data, factor);
1763 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1764 	if (ret)
1765 		return ret;
1766 	buf->f_bavail += div_u64(total_free_data, factor);
1767 	buf->f_bavail = buf->f_bavail >> bits;
1768 
1769 	/*
1770 	 * We calculate the remaining metadata space minus global reserve. If
1771 	 * this is (supposedly) smaller than zero, there's no space. But this
1772 	 * does not hold in practice, the exhausted state happens where's still
1773 	 * some positive delta. So we apply some guesswork and compare the
1774 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1775 	 *
1776 	 * We probably cannot calculate the exact threshold value because this
1777 	 * depends on the internal reservations requested by various
1778 	 * operations, so some operations that consume a few metadata will
1779 	 * succeed even if the Avail is zero. But this is better than the other
1780 	 * way around.
1781 	 */
1782 	thresh = SZ_4M;
1783 
1784 	/*
1785 	 * We only want to claim there's no available space if we can no longer
1786 	 * allocate chunks for our metadata profile and our global reserve will
1787 	 * not fit in the free metadata space.  If we aren't ->full then we
1788 	 * still can allocate chunks and thus are fine using the currently
1789 	 * calculated f_bavail.
1790 	 */
1791 	if (!mixed && block_rsv->space_info->full &&
1792 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1793 		buf->f_bavail = 0;
1794 
1795 	buf->f_type = BTRFS_SUPER_MAGIC;
1796 	buf->f_bsize = fs_info->sectorsize;
1797 	buf->f_namelen = BTRFS_NAME_LEN;
1798 
1799 	/* We treat it as constant endianness (it doesn't matter _which_)
1800 	   because we want the fsid to come out the same whether mounted
1801 	   on a big-endian or little-endian host */
1802 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1803 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1804 	/* Mask in the root object ID too, to disambiguate subvols */
1805 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1806 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1807 
1808 	return 0;
1809 }
1810 
1811 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1812 {
1813 	struct btrfs_fs_info *p = fc->s_fs_info;
1814 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1815 
1816 	return fs_info->fs_devices == p->fs_devices;
1817 }
1818 
1819 static int btrfs_get_tree_super(struct fs_context *fc)
1820 {
1821 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1822 	struct btrfs_fs_context *ctx = fc->fs_private;
1823 	struct btrfs_fs_devices *fs_devices = NULL;
1824 	struct block_device *bdev;
1825 	struct btrfs_device *device;
1826 	struct super_block *sb;
1827 	blk_mode_t mode = btrfs_open_mode(fc);
1828 	int ret;
1829 
1830 	btrfs_ctx_to_info(fs_info, ctx);
1831 	mutex_lock(&uuid_mutex);
1832 
1833 	/*
1834 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1835 	 * either a valid device or an error.
1836 	 */
1837 	device = btrfs_scan_one_device(fc->source, mode, true);
1838 	ASSERT(device != NULL);
1839 	if (IS_ERR(device)) {
1840 		mutex_unlock(&uuid_mutex);
1841 		return PTR_ERR(device);
1842 	}
1843 
1844 	fs_devices = device->fs_devices;
1845 	fs_info->fs_devices = fs_devices;
1846 
1847 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1848 	mutex_unlock(&uuid_mutex);
1849 	if (ret)
1850 		return ret;
1851 
1852 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1853 		ret = -EACCES;
1854 		goto error;
1855 	}
1856 
1857 	bdev = fs_devices->latest_dev->bdev;
1858 
1859 	/*
1860 	 * From now on the error handling is not straightforward.
1861 	 *
1862 	 * If successful, this will transfer the fs_info into the super block,
1863 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1864 	 * super, we'll still have fc->s_fs_info populated.  If we error
1865 	 * completely out it'll be cleaned up when we drop the fs_context,
1866 	 * otherwise it's tied to the lifetime of the super_block.
1867 	 */
1868 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1869 	if (IS_ERR(sb)) {
1870 		ret = PTR_ERR(sb);
1871 		goto error;
1872 	}
1873 
1874 	set_device_specific_options(fs_info);
1875 
1876 	if (sb->s_root) {
1877 		btrfs_close_devices(fs_devices);
1878 		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1879 			ret = -EBUSY;
1880 	} else {
1881 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1882 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1883 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1884 		ret = btrfs_fill_super(sb, fs_devices, NULL);
1885 	}
1886 
1887 	if (ret) {
1888 		deactivate_locked_super(sb);
1889 		return ret;
1890 	}
1891 
1892 	btrfs_clear_oneshot_options(fs_info);
1893 
1894 	fc->root = dget(sb->s_root);
1895 	return 0;
1896 
1897 error:
1898 	btrfs_close_devices(fs_devices);
1899 	return ret;
1900 }
1901 
1902 /*
1903  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1904  * with different ro/rw options") the following works:
1905  *
1906  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1907  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1908  *
1909  * which looks nice and innocent but is actually pretty intricate and deserves
1910  * a long comment.
1911  *
1912  * On another filesystem a subvolume mount is close to something like:
1913  *
1914  *	(iii) # create rw superblock + initial mount
1915  *	      mount -t xfs /dev/sdb /opt/
1916  *
1917  *	      # create ro bind mount
1918  *	      mount --bind -o ro /opt/foo /mnt/foo
1919  *
1920  *	      # unmount initial mount
1921  *	      umount /opt
1922  *
1923  * Of course, there's some special subvolume sauce and there's the fact that the
1924  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1925  * it's very close and will help us understand the issue.
1926  *
1927  * The old mount API didn't cleanly distinguish between a mount being made ro
1928  * and a superblock being made ro.  The only way to change the ro state of
1929  * either object was by passing ms_rdonly. If a new mount was created via
1930  * mount(2) such as:
1931  *
1932  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1933  *
1934  * the MS_RDONLY flag being specified had two effects:
1935  *
1936  * (1) MNT_READONLY was raised -> the resulting mount got
1937  *     @mnt->mnt_flags |= MNT_READONLY raised.
1938  *
1939  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1940  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1941  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1942  *
1943  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1944  * subtree mounted ro.
1945  *
1946  * But consider the effect on the old mount API on btrfs subvolume mounting
1947  * which combines the distinct step in (iii) into a single step.
1948  *
1949  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1950  * is issued the superblock is ro and thus even if the mount created for (ii) is
1951  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1952  * to rw for (ii) which it did using an internal remount call.
1953  *
1954  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1955  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1956  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1957  * passed by mount(8) to mount(2).
1958  *
1959  * Enter the new mount API. The new mount API disambiguates making a mount ro
1960  * and making a superblock ro.
1961  *
1962  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1963  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1964  *     specific mount or mount tree that is never seen by the filesystem itself.
1965  *
1966  * (4) To turn a superblock ro the "ro" flag must be used with
1967  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1968  *     in fc->sb_flags.
1969  *
1970  * This disambiguation has rather positive consequences.  Mounting a subvolume
1971  * ro will not also turn the superblock ro. Only the mount for the subvolume
1972  * will become ro.
1973  *
1974  * So, if the superblock creation request comes from the new mount API the
1975  * caller must have explicitly done:
1976  *
1977  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1978  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1979  *
1980  * IOW, at some point the caller must have explicitly turned the whole
1981  * superblock ro and we shouldn't just undo it like we did for the old mount
1982  * API. In any case, it lets us avoid the hack in the new mount API.
1983  *
1984  * Consequently, the remounting hack must only be used for requests originating
1985  * from the old mount API and should be marked for full deprecation so it can be
1986  * turned off in a couple of years.
1987  *
1988  * The new mount API has no reason to support this hack.
1989  */
1990 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1991 {
1992 	struct vfsmount *mnt;
1993 	int ret;
1994 	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1995 
1996 	/*
1997 	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1998 	 * super block, so invert our setting here and retry the mount so we
1999 	 * can get our vfsmount.
2000 	 */
2001 	if (ro2rw)
2002 		fc->sb_flags |= SB_RDONLY;
2003 	else
2004 		fc->sb_flags &= ~SB_RDONLY;
2005 
2006 	mnt = fc_mount(fc);
2007 	if (IS_ERR(mnt))
2008 		return mnt;
2009 
2010 	if (!fc->oldapi || !ro2rw)
2011 		return mnt;
2012 
2013 	/* We need to convert to rw, call reconfigure. */
2014 	fc->sb_flags &= ~SB_RDONLY;
2015 	down_write(&mnt->mnt_sb->s_umount);
2016 	ret = btrfs_reconfigure(fc);
2017 	up_write(&mnt->mnt_sb->s_umount);
2018 	if (ret) {
2019 		mntput(mnt);
2020 		return ERR_PTR(ret);
2021 	}
2022 	return mnt;
2023 }
2024 
2025 static int btrfs_get_tree_subvol(struct fs_context *fc)
2026 {
2027 	struct btrfs_fs_info *fs_info = NULL;
2028 	struct btrfs_fs_context *ctx = fc->fs_private;
2029 	struct fs_context *dup_fc;
2030 	struct dentry *dentry;
2031 	struct vfsmount *mnt;
2032 
2033 	/*
2034 	 * Setup a dummy root and fs_info for test/set super.  This is because
2035 	 * we don't actually fill this stuff out until open_ctree, but we need
2036 	 * then open_ctree will properly initialize the file system specific
2037 	 * settings later.  btrfs_init_fs_info initializes the static elements
2038 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2039 	 * superblock with our given fs_devices later on at sget() time.
2040 	 */
2041 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2042 	if (!fs_info)
2043 		return -ENOMEM;
2044 
2045 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2046 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2047 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2048 		btrfs_free_fs_info(fs_info);
2049 		return -ENOMEM;
2050 	}
2051 	btrfs_init_fs_info(fs_info);
2052 
2053 	dup_fc = vfs_dup_fs_context(fc);
2054 	if (IS_ERR(dup_fc)) {
2055 		btrfs_free_fs_info(fs_info);
2056 		return PTR_ERR(dup_fc);
2057 	}
2058 
2059 	/*
2060 	 * When we do the sget_fc this gets transferred to the sb, so we only
2061 	 * need to set it on the dup_fc as this is what creates the super block.
2062 	 */
2063 	dup_fc->s_fs_info = fs_info;
2064 
2065 	/*
2066 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2067 	 * loop, they were duplicated into dup_fc, we can drop the originals
2068 	 * here.
2069 	 */
2070 	security_free_mnt_opts(&fc->security);
2071 	fc->security = NULL;
2072 
2073 	mnt = fc_mount(dup_fc);
2074 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2075 		mnt = btrfs_reconfigure_for_mount(dup_fc);
2076 	put_fs_context(dup_fc);
2077 	if (IS_ERR(mnt))
2078 		return PTR_ERR(mnt);
2079 
2080 	/*
2081 	 * This free's ->subvol_name, because if it isn't set we have to
2082 	 * allocate a buffer to hold the subvol_name, so we just drop our
2083 	 * reference to it here.
2084 	 */
2085 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2086 	ctx->subvol_name = NULL;
2087 	if (IS_ERR(dentry))
2088 		return PTR_ERR(dentry);
2089 
2090 	fc->root = dentry;
2091 	return 0;
2092 }
2093 
2094 static int btrfs_get_tree(struct fs_context *fc)
2095 {
2096 	/*
2097 	 * Since we use mount_subtree to mount the default/specified subvol, we
2098 	 * have to do mounts in two steps.
2099 	 *
2100 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2101 	 * wrapper around fc_mount() to call back into here again, and this time
2102 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2103 	 * everything to open the devices and file system.  Then we return back
2104 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2105 	 * from there we can do our mount_subvol() call, which will lookup
2106 	 * whichever subvol we're mounting and setup this fc with the
2107 	 * appropriate dentry for the subvol.
2108 	 */
2109 	if (fc->s_fs_info)
2110 		return btrfs_get_tree_super(fc);
2111 	return btrfs_get_tree_subvol(fc);
2112 }
2113 
2114 static void btrfs_kill_super(struct super_block *sb)
2115 {
2116 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2117 	kill_anon_super(sb);
2118 	btrfs_free_fs_info(fs_info);
2119 }
2120 
2121 static void btrfs_free_fs_context(struct fs_context *fc)
2122 {
2123 	struct btrfs_fs_context *ctx = fc->fs_private;
2124 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2125 
2126 	if (fs_info)
2127 		btrfs_free_fs_info(fs_info);
2128 
2129 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2130 		kfree(ctx->subvol_name);
2131 		kfree(ctx);
2132 	}
2133 }
2134 
2135 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2136 {
2137 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2138 
2139 	/*
2140 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2141 	 * our original fc so we can have the subvolume name or objectid.
2142 	 *
2143 	 * We unset ->source in the original fc because the dup needs it for
2144 	 * mounting, and then once we free the dup it'll free ->source, so we
2145 	 * need to make sure we're only pointing to it in one fc.
2146 	 */
2147 	refcount_inc(&ctx->refs);
2148 	fc->fs_private = ctx;
2149 	fc->source = src_fc->source;
2150 	src_fc->source = NULL;
2151 	return 0;
2152 }
2153 
2154 static const struct fs_context_operations btrfs_fs_context_ops = {
2155 	.parse_param	= btrfs_parse_param,
2156 	.reconfigure	= btrfs_reconfigure,
2157 	.get_tree	= btrfs_get_tree,
2158 	.dup		= btrfs_dup_fs_context,
2159 	.free		= btrfs_free_fs_context,
2160 };
2161 
2162 static int btrfs_init_fs_context(struct fs_context *fc)
2163 {
2164 	struct btrfs_fs_context *ctx;
2165 
2166 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2167 	if (!ctx)
2168 		return -ENOMEM;
2169 
2170 	refcount_set(&ctx->refs, 1);
2171 	fc->fs_private = ctx;
2172 	fc->ops = &btrfs_fs_context_ops;
2173 
2174 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2175 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2176 	} else {
2177 		ctx->thread_pool_size =
2178 			min_t(unsigned long, num_online_cpus() + 2, 8);
2179 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2180 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2181 	}
2182 
2183 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2184 	fc->sb_flags |= SB_POSIXACL;
2185 #endif
2186 	fc->sb_flags |= SB_I_VERSION;
2187 
2188 	return 0;
2189 }
2190 
2191 static struct file_system_type btrfs_fs_type = {
2192 	.owner			= THIS_MODULE,
2193 	.name			= "btrfs",
2194 	.init_fs_context	= btrfs_init_fs_context,
2195 	.parameters		= btrfs_fs_parameters,
2196 	.kill_sb		= btrfs_kill_super,
2197 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2198  };
2199 
2200 MODULE_ALIAS_FS("btrfs");
2201 
2202 static int btrfs_control_open(struct inode *inode, struct file *file)
2203 {
2204 	/*
2205 	 * The control file's private_data is used to hold the
2206 	 * transaction when it is started and is used to keep
2207 	 * track of whether a transaction is already in progress.
2208 	 */
2209 	file->private_data = NULL;
2210 	return 0;
2211 }
2212 
2213 /*
2214  * Used by /dev/btrfs-control for devices ioctls.
2215  */
2216 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2217 				unsigned long arg)
2218 {
2219 	struct btrfs_ioctl_vol_args *vol;
2220 	struct btrfs_device *device = NULL;
2221 	dev_t devt = 0;
2222 	int ret = -ENOTTY;
2223 
2224 	if (!capable(CAP_SYS_ADMIN))
2225 		return -EPERM;
2226 
2227 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2228 	if (IS_ERR(vol))
2229 		return PTR_ERR(vol);
2230 	ret = btrfs_check_ioctl_vol_args_path(vol);
2231 	if (ret < 0)
2232 		goto out;
2233 
2234 	switch (cmd) {
2235 	case BTRFS_IOC_SCAN_DEV:
2236 		mutex_lock(&uuid_mutex);
2237 		/*
2238 		 * Scanning outside of mount can return NULL which would turn
2239 		 * into 0 error code.
2240 		 */
2241 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2242 		ret = PTR_ERR_OR_ZERO(device);
2243 		mutex_unlock(&uuid_mutex);
2244 		break;
2245 	case BTRFS_IOC_FORGET_DEV:
2246 		if (vol->name[0] != 0) {
2247 			ret = lookup_bdev(vol->name, &devt);
2248 			if (ret)
2249 				break;
2250 		}
2251 		ret = btrfs_forget_devices(devt);
2252 		break;
2253 	case BTRFS_IOC_DEVICES_READY:
2254 		mutex_lock(&uuid_mutex);
2255 		/*
2256 		 * Scanning outside of mount can return NULL which would turn
2257 		 * into 0 error code.
2258 		 */
2259 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2260 		if (IS_ERR_OR_NULL(device)) {
2261 			mutex_unlock(&uuid_mutex);
2262 			ret = PTR_ERR(device);
2263 			break;
2264 		}
2265 		ret = !(device->fs_devices->num_devices ==
2266 			device->fs_devices->total_devices);
2267 		mutex_unlock(&uuid_mutex);
2268 		break;
2269 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2270 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2271 		break;
2272 	}
2273 
2274 out:
2275 	kfree(vol);
2276 	return ret;
2277 }
2278 
2279 static int btrfs_freeze(struct super_block *sb)
2280 {
2281 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2282 
2283 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2284 	/*
2285 	 * We don't need a barrier here, we'll wait for any transaction that
2286 	 * could be in progress on other threads (and do delayed iputs that
2287 	 * we want to avoid on a frozen filesystem), or do the commit
2288 	 * ourselves.
2289 	 */
2290 	return btrfs_commit_current_transaction(fs_info->tree_root);
2291 }
2292 
2293 static int check_dev_super(struct btrfs_device *dev)
2294 {
2295 	struct btrfs_fs_info *fs_info = dev->fs_info;
2296 	struct btrfs_super_block *sb;
2297 	u64 last_trans;
2298 	u16 csum_type;
2299 	int ret = 0;
2300 
2301 	/* This should be called with fs still frozen. */
2302 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2303 
2304 	/* Missing dev, no need to check. */
2305 	if (!dev->bdev)
2306 		return 0;
2307 
2308 	/* Only need to check the primary super block. */
2309 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2310 	if (IS_ERR(sb))
2311 		return PTR_ERR(sb);
2312 
2313 	/* Verify the checksum. */
2314 	csum_type = btrfs_super_csum_type(sb);
2315 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2316 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2317 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2318 		ret = -EUCLEAN;
2319 		goto out;
2320 	}
2321 
2322 	if (btrfs_check_super_csum(fs_info, sb)) {
2323 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2324 		ret = -EUCLEAN;
2325 		goto out;
2326 	}
2327 
2328 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2329 	ret = btrfs_validate_super(fs_info, sb, 0);
2330 	if (ret < 0)
2331 		goto out;
2332 
2333 	last_trans = btrfs_get_last_trans_committed(fs_info);
2334 	if (btrfs_super_generation(sb) != last_trans) {
2335 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2336 			  btrfs_super_generation(sb), last_trans);
2337 		ret = -EUCLEAN;
2338 		goto out;
2339 	}
2340 out:
2341 	btrfs_release_disk_super(sb);
2342 	return ret;
2343 }
2344 
2345 static int btrfs_unfreeze(struct super_block *sb)
2346 {
2347 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2348 	struct btrfs_device *device;
2349 	int ret = 0;
2350 
2351 	/*
2352 	 * Make sure the fs is not changed by accident (like hibernation then
2353 	 * modified by other OS).
2354 	 * If we found anything wrong, we mark the fs error immediately.
2355 	 *
2356 	 * And since the fs is frozen, no one can modify the fs yet, thus
2357 	 * we don't need to hold device_list_mutex.
2358 	 */
2359 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2360 		ret = check_dev_super(device);
2361 		if (ret < 0) {
2362 			btrfs_handle_fs_error(fs_info, ret,
2363 				"super block on devid %llu got modified unexpectedly",
2364 				device->devid);
2365 			break;
2366 		}
2367 	}
2368 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2369 
2370 	/*
2371 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2372 	 * above checks failed. Since the fs is either fine or read-only, we're
2373 	 * safe to continue, without causing further damage.
2374 	 */
2375 	return 0;
2376 }
2377 
2378 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2379 {
2380 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2381 
2382 	/*
2383 	 * There should be always a valid pointer in latest_dev, it may be stale
2384 	 * for a short moment in case it's being deleted but still valid until
2385 	 * the end of RCU grace period.
2386 	 */
2387 	rcu_read_lock();
2388 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2389 	rcu_read_unlock();
2390 
2391 	return 0;
2392 }
2393 
2394 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2395 {
2396 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2397 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2398 
2399 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2400 
2401 	return nr;
2402 }
2403 
2404 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2405 {
2406 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2407 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2408 
2409 	return btrfs_free_extent_maps(fs_info, nr_to_scan);
2410 }
2411 
2412 static const struct super_operations btrfs_super_ops = {
2413 	.drop_inode	= btrfs_drop_inode,
2414 	.evict_inode	= btrfs_evict_inode,
2415 	.put_super	= btrfs_put_super,
2416 	.sync_fs	= btrfs_sync_fs,
2417 	.show_options	= btrfs_show_options,
2418 	.show_devname	= btrfs_show_devname,
2419 	.alloc_inode	= btrfs_alloc_inode,
2420 	.destroy_inode	= btrfs_destroy_inode,
2421 	.free_inode	= btrfs_free_inode,
2422 	.statfs		= btrfs_statfs,
2423 	.freeze_fs	= btrfs_freeze,
2424 	.unfreeze_fs	= btrfs_unfreeze,
2425 	.nr_cached_objects = btrfs_nr_cached_objects,
2426 	.free_cached_objects = btrfs_free_cached_objects,
2427 };
2428 
2429 static const struct file_operations btrfs_ctl_fops = {
2430 	.open = btrfs_control_open,
2431 	.unlocked_ioctl	 = btrfs_control_ioctl,
2432 	.compat_ioctl = compat_ptr_ioctl,
2433 	.owner	 = THIS_MODULE,
2434 	.llseek = noop_llseek,
2435 };
2436 
2437 static struct miscdevice btrfs_misc = {
2438 	.minor		= BTRFS_MINOR,
2439 	.name		= "btrfs-control",
2440 	.fops		= &btrfs_ctl_fops
2441 };
2442 
2443 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2444 MODULE_ALIAS("devname:btrfs-control");
2445 
2446 static int __init btrfs_interface_init(void)
2447 {
2448 	return misc_register(&btrfs_misc);
2449 }
2450 
2451 static __cold void btrfs_interface_exit(void)
2452 {
2453 	misc_deregister(&btrfs_misc);
2454 }
2455 
2456 static int __init btrfs_print_mod_info(void)
2457 {
2458 	static const char options[] = ""
2459 #ifdef CONFIG_BTRFS_DEBUG
2460 			", debug=on"
2461 #endif
2462 #ifdef CONFIG_BTRFS_ASSERT
2463 			", assert=on"
2464 #endif
2465 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2466 			", ref-verify=on"
2467 #endif
2468 #ifdef CONFIG_BLK_DEV_ZONED
2469 			", zoned=yes"
2470 #else
2471 			", zoned=no"
2472 #endif
2473 #ifdef CONFIG_FS_VERITY
2474 			", fsverity=yes"
2475 #else
2476 			", fsverity=no"
2477 #endif
2478 			;
2479 	pr_info("Btrfs loaded%s\n", options);
2480 	return 0;
2481 }
2482 
2483 static int register_btrfs(void)
2484 {
2485 	return register_filesystem(&btrfs_fs_type);
2486 }
2487 
2488 static void unregister_btrfs(void)
2489 {
2490 	unregister_filesystem(&btrfs_fs_type);
2491 }
2492 
2493 /* Helper structure for long init/exit functions. */
2494 struct init_sequence {
2495 	int (*init_func)(void);
2496 	/* Can be NULL if the init_func doesn't need cleanup. */
2497 	void (*exit_func)(void);
2498 };
2499 
2500 static const struct init_sequence mod_init_seq[] = {
2501 	{
2502 		.init_func = btrfs_props_init,
2503 		.exit_func = NULL,
2504 	}, {
2505 		.init_func = btrfs_init_sysfs,
2506 		.exit_func = btrfs_exit_sysfs,
2507 	}, {
2508 		.init_func = btrfs_init_compress,
2509 		.exit_func = btrfs_exit_compress,
2510 	}, {
2511 		.init_func = btrfs_init_cachep,
2512 		.exit_func = btrfs_destroy_cachep,
2513 	}, {
2514 		.init_func = btrfs_init_dio,
2515 		.exit_func = btrfs_destroy_dio,
2516 	}, {
2517 		.init_func = btrfs_transaction_init,
2518 		.exit_func = btrfs_transaction_exit,
2519 	}, {
2520 		.init_func = btrfs_ctree_init,
2521 		.exit_func = btrfs_ctree_exit,
2522 	}, {
2523 		.init_func = btrfs_free_space_init,
2524 		.exit_func = btrfs_free_space_exit,
2525 	}, {
2526 		.init_func = extent_state_init_cachep,
2527 		.exit_func = extent_state_free_cachep,
2528 	}, {
2529 		.init_func = extent_buffer_init_cachep,
2530 		.exit_func = extent_buffer_free_cachep,
2531 	}, {
2532 		.init_func = btrfs_bioset_init,
2533 		.exit_func = btrfs_bioset_exit,
2534 	}, {
2535 		.init_func = extent_map_init,
2536 		.exit_func = extent_map_exit,
2537 	}, {
2538 		.init_func = ordered_data_init,
2539 		.exit_func = ordered_data_exit,
2540 	}, {
2541 		.init_func = btrfs_delayed_inode_init,
2542 		.exit_func = btrfs_delayed_inode_exit,
2543 	}, {
2544 		.init_func = btrfs_auto_defrag_init,
2545 		.exit_func = btrfs_auto_defrag_exit,
2546 	}, {
2547 		.init_func = btrfs_delayed_ref_init,
2548 		.exit_func = btrfs_delayed_ref_exit,
2549 	}, {
2550 		.init_func = btrfs_prelim_ref_init,
2551 		.exit_func = btrfs_prelim_ref_exit,
2552 	}, {
2553 		.init_func = btrfs_interface_init,
2554 		.exit_func = btrfs_interface_exit,
2555 	}, {
2556 		.init_func = btrfs_print_mod_info,
2557 		.exit_func = NULL,
2558 	}, {
2559 		.init_func = btrfs_run_sanity_tests,
2560 		.exit_func = NULL,
2561 	}, {
2562 		.init_func = register_btrfs,
2563 		.exit_func = unregister_btrfs,
2564 	}
2565 };
2566 
2567 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2568 
2569 static __always_inline void btrfs_exit_btrfs_fs(void)
2570 {
2571 	int i;
2572 
2573 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2574 		if (!mod_init_result[i])
2575 			continue;
2576 		if (mod_init_seq[i].exit_func)
2577 			mod_init_seq[i].exit_func();
2578 		mod_init_result[i] = false;
2579 	}
2580 }
2581 
2582 static void __exit exit_btrfs_fs(void)
2583 {
2584 	btrfs_exit_btrfs_fs();
2585 	btrfs_cleanup_fs_uuids();
2586 }
2587 
2588 static int __init init_btrfs_fs(void)
2589 {
2590 	int ret;
2591 	int i;
2592 
2593 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2594 		ASSERT(!mod_init_result[i]);
2595 		ret = mod_init_seq[i].init_func();
2596 		if (ret < 0) {
2597 			btrfs_exit_btrfs_fs();
2598 			return ret;
2599 		}
2600 		mod_init_result[i] = true;
2601 	}
2602 	return 0;
2603 }
2604 
2605 late_initcall(init_btrfs_fs);
2606 module_exit(exit_btrfs_fs)
2607 
2608 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2609 MODULE_LICENSE("GPL");
2610 MODULE_SOFTDEP("pre: crc32c");
2611 MODULE_SOFTDEP("pre: xxhash64");
2612 MODULE_SOFTDEP("pre: sha256");
2613 MODULE_SOFTDEP("pre: blake2b-256");
2614