xref: /linux/fs/btrfs/super.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/string.h>
28 #include <linux/smp_lock.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "xattr.h"
49 #include "volumes.h"
50 #include "version.h"
51 #include "export.h"
52 #include "compression.h"
53 
54 
55 static struct super_operations btrfs_super_ops;
56 
57 static void btrfs_put_super(struct super_block *sb)
58 {
59 	struct btrfs_root *root = btrfs_sb(sb);
60 	int ret;
61 
62 	ret = close_ctree(root);
63 	sb->s_fs_info = NULL;
64 }
65 
66 enum {
67 	Opt_degraded, Opt_subvol, Opt_device, Opt_nodatasum, Opt_nodatacow,
68 	Opt_max_extent, Opt_max_inline, Opt_alloc_start, Opt_nobarrier,
69 	Opt_ssd, Opt_thread_pool, Opt_noacl,  Opt_compress, Opt_err,
70 };
71 
72 static match_table_t tokens = {
73 	{Opt_degraded, "degraded"},
74 	{Opt_subvol, "subvol=%s"},
75 	{Opt_device, "device=%s"},
76 	{Opt_nodatasum, "nodatasum"},
77 	{Opt_nodatacow, "nodatacow"},
78 	{Opt_nobarrier, "nobarrier"},
79 	{Opt_max_extent, "max_extent=%s"},
80 	{Opt_max_inline, "max_inline=%s"},
81 	{Opt_alloc_start, "alloc_start=%s"},
82 	{Opt_thread_pool, "thread_pool=%d"},
83 	{Opt_compress, "compress"},
84 	{Opt_ssd, "ssd"},
85 	{Opt_noacl, "noacl"},
86 	{Opt_err, NULL},
87 };
88 
89 u64 btrfs_parse_size(char *str)
90 {
91 	u64 res;
92 	int mult = 1;
93 	char *end;
94 	char last;
95 
96 	res = simple_strtoul(str, &end, 10);
97 
98 	last = end[0];
99 	if (isalpha(last)) {
100 		last = tolower(last);
101 		switch (last) {
102 		case 'g':
103 			mult *= 1024;
104 		case 'm':
105 			mult *= 1024;
106 		case 'k':
107 			mult *= 1024;
108 		}
109 		res = res * mult;
110 	}
111 	return res;
112 }
113 
114 /*
115  * Regular mount options parser.  Everything that is needed only when
116  * reading in a new superblock is parsed here.
117  */
118 int btrfs_parse_options(struct btrfs_root *root, char *options)
119 {
120 	struct btrfs_fs_info *info = root->fs_info;
121 	substring_t args[MAX_OPT_ARGS];
122 	char *p, *num;
123 	int intarg;
124 
125 	if (!options)
126 		return 0;
127 
128 	/*
129 	 * strsep changes the string, duplicate it because parse_options
130 	 * gets called twice
131 	 */
132 	options = kstrdup(options, GFP_NOFS);
133 	if (!options)
134 		return -ENOMEM;
135 
136 
137 	while ((p = strsep(&options, ",")) != NULL) {
138 		int token;
139 		if (!*p)
140 			continue;
141 
142 		token = match_token(p, tokens, args);
143 		switch (token) {
144 		case Opt_degraded:
145 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
146 			btrfs_set_opt(info->mount_opt, DEGRADED);
147 			break;
148 		case Opt_subvol:
149 		case Opt_device:
150 			/*
151 			 * These are parsed by btrfs_parse_early_options
152 			 * and can be happily ignored here.
153 			 */
154 			break;
155 		case Opt_nodatasum:
156 			printk(KERN_INFO "btrfs: setting nodatacsum\n");
157 			btrfs_set_opt(info->mount_opt, NODATASUM);
158 			break;
159 		case Opt_nodatacow:
160 			printk(KERN_INFO "btrfs: setting nodatacow\n");
161 			btrfs_set_opt(info->mount_opt, NODATACOW);
162 			btrfs_set_opt(info->mount_opt, NODATASUM);
163 			break;
164 		case Opt_compress:
165 			printk(KERN_INFO "btrfs: use compression\n");
166 			btrfs_set_opt(info->mount_opt, COMPRESS);
167 			break;
168 		case Opt_ssd:
169 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
170 			btrfs_set_opt(info->mount_opt, SSD);
171 			break;
172 		case Opt_nobarrier:
173 			printk(KERN_INFO "btrfs: turning off barriers\n");
174 			btrfs_set_opt(info->mount_opt, NOBARRIER);
175 			break;
176 		case Opt_thread_pool:
177 			intarg = 0;
178 			match_int(&args[0], &intarg);
179 			if (intarg) {
180 				info->thread_pool_size = intarg;
181 				printk(KERN_INFO "btrfs: thread pool %d\n",
182 				       info->thread_pool_size);
183 			}
184 			break;
185 		case Opt_max_extent:
186 			num = match_strdup(&args[0]);
187 			if (num) {
188 				info->max_extent = btrfs_parse_size(num);
189 				kfree(num);
190 
191 				info->max_extent = max_t(u64,
192 					info->max_extent, root->sectorsize);
193 				printk(KERN_INFO "btrfs: max_extent at %llu\n",
194 				       info->max_extent);
195 			}
196 			break;
197 		case Opt_max_inline:
198 			num = match_strdup(&args[0]);
199 			if (num) {
200 				info->max_inline = btrfs_parse_size(num);
201 				kfree(num);
202 
203 				if (info->max_inline) {
204 					info->max_inline = max_t(u64,
205 						info->max_inline,
206 						root->sectorsize);
207 				}
208 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
209 					info->max_inline);
210 			}
211 			break;
212 		case Opt_alloc_start:
213 			num = match_strdup(&args[0]);
214 			if (num) {
215 				info->alloc_start = btrfs_parse_size(num);
216 				kfree(num);
217 				printk(KERN_INFO
218 					"btrfs: allocations start at %llu\n",
219 					info->alloc_start);
220 			}
221 			break;
222 		case Opt_noacl:
223 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
224 			break;
225 		default:
226 			break;
227 		}
228 	}
229 	kfree(options);
230 	return 0;
231 }
232 
233 /*
234  * Parse mount options that are required early in the mount process.
235  *
236  * All other options will be parsed on much later in the mount process and
237  * only when we need to allocate a new super block.
238  */
239 static int btrfs_parse_early_options(const char *options, fmode_t flags,
240 		void *holder, char **subvol_name,
241 		struct btrfs_fs_devices **fs_devices)
242 {
243 	substring_t args[MAX_OPT_ARGS];
244 	char *opts, *p;
245 	int error = 0;
246 
247 	if (!options)
248 		goto out;
249 
250 	/*
251 	 * strsep changes the string, duplicate it because parse_options
252 	 * gets called twice
253 	 */
254 	opts = kstrdup(options, GFP_KERNEL);
255 	if (!opts)
256 		return -ENOMEM;
257 
258 	while ((p = strsep(&opts, ",")) != NULL) {
259 		int token;
260 		if (!*p)
261 			continue;
262 
263 		token = match_token(p, tokens, args);
264 		switch (token) {
265 		case Opt_subvol:
266 			*subvol_name = match_strdup(&args[0]);
267 			break;
268 		case Opt_device:
269 			error = btrfs_scan_one_device(match_strdup(&args[0]),
270 					flags, holder, fs_devices);
271 			if (error)
272 				goto out_free_opts;
273 			break;
274 		default:
275 			break;
276 		}
277 	}
278 
279  out_free_opts:
280 	kfree(opts);
281  out:
282 	/*
283 	 * If no subvolume name is specified we use the default one.  Allocate
284 	 * a copy of the string "." here so that code later in the
285 	 * mount path doesn't care if it's the default volume or another one.
286 	 */
287 	if (!*subvol_name) {
288 		*subvol_name = kstrdup(".", GFP_KERNEL);
289 		if (!*subvol_name)
290 			return -ENOMEM;
291 	}
292 	return error;
293 }
294 
295 static int btrfs_fill_super(struct super_block *sb,
296 			    struct btrfs_fs_devices *fs_devices,
297 			    void *data, int silent)
298 {
299 	struct inode *inode;
300 	struct dentry *root_dentry;
301 	struct btrfs_super_block *disk_super;
302 	struct btrfs_root *tree_root;
303 	struct btrfs_inode *bi;
304 	int err;
305 
306 	sb->s_maxbytes = MAX_LFS_FILESIZE;
307 	sb->s_magic = BTRFS_SUPER_MAGIC;
308 	sb->s_op = &btrfs_super_ops;
309 	sb->s_export_op = &btrfs_export_ops;
310 	sb->s_xattr = btrfs_xattr_handlers;
311 	sb->s_time_gran = 1;
312 	sb->s_flags |= MS_POSIXACL;
313 
314 	tree_root = open_ctree(sb, fs_devices, (char *)data);
315 
316 	if (IS_ERR(tree_root)) {
317 		printk("btrfs: open_ctree failed\n");
318 		return PTR_ERR(tree_root);
319 	}
320 	sb->s_fs_info = tree_root;
321 	disk_super = &tree_root->fs_info->super_copy;
322 	inode = btrfs_iget_locked(sb, BTRFS_FIRST_FREE_OBJECTID,
323 				  tree_root->fs_info->fs_root);
324 	bi = BTRFS_I(inode);
325 	bi->location.objectid = inode->i_ino;
326 	bi->location.offset = 0;
327 	bi->root = tree_root->fs_info->fs_root;
328 
329 	btrfs_set_key_type(&bi->location, BTRFS_INODE_ITEM_KEY);
330 
331 	if (!inode) {
332 		err = -ENOMEM;
333 		goto fail_close;
334 	}
335 	if (inode->i_state & I_NEW) {
336 		btrfs_read_locked_inode(inode);
337 		unlock_new_inode(inode);
338 	}
339 
340 	root_dentry = d_alloc_root(inode);
341 	if (!root_dentry) {
342 		iput(inode);
343 		err = -ENOMEM;
344 		goto fail_close;
345 	}
346 #if 0
347 	/* this does the super kobj at the same time */
348 	err = btrfs_sysfs_add_super(tree_root->fs_info);
349 	if (err)
350 		goto fail_close;
351 #endif
352 
353 	sb->s_root = root_dentry;
354 
355 	save_mount_options(sb, data);
356 	return 0;
357 
358 fail_close:
359 	close_ctree(tree_root);
360 	return err;
361 }
362 
363 int btrfs_sync_fs(struct super_block *sb, int wait)
364 {
365 	struct btrfs_trans_handle *trans;
366 	struct btrfs_root *root;
367 	int ret;
368 	root = btrfs_sb(sb);
369 
370 	if (sb->s_flags & MS_RDONLY)
371 		return 0;
372 
373 	sb->s_dirt = 0;
374 	if (!wait) {
375 		filemap_flush(root->fs_info->btree_inode->i_mapping);
376 		return 0;
377 	}
378 
379 	btrfs_start_delalloc_inodes(root);
380 	btrfs_wait_ordered_extents(root, 0);
381 
382 	trans = btrfs_start_transaction(root, 1);
383 	ret = btrfs_commit_transaction(trans, root);
384 	sb->s_dirt = 0;
385 	return ret;
386 }
387 
388 static void btrfs_write_super(struct super_block *sb)
389 {
390 	sb->s_dirt = 0;
391 }
392 
393 static int btrfs_test_super(struct super_block *s, void *data)
394 {
395 	struct btrfs_fs_devices *test_fs_devices = data;
396 	struct btrfs_root *root = btrfs_sb(s);
397 
398 	return root->fs_info->fs_devices == test_fs_devices;
399 }
400 
401 /*
402  * Find a superblock for the given device / mount point.
403  *
404  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
405  *	  for multiple device setup.  Make sure to keep it in sync.
406  */
407 static int btrfs_get_sb(struct file_system_type *fs_type, int flags,
408 		const char *dev_name, void *data, struct vfsmount *mnt)
409 {
410 	char *subvol_name = NULL;
411 	struct block_device *bdev = NULL;
412 	struct super_block *s;
413 	struct dentry *root;
414 	struct btrfs_fs_devices *fs_devices = NULL;
415 	fmode_t mode = FMODE_READ;
416 	int error = 0;
417 
418 	if (!(flags & MS_RDONLY))
419 		mode |= FMODE_WRITE;
420 
421 	error = btrfs_parse_early_options(data, mode, fs_type,
422 					  &subvol_name, &fs_devices);
423 	if (error)
424 		return error;
425 
426 	error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
427 	if (error)
428 		goto error_free_subvol_name;
429 
430 	error = btrfs_open_devices(fs_devices, mode, fs_type);
431 	if (error)
432 		goto error_free_subvol_name;
433 
434 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
435 		error = -EACCES;
436 		goto error_close_devices;
437 	}
438 
439 	bdev = fs_devices->latest_bdev;
440 	s = sget(fs_type, btrfs_test_super, set_anon_super, fs_devices);
441 	if (IS_ERR(s))
442 		goto error_s;
443 
444 	if (s->s_root) {
445 		if ((flags ^ s->s_flags) & MS_RDONLY) {
446 			up_write(&s->s_umount);
447 			deactivate_super(s);
448 			error = -EBUSY;
449 			goto error_close_devices;
450 		}
451 
452 		btrfs_close_devices(fs_devices);
453 	} else {
454 		char b[BDEVNAME_SIZE];
455 
456 		s->s_flags = flags;
457 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
458 		error = btrfs_fill_super(s, fs_devices, data,
459 					 flags & MS_SILENT ? 1 : 0);
460 		if (error) {
461 			up_write(&s->s_umount);
462 			deactivate_super(s);
463 			goto error_free_subvol_name;
464 		}
465 
466 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
467 		s->s_flags |= MS_ACTIVE;
468 	}
469 
470 	if (!strcmp(subvol_name, "."))
471 		root = dget(s->s_root);
472 	else {
473 		mutex_lock(&s->s_root->d_inode->i_mutex);
474 		root = lookup_one_len(subvol_name, s->s_root,
475 				      strlen(subvol_name));
476 		mutex_unlock(&s->s_root->d_inode->i_mutex);
477 
478 		if (IS_ERR(root)) {
479 			up_write(&s->s_umount);
480 			deactivate_super(s);
481 			error = PTR_ERR(root);
482 			goto error_free_subvol_name;
483 		}
484 		if (!root->d_inode) {
485 			dput(root);
486 			up_write(&s->s_umount);
487 			deactivate_super(s);
488 			error = -ENXIO;
489 			goto error_free_subvol_name;
490 		}
491 	}
492 
493 	mnt->mnt_sb = s;
494 	mnt->mnt_root = root;
495 
496 	kfree(subvol_name);
497 	return 0;
498 
499 error_s:
500 	error = PTR_ERR(s);
501 error_close_devices:
502 	btrfs_close_devices(fs_devices);
503 error_free_subvol_name:
504 	kfree(subvol_name);
505 	return error;
506 }
507 
508 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
509 {
510 	struct btrfs_root *root = btrfs_sb(sb);
511 	int ret;
512 
513 	ret = btrfs_parse_options(root, data);
514 	if (ret)
515 		return -EINVAL;
516 
517 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
518 		return 0;
519 
520 	if (*flags & MS_RDONLY) {
521 		sb->s_flags |= MS_RDONLY;
522 
523 		ret =  btrfs_commit_super(root);
524 		WARN_ON(ret);
525 	} else {
526 		if (root->fs_info->fs_devices->rw_devices == 0)
527 			return -EACCES;
528 
529 		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
530 			return -EINVAL;
531 
532 		ret = btrfs_cleanup_reloc_trees(root);
533 		WARN_ON(ret);
534 
535 		ret = btrfs_cleanup_fs_roots(root->fs_info);
536 		WARN_ON(ret);
537 
538 		sb->s_flags &= ~MS_RDONLY;
539 	}
540 
541 	return 0;
542 }
543 
544 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
545 {
546 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
547 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
548 	int bits = dentry->d_sb->s_blocksize_bits;
549 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
550 
551 	buf->f_namelen = BTRFS_NAME_LEN;
552 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
553 	buf->f_bfree = buf->f_blocks -
554 		(btrfs_super_bytes_used(disk_super) >> bits);
555 	buf->f_bavail = buf->f_bfree;
556 	buf->f_bsize = dentry->d_sb->s_blocksize;
557 	buf->f_type = BTRFS_SUPER_MAGIC;
558 
559 	/* We treat it as constant endianness (it doesn't matter _which_)
560 	   because we want the fsid to come out the same whether mounted
561 	   on a big-endian or little-endian host */
562 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
563 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
564 	/* Mask in the root object ID too, to disambiguate subvols */
565 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
566 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
567 
568 	return 0;
569 }
570 
571 static struct file_system_type btrfs_fs_type = {
572 	.owner		= THIS_MODULE,
573 	.name		= "btrfs",
574 	.get_sb		= btrfs_get_sb,
575 	.kill_sb	= kill_anon_super,
576 	.fs_flags	= FS_REQUIRES_DEV,
577 };
578 
579 /*
580  * used by btrfsctl to scan devices when no FS is mounted
581  */
582 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
583 				unsigned long arg)
584 {
585 	struct btrfs_ioctl_vol_args *vol;
586 	struct btrfs_fs_devices *fs_devices;
587 	int ret = -ENOTTY;
588 
589 	if (!capable(CAP_SYS_ADMIN))
590 		return -EPERM;
591 
592 	vol = kmalloc(sizeof(*vol), GFP_KERNEL);
593 	if (!vol)
594 		return -ENOMEM;
595 
596 	if (copy_from_user(vol, (void __user *)arg, sizeof(*vol))) {
597 		ret = -EFAULT;
598 		goto out;
599 	}
600 
601 	switch (cmd) {
602 	case BTRFS_IOC_SCAN_DEV:
603 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
604 					    &btrfs_fs_type, &fs_devices);
605 		break;
606 	}
607 out:
608 	kfree(vol);
609 	return ret;
610 }
611 
612 static int btrfs_freeze(struct super_block *sb)
613 {
614 	struct btrfs_root *root = btrfs_sb(sb);
615 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
616 	mutex_lock(&root->fs_info->cleaner_mutex);
617 	return 0;
618 }
619 
620 static int btrfs_unfreeze(struct super_block *sb)
621 {
622 	struct btrfs_root *root = btrfs_sb(sb);
623 	mutex_unlock(&root->fs_info->cleaner_mutex);
624 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
625 	return 0;
626 }
627 
628 static struct super_operations btrfs_super_ops = {
629 	.delete_inode	= btrfs_delete_inode,
630 	.put_super	= btrfs_put_super,
631 	.write_super	= btrfs_write_super,
632 	.sync_fs	= btrfs_sync_fs,
633 	.show_options	= generic_show_options,
634 	.write_inode	= btrfs_write_inode,
635 	.dirty_inode	= btrfs_dirty_inode,
636 	.alloc_inode	= btrfs_alloc_inode,
637 	.destroy_inode	= btrfs_destroy_inode,
638 	.statfs		= btrfs_statfs,
639 	.remount_fs	= btrfs_remount,
640 	.freeze_fs	= btrfs_freeze,
641 	.unfreeze_fs	= btrfs_unfreeze,
642 };
643 
644 static const struct file_operations btrfs_ctl_fops = {
645 	.unlocked_ioctl	 = btrfs_control_ioctl,
646 	.compat_ioctl = btrfs_control_ioctl,
647 	.owner	 = THIS_MODULE,
648 };
649 
650 static struct miscdevice btrfs_misc = {
651 	.minor		= MISC_DYNAMIC_MINOR,
652 	.name		= "btrfs-control",
653 	.fops		= &btrfs_ctl_fops
654 };
655 
656 static int btrfs_interface_init(void)
657 {
658 	return misc_register(&btrfs_misc);
659 }
660 
661 static void btrfs_interface_exit(void)
662 {
663 	if (misc_deregister(&btrfs_misc) < 0)
664 		printk(KERN_INFO "misc_deregister failed for control device");
665 }
666 
667 static int __init init_btrfs_fs(void)
668 {
669 	int err;
670 
671 	err = btrfs_init_sysfs();
672 	if (err)
673 		return err;
674 
675 	err = btrfs_init_cachep();
676 	if (err)
677 		goto free_sysfs;
678 
679 	err = extent_io_init();
680 	if (err)
681 		goto free_cachep;
682 
683 	err = extent_map_init();
684 	if (err)
685 		goto free_extent_io;
686 
687 	err = btrfs_interface_init();
688 	if (err)
689 		goto free_extent_map;
690 
691 	err = register_filesystem(&btrfs_fs_type);
692 	if (err)
693 		goto unregister_ioctl;
694 
695 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
696 	return 0;
697 
698 unregister_ioctl:
699 	btrfs_interface_exit();
700 free_extent_map:
701 	extent_map_exit();
702 free_extent_io:
703 	extent_io_exit();
704 free_cachep:
705 	btrfs_destroy_cachep();
706 free_sysfs:
707 	btrfs_exit_sysfs();
708 	return err;
709 }
710 
711 static void __exit exit_btrfs_fs(void)
712 {
713 	btrfs_destroy_cachep();
714 	extent_map_exit();
715 	extent_io_exit();
716 	btrfs_interface_exit();
717 	unregister_filesystem(&btrfs_fs_type);
718 	btrfs_exit_sysfs();
719 	btrfs_cleanup_fs_uuids();
720 	btrfs_zlib_exit();
721 }
722 
723 module_init(init_btrfs_fs)
724 module_exit(exit_btrfs_fs)
725 
726 MODULE_LICENSE("GPL");
727