1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "direct-io.h" 38 #include "props.h" 39 #include "xattr.h" 40 #include "bio.h" 41 #include "export.h" 42 #include "compression.h" 43 #include "dev-replace.h" 44 #include "free-space-cache.h" 45 #include "backref.h" 46 #include "space-info.h" 47 #include "sysfs.h" 48 #include "zoned.h" 49 #include "tests/btrfs-tests.h" 50 #include "block-group.h" 51 #include "discard.h" 52 #include "qgroup.h" 53 #include "raid56.h" 54 #include "fs.h" 55 #include "accessors.h" 56 #include "defrag.h" 57 #include "dir-item.h" 58 #include "ioctl.h" 59 #include "scrub.h" 60 #include "verity.h" 61 #include "super.h" 62 #include "extent-tree.h" 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static void btrfs_put_super(struct super_block *sb) 70 { 71 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 72 73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 74 close_ctree(fs_info); 75 } 76 77 /* Store the mount options related information. */ 78 struct btrfs_fs_context { 79 char *subvol_name; 80 u64 subvol_objectid; 81 u64 max_inline; 82 u32 commit_interval; 83 u32 metadata_ratio; 84 u32 thread_pool_size; 85 unsigned long long mount_opt; 86 unsigned long compress_type:4; 87 int compress_level; 88 refcount_t refs; 89 }; 90 91 static void btrfs_emit_options(struct btrfs_fs_info *info, 92 struct btrfs_fs_context *old); 93 94 enum { 95 Opt_acl, 96 Opt_clear_cache, 97 Opt_commit_interval, 98 Opt_compress, 99 Opt_compress_force, 100 Opt_compress_force_type, 101 Opt_compress_type, 102 Opt_degraded, 103 Opt_device, 104 Opt_fatal_errors, 105 Opt_flushoncommit, 106 Opt_max_inline, 107 Opt_barrier, 108 Opt_datacow, 109 Opt_datasum, 110 Opt_defrag, 111 Opt_discard, 112 Opt_discard_mode, 113 Opt_ratio, 114 Opt_rescan_uuid_tree, 115 Opt_skip_balance, 116 Opt_space_cache, 117 Opt_space_cache_version, 118 Opt_ssd, 119 Opt_ssd_spread, 120 Opt_subvol, 121 Opt_subvol_empty, 122 Opt_subvolid, 123 Opt_thread_pool, 124 Opt_treelog, 125 Opt_user_subvol_rm_allowed, 126 Opt_norecovery, 127 128 /* Rescue options */ 129 Opt_rescue, 130 Opt_usebackuproot, 131 132 /* Debugging options */ 133 Opt_enospc_debug, 134 #ifdef CONFIG_BTRFS_DEBUG 135 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 136 #endif 137 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 138 Opt_ref_verify, 139 #endif 140 Opt_err, 141 }; 142 143 enum { 144 Opt_fatal_errors_panic, 145 Opt_fatal_errors_bug, 146 }; 147 148 static const struct constant_table btrfs_parameter_fatal_errors[] = { 149 { "panic", Opt_fatal_errors_panic }, 150 { "bug", Opt_fatal_errors_bug }, 151 {} 152 }; 153 154 enum { 155 Opt_discard_sync, 156 Opt_discard_async, 157 }; 158 159 static const struct constant_table btrfs_parameter_discard[] = { 160 { "sync", Opt_discard_sync }, 161 { "async", Opt_discard_async }, 162 {} 163 }; 164 165 enum { 166 Opt_space_cache_v1, 167 Opt_space_cache_v2, 168 }; 169 170 static const struct constant_table btrfs_parameter_space_cache[] = { 171 { "v1", Opt_space_cache_v1 }, 172 { "v2", Opt_space_cache_v2 }, 173 {} 174 }; 175 176 enum { 177 Opt_rescue_usebackuproot, 178 Opt_rescue_nologreplay, 179 Opt_rescue_ignorebadroots, 180 Opt_rescue_ignoredatacsums, 181 Opt_rescue_ignoremetacsums, 182 Opt_rescue_ignoresuperflags, 183 Opt_rescue_parameter_all, 184 }; 185 186 static const struct constant_table btrfs_parameter_rescue[] = { 187 { "usebackuproot", Opt_rescue_usebackuproot }, 188 { "nologreplay", Opt_rescue_nologreplay }, 189 { "ignorebadroots", Opt_rescue_ignorebadroots }, 190 { "ibadroots", Opt_rescue_ignorebadroots }, 191 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 192 { "ignoremetacsums", Opt_rescue_ignoremetacsums}, 193 { "ignoresuperflags", Opt_rescue_ignoresuperflags}, 194 { "idatacsums", Opt_rescue_ignoredatacsums }, 195 { "imetacsums", Opt_rescue_ignoremetacsums}, 196 { "isuperflags", Opt_rescue_ignoresuperflags}, 197 { "all", Opt_rescue_parameter_all }, 198 {} 199 }; 200 201 #ifdef CONFIG_BTRFS_DEBUG 202 enum { 203 Opt_fragment_parameter_data, 204 Opt_fragment_parameter_metadata, 205 Opt_fragment_parameter_all, 206 }; 207 208 static const struct constant_table btrfs_parameter_fragment[] = { 209 { "data", Opt_fragment_parameter_data }, 210 { "metadata", Opt_fragment_parameter_metadata }, 211 { "all", Opt_fragment_parameter_all }, 212 {} 213 }; 214 #endif 215 216 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 217 fsparam_flag_no("acl", Opt_acl), 218 fsparam_flag_no("autodefrag", Opt_defrag), 219 fsparam_flag_no("barrier", Opt_barrier), 220 fsparam_flag("clear_cache", Opt_clear_cache), 221 fsparam_u32("commit", Opt_commit_interval), 222 fsparam_flag("compress", Opt_compress), 223 fsparam_string("compress", Opt_compress_type), 224 fsparam_flag("compress-force", Opt_compress_force), 225 fsparam_string("compress-force", Opt_compress_force_type), 226 fsparam_flag_no("datacow", Opt_datacow), 227 fsparam_flag_no("datasum", Opt_datasum), 228 fsparam_flag("degraded", Opt_degraded), 229 fsparam_string("device", Opt_device), 230 fsparam_flag_no("discard", Opt_discard), 231 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 232 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 233 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 234 fsparam_string("max_inline", Opt_max_inline), 235 fsparam_u32("metadata_ratio", Opt_ratio), 236 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 237 fsparam_flag("skip_balance", Opt_skip_balance), 238 fsparam_flag_no("space_cache", Opt_space_cache), 239 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 240 fsparam_flag_no("ssd", Opt_ssd), 241 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 242 fsparam_string("subvol", Opt_subvol), 243 fsparam_flag("subvol=", Opt_subvol_empty), 244 fsparam_u64("subvolid", Opt_subvolid), 245 fsparam_u32("thread_pool", Opt_thread_pool), 246 fsparam_flag_no("treelog", Opt_treelog), 247 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 248 249 /* Rescue options. */ 250 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 251 /* Deprecated, with alias rescue=usebackuproot */ 252 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 253 /* For compatibility only, alias for "rescue=nologreplay". */ 254 fsparam_flag("norecovery", Opt_norecovery), 255 256 /* Debugging options. */ 257 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 258 #ifdef CONFIG_BTRFS_DEBUG 259 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 260 #endif 261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 262 fsparam_flag("ref_verify", Opt_ref_verify), 263 #endif 264 {} 265 }; 266 267 static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level) 268 { 269 const int len = strlen(type); 270 271 return (strncmp(string, type, len) == 0) && 272 ((may_have_level && string[len] == ':') || string[len] == '\0'); 273 } 274 275 static int btrfs_parse_compress(struct btrfs_fs_context *ctx, 276 const struct fs_parameter *param, int opt) 277 { 278 const char *string = param->string; 279 280 /* 281 * Provide the same semantics as older kernels that don't use fs 282 * context, specifying the "compress" option clears "force-compress" 283 * without the need to pass "compress-force=[no|none]" before 284 * specifying "compress". 285 */ 286 if (opt != Opt_compress_force && opt != Opt_compress_force_type) 287 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 288 289 if (opt == Opt_compress || opt == Opt_compress_force) { 290 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 291 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 292 btrfs_set_opt(ctx->mount_opt, COMPRESS); 293 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 294 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 295 } else if (btrfs_match_compress_type(string, "zlib", true)) { 296 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 297 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 298 string + 4); 299 btrfs_set_opt(ctx->mount_opt, COMPRESS); 300 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 301 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 302 } else if (btrfs_match_compress_type(string, "lzo", true)) { 303 ctx->compress_type = BTRFS_COMPRESS_LZO; 304 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_LZO, 305 string + 3); 306 if (string[3] == ':' && string[4]) 307 btrfs_warn(NULL, "Compression level ignored for LZO"); 308 btrfs_set_opt(ctx->mount_opt, COMPRESS); 309 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 310 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 311 } else if (btrfs_match_compress_type(string, "zstd", true)) { 312 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 313 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 314 string + 4); 315 btrfs_set_opt(ctx->mount_opt, COMPRESS); 316 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 317 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 318 } else if (btrfs_match_compress_type(string, "no", false) || 319 btrfs_match_compress_type(string, "none", false)) { 320 ctx->compress_level = 0; 321 ctx->compress_type = 0; 322 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 323 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 324 } else { 325 btrfs_err(NULL, "unrecognized compression value %s", string); 326 return -EINVAL; 327 } 328 return 0; 329 } 330 331 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 332 { 333 struct btrfs_fs_context *ctx = fc->fs_private; 334 struct fs_parse_result result; 335 int opt; 336 337 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 338 if (opt < 0) 339 return opt; 340 341 switch (opt) { 342 case Opt_degraded: 343 btrfs_set_opt(ctx->mount_opt, DEGRADED); 344 break; 345 case Opt_subvol_empty: 346 /* 347 * This exists because we used to allow it on accident, so we're 348 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 349 * empty subvol= again"). 350 */ 351 break; 352 case Opt_subvol: 353 kfree(ctx->subvol_name); 354 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 355 if (!ctx->subvol_name) 356 return -ENOMEM; 357 break; 358 case Opt_subvolid: 359 ctx->subvol_objectid = result.uint_64; 360 361 /* subvolid=0 means give me the original fs_tree. */ 362 if (!ctx->subvol_objectid) 363 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 364 break; 365 case Opt_device: { 366 struct btrfs_device *device; 367 368 mutex_lock(&uuid_mutex); 369 device = btrfs_scan_one_device(param->string, false); 370 mutex_unlock(&uuid_mutex); 371 if (IS_ERR(device)) 372 return PTR_ERR(device); 373 break; 374 } 375 case Opt_datasum: 376 if (result.negated) { 377 btrfs_set_opt(ctx->mount_opt, NODATASUM); 378 } else { 379 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 380 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 381 } 382 break; 383 case Opt_datacow: 384 if (result.negated) { 385 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 386 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 387 btrfs_set_opt(ctx->mount_opt, NODATACOW); 388 btrfs_set_opt(ctx->mount_opt, NODATASUM); 389 } else { 390 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 391 } 392 break; 393 case Opt_compress_force: 394 case Opt_compress_force_type: 395 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 396 fallthrough; 397 case Opt_compress: 398 case Opt_compress_type: 399 if (btrfs_parse_compress(ctx, param, opt)) 400 return -EINVAL; 401 break; 402 case Opt_ssd: 403 if (result.negated) { 404 btrfs_set_opt(ctx->mount_opt, NOSSD); 405 btrfs_clear_opt(ctx->mount_opt, SSD); 406 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 407 } else { 408 btrfs_set_opt(ctx->mount_opt, SSD); 409 btrfs_clear_opt(ctx->mount_opt, NOSSD); 410 } 411 break; 412 case Opt_ssd_spread: 413 if (result.negated) { 414 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 415 } else { 416 btrfs_set_opt(ctx->mount_opt, SSD); 417 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 418 btrfs_clear_opt(ctx->mount_opt, NOSSD); 419 } 420 break; 421 case Opt_barrier: 422 if (result.negated) 423 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 424 else 425 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 426 break; 427 case Opt_thread_pool: 428 if (result.uint_32 == 0) { 429 btrfs_err(NULL, "invalid value 0 for thread_pool"); 430 return -EINVAL; 431 } 432 ctx->thread_pool_size = result.uint_32; 433 break; 434 case Opt_max_inline: 435 ctx->max_inline = memparse(param->string, NULL); 436 break; 437 case Opt_acl: 438 if (result.negated) { 439 fc->sb_flags &= ~SB_POSIXACL; 440 } else { 441 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 442 fc->sb_flags |= SB_POSIXACL; 443 #else 444 btrfs_err(NULL, "support for ACL not compiled in"); 445 return -EINVAL; 446 #endif 447 } 448 /* 449 * VFS limits the ability to toggle ACL on and off via remount, 450 * despite every file system allowing this. This seems to be 451 * an oversight since we all do, but it'll fail if we're 452 * remounting. So don't set the mask here, we'll check it in 453 * btrfs_reconfigure and do the toggling ourselves. 454 */ 455 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 456 fc->sb_flags_mask |= SB_POSIXACL; 457 break; 458 case Opt_treelog: 459 if (result.negated) 460 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 461 else 462 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 463 break; 464 case Opt_norecovery: 465 btrfs_info(NULL, 466 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 467 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 468 break; 469 case Opt_flushoncommit: 470 if (result.negated) 471 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 472 else 473 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 474 break; 475 case Opt_ratio: 476 ctx->metadata_ratio = result.uint_32; 477 break; 478 case Opt_discard: 479 if (result.negated) { 480 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 481 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 482 btrfs_set_opt(ctx->mount_opt, NODISCARD); 483 } else { 484 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 485 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 486 } 487 break; 488 case Opt_discard_mode: 489 switch (result.uint_32) { 490 case Opt_discard_sync: 491 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 492 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 493 break; 494 case Opt_discard_async: 495 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 496 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 497 break; 498 default: 499 btrfs_err(NULL, "unrecognized discard mode value %s", 500 param->key); 501 return -EINVAL; 502 } 503 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 504 break; 505 case Opt_space_cache: 506 if (result.negated) { 507 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 508 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 509 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 510 } else { 511 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 512 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 513 } 514 break; 515 case Opt_space_cache_version: 516 switch (result.uint_32) { 517 case Opt_space_cache_v1: 518 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 519 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 520 break; 521 case Opt_space_cache_v2: 522 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 523 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 524 break; 525 default: 526 btrfs_err(NULL, "unrecognized space_cache value %s", 527 param->key); 528 return -EINVAL; 529 } 530 break; 531 case Opt_rescan_uuid_tree: 532 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 533 break; 534 case Opt_clear_cache: 535 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 536 break; 537 case Opt_user_subvol_rm_allowed: 538 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 539 break; 540 case Opt_enospc_debug: 541 if (result.negated) 542 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 543 else 544 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 545 break; 546 case Opt_defrag: 547 if (result.negated) 548 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 549 else 550 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 551 break; 552 case Opt_usebackuproot: 553 btrfs_warn(NULL, 554 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 555 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 556 557 /* If we're loading the backup roots we can't trust the space cache. */ 558 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 559 break; 560 case Opt_skip_balance: 561 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 562 break; 563 case Opt_fatal_errors: 564 switch (result.uint_32) { 565 case Opt_fatal_errors_panic: 566 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 567 break; 568 case Opt_fatal_errors_bug: 569 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 570 break; 571 default: 572 btrfs_err(NULL, "unrecognized fatal_errors value %s", 573 param->key); 574 return -EINVAL; 575 } 576 break; 577 case Opt_commit_interval: 578 ctx->commit_interval = result.uint_32; 579 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) { 580 btrfs_warn(NULL, "excessive commit interval %u, use with care", 581 ctx->commit_interval); 582 } 583 if (ctx->commit_interval == 0) 584 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 585 break; 586 case Opt_rescue: 587 switch (result.uint_32) { 588 case Opt_rescue_usebackuproot: 589 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 590 break; 591 case Opt_rescue_nologreplay: 592 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 593 break; 594 case Opt_rescue_ignorebadroots: 595 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 596 break; 597 case Opt_rescue_ignoredatacsums: 598 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 599 break; 600 case Opt_rescue_ignoremetacsums: 601 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 602 break; 603 case Opt_rescue_ignoresuperflags: 604 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 605 break; 606 case Opt_rescue_parameter_all: 607 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 608 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 609 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 610 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 611 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 612 break; 613 default: 614 btrfs_info(NULL, "unrecognized rescue option '%s'", 615 param->key); 616 return -EINVAL; 617 } 618 break; 619 #ifdef CONFIG_BTRFS_DEBUG 620 case Opt_fragment: 621 switch (result.uint_32) { 622 case Opt_fragment_parameter_all: 623 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 624 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 625 break; 626 case Opt_fragment_parameter_metadata: 627 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 628 break; 629 case Opt_fragment_parameter_data: 630 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 631 break; 632 default: 633 btrfs_info(NULL, "unrecognized fragment option '%s'", 634 param->key); 635 return -EINVAL; 636 } 637 break; 638 #endif 639 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 640 case Opt_ref_verify: 641 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 642 break; 643 #endif 644 default: 645 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 646 return -EINVAL; 647 } 648 649 return 0; 650 } 651 652 /* 653 * Some options only have meaning at mount time and shouldn't persist across 654 * remounts, or be displayed. Clear these at the end of mount and remount code 655 * paths. 656 */ 657 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 658 { 659 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 660 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 661 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 662 } 663 664 static bool check_ro_option(const struct btrfs_fs_info *fs_info, 665 unsigned long long mount_opt, unsigned long long opt, 666 const char *opt_name) 667 { 668 if (mount_opt & opt) { 669 btrfs_err(fs_info, "%s must be used with ro mount option", 670 opt_name); 671 return true; 672 } 673 return false; 674 } 675 676 bool btrfs_check_options(const struct btrfs_fs_info *info, 677 unsigned long long *mount_opt, 678 unsigned long flags) 679 { 680 bool ret = true; 681 682 if (!(flags & SB_RDONLY) && 683 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 684 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 685 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") || 686 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") || 687 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags"))) 688 ret = false; 689 690 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 691 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 692 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 693 btrfs_err(info, "cannot disable free-space-tree"); 694 ret = false; 695 } 696 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 697 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 698 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 699 ret = false; 700 } 701 702 if (btrfs_check_mountopts_zoned(info, mount_opt)) 703 ret = false; 704 705 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 706 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 707 btrfs_warn(info, 708 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2"); 709 } 710 } 711 712 return ret; 713 } 714 715 /* 716 * This is subtle, we only call this during open_ctree(). We need to pre-load 717 * the mount options with the on-disk settings. Before the new mount API took 718 * effect we would do this on mount and remount. With the new mount API we'll 719 * only do this on the initial mount. 720 * 721 * This isn't a change in behavior, because we're using the current state of the 722 * file system to set the current mount options. If you mounted with special 723 * options to disable these features and then remounted we wouldn't revert the 724 * settings, because mounting without these features cleared the on-disk 725 * settings, so this being called on re-mount is not needed. 726 */ 727 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 728 { 729 if (fs_info->sectorsize < PAGE_SIZE) { 730 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 731 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 732 btrfs_info(fs_info, 733 "forcing free space tree for sector size %u with page size %lu", 734 fs_info->sectorsize, PAGE_SIZE); 735 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 736 } 737 } 738 739 /* 740 * At this point our mount options are populated, so we only mess with 741 * these settings if we don't have any settings already. 742 */ 743 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 744 return; 745 746 if (btrfs_is_zoned(fs_info) && 747 btrfs_free_space_cache_v1_active(fs_info)) { 748 btrfs_info(fs_info, "zoned: clearing existing space cache"); 749 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 750 return; 751 } 752 753 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 754 return; 755 756 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 757 return; 758 759 /* 760 * At this point we don't have explicit options set by the user, set 761 * them ourselves based on the state of the file system. 762 */ 763 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 764 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 765 else if (btrfs_free_space_cache_v1_active(fs_info)) 766 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 767 } 768 769 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 770 { 771 if (!btrfs_test_opt(fs_info, NOSSD) && 772 !fs_info->fs_devices->rotating) 773 btrfs_set_opt(fs_info->mount_opt, SSD); 774 775 /* 776 * For devices supporting discard turn on discard=async automatically, 777 * unless it's already set or disabled. This could be turned off by 778 * nodiscard for the same mount. 779 * 780 * The zoned mode piggy backs on the discard functionality for 781 * resetting a zone. There is no reason to delay the zone reset as it is 782 * fast enough. So, do not enable async discard for zoned mode. 783 */ 784 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 785 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 786 btrfs_test_opt(fs_info, NODISCARD)) && 787 fs_info->fs_devices->discardable && 788 !btrfs_is_zoned(fs_info)) 789 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 790 } 791 792 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 793 u64 subvol_objectid) 794 { 795 struct btrfs_root *root = fs_info->tree_root; 796 struct btrfs_root *fs_root = NULL; 797 struct btrfs_root_ref *root_ref; 798 struct btrfs_inode_ref *inode_ref; 799 struct btrfs_key key; 800 struct btrfs_path *path = NULL; 801 char *name = NULL, *ptr; 802 u64 dirid; 803 int len; 804 int ret; 805 806 path = btrfs_alloc_path(); 807 if (!path) { 808 ret = -ENOMEM; 809 goto err; 810 } 811 812 name = kmalloc(PATH_MAX, GFP_KERNEL); 813 if (!name) { 814 ret = -ENOMEM; 815 goto err; 816 } 817 ptr = name + PATH_MAX - 1; 818 ptr[0] = '\0'; 819 820 /* 821 * Walk up the subvolume trees in the tree of tree roots by root 822 * backrefs until we hit the top-level subvolume. 823 */ 824 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 825 key.objectid = subvol_objectid; 826 key.type = BTRFS_ROOT_BACKREF_KEY; 827 key.offset = (u64)-1; 828 829 ret = btrfs_search_backwards(root, &key, path); 830 if (ret < 0) { 831 goto err; 832 } else if (ret > 0) { 833 ret = -ENOENT; 834 goto err; 835 } 836 837 subvol_objectid = key.offset; 838 839 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 840 struct btrfs_root_ref); 841 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 842 ptr -= len + 1; 843 if (ptr < name) { 844 ret = -ENAMETOOLONG; 845 goto err; 846 } 847 read_extent_buffer(path->nodes[0], ptr + 1, 848 (unsigned long)(root_ref + 1), len); 849 ptr[0] = '/'; 850 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 851 btrfs_release_path(path); 852 853 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 854 if (IS_ERR(fs_root)) { 855 ret = PTR_ERR(fs_root); 856 fs_root = NULL; 857 goto err; 858 } 859 860 /* 861 * Walk up the filesystem tree by inode refs until we hit the 862 * root directory. 863 */ 864 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 865 key.objectid = dirid; 866 key.type = BTRFS_INODE_REF_KEY; 867 key.offset = (u64)-1; 868 869 ret = btrfs_search_backwards(fs_root, &key, path); 870 if (ret < 0) { 871 goto err; 872 } else if (ret > 0) { 873 ret = -ENOENT; 874 goto err; 875 } 876 877 dirid = key.offset; 878 879 inode_ref = btrfs_item_ptr(path->nodes[0], 880 path->slots[0], 881 struct btrfs_inode_ref); 882 len = btrfs_inode_ref_name_len(path->nodes[0], 883 inode_ref); 884 ptr -= len + 1; 885 if (ptr < name) { 886 ret = -ENAMETOOLONG; 887 goto err; 888 } 889 read_extent_buffer(path->nodes[0], ptr + 1, 890 (unsigned long)(inode_ref + 1), len); 891 ptr[0] = '/'; 892 btrfs_release_path(path); 893 } 894 btrfs_put_root(fs_root); 895 fs_root = NULL; 896 } 897 898 btrfs_free_path(path); 899 if (ptr == name + PATH_MAX - 1) { 900 name[0] = '/'; 901 name[1] = '\0'; 902 } else { 903 memmove(name, ptr, name + PATH_MAX - ptr); 904 } 905 return name; 906 907 err: 908 btrfs_put_root(fs_root); 909 btrfs_free_path(path); 910 kfree(name); 911 return ERR_PTR(ret); 912 } 913 914 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 915 { 916 struct btrfs_root *root = fs_info->tree_root; 917 struct btrfs_dir_item *di; 918 struct btrfs_path *path; 919 struct btrfs_key location; 920 struct fscrypt_str name = FSTR_INIT("default", 7); 921 u64 dir_id; 922 923 path = btrfs_alloc_path(); 924 if (!path) 925 return -ENOMEM; 926 927 /* 928 * Find the "default" dir item which points to the root item that we 929 * will mount by default if we haven't been given a specific subvolume 930 * to mount. 931 */ 932 dir_id = btrfs_super_root_dir(fs_info->super_copy); 933 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 934 if (IS_ERR(di)) { 935 btrfs_free_path(path); 936 return PTR_ERR(di); 937 } 938 if (!di) { 939 /* 940 * Ok the default dir item isn't there. This is weird since 941 * it's always been there, but don't freak out, just try and 942 * mount the top-level subvolume. 943 */ 944 btrfs_free_path(path); 945 *objectid = BTRFS_FS_TREE_OBJECTID; 946 return 0; 947 } 948 949 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 950 btrfs_free_path(path); 951 *objectid = location.objectid; 952 return 0; 953 } 954 955 static int btrfs_fill_super(struct super_block *sb, 956 struct btrfs_fs_devices *fs_devices) 957 { 958 struct btrfs_inode *inode; 959 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 960 int ret; 961 962 sb->s_maxbytes = MAX_LFS_FILESIZE; 963 sb->s_magic = BTRFS_SUPER_MAGIC; 964 sb->s_op = &btrfs_super_ops; 965 set_default_d_op(sb, &btrfs_dentry_operations); 966 sb->s_export_op = &btrfs_export_ops; 967 #ifdef CONFIG_FS_VERITY 968 sb->s_vop = &btrfs_verityops; 969 #endif 970 sb->s_xattr = btrfs_xattr_handlers; 971 sb->s_time_gran = 1; 972 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM; 973 974 ret = super_setup_bdi(sb); 975 if (ret) { 976 btrfs_err(fs_info, "super_setup_bdi failed"); 977 return ret; 978 } 979 980 ret = open_ctree(sb, fs_devices); 981 if (ret) { 982 btrfs_err(fs_info, "open_ctree failed: %d", ret); 983 return ret; 984 } 985 986 btrfs_emit_options(fs_info, NULL); 987 988 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 989 if (IS_ERR(inode)) { 990 ret = PTR_ERR(inode); 991 btrfs_handle_fs_error(fs_info, ret, NULL); 992 goto fail_close; 993 } 994 995 sb->s_root = d_make_root(&inode->vfs_inode); 996 if (!sb->s_root) { 997 ret = -ENOMEM; 998 goto fail_close; 999 } 1000 1001 sb->s_flags |= SB_ACTIVE; 1002 return 0; 1003 1004 fail_close: 1005 close_ctree(fs_info); 1006 return ret; 1007 } 1008 1009 int btrfs_sync_fs(struct super_block *sb, int wait) 1010 { 1011 struct btrfs_trans_handle *trans; 1012 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1013 struct btrfs_root *root = fs_info->tree_root; 1014 1015 trace_btrfs_sync_fs(fs_info, wait); 1016 1017 if (!wait) { 1018 filemap_flush(fs_info->btree_inode->i_mapping); 1019 return 0; 1020 } 1021 1022 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 1023 1024 trans = btrfs_attach_transaction_barrier(root); 1025 if (IS_ERR(trans)) { 1026 /* no transaction, don't bother */ 1027 if (PTR_ERR(trans) == -ENOENT) { 1028 /* 1029 * Exit unless we have some pending changes 1030 * that need to go through commit 1031 */ 1032 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1033 &fs_info->flags)) 1034 return 0; 1035 /* 1036 * A non-blocking test if the fs is frozen. We must not 1037 * start a new transaction here otherwise a deadlock 1038 * happens. The pending operations are delayed to the 1039 * next commit after thawing. 1040 */ 1041 if (sb_start_write_trylock(sb)) 1042 sb_end_write(sb); 1043 else 1044 return 0; 1045 trans = btrfs_start_transaction(root, 0); 1046 } 1047 if (IS_ERR(trans)) 1048 return PTR_ERR(trans); 1049 } 1050 return btrfs_commit_transaction(trans); 1051 } 1052 1053 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1054 { 1055 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1056 *printed = true; 1057 } 1058 1059 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1060 { 1061 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1062 const char *compress_type; 1063 const char *subvol_name; 1064 bool printed = false; 1065 1066 if (btrfs_test_opt(info, DEGRADED)) 1067 seq_puts(seq, ",degraded"); 1068 if (btrfs_test_opt(info, NODATASUM)) 1069 seq_puts(seq, ",nodatasum"); 1070 if (btrfs_test_opt(info, NODATACOW)) 1071 seq_puts(seq, ",nodatacow"); 1072 if (btrfs_test_opt(info, NOBARRIER)) 1073 seq_puts(seq, ",nobarrier"); 1074 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1075 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1076 if (info->thread_pool_size != min_t(unsigned long, 1077 num_online_cpus() + 2, 8)) 1078 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1079 if (btrfs_test_opt(info, COMPRESS)) { 1080 compress_type = btrfs_compress_type2str(info->compress_type); 1081 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1082 seq_printf(seq, ",compress-force=%s", compress_type); 1083 else 1084 seq_printf(seq, ",compress=%s", compress_type); 1085 if (info->compress_level && info->compress_type != BTRFS_COMPRESS_LZO) 1086 seq_printf(seq, ":%d", info->compress_level); 1087 } 1088 if (btrfs_test_opt(info, NOSSD)) 1089 seq_puts(seq, ",nossd"); 1090 if (btrfs_test_opt(info, SSD_SPREAD)) 1091 seq_puts(seq, ",ssd_spread"); 1092 else if (btrfs_test_opt(info, SSD)) 1093 seq_puts(seq, ",ssd"); 1094 if (btrfs_test_opt(info, NOTREELOG)) 1095 seq_puts(seq, ",notreelog"); 1096 if (btrfs_test_opt(info, NOLOGREPLAY)) 1097 print_rescue_option(seq, "nologreplay", &printed); 1098 if (btrfs_test_opt(info, USEBACKUPROOT)) 1099 print_rescue_option(seq, "usebackuproot", &printed); 1100 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1101 print_rescue_option(seq, "ignorebadroots", &printed); 1102 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1103 print_rescue_option(seq, "ignoredatacsums", &printed); 1104 if (btrfs_test_opt(info, IGNOREMETACSUMS)) 1105 print_rescue_option(seq, "ignoremetacsums", &printed); 1106 if (btrfs_test_opt(info, IGNORESUPERFLAGS)) 1107 print_rescue_option(seq, "ignoresuperflags", &printed); 1108 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1109 seq_puts(seq, ",flushoncommit"); 1110 if (btrfs_test_opt(info, DISCARD_SYNC)) 1111 seq_puts(seq, ",discard"); 1112 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1113 seq_puts(seq, ",discard=async"); 1114 if (!(info->sb->s_flags & SB_POSIXACL)) 1115 seq_puts(seq, ",noacl"); 1116 if (btrfs_free_space_cache_v1_active(info)) 1117 seq_puts(seq, ",space_cache"); 1118 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1119 seq_puts(seq, ",space_cache=v2"); 1120 else 1121 seq_puts(seq, ",nospace_cache"); 1122 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1123 seq_puts(seq, ",rescan_uuid_tree"); 1124 if (btrfs_test_opt(info, CLEAR_CACHE)) 1125 seq_puts(seq, ",clear_cache"); 1126 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1127 seq_puts(seq, ",user_subvol_rm_allowed"); 1128 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1129 seq_puts(seq, ",enospc_debug"); 1130 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1131 seq_puts(seq, ",autodefrag"); 1132 if (btrfs_test_opt(info, SKIP_BALANCE)) 1133 seq_puts(seq, ",skip_balance"); 1134 if (info->metadata_ratio) 1135 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1136 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1137 seq_puts(seq, ",fatal_errors=panic"); 1138 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1139 seq_printf(seq, ",commit=%u", info->commit_interval); 1140 #ifdef CONFIG_BTRFS_DEBUG 1141 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1142 seq_puts(seq, ",fragment=data"); 1143 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1144 seq_puts(seq, ",fragment=metadata"); 1145 #endif 1146 if (btrfs_test_opt(info, REF_VERIFY)) 1147 seq_puts(seq, ",ref_verify"); 1148 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1149 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1150 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1151 if (!IS_ERR(subvol_name)) { 1152 seq_show_option(seq, "subvol", subvol_name); 1153 kfree(subvol_name); 1154 } 1155 return 0; 1156 } 1157 1158 /* 1159 * subvolumes are identified by ino 256 1160 */ 1161 static inline bool is_subvolume_inode(struct inode *inode) 1162 { 1163 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1164 return true; 1165 return false; 1166 } 1167 1168 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1169 struct vfsmount *mnt) 1170 { 1171 struct dentry *root; 1172 int ret; 1173 1174 if (!subvol_name) { 1175 if (!subvol_objectid) { 1176 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1177 &subvol_objectid); 1178 if (ret) { 1179 root = ERR_PTR(ret); 1180 goto out; 1181 } 1182 } 1183 subvol_name = btrfs_get_subvol_name_from_objectid( 1184 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1185 if (IS_ERR(subvol_name)) { 1186 root = ERR_CAST(subvol_name); 1187 subvol_name = NULL; 1188 goto out; 1189 } 1190 1191 } 1192 1193 root = mount_subtree(mnt, subvol_name); 1194 /* mount_subtree() drops our reference on the vfsmount. */ 1195 mnt = NULL; 1196 1197 if (!IS_ERR(root)) { 1198 struct super_block *s = root->d_sb; 1199 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1200 struct inode *root_inode = d_inode(root); 1201 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1202 1203 ret = 0; 1204 if (!is_subvolume_inode(root_inode)) { 1205 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1206 subvol_name); 1207 ret = -EINVAL; 1208 } 1209 if (subvol_objectid && root_objectid != subvol_objectid) { 1210 /* 1211 * This will also catch a race condition where a 1212 * subvolume which was passed by ID is renamed and 1213 * another subvolume is renamed over the old location. 1214 */ 1215 btrfs_err(fs_info, 1216 "subvol '%s' does not match subvolid %llu", 1217 subvol_name, subvol_objectid); 1218 ret = -EINVAL; 1219 } 1220 if (ret) { 1221 dput(root); 1222 root = ERR_PTR(ret); 1223 deactivate_locked_super(s); 1224 } 1225 } 1226 1227 out: 1228 mntput(mnt); 1229 kfree(subvol_name); 1230 return root; 1231 } 1232 1233 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1234 u32 new_pool_size, u32 old_pool_size) 1235 { 1236 if (new_pool_size == old_pool_size) 1237 return; 1238 1239 fs_info->thread_pool_size = new_pool_size; 1240 1241 btrfs_info(fs_info, "resize thread pool %d -> %d", 1242 old_pool_size, new_pool_size); 1243 1244 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1245 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1246 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1247 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1248 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1249 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1250 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1251 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1252 } 1253 1254 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1255 unsigned long long old_opts, int flags) 1256 { 1257 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1258 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1259 (flags & SB_RDONLY))) { 1260 /* wait for any defraggers to finish */ 1261 wait_event(fs_info->transaction_wait, 1262 (atomic_read(&fs_info->defrag_running) == 0)); 1263 if (flags & SB_RDONLY) 1264 sync_filesystem(fs_info->sb); 1265 } 1266 } 1267 1268 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1269 unsigned long long old_opts) 1270 { 1271 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1272 1273 /* 1274 * We need to cleanup all defragable inodes if the autodefragment is 1275 * close or the filesystem is read only. 1276 */ 1277 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1278 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1279 btrfs_cleanup_defrag_inodes(fs_info); 1280 } 1281 1282 /* If we toggled discard async */ 1283 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1284 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1285 btrfs_discard_resume(fs_info); 1286 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1287 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1288 btrfs_discard_cleanup(fs_info); 1289 1290 /* If we toggled space cache */ 1291 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1292 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1293 } 1294 1295 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1296 { 1297 int ret; 1298 1299 if (BTRFS_FS_ERROR(fs_info)) { 1300 btrfs_err(fs_info, 1301 "remounting read-write after error is not allowed"); 1302 return -EINVAL; 1303 } 1304 1305 if (fs_info->fs_devices->rw_devices == 0) 1306 return -EACCES; 1307 1308 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1309 btrfs_warn(fs_info, 1310 "too many missing devices, writable remount is not allowed"); 1311 return -EACCES; 1312 } 1313 1314 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1315 btrfs_warn(fs_info, 1316 "mount required to replay tree-log, cannot remount read-write"); 1317 return -EINVAL; 1318 } 1319 1320 /* 1321 * NOTE: when remounting with a change that does writes, don't put it 1322 * anywhere above this point, as we are not sure to be safe to write 1323 * until we pass the above checks. 1324 */ 1325 ret = btrfs_start_pre_rw_mount(fs_info); 1326 if (ret) 1327 return ret; 1328 1329 btrfs_clear_sb_rdonly(fs_info->sb); 1330 1331 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1332 1333 /* 1334 * If we've gone from readonly -> read-write, we need to get our 1335 * sync/async discard lists in the right state. 1336 */ 1337 btrfs_discard_resume(fs_info); 1338 1339 return 0; 1340 } 1341 1342 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1343 { 1344 /* 1345 * This also happens on 'umount -rf' or on shutdown, when the 1346 * filesystem is busy. 1347 */ 1348 cancel_work_sync(&fs_info->async_reclaim_work); 1349 cancel_work_sync(&fs_info->async_data_reclaim_work); 1350 1351 btrfs_discard_cleanup(fs_info); 1352 1353 /* Wait for the uuid_scan task to finish */ 1354 down(&fs_info->uuid_tree_rescan_sem); 1355 /* Avoid complains from lockdep et al. */ 1356 up(&fs_info->uuid_tree_rescan_sem); 1357 1358 btrfs_set_sb_rdonly(fs_info->sb); 1359 1360 /* 1361 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1362 * loop if it's already active. If it's already asleep, we'll leave 1363 * unused block groups on disk until we're mounted read-write again 1364 * unless we clean them up here. 1365 */ 1366 btrfs_delete_unused_bgs(fs_info); 1367 1368 /* 1369 * The cleaner task could be already running before we set the flag 1370 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1371 * sure that after we finish the remount, i.e. after we call 1372 * btrfs_commit_super(), the cleaner can no longer start a transaction 1373 * - either because it was dropping a dead root, running delayed iputs 1374 * or deleting an unused block group (the cleaner picked a block 1375 * group from the list of unused block groups before we were able to 1376 * in the previous call to btrfs_delete_unused_bgs()). 1377 */ 1378 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1379 1380 /* 1381 * We've set the superblock to RO mode, so we might have made the 1382 * cleaner task sleep without running all pending delayed iputs. Go 1383 * through all the delayed iputs here, so that if an unmount happens 1384 * without remounting RW we don't end up at finishing close_ctree() 1385 * with a non-empty list of delayed iputs. 1386 */ 1387 btrfs_run_delayed_iputs(fs_info); 1388 1389 btrfs_dev_replace_suspend_for_unmount(fs_info); 1390 btrfs_scrub_cancel(fs_info); 1391 btrfs_pause_balance(fs_info); 1392 1393 /* 1394 * Pause the qgroup rescan worker if it is running. We don't want it to 1395 * be still running after we are in RO mode, as after that, by the time 1396 * we unmount, it might have left a transaction open, so we would leak 1397 * the transaction and/or crash. 1398 */ 1399 btrfs_qgroup_wait_for_completion(fs_info, false); 1400 1401 return btrfs_commit_super(fs_info); 1402 } 1403 1404 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1405 { 1406 fs_info->max_inline = ctx->max_inline; 1407 fs_info->commit_interval = ctx->commit_interval; 1408 fs_info->metadata_ratio = ctx->metadata_ratio; 1409 fs_info->thread_pool_size = ctx->thread_pool_size; 1410 fs_info->mount_opt = ctx->mount_opt; 1411 fs_info->compress_type = ctx->compress_type; 1412 fs_info->compress_level = ctx->compress_level; 1413 } 1414 1415 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1416 { 1417 ctx->max_inline = fs_info->max_inline; 1418 ctx->commit_interval = fs_info->commit_interval; 1419 ctx->metadata_ratio = fs_info->metadata_ratio; 1420 ctx->thread_pool_size = fs_info->thread_pool_size; 1421 ctx->mount_opt = fs_info->mount_opt; 1422 ctx->compress_type = fs_info->compress_type; 1423 ctx->compress_level = fs_info->compress_level; 1424 } 1425 1426 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1427 do { \ 1428 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1429 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1430 btrfs_info(fs_info, fmt, ##args); \ 1431 } while (0) 1432 1433 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1434 do { \ 1435 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1436 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1437 btrfs_info(fs_info, fmt, ##args); \ 1438 } while (0) 1439 1440 static void btrfs_emit_options(struct btrfs_fs_info *info, 1441 struct btrfs_fs_context *old) 1442 { 1443 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1444 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1445 btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow"); 1446 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1447 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1448 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1449 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1450 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1451 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1452 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1453 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1454 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1455 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1456 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1457 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1458 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1459 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1460 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1461 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1462 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1463 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1464 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums"); 1465 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags"); 1466 1467 btrfs_info_if_unset(info, old, NODATASUM, "setting datasum"); 1468 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1469 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1470 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1471 btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers"); 1472 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1473 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1474 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1475 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1476 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1477 1478 /* Did the compression settings change? */ 1479 if (btrfs_test_opt(info, COMPRESS) && 1480 (!old || 1481 old->compress_type != info->compress_type || 1482 old->compress_level != info->compress_level || 1483 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1484 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1485 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1486 1487 btrfs_info(info, "%s %s compression, level %d", 1488 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1489 compress_type, info->compress_level); 1490 } 1491 1492 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1493 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1494 } 1495 1496 static int btrfs_reconfigure(struct fs_context *fc) 1497 { 1498 struct super_block *sb = fc->root->d_sb; 1499 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1500 struct btrfs_fs_context *ctx = fc->fs_private; 1501 struct btrfs_fs_context old_ctx; 1502 int ret = 0; 1503 bool mount_reconfigure = (fc->s_fs_info != NULL); 1504 1505 btrfs_info_to_ctx(fs_info, &old_ctx); 1506 1507 /* 1508 * This is our "bind mount" trick, we don't want to allow the user to do 1509 * anything other than mount a different ro/rw and a different subvol, 1510 * all of the mount options should be maintained. 1511 */ 1512 if (mount_reconfigure) 1513 ctx->mount_opt = old_ctx.mount_opt; 1514 1515 sync_filesystem(sb); 1516 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1517 1518 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1519 return -EINVAL; 1520 1521 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1522 if (ret < 0) 1523 return ret; 1524 1525 btrfs_ctx_to_info(fs_info, ctx); 1526 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1527 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1528 old_ctx.thread_pool_size); 1529 1530 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1531 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1532 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1533 btrfs_warn(fs_info, 1534 "remount supports changing free space tree only from RO to RW"); 1535 /* Make sure free space cache options match the state on disk. */ 1536 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1537 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1538 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1539 } 1540 if (btrfs_free_space_cache_v1_active(fs_info)) { 1541 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1542 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1543 } 1544 } 1545 1546 ret = 0; 1547 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1548 ret = btrfs_remount_ro(fs_info); 1549 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1550 ret = btrfs_remount_rw(fs_info); 1551 if (ret) 1552 goto restore; 1553 1554 /* 1555 * If we set the mask during the parameter parsing VFS would reject the 1556 * remount. Here we can set the mask and the value will be updated 1557 * appropriately. 1558 */ 1559 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1560 fc->sb_flags_mask |= SB_POSIXACL; 1561 1562 btrfs_emit_options(fs_info, &old_ctx); 1563 wake_up_process(fs_info->transaction_kthread); 1564 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1565 btrfs_clear_oneshot_options(fs_info); 1566 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1567 1568 return 0; 1569 restore: 1570 btrfs_ctx_to_info(fs_info, &old_ctx); 1571 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1572 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1573 return ret; 1574 } 1575 1576 /* Used to sort the devices by max_avail(descending sort) */ 1577 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1578 { 1579 const struct btrfs_device_info *dev_info1 = a; 1580 const struct btrfs_device_info *dev_info2 = b; 1581 1582 if (dev_info1->max_avail > dev_info2->max_avail) 1583 return -1; 1584 else if (dev_info1->max_avail < dev_info2->max_avail) 1585 return 1; 1586 return 0; 1587 } 1588 1589 /* 1590 * sort the devices by max_avail, in which max free extent size of each device 1591 * is stored.(Descending Sort) 1592 */ 1593 static inline void btrfs_descending_sort_devices( 1594 struct btrfs_device_info *devices, 1595 size_t nr_devices) 1596 { 1597 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1598 btrfs_cmp_device_free_bytes, NULL); 1599 } 1600 1601 /* 1602 * The helper to calc the free space on the devices that can be used to store 1603 * file data. 1604 */ 1605 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1606 u64 *free_bytes) 1607 { 1608 struct btrfs_device_info *devices_info; 1609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1610 struct btrfs_device *device; 1611 u64 type; 1612 u64 avail_space; 1613 u64 min_stripe_size; 1614 int num_stripes = 1; 1615 int i = 0, nr_devices; 1616 const struct btrfs_raid_attr *rattr; 1617 1618 /* 1619 * We aren't under the device list lock, so this is racy-ish, but good 1620 * enough for our purposes. 1621 */ 1622 nr_devices = fs_info->fs_devices->open_devices; 1623 if (!nr_devices) { 1624 smp_mb(); 1625 nr_devices = fs_info->fs_devices->open_devices; 1626 ASSERT(nr_devices); 1627 if (!nr_devices) { 1628 *free_bytes = 0; 1629 return 0; 1630 } 1631 } 1632 1633 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1634 GFP_KERNEL); 1635 if (!devices_info) 1636 return -ENOMEM; 1637 1638 /* calc min stripe number for data space allocation */ 1639 type = btrfs_data_alloc_profile(fs_info); 1640 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1641 1642 if (type & BTRFS_BLOCK_GROUP_RAID0) 1643 num_stripes = nr_devices; 1644 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1645 num_stripes = rattr->ncopies; 1646 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1647 num_stripes = 4; 1648 1649 /* Adjust for more than 1 stripe per device */ 1650 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1651 1652 rcu_read_lock(); 1653 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1654 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1655 &device->dev_state) || 1656 !device->bdev || 1657 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1658 continue; 1659 1660 if (i >= nr_devices) 1661 break; 1662 1663 avail_space = device->total_bytes - device->bytes_used; 1664 1665 /* align with stripe_len */ 1666 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1667 1668 /* 1669 * Ensure we have at least min_stripe_size on top of the 1670 * reserved space on the device. 1671 */ 1672 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1673 continue; 1674 1675 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1676 1677 devices_info[i].dev = device; 1678 devices_info[i].max_avail = avail_space; 1679 1680 i++; 1681 } 1682 rcu_read_unlock(); 1683 1684 nr_devices = i; 1685 1686 btrfs_descending_sort_devices(devices_info, nr_devices); 1687 1688 i = nr_devices - 1; 1689 avail_space = 0; 1690 while (nr_devices >= rattr->devs_min) { 1691 num_stripes = min(num_stripes, nr_devices); 1692 1693 if (devices_info[i].max_avail >= min_stripe_size) { 1694 int j; 1695 u64 alloc_size; 1696 1697 avail_space += devices_info[i].max_avail * num_stripes; 1698 alloc_size = devices_info[i].max_avail; 1699 for (j = i + 1 - num_stripes; j <= i; j++) 1700 devices_info[j].max_avail -= alloc_size; 1701 } 1702 i--; 1703 nr_devices--; 1704 } 1705 1706 kfree(devices_info); 1707 *free_bytes = avail_space; 1708 return 0; 1709 } 1710 1711 /* 1712 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1713 * 1714 * If there's a redundant raid level at DATA block groups, use the respective 1715 * multiplier to scale the sizes. 1716 * 1717 * Unused device space usage is based on simulating the chunk allocator 1718 * algorithm that respects the device sizes and order of allocations. This is 1719 * a close approximation of the actual use but there are other factors that may 1720 * change the result (like a new metadata chunk). 1721 * 1722 * If metadata is exhausted, f_bavail will be 0. 1723 */ 1724 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1725 { 1726 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1727 struct btrfs_super_block *disk_super = fs_info->super_copy; 1728 struct btrfs_space_info *found; 1729 u64 total_used = 0; 1730 u64 total_free_data = 0; 1731 u64 total_free_meta = 0; 1732 u32 bits = fs_info->sectorsize_bits; 1733 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1734 unsigned factor = 1; 1735 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1736 int ret; 1737 u64 thresh = 0; 1738 int mixed = 0; 1739 1740 list_for_each_entry(found, &fs_info->space_info, list) { 1741 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1742 int i; 1743 1744 total_free_data += found->disk_total - found->disk_used; 1745 total_free_data -= 1746 btrfs_account_ro_block_groups_free_space(found); 1747 1748 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1749 if (!list_empty(&found->block_groups[i])) 1750 factor = btrfs_bg_type_to_factor( 1751 btrfs_raid_array[i].bg_flag); 1752 } 1753 } 1754 1755 /* 1756 * Metadata in mixed block group profiles are accounted in data 1757 */ 1758 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1759 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1760 mixed = 1; 1761 else 1762 total_free_meta += found->disk_total - 1763 found->disk_used; 1764 } 1765 1766 total_used += found->disk_used; 1767 } 1768 1769 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1770 buf->f_blocks >>= bits; 1771 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1772 1773 /* Account global block reserve as used, it's in logical size already */ 1774 spin_lock(&block_rsv->lock); 1775 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1776 if (buf->f_bfree >= block_rsv->size >> bits) 1777 buf->f_bfree -= block_rsv->size >> bits; 1778 else 1779 buf->f_bfree = 0; 1780 spin_unlock(&block_rsv->lock); 1781 1782 buf->f_bavail = div_u64(total_free_data, factor); 1783 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1784 if (ret) 1785 return ret; 1786 buf->f_bavail += div_u64(total_free_data, factor); 1787 buf->f_bavail = buf->f_bavail >> bits; 1788 1789 /* 1790 * We calculate the remaining metadata space minus global reserve. If 1791 * this is (supposedly) smaller than zero, there's no space. But this 1792 * does not hold in practice, the exhausted state happens where's still 1793 * some positive delta. So we apply some guesswork and compare the 1794 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1795 * 1796 * We probably cannot calculate the exact threshold value because this 1797 * depends on the internal reservations requested by various 1798 * operations, so some operations that consume a few metadata will 1799 * succeed even if the Avail is zero. But this is better than the other 1800 * way around. 1801 */ 1802 thresh = SZ_4M; 1803 1804 /* 1805 * We only want to claim there's no available space if we can no longer 1806 * allocate chunks for our metadata profile and our global reserve will 1807 * not fit in the free metadata space. If we aren't ->full then we 1808 * still can allocate chunks and thus are fine using the currently 1809 * calculated f_bavail. 1810 */ 1811 if (!mixed && block_rsv->space_info->full && 1812 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1813 buf->f_bavail = 0; 1814 1815 buf->f_type = BTRFS_SUPER_MAGIC; 1816 buf->f_bsize = fs_info->sectorsize; 1817 buf->f_namelen = BTRFS_NAME_LEN; 1818 1819 /* We treat it as constant endianness (it doesn't matter _which_) 1820 because we want the fsid to come out the same whether mounted 1821 on a big-endian or little-endian host */ 1822 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1823 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1824 /* Mask in the root object ID too, to disambiguate subvols */ 1825 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1826 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1827 1828 return 0; 1829 } 1830 1831 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1832 { 1833 struct btrfs_fs_info *p = fc->s_fs_info; 1834 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1835 1836 return fs_info->fs_devices == p->fs_devices; 1837 } 1838 1839 static int btrfs_get_tree_super(struct fs_context *fc) 1840 { 1841 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1842 struct btrfs_fs_context *ctx = fc->fs_private; 1843 struct btrfs_fs_devices *fs_devices = NULL; 1844 struct btrfs_device *device; 1845 struct super_block *sb; 1846 blk_mode_t mode = sb_open_mode(fc->sb_flags); 1847 int ret; 1848 1849 btrfs_ctx_to_info(fs_info, ctx); 1850 mutex_lock(&uuid_mutex); 1851 1852 /* 1853 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1854 * either a valid device or an error. 1855 */ 1856 device = btrfs_scan_one_device(fc->source, true); 1857 ASSERT(device != NULL); 1858 if (IS_ERR(device)) { 1859 mutex_unlock(&uuid_mutex); 1860 return PTR_ERR(device); 1861 } 1862 fs_devices = device->fs_devices; 1863 /* 1864 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a 1865 * locking order reversal with s_umount. 1866 * 1867 * So here we increase the holding number of fs_devices, this will ensure 1868 * the fs_devices itself won't be freed. 1869 */ 1870 btrfs_fs_devices_inc_holding(fs_devices); 1871 fs_info->fs_devices = fs_devices; 1872 mutex_unlock(&uuid_mutex); 1873 1874 1875 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1876 if (IS_ERR(sb)) { 1877 mutex_lock(&uuid_mutex); 1878 btrfs_fs_devices_dec_holding(fs_devices); 1879 /* 1880 * Since the fs_devices is not opened, it can be freed at any 1881 * time after unlocking uuid_mutex. We need to avoid double 1882 * free through put_fs_context()->btrfs_free_fs_info(). 1883 * So here we reset fs_info->fs_devices to NULL, and let the 1884 * regular fs_devices reclaim path to handle it. 1885 * 1886 * This applies to all later branches where no fs_devices is 1887 * opened. 1888 */ 1889 fs_info->fs_devices = NULL; 1890 mutex_unlock(&uuid_mutex); 1891 return PTR_ERR(sb); 1892 } 1893 1894 set_device_specific_options(fs_info); 1895 1896 if (sb->s_root) { 1897 /* 1898 * Not the first mount of the fs thus got an existing super block. 1899 * Will reuse the returned super block, fs_info and fs_devices. 1900 * 1901 * fc->s_fs_info is not touched and will be later freed by 1902 * put_fs_context() through btrfs_free_fs_context(). 1903 */ 1904 ASSERT(fc->s_fs_info == fs_info); 1905 1906 mutex_lock(&uuid_mutex); 1907 btrfs_fs_devices_dec_holding(fs_devices); 1908 fs_info->fs_devices = NULL; 1909 mutex_unlock(&uuid_mutex); 1910 /* 1911 * At this stage we may have RO flag mismatch between 1912 * fc->sb_flags and sb->s_flags. Caller should detect such 1913 * mismatch and reconfigure with sb->s_umount rwsem held if 1914 * needed. 1915 */ 1916 } else { 1917 struct block_device *bdev; 1918 1919 /* 1920 * The first mount of the fs thus a new superblock, fc->s_fs_info 1921 * must be NULL, and the ownership of our fs_info and fs_devices is 1922 * transferred to the super block. 1923 */ 1924 ASSERT(fc->s_fs_info == NULL); 1925 1926 mutex_lock(&uuid_mutex); 1927 btrfs_fs_devices_dec_holding(fs_devices); 1928 ret = btrfs_open_devices(fs_devices, mode, sb); 1929 if (ret < 0) 1930 fs_info->fs_devices = NULL; 1931 mutex_unlock(&uuid_mutex); 1932 if (ret < 0) { 1933 deactivate_locked_super(sb); 1934 return ret; 1935 } 1936 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1937 deactivate_locked_super(sb); 1938 return -EACCES; 1939 } 1940 bdev = fs_devices->latest_dev->bdev; 1941 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1942 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1943 ret = btrfs_fill_super(sb, fs_devices); 1944 if (ret) { 1945 deactivate_locked_super(sb); 1946 return ret; 1947 } 1948 } 1949 1950 btrfs_clear_oneshot_options(fs_info); 1951 1952 fc->root = dget(sb->s_root); 1953 return 0; 1954 } 1955 1956 /* 1957 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1958 * with different ro/rw options") the following works: 1959 * 1960 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1961 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1962 * 1963 * which looks nice and innocent but is actually pretty intricate and deserves 1964 * a long comment. 1965 * 1966 * On another filesystem a subvolume mount is close to something like: 1967 * 1968 * (iii) # create rw superblock + initial mount 1969 * mount -t xfs /dev/sdb /opt/ 1970 * 1971 * # create ro bind mount 1972 * mount --bind -o ro /opt/foo /mnt/foo 1973 * 1974 * # unmount initial mount 1975 * umount /opt 1976 * 1977 * Of course, there's some special subvolume sauce and there's the fact that the 1978 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1979 * it's very close and will help us understand the issue. 1980 * 1981 * The old mount API didn't cleanly distinguish between a mount being made ro 1982 * and a superblock being made ro. The only way to change the ro state of 1983 * either object was by passing ms_rdonly. If a new mount was created via 1984 * mount(2) such as: 1985 * 1986 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1987 * 1988 * the MS_RDONLY flag being specified had two effects: 1989 * 1990 * (1) MNT_READONLY was raised -> the resulting mount got 1991 * @mnt->mnt_flags |= MNT_READONLY raised. 1992 * 1993 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1994 * made the superblock ro. Note, how SB_RDONLY has the same value as 1995 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1996 * 1997 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1998 * subtree mounted ro. 1999 * 2000 * But consider the effect on the old mount API on btrfs subvolume mounting 2001 * which combines the distinct step in (iii) into a single step. 2002 * 2003 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 2004 * is issued the superblock is ro and thus even if the mount created for (ii) is 2005 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 2006 * to rw for (ii) which it did using an internal remount call. 2007 * 2008 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 2009 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 2010 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 2011 * passed by mount(8) to mount(2). 2012 * 2013 * Enter the new mount API. The new mount API disambiguates making a mount ro 2014 * and making a superblock ro. 2015 * 2016 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 2017 * fsmount() or mount_setattr() this is a pure VFS level change for a 2018 * specific mount or mount tree that is never seen by the filesystem itself. 2019 * 2020 * (4) To turn a superblock ro the "ro" flag must be used with 2021 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 2022 * in fc->sb_flags. 2023 * 2024 * But, currently the util-linux mount command already utilizes the new mount 2025 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's 2026 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting 2027 * work with different options work we need to keep backward compatibility. 2028 */ 2029 static int btrfs_reconfigure_for_mount(struct fs_context *fc) 2030 { 2031 int ret = 0; 2032 2033 if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY)) 2034 ret = btrfs_reconfigure(fc); 2035 2036 return ret; 2037 } 2038 2039 static int btrfs_get_tree_subvol(struct fs_context *fc) 2040 { 2041 struct btrfs_fs_info *fs_info = NULL; 2042 struct btrfs_fs_context *ctx = fc->fs_private; 2043 struct fs_context *dup_fc; 2044 struct dentry *dentry; 2045 struct vfsmount *mnt; 2046 int ret = 0; 2047 2048 /* 2049 * Setup a dummy root and fs_info for test/set super. This is because 2050 * we don't actually fill this stuff out until open_ctree, but we need 2051 * then open_ctree will properly initialize the file system specific 2052 * settings later. btrfs_init_fs_info initializes the static elements 2053 * of the fs_info (locks and such) to make cleanup easier if we find a 2054 * superblock with our given fs_devices later on at sget() time. 2055 */ 2056 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2057 if (!fs_info) 2058 return -ENOMEM; 2059 2060 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2061 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2062 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2063 btrfs_free_fs_info(fs_info); 2064 return -ENOMEM; 2065 } 2066 btrfs_init_fs_info(fs_info); 2067 2068 dup_fc = vfs_dup_fs_context(fc); 2069 if (IS_ERR(dup_fc)) { 2070 btrfs_free_fs_info(fs_info); 2071 return PTR_ERR(dup_fc); 2072 } 2073 2074 /* 2075 * When we do the sget_fc this gets transferred to the sb, so we only 2076 * need to set it on the dup_fc as this is what creates the super block. 2077 */ 2078 dup_fc->s_fs_info = fs_info; 2079 2080 ret = btrfs_get_tree_super(dup_fc); 2081 if (ret) 2082 goto error; 2083 2084 ret = btrfs_reconfigure_for_mount(dup_fc); 2085 up_write(&dup_fc->root->d_sb->s_umount); 2086 if (ret) 2087 goto error; 2088 mnt = vfs_create_mount(dup_fc); 2089 put_fs_context(dup_fc); 2090 if (IS_ERR(mnt)) 2091 return PTR_ERR(mnt); 2092 2093 /* 2094 * This free's ->subvol_name, because if it isn't set we have to 2095 * allocate a buffer to hold the subvol_name, so we just drop our 2096 * reference to it here. 2097 */ 2098 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2099 ctx->subvol_name = NULL; 2100 if (IS_ERR(dentry)) 2101 return PTR_ERR(dentry); 2102 2103 fc->root = dentry; 2104 return 0; 2105 error: 2106 put_fs_context(dup_fc); 2107 return ret; 2108 } 2109 2110 static int btrfs_get_tree(struct fs_context *fc) 2111 { 2112 ASSERT(fc->s_fs_info == NULL); 2113 2114 return btrfs_get_tree_subvol(fc); 2115 } 2116 2117 static void btrfs_kill_super(struct super_block *sb) 2118 { 2119 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2120 kill_anon_super(sb); 2121 btrfs_free_fs_info(fs_info); 2122 } 2123 2124 static void btrfs_free_fs_context(struct fs_context *fc) 2125 { 2126 struct btrfs_fs_context *ctx = fc->fs_private; 2127 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2128 2129 if (fs_info) 2130 btrfs_free_fs_info(fs_info); 2131 2132 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2133 kfree(ctx->subvol_name); 2134 kfree(ctx); 2135 } 2136 } 2137 2138 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2139 { 2140 struct btrfs_fs_context *ctx = src_fc->fs_private; 2141 2142 /* 2143 * Give a ref to our ctx to this dup, as we want to keep it around for 2144 * our original fc so we can have the subvolume name or objectid. 2145 * 2146 * We unset ->source in the original fc because the dup needs it for 2147 * mounting, and then once we free the dup it'll free ->source, so we 2148 * need to make sure we're only pointing to it in one fc. 2149 */ 2150 refcount_inc(&ctx->refs); 2151 fc->fs_private = ctx; 2152 fc->source = src_fc->source; 2153 src_fc->source = NULL; 2154 return 0; 2155 } 2156 2157 static const struct fs_context_operations btrfs_fs_context_ops = { 2158 .parse_param = btrfs_parse_param, 2159 .reconfigure = btrfs_reconfigure, 2160 .get_tree = btrfs_get_tree, 2161 .dup = btrfs_dup_fs_context, 2162 .free = btrfs_free_fs_context, 2163 }; 2164 2165 static int btrfs_init_fs_context(struct fs_context *fc) 2166 { 2167 struct btrfs_fs_context *ctx; 2168 2169 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2170 if (!ctx) 2171 return -ENOMEM; 2172 2173 refcount_set(&ctx->refs, 1); 2174 fc->fs_private = ctx; 2175 fc->ops = &btrfs_fs_context_ops; 2176 2177 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2178 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2179 } else { 2180 ctx->thread_pool_size = 2181 min_t(unsigned long, num_online_cpus() + 2, 8); 2182 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2183 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2184 } 2185 2186 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2187 fc->sb_flags |= SB_POSIXACL; 2188 #endif 2189 fc->sb_flags |= SB_I_VERSION; 2190 2191 return 0; 2192 } 2193 2194 static struct file_system_type btrfs_fs_type = { 2195 .owner = THIS_MODULE, 2196 .name = "btrfs", 2197 .init_fs_context = btrfs_init_fs_context, 2198 .parameters = btrfs_fs_parameters, 2199 .kill_sb = btrfs_kill_super, 2200 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | 2201 FS_ALLOW_IDMAP | FS_MGTIME, 2202 }; 2203 2204 MODULE_ALIAS_FS("btrfs"); 2205 2206 static int btrfs_control_open(struct inode *inode, struct file *file) 2207 { 2208 /* 2209 * The control file's private_data is used to hold the 2210 * transaction when it is started and is used to keep 2211 * track of whether a transaction is already in progress. 2212 */ 2213 file->private_data = NULL; 2214 return 0; 2215 } 2216 2217 /* 2218 * Used by /dev/btrfs-control for devices ioctls. 2219 */ 2220 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2221 unsigned long arg) 2222 { 2223 struct btrfs_ioctl_vol_args *vol; 2224 struct btrfs_device *device = NULL; 2225 dev_t devt = 0; 2226 int ret = -ENOTTY; 2227 2228 if (!capable(CAP_SYS_ADMIN)) 2229 return -EPERM; 2230 2231 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2232 if (IS_ERR(vol)) 2233 return PTR_ERR(vol); 2234 ret = btrfs_check_ioctl_vol_args_path(vol); 2235 if (ret < 0) 2236 goto out; 2237 2238 switch (cmd) { 2239 case BTRFS_IOC_SCAN_DEV: 2240 mutex_lock(&uuid_mutex); 2241 /* 2242 * Scanning outside of mount can return NULL which would turn 2243 * into 0 error code. 2244 */ 2245 device = btrfs_scan_one_device(vol->name, false); 2246 ret = PTR_ERR_OR_ZERO(device); 2247 mutex_unlock(&uuid_mutex); 2248 break; 2249 case BTRFS_IOC_FORGET_DEV: 2250 if (vol->name[0] != 0) { 2251 ret = lookup_bdev(vol->name, &devt); 2252 if (ret) 2253 break; 2254 } 2255 ret = btrfs_forget_devices(devt); 2256 break; 2257 case BTRFS_IOC_DEVICES_READY: 2258 mutex_lock(&uuid_mutex); 2259 /* 2260 * Scanning outside of mount can return NULL which would turn 2261 * into 0 error code. 2262 */ 2263 device = btrfs_scan_one_device(vol->name, false); 2264 if (IS_ERR_OR_NULL(device)) { 2265 mutex_unlock(&uuid_mutex); 2266 if (IS_ERR(device)) 2267 ret = PTR_ERR(device); 2268 else 2269 ret = 0; 2270 break; 2271 } 2272 ret = !(device->fs_devices->num_devices == 2273 device->fs_devices->total_devices); 2274 mutex_unlock(&uuid_mutex); 2275 break; 2276 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2277 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2278 break; 2279 } 2280 2281 out: 2282 kfree(vol); 2283 return ret; 2284 } 2285 2286 static int btrfs_freeze(struct super_block *sb) 2287 { 2288 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2289 2290 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2291 /* 2292 * We don't need a barrier here, we'll wait for any transaction that 2293 * could be in progress on other threads (and do delayed iputs that 2294 * we want to avoid on a frozen filesystem), or do the commit 2295 * ourselves. 2296 */ 2297 return btrfs_commit_current_transaction(fs_info->tree_root); 2298 } 2299 2300 static int check_dev_super(struct btrfs_device *dev) 2301 { 2302 struct btrfs_fs_info *fs_info = dev->fs_info; 2303 struct btrfs_super_block *sb; 2304 u64 last_trans; 2305 u16 csum_type; 2306 int ret = 0; 2307 2308 /* This should be called with fs still frozen. */ 2309 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2310 2311 /* Missing dev, no need to check. */ 2312 if (!dev->bdev) 2313 return 0; 2314 2315 /* Only need to check the primary super block. */ 2316 sb = btrfs_read_disk_super(dev->bdev, 0, true); 2317 if (IS_ERR(sb)) 2318 return PTR_ERR(sb); 2319 2320 /* Verify the checksum. */ 2321 csum_type = btrfs_super_csum_type(sb); 2322 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2323 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2324 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2325 ret = -EUCLEAN; 2326 goto out; 2327 } 2328 2329 if (btrfs_check_super_csum(fs_info, sb)) { 2330 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2331 ret = -EUCLEAN; 2332 goto out; 2333 } 2334 2335 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2336 ret = btrfs_validate_super(fs_info, sb, 0); 2337 if (ret < 0) 2338 goto out; 2339 2340 last_trans = btrfs_get_last_trans_committed(fs_info); 2341 if (btrfs_super_generation(sb) != last_trans) { 2342 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2343 btrfs_super_generation(sb), last_trans); 2344 ret = -EUCLEAN; 2345 goto out; 2346 } 2347 out: 2348 btrfs_release_disk_super(sb); 2349 return ret; 2350 } 2351 2352 static int btrfs_unfreeze(struct super_block *sb) 2353 { 2354 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2355 struct btrfs_device *device; 2356 int ret = 0; 2357 2358 /* 2359 * Make sure the fs is not changed by accident (like hibernation then 2360 * modified by other OS). 2361 * If we found anything wrong, we mark the fs error immediately. 2362 * 2363 * And since the fs is frozen, no one can modify the fs yet, thus 2364 * we don't need to hold device_list_mutex. 2365 */ 2366 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2367 ret = check_dev_super(device); 2368 if (ret < 0) { 2369 btrfs_handle_fs_error(fs_info, ret, 2370 "super block on devid %llu got modified unexpectedly", 2371 device->devid); 2372 break; 2373 } 2374 } 2375 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2376 2377 /* 2378 * We still return 0, to allow VFS layer to unfreeze the fs even the 2379 * above checks failed. Since the fs is either fine or read-only, we're 2380 * safe to continue, without causing further damage. 2381 */ 2382 return 0; 2383 } 2384 2385 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2386 { 2387 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2388 2389 /* 2390 * There should be always a valid pointer in latest_dev, it may be stale 2391 * for a short moment in case it's being deleted but still valid until 2392 * the end of RCU grace period. 2393 */ 2394 rcu_read_lock(); 2395 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2396 rcu_read_unlock(); 2397 2398 return 0; 2399 } 2400 2401 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2402 { 2403 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2404 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2405 2406 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2407 2408 return nr; 2409 } 2410 2411 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2412 { 2413 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2414 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2415 2416 btrfs_free_extent_maps(fs_info, nr_to_scan); 2417 2418 /* The extent map shrinker runs asynchronously, so always return 0. */ 2419 return 0; 2420 } 2421 2422 static const struct super_operations btrfs_super_ops = { 2423 .drop_inode = btrfs_drop_inode, 2424 .evict_inode = btrfs_evict_inode, 2425 .put_super = btrfs_put_super, 2426 .sync_fs = btrfs_sync_fs, 2427 .show_options = btrfs_show_options, 2428 .show_devname = btrfs_show_devname, 2429 .alloc_inode = btrfs_alloc_inode, 2430 .destroy_inode = btrfs_destroy_inode, 2431 .free_inode = btrfs_free_inode, 2432 .statfs = btrfs_statfs, 2433 .freeze_fs = btrfs_freeze, 2434 .unfreeze_fs = btrfs_unfreeze, 2435 .nr_cached_objects = btrfs_nr_cached_objects, 2436 .free_cached_objects = btrfs_free_cached_objects, 2437 }; 2438 2439 static const struct file_operations btrfs_ctl_fops = { 2440 .open = btrfs_control_open, 2441 .unlocked_ioctl = btrfs_control_ioctl, 2442 .compat_ioctl = compat_ptr_ioctl, 2443 .owner = THIS_MODULE, 2444 .llseek = noop_llseek, 2445 }; 2446 2447 static struct miscdevice btrfs_misc = { 2448 .minor = BTRFS_MINOR, 2449 .name = "btrfs-control", 2450 .fops = &btrfs_ctl_fops 2451 }; 2452 2453 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2454 MODULE_ALIAS("devname:btrfs-control"); 2455 2456 static int __init btrfs_interface_init(void) 2457 { 2458 return misc_register(&btrfs_misc); 2459 } 2460 2461 static __cold void btrfs_interface_exit(void) 2462 { 2463 misc_deregister(&btrfs_misc); 2464 } 2465 2466 static int __init btrfs_print_mod_info(void) 2467 { 2468 static const char options[] = "" 2469 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2470 ", experimental=on" 2471 #endif 2472 #ifdef CONFIG_BTRFS_DEBUG 2473 ", debug=on" 2474 #endif 2475 #ifdef CONFIG_BTRFS_ASSERT 2476 ", assert=on" 2477 #endif 2478 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2479 ", ref-verify=on" 2480 #endif 2481 #ifdef CONFIG_BLK_DEV_ZONED 2482 ", zoned=yes" 2483 #else 2484 ", zoned=no" 2485 #endif 2486 #ifdef CONFIG_FS_VERITY 2487 ", fsverity=yes" 2488 #else 2489 ", fsverity=no" 2490 #endif 2491 ; 2492 2493 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2494 if (btrfs_get_mod_read_policy() == NULL) 2495 pr_info("Btrfs loaded%s\n", options); 2496 else 2497 pr_info("Btrfs loaded%s, read_policy=%s\n", 2498 options, btrfs_get_mod_read_policy()); 2499 #else 2500 pr_info("Btrfs loaded%s\n", options); 2501 #endif 2502 2503 return 0; 2504 } 2505 2506 static int register_btrfs(void) 2507 { 2508 return register_filesystem(&btrfs_fs_type); 2509 } 2510 2511 static void unregister_btrfs(void) 2512 { 2513 unregister_filesystem(&btrfs_fs_type); 2514 } 2515 2516 /* Helper structure for long init/exit functions. */ 2517 struct init_sequence { 2518 int (*init_func)(void); 2519 /* Can be NULL if the init_func doesn't need cleanup. */ 2520 void (*exit_func)(void); 2521 }; 2522 2523 static const struct init_sequence mod_init_seq[] = { 2524 { 2525 .init_func = btrfs_props_init, 2526 .exit_func = NULL, 2527 }, { 2528 .init_func = btrfs_init_sysfs, 2529 .exit_func = btrfs_exit_sysfs, 2530 }, { 2531 .init_func = btrfs_init_compress, 2532 .exit_func = btrfs_exit_compress, 2533 }, { 2534 .init_func = btrfs_init_cachep, 2535 .exit_func = btrfs_destroy_cachep, 2536 }, { 2537 .init_func = btrfs_init_dio, 2538 .exit_func = btrfs_destroy_dio, 2539 }, { 2540 .init_func = btrfs_transaction_init, 2541 .exit_func = btrfs_transaction_exit, 2542 }, { 2543 .init_func = btrfs_ctree_init, 2544 .exit_func = btrfs_ctree_exit, 2545 }, { 2546 .init_func = btrfs_free_space_init, 2547 .exit_func = btrfs_free_space_exit, 2548 }, { 2549 .init_func = btrfs_extent_state_init_cachep, 2550 .exit_func = btrfs_extent_state_free_cachep, 2551 }, { 2552 .init_func = extent_buffer_init_cachep, 2553 .exit_func = extent_buffer_free_cachep, 2554 }, { 2555 .init_func = btrfs_bioset_init, 2556 .exit_func = btrfs_bioset_exit, 2557 }, { 2558 .init_func = btrfs_extent_map_init, 2559 .exit_func = btrfs_extent_map_exit, 2560 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2561 }, { 2562 .init_func = btrfs_read_policy_init, 2563 .exit_func = NULL, 2564 #endif 2565 }, { 2566 .init_func = ordered_data_init, 2567 .exit_func = ordered_data_exit, 2568 }, { 2569 .init_func = btrfs_delayed_inode_init, 2570 .exit_func = btrfs_delayed_inode_exit, 2571 }, { 2572 .init_func = btrfs_auto_defrag_init, 2573 .exit_func = btrfs_auto_defrag_exit, 2574 }, { 2575 .init_func = btrfs_delayed_ref_init, 2576 .exit_func = btrfs_delayed_ref_exit, 2577 }, { 2578 .init_func = btrfs_prelim_ref_init, 2579 .exit_func = btrfs_prelim_ref_exit, 2580 }, { 2581 .init_func = btrfs_interface_init, 2582 .exit_func = btrfs_interface_exit, 2583 }, { 2584 .init_func = btrfs_print_mod_info, 2585 .exit_func = NULL, 2586 }, { 2587 .init_func = btrfs_run_sanity_tests, 2588 .exit_func = NULL, 2589 }, { 2590 .init_func = register_btrfs, 2591 .exit_func = unregister_btrfs, 2592 } 2593 }; 2594 2595 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2596 2597 static __always_inline void btrfs_exit_btrfs_fs(void) 2598 { 2599 int i; 2600 2601 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2602 if (!mod_init_result[i]) 2603 continue; 2604 if (mod_init_seq[i].exit_func) 2605 mod_init_seq[i].exit_func(); 2606 mod_init_result[i] = false; 2607 } 2608 } 2609 2610 static void __exit exit_btrfs_fs(void) 2611 { 2612 btrfs_exit_btrfs_fs(); 2613 btrfs_cleanup_fs_uuids(); 2614 } 2615 2616 static int __init init_btrfs_fs(void) 2617 { 2618 int ret; 2619 int i; 2620 2621 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2622 ASSERT(!mod_init_result[i]); 2623 ret = mod_init_seq[i].init_func(); 2624 if (ret < 0) { 2625 btrfs_exit_btrfs_fs(); 2626 return ret; 2627 } 2628 mod_init_result[i] = true; 2629 } 2630 return 0; 2631 } 2632 2633 late_initcall(init_btrfs_fs); 2634 module_exit(exit_btrfs_fs) 2635 2636 MODULE_DESCRIPTION("B-Tree File System (BTRFS)"); 2637 MODULE_LICENSE("GPL"); 2638 MODULE_SOFTDEP("pre: crc32c"); 2639 MODULE_SOFTDEP("pre: xxhash64"); 2640 MODULE_SOFTDEP("pre: sha256"); 2641 MODULE_SOFTDEP("pre: blake2b-256"); 2642