1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include "delayed-inode.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "props.h" 36 #include "xattr.h" 37 #include "volumes.h" 38 #include "export.h" 39 #include "compression.h" 40 #include "rcu-string.h" 41 #include "dev-replace.h" 42 #include "free-space-cache.h" 43 #include "backref.h" 44 #include "space-info.h" 45 #include "sysfs.h" 46 #include "zoned.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 #include "qgroup.h" 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/btrfs.h> 53 54 static const struct super_operations btrfs_super_ops; 55 56 /* 57 * Types for mounting the default subvolume and a subvolume explicitly 58 * requested by subvol=/path. That way the callchain is straightforward and we 59 * don't have to play tricks with the mount options and recursive calls to 60 * btrfs_mount. 61 * 62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 63 */ 64 static struct file_system_type btrfs_fs_type; 65 static struct file_system_type btrfs_root_fs_type; 66 67 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 68 69 /* 70 * Generally the error codes correspond to their respective errors, but there 71 * are a few special cases. 72 * 73 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 74 * instance will return EUCLEAN if any of the blocks are corrupted in 75 * a way that is problematic. We want to reserve EUCLEAN for these 76 * sort of corruptions. 77 * 78 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 79 * need to use EROFS for this case. We will have no idea of the 80 * original failure, that will have been reported at the time we tripped 81 * over the error. Each subsequent error that doesn't have any context 82 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 83 */ 84 const char * __attribute_const__ btrfs_decode_error(int errno) 85 { 86 char *errstr = "unknown"; 87 88 switch (errno) { 89 case -ENOENT: /* -2 */ 90 errstr = "No such entry"; 91 break; 92 case -EIO: /* -5 */ 93 errstr = "IO failure"; 94 break; 95 case -ENOMEM: /* -12*/ 96 errstr = "Out of memory"; 97 break; 98 case -EEXIST: /* -17 */ 99 errstr = "Object already exists"; 100 break; 101 case -ENOSPC: /* -28 */ 102 errstr = "No space left"; 103 break; 104 case -EROFS: /* -30 */ 105 errstr = "Readonly filesystem"; 106 break; 107 case -EOPNOTSUPP: /* -95 */ 108 errstr = "Operation not supported"; 109 break; 110 case -EUCLEAN: /* -117 */ 111 errstr = "Filesystem corrupted"; 112 break; 113 case -EDQUOT: /* -122 */ 114 errstr = "Quota exceeded"; 115 break; 116 } 117 118 return errstr; 119 } 120 121 /* 122 * __btrfs_handle_fs_error decodes expected errors from the caller and 123 * invokes the appropriate error response. 124 */ 125 __cold 126 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 127 unsigned int line, int errno, const char *fmt, ...) 128 { 129 struct super_block *sb = fs_info->sb; 130 #ifdef CONFIG_PRINTK 131 const char *errstr; 132 #endif 133 134 /* 135 * Special case: if the error is EROFS, and we're already 136 * under SB_RDONLY, then it is safe here. 137 */ 138 if (errno == -EROFS && sb_rdonly(sb)) 139 return; 140 141 #ifdef CONFIG_PRINTK 142 errstr = btrfs_decode_error(errno); 143 if (fmt) { 144 struct va_format vaf; 145 va_list args; 146 147 va_start(args, fmt); 148 vaf.fmt = fmt; 149 vaf.va = &args; 150 151 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 152 sb->s_id, function, line, errno, errstr, &vaf); 153 va_end(args); 154 } else { 155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 156 sb->s_id, function, line, errno, errstr); 157 } 158 #endif 159 160 /* 161 * Today we only save the error info to memory. Long term we'll 162 * also send it down to the disk 163 */ 164 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 165 166 /* Don't go through full error handling during mount */ 167 if (!(sb->s_flags & SB_BORN)) 168 return; 169 170 if (sb_rdonly(sb)) 171 return; 172 173 btrfs_discard_stop(fs_info); 174 175 /* btrfs handle error by forcing the filesystem readonly */ 176 btrfs_set_sb_rdonly(sb); 177 btrfs_info(fs_info, "forced readonly"); 178 /* 179 * Note that a running device replace operation is not canceled here 180 * although there is no way to update the progress. It would add the 181 * risk of a deadlock, therefore the canceling is omitted. The only 182 * penalty is that some I/O remains active until the procedure 183 * completes. The next time when the filesystem is mounted writable 184 * again, the device replace operation continues. 185 */ 186 } 187 188 #ifdef CONFIG_PRINTK 189 static const char * const logtypes[] = { 190 "emergency", 191 "alert", 192 "critical", 193 "error", 194 "warning", 195 "notice", 196 "info", 197 "debug", 198 }; 199 200 201 /* 202 * Use one ratelimit state per log level so that a flood of less important 203 * messages doesn't cause more important ones to be dropped. 204 */ 205 static struct ratelimit_state printk_limits[] = { 206 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 207 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 214 }; 215 216 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 217 { 218 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 219 struct va_format vaf; 220 va_list args; 221 int kern_level; 222 const char *type = logtypes[4]; 223 struct ratelimit_state *ratelimit = &printk_limits[4]; 224 225 va_start(args, fmt); 226 227 while ((kern_level = printk_get_level(fmt)) != 0) { 228 size_t size = printk_skip_level(fmt) - fmt; 229 230 if (kern_level >= '0' && kern_level <= '7') { 231 memcpy(lvl, fmt, size); 232 lvl[size] = '\0'; 233 type = logtypes[kern_level - '0']; 234 ratelimit = &printk_limits[kern_level - '0']; 235 } 236 fmt += size; 237 } 238 239 vaf.fmt = fmt; 240 vaf.va = &args; 241 242 if (__ratelimit(ratelimit)) { 243 if (fs_info) 244 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 245 fs_info->sb->s_id, &vaf); 246 else 247 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 248 } 249 250 va_end(args); 251 } 252 #endif 253 254 #if BITS_PER_LONG == 32 255 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) 256 { 257 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { 258 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); 259 btrfs_warn(fs_info, 260 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", 261 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 262 btrfs_warn(fs_info, 263 "please consider upgrading to 64bit kernel/hardware"); 264 } 265 } 266 267 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) 268 { 269 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { 270 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); 271 btrfs_err(fs_info, 272 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", 273 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 274 btrfs_err(fs_info, 275 "please consider upgrading to 64bit kernel/hardware"); 276 } 277 } 278 #endif 279 280 /* 281 * We only mark the transaction aborted and then set the file system read-only. 282 * This will prevent new transactions from starting or trying to join this 283 * one. 284 * 285 * This means that error recovery at the call site is limited to freeing 286 * any local memory allocations and passing the error code up without 287 * further cleanup. The transaction should complete as it normally would 288 * in the call path but will return -EIO. 289 * 290 * We'll complete the cleanup in btrfs_end_transaction and 291 * btrfs_commit_transaction. 292 */ 293 __cold 294 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 295 const char *function, 296 unsigned int line, int errno) 297 { 298 struct btrfs_fs_info *fs_info = trans->fs_info; 299 300 WRITE_ONCE(trans->aborted, errno); 301 WRITE_ONCE(trans->transaction->aborted, errno); 302 /* Wake up anybody who may be waiting on this transaction */ 303 wake_up(&fs_info->transaction_wait); 304 wake_up(&fs_info->transaction_blocked_wait); 305 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 306 } 307 /* 308 * __btrfs_panic decodes unexpected, fatal errors from the caller, 309 * issues an alert, and either panics or BUGs, depending on mount options. 310 */ 311 __cold 312 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 313 unsigned int line, int errno, const char *fmt, ...) 314 { 315 char *s_id = "<unknown>"; 316 const char *errstr; 317 struct va_format vaf = { .fmt = fmt }; 318 va_list args; 319 320 if (fs_info) 321 s_id = fs_info->sb->s_id; 322 323 va_start(args, fmt); 324 vaf.va = &args; 325 326 errstr = btrfs_decode_error(errno); 327 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 328 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 329 s_id, function, line, &vaf, errno, errstr); 330 331 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 332 function, line, &vaf, errno, errstr); 333 va_end(args); 334 /* Caller calls BUG() */ 335 } 336 337 static void btrfs_put_super(struct super_block *sb) 338 { 339 close_ctree(btrfs_sb(sb)); 340 } 341 342 enum { 343 Opt_acl, Opt_noacl, 344 Opt_clear_cache, 345 Opt_commit_interval, 346 Opt_compress, 347 Opt_compress_force, 348 Opt_compress_force_type, 349 Opt_compress_type, 350 Opt_degraded, 351 Opt_device, 352 Opt_fatal_errors, 353 Opt_flushoncommit, Opt_noflushoncommit, 354 Opt_max_inline, 355 Opt_barrier, Opt_nobarrier, 356 Opt_datacow, Opt_nodatacow, 357 Opt_datasum, Opt_nodatasum, 358 Opt_defrag, Opt_nodefrag, 359 Opt_discard, Opt_nodiscard, 360 Opt_discard_mode, 361 Opt_norecovery, 362 Opt_ratio, 363 Opt_rescan_uuid_tree, 364 Opt_skip_balance, 365 Opt_space_cache, Opt_no_space_cache, 366 Opt_space_cache_version, 367 Opt_ssd, Opt_nossd, 368 Opt_ssd_spread, Opt_nossd_spread, 369 Opt_subvol, 370 Opt_subvol_empty, 371 Opt_subvolid, 372 Opt_thread_pool, 373 Opt_treelog, Opt_notreelog, 374 Opt_user_subvol_rm_allowed, 375 376 /* Rescue options */ 377 Opt_rescue, 378 Opt_usebackuproot, 379 Opt_nologreplay, 380 Opt_ignorebadroots, 381 Opt_ignoredatacsums, 382 Opt_rescue_all, 383 384 /* Deprecated options */ 385 Opt_recovery, 386 Opt_inode_cache, Opt_noinode_cache, 387 388 /* Debugging options */ 389 Opt_check_integrity, 390 Opt_check_integrity_including_extent_data, 391 Opt_check_integrity_print_mask, 392 Opt_enospc_debug, Opt_noenospc_debug, 393 #ifdef CONFIG_BTRFS_DEBUG 394 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 395 #endif 396 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 397 Opt_ref_verify, 398 #endif 399 Opt_err, 400 }; 401 402 static const match_table_t tokens = { 403 {Opt_acl, "acl"}, 404 {Opt_noacl, "noacl"}, 405 {Opt_clear_cache, "clear_cache"}, 406 {Opt_commit_interval, "commit=%u"}, 407 {Opt_compress, "compress"}, 408 {Opt_compress_type, "compress=%s"}, 409 {Opt_compress_force, "compress-force"}, 410 {Opt_compress_force_type, "compress-force=%s"}, 411 {Opt_degraded, "degraded"}, 412 {Opt_device, "device=%s"}, 413 {Opt_fatal_errors, "fatal_errors=%s"}, 414 {Opt_flushoncommit, "flushoncommit"}, 415 {Opt_noflushoncommit, "noflushoncommit"}, 416 {Opt_inode_cache, "inode_cache"}, 417 {Opt_noinode_cache, "noinode_cache"}, 418 {Opt_max_inline, "max_inline=%s"}, 419 {Opt_barrier, "barrier"}, 420 {Opt_nobarrier, "nobarrier"}, 421 {Opt_datacow, "datacow"}, 422 {Opt_nodatacow, "nodatacow"}, 423 {Opt_datasum, "datasum"}, 424 {Opt_nodatasum, "nodatasum"}, 425 {Opt_defrag, "autodefrag"}, 426 {Opt_nodefrag, "noautodefrag"}, 427 {Opt_discard, "discard"}, 428 {Opt_discard_mode, "discard=%s"}, 429 {Opt_nodiscard, "nodiscard"}, 430 {Opt_norecovery, "norecovery"}, 431 {Opt_ratio, "metadata_ratio=%u"}, 432 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 433 {Opt_skip_balance, "skip_balance"}, 434 {Opt_space_cache, "space_cache"}, 435 {Opt_no_space_cache, "nospace_cache"}, 436 {Opt_space_cache_version, "space_cache=%s"}, 437 {Opt_ssd, "ssd"}, 438 {Opt_nossd, "nossd"}, 439 {Opt_ssd_spread, "ssd_spread"}, 440 {Opt_nossd_spread, "nossd_spread"}, 441 {Opt_subvol, "subvol=%s"}, 442 {Opt_subvol_empty, "subvol="}, 443 {Opt_subvolid, "subvolid=%s"}, 444 {Opt_thread_pool, "thread_pool=%u"}, 445 {Opt_treelog, "treelog"}, 446 {Opt_notreelog, "notreelog"}, 447 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 448 449 /* Rescue options */ 450 {Opt_rescue, "rescue=%s"}, 451 /* Deprecated, with alias rescue=nologreplay */ 452 {Opt_nologreplay, "nologreplay"}, 453 /* Deprecated, with alias rescue=usebackuproot */ 454 {Opt_usebackuproot, "usebackuproot"}, 455 456 /* Deprecated options */ 457 {Opt_recovery, "recovery"}, 458 459 /* Debugging options */ 460 {Opt_check_integrity, "check_int"}, 461 {Opt_check_integrity_including_extent_data, "check_int_data"}, 462 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 463 {Opt_enospc_debug, "enospc_debug"}, 464 {Opt_noenospc_debug, "noenospc_debug"}, 465 #ifdef CONFIG_BTRFS_DEBUG 466 {Opt_fragment_data, "fragment=data"}, 467 {Opt_fragment_metadata, "fragment=metadata"}, 468 {Opt_fragment_all, "fragment=all"}, 469 #endif 470 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 471 {Opt_ref_verify, "ref_verify"}, 472 #endif 473 {Opt_err, NULL}, 474 }; 475 476 static const match_table_t rescue_tokens = { 477 {Opt_usebackuproot, "usebackuproot"}, 478 {Opt_nologreplay, "nologreplay"}, 479 {Opt_ignorebadroots, "ignorebadroots"}, 480 {Opt_ignorebadroots, "ibadroots"}, 481 {Opt_ignoredatacsums, "ignoredatacsums"}, 482 {Opt_ignoredatacsums, "idatacsums"}, 483 {Opt_rescue_all, "all"}, 484 {Opt_err, NULL}, 485 }; 486 487 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 488 const char *opt_name) 489 { 490 if (fs_info->mount_opt & opt) { 491 btrfs_err(fs_info, "%s must be used with ro mount option", 492 opt_name); 493 return true; 494 } 495 return false; 496 } 497 498 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 499 { 500 char *opts; 501 char *orig; 502 char *p; 503 substring_t args[MAX_OPT_ARGS]; 504 int ret = 0; 505 506 opts = kstrdup(options, GFP_KERNEL); 507 if (!opts) 508 return -ENOMEM; 509 orig = opts; 510 511 while ((p = strsep(&opts, ":")) != NULL) { 512 int token; 513 514 if (!*p) 515 continue; 516 token = match_token(p, rescue_tokens, args); 517 switch (token){ 518 case Opt_usebackuproot: 519 btrfs_info(info, 520 "trying to use backup root at mount time"); 521 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 522 break; 523 case Opt_nologreplay: 524 btrfs_set_and_info(info, NOLOGREPLAY, 525 "disabling log replay at mount time"); 526 break; 527 case Opt_ignorebadroots: 528 btrfs_set_and_info(info, IGNOREBADROOTS, 529 "ignoring bad roots"); 530 break; 531 case Opt_ignoredatacsums: 532 btrfs_set_and_info(info, IGNOREDATACSUMS, 533 "ignoring data csums"); 534 break; 535 case Opt_rescue_all: 536 btrfs_info(info, "enabling all of the rescue options"); 537 btrfs_set_and_info(info, IGNOREDATACSUMS, 538 "ignoring data csums"); 539 btrfs_set_and_info(info, IGNOREBADROOTS, 540 "ignoring bad roots"); 541 btrfs_set_and_info(info, NOLOGREPLAY, 542 "disabling log replay at mount time"); 543 break; 544 case Opt_err: 545 btrfs_info(info, "unrecognized rescue option '%s'", p); 546 ret = -EINVAL; 547 goto out; 548 default: 549 break; 550 } 551 552 } 553 out: 554 kfree(orig); 555 return ret; 556 } 557 558 /* 559 * Regular mount options parser. Everything that is needed only when 560 * reading in a new superblock is parsed here. 561 * XXX JDM: This needs to be cleaned up for remount. 562 */ 563 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 564 unsigned long new_flags) 565 { 566 substring_t args[MAX_OPT_ARGS]; 567 char *p, *num; 568 int intarg; 569 int ret = 0; 570 char *compress_type; 571 bool compress_force = false; 572 enum btrfs_compression_type saved_compress_type; 573 int saved_compress_level; 574 bool saved_compress_force; 575 int no_compress = 0; 576 577 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 578 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 579 else if (btrfs_free_space_cache_v1_active(info)) { 580 if (btrfs_is_zoned(info)) { 581 btrfs_info(info, 582 "zoned: clearing existing space cache"); 583 btrfs_set_super_cache_generation(info->super_copy, 0); 584 } else { 585 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 586 } 587 } 588 589 /* 590 * Even the options are empty, we still need to do extra check 591 * against new flags 592 */ 593 if (!options) 594 goto check; 595 596 while ((p = strsep(&options, ",")) != NULL) { 597 int token; 598 if (!*p) 599 continue; 600 601 token = match_token(p, tokens, args); 602 switch (token) { 603 case Opt_degraded: 604 btrfs_info(info, "allowing degraded mounts"); 605 btrfs_set_opt(info->mount_opt, DEGRADED); 606 break; 607 case Opt_subvol: 608 case Opt_subvol_empty: 609 case Opt_subvolid: 610 case Opt_device: 611 /* 612 * These are parsed by btrfs_parse_subvol_options or 613 * btrfs_parse_device_options and can be ignored here. 614 */ 615 break; 616 case Opt_nodatasum: 617 btrfs_set_and_info(info, NODATASUM, 618 "setting nodatasum"); 619 break; 620 case Opt_datasum: 621 if (btrfs_test_opt(info, NODATASUM)) { 622 if (btrfs_test_opt(info, NODATACOW)) 623 btrfs_info(info, 624 "setting datasum, datacow enabled"); 625 else 626 btrfs_info(info, "setting datasum"); 627 } 628 btrfs_clear_opt(info->mount_opt, NODATACOW); 629 btrfs_clear_opt(info->mount_opt, NODATASUM); 630 break; 631 case Opt_nodatacow: 632 if (!btrfs_test_opt(info, NODATACOW)) { 633 if (!btrfs_test_opt(info, COMPRESS) || 634 !btrfs_test_opt(info, FORCE_COMPRESS)) { 635 btrfs_info(info, 636 "setting nodatacow, compression disabled"); 637 } else { 638 btrfs_info(info, "setting nodatacow"); 639 } 640 } 641 btrfs_clear_opt(info->mount_opt, COMPRESS); 642 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 643 btrfs_set_opt(info->mount_opt, NODATACOW); 644 btrfs_set_opt(info->mount_opt, NODATASUM); 645 break; 646 case Opt_datacow: 647 btrfs_clear_and_info(info, NODATACOW, 648 "setting datacow"); 649 break; 650 case Opt_compress_force: 651 case Opt_compress_force_type: 652 compress_force = true; 653 fallthrough; 654 case Opt_compress: 655 case Opt_compress_type: 656 saved_compress_type = btrfs_test_opt(info, 657 COMPRESS) ? 658 info->compress_type : BTRFS_COMPRESS_NONE; 659 saved_compress_force = 660 btrfs_test_opt(info, FORCE_COMPRESS); 661 saved_compress_level = info->compress_level; 662 if (token == Opt_compress || 663 token == Opt_compress_force || 664 strncmp(args[0].from, "zlib", 4) == 0) { 665 compress_type = "zlib"; 666 667 info->compress_type = BTRFS_COMPRESS_ZLIB; 668 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 669 /* 670 * args[0] contains uninitialized data since 671 * for these tokens we don't expect any 672 * parameter. 673 */ 674 if (token != Opt_compress && 675 token != Opt_compress_force) 676 info->compress_level = 677 btrfs_compress_str2level( 678 BTRFS_COMPRESS_ZLIB, 679 args[0].from + 4); 680 btrfs_set_opt(info->mount_opt, COMPRESS); 681 btrfs_clear_opt(info->mount_opt, NODATACOW); 682 btrfs_clear_opt(info->mount_opt, NODATASUM); 683 no_compress = 0; 684 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 685 compress_type = "lzo"; 686 info->compress_type = BTRFS_COMPRESS_LZO; 687 info->compress_level = 0; 688 btrfs_set_opt(info->mount_opt, COMPRESS); 689 btrfs_clear_opt(info->mount_opt, NODATACOW); 690 btrfs_clear_opt(info->mount_opt, NODATASUM); 691 btrfs_set_fs_incompat(info, COMPRESS_LZO); 692 no_compress = 0; 693 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 694 compress_type = "zstd"; 695 info->compress_type = BTRFS_COMPRESS_ZSTD; 696 info->compress_level = 697 btrfs_compress_str2level( 698 BTRFS_COMPRESS_ZSTD, 699 args[0].from + 4); 700 btrfs_set_opt(info->mount_opt, COMPRESS); 701 btrfs_clear_opt(info->mount_opt, NODATACOW); 702 btrfs_clear_opt(info->mount_opt, NODATASUM); 703 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 704 no_compress = 0; 705 } else if (strncmp(args[0].from, "no", 2) == 0) { 706 compress_type = "no"; 707 info->compress_level = 0; 708 info->compress_type = 0; 709 btrfs_clear_opt(info->mount_opt, COMPRESS); 710 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 711 compress_force = false; 712 no_compress++; 713 } else { 714 ret = -EINVAL; 715 goto out; 716 } 717 718 if (compress_force) { 719 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 720 } else { 721 /* 722 * If we remount from compress-force=xxx to 723 * compress=xxx, we need clear FORCE_COMPRESS 724 * flag, otherwise, there is no way for users 725 * to disable forcible compression separately. 726 */ 727 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 728 } 729 if (no_compress == 1) { 730 btrfs_info(info, "use no compression"); 731 } else if ((info->compress_type != saved_compress_type) || 732 (compress_force != saved_compress_force) || 733 (info->compress_level != saved_compress_level)) { 734 btrfs_info(info, "%s %s compression, level %d", 735 (compress_force) ? "force" : "use", 736 compress_type, info->compress_level); 737 } 738 compress_force = false; 739 break; 740 case Opt_ssd: 741 btrfs_set_and_info(info, SSD, 742 "enabling ssd optimizations"); 743 btrfs_clear_opt(info->mount_opt, NOSSD); 744 break; 745 case Opt_ssd_spread: 746 btrfs_set_and_info(info, SSD, 747 "enabling ssd optimizations"); 748 btrfs_set_and_info(info, SSD_SPREAD, 749 "using spread ssd allocation scheme"); 750 btrfs_clear_opt(info->mount_opt, NOSSD); 751 break; 752 case Opt_nossd: 753 btrfs_set_opt(info->mount_opt, NOSSD); 754 btrfs_clear_and_info(info, SSD, 755 "not using ssd optimizations"); 756 fallthrough; 757 case Opt_nossd_spread: 758 btrfs_clear_and_info(info, SSD_SPREAD, 759 "not using spread ssd allocation scheme"); 760 break; 761 case Opt_barrier: 762 btrfs_clear_and_info(info, NOBARRIER, 763 "turning on barriers"); 764 break; 765 case Opt_nobarrier: 766 btrfs_set_and_info(info, NOBARRIER, 767 "turning off barriers"); 768 break; 769 case Opt_thread_pool: 770 ret = match_int(&args[0], &intarg); 771 if (ret) { 772 goto out; 773 } else if (intarg == 0) { 774 ret = -EINVAL; 775 goto out; 776 } 777 info->thread_pool_size = intarg; 778 break; 779 case Opt_max_inline: 780 num = match_strdup(&args[0]); 781 if (num) { 782 info->max_inline = memparse(num, NULL); 783 kfree(num); 784 785 if (info->max_inline) { 786 info->max_inline = min_t(u64, 787 info->max_inline, 788 info->sectorsize); 789 } 790 btrfs_info(info, "max_inline at %llu", 791 info->max_inline); 792 } else { 793 ret = -ENOMEM; 794 goto out; 795 } 796 break; 797 case Opt_acl: 798 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 799 info->sb->s_flags |= SB_POSIXACL; 800 break; 801 #else 802 btrfs_err(info, "support for ACL not compiled in!"); 803 ret = -EINVAL; 804 goto out; 805 #endif 806 case Opt_noacl: 807 info->sb->s_flags &= ~SB_POSIXACL; 808 break; 809 case Opt_notreelog: 810 btrfs_set_and_info(info, NOTREELOG, 811 "disabling tree log"); 812 break; 813 case Opt_treelog: 814 btrfs_clear_and_info(info, NOTREELOG, 815 "enabling tree log"); 816 break; 817 case Opt_norecovery: 818 case Opt_nologreplay: 819 btrfs_warn(info, 820 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 821 btrfs_set_and_info(info, NOLOGREPLAY, 822 "disabling log replay at mount time"); 823 break; 824 case Opt_flushoncommit: 825 btrfs_set_and_info(info, FLUSHONCOMMIT, 826 "turning on flush-on-commit"); 827 break; 828 case Opt_noflushoncommit: 829 btrfs_clear_and_info(info, FLUSHONCOMMIT, 830 "turning off flush-on-commit"); 831 break; 832 case Opt_ratio: 833 ret = match_int(&args[0], &intarg); 834 if (ret) 835 goto out; 836 info->metadata_ratio = intarg; 837 btrfs_info(info, "metadata ratio %u", 838 info->metadata_ratio); 839 break; 840 case Opt_discard: 841 case Opt_discard_mode: 842 if (token == Opt_discard || 843 strcmp(args[0].from, "sync") == 0) { 844 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 845 btrfs_set_and_info(info, DISCARD_SYNC, 846 "turning on sync discard"); 847 } else if (strcmp(args[0].from, "async") == 0) { 848 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 849 btrfs_set_and_info(info, DISCARD_ASYNC, 850 "turning on async discard"); 851 } else { 852 ret = -EINVAL; 853 goto out; 854 } 855 break; 856 case Opt_nodiscard: 857 btrfs_clear_and_info(info, DISCARD_SYNC, 858 "turning off discard"); 859 btrfs_clear_and_info(info, DISCARD_ASYNC, 860 "turning off async discard"); 861 break; 862 case Opt_space_cache: 863 case Opt_space_cache_version: 864 if (token == Opt_space_cache || 865 strcmp(args[0].from, "v1") == 0) { 866 btrfs_clear_opt(info->mount_opt, 867 FREE_SPACE_TREE); 868 btrfs_set_and_info(info, SPACE_CACHE, 869 "enabling disk space caching"); 870 } else if (strcmp(args[0].from, "v2") == 0) { 871 btrfs_clear_opt(info->mount_opt, 872 SPACE_CACHE); 873 btrfs_set_and_info(info, FREE_SPACE_TREE, 874 "enabling free space tree"); 875 } else { 876 ret = -EINVAL; 877 goto out; 878 } 879 break; 880 case Opt_rescan_uuid_tree: 881 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 882 break; 883 case Opt_no_space_cache: 884 if (btrfs_test_opt(info, SPACE_CACHE)) { 885 btrfs_clear_and_info(info, SPACE_CACHE, 886 "disabling disk space caching"); 887 } 888 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 889 btrfs_clear_and_info(info, FREE_SPACE_TREE, 890 "disabling free space tree"); 891 } 892 break; 893 case Opt_inode_cache: 894 case Opt_noinode_cache: 895 btrfs_warn(info, 896 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 897 break; 898 case Opt_clear_cache: 899 btrfs_set_and_info(info, CLEAR_CACHE, 900 "force clearing of disk cache"); 901 break; 902 case Opt_user_subvol_rm_allowed: 903 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 904 break; 905 case Opt_enospc_debug: 906 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 907 break; 908 case Opt_noenospc_debug: 909 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 910 break; 911 case Opt_defrag: 912 btrfs_set_and_info(info, AUTO_DEFRAG, 913 "enabling auto defrag"); 914 break; 915 case Opt_nodefrag: 916 btrfs_clear_and_info(info, AUTO_DEFRAG, 917 "disabling auto defrag"); 918 break; 919 case Opt_recovery: 920 case Opt_usebackuproot: 921 btrfs_warn(info, 922 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 923 token == Opt_recovery ? "recovery" : 924 "usebackuproot"); 925 btrfs_info(info, 926 "trying to use backup root at mount time"); 927 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 928 break; 929 case Opt_skip_balance: 930 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 931 break; 932 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 933 case Opt_check_integrity_including_extent_data: 934 btrfs_info(info, 935 "enabling check integrity including extent data"); 936 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 937 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 938 break; 939 case Opt_check_integrity: 940 btrfs_info(info, "enabling check integrity"); 941 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 942 break; 943 case Opt_check_integrity_print_mask: 944 ret = match_int(&args[0], &intarg); 945 if (ret) 946 goto out; 947 info->check_integrity_print_mask = intarg; 948 btrfs_info(info, "check_integrity_print_mask 0x%x", 949 info->check_integrity_print_mask); 950 break; 951 #else 952 case Opt_check_integrity_including_extent_data: 953 case Opt_check_integrity: 954 case Opt_check_integrity_print_mask: 955 btrfs_err(info, 956 "support for check_integrity* not compiled in!"); 957 ret = -EINVAL; 958 goto out; 959 #endif 960 case Opt_fatal_errors: 961 if (strcmp(args[0].from, "panic") == 0) 962 btrfs_set_opt(info->mount_opt, 963 PANIC_ON_FATAL_ERROR); 964 else if (strcmp(args[0].from, "bug") == 0) 965 btrfs_clear_opt(info->mount_opt, 966 PANIC_ON_FATAL_ERROR); 967 else { 968 ret = -EINVAL; 969 goto out; 970 } 971 break; 972 case Opt_commit_interval: 973 intarg = 0; 974 ret = match_int(&args[0], &intarg); 975 if (ret) 976 goto out; 977 if (intarg == 0) { 978 btrfs_info(info, 979 "using default commit interval %us", 980 BTRFS_DEFAULT_COMMIT_INTERVAL); 981 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 982 } else if (intarg > 300) { 983 btrfs_warn(info, "excessive commit interval %d", 984 intarg); 985 } 986 info->commit_interval = intarg; 987 break; 988 case Opt_rescue: 989 ret = parse_rescue_options(info, args[0].from); 990 if (ret < 0) 991 goto out; 992 break; 993 #ifdef CONFIG_BTRFS_DEBUG 994 case Opt_fragment_all: 995 btrfs_info(info, "fragmenting all space"); 996 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 997 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 998 break; 999 case Opt_fragment_metadata: 1000 btrfs_info(info, "fragmenting metadata"); 1001 btrfs_set_opt(info->mount_opt, 1002 FRAGMENT_METADATA); 1003 break; 1004 case Opt_fragment_data: 1005 btrfs_info(info, "fragmenting data"); 1006 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1007 break; 1008 #endif 1009 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1010 case Opt_ref_verify: 1011 btrfs_info(info, "doing ref verification"); 1012 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1013 break; 1014 #endif 1015 case Opt_err: 1016 btrfs_err(info, "unrecognized mount option '%s'", p); 1017 ret = -EINVAL; 1018 goto out; 1019 default: 1020 break; 1021 } 1022 } 1023 check: 1024 /* We're read-only, don't have to check. */ 1025 if (new_flags & SB_RDONLY) 1026 goto out; 1027 1028 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1029 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1030 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1031 ret = -EINVAL; 1032 out: 1033 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1034 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1035 !btrfs_test_opt(info, CLEAR_CACHE)) { 1036 btrfs_err(info, "cannot disable free space tree"); 1037 ret = -EINVAL; 1038 1039 } 1040 if (!ret) 1041 ret = btrfs_check_mountopts_zoned(info); 1042 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1043 btrfs_info(info, "disk space caching is enabled"); 1044 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1045 btrfs_info(info, "using free space tree"); 1046 return ret; 1047 } 1048 1049 /* 1050 * Parse mount options that are required early in the mount process. 1051 * 1052 * All other options will be parsed on much later in the mount process and 1053 * only when we need to allocate a new super block. 1054 */ 1055 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1056 void *holder) 1057 { 1058 substring_t args[MAX_OPT_ARGS]; 1059 char *device_name, *opts, *orig, *p; 1060 struct btrfs_device *device = NULL; 1061 int error = 0; 1062 1063 lockdep_assert_held(&uuid_mutex); 1064 1065 if (!options) 1066 return 0; 1067 1068 /* 1069 * strsep changes the string, duplicate it because btrfs_parse_options 1070 * gets called later 1071 */ 1072 opts = kstrdup(options, GFP_KERNEL); 1073 if (!opts) 1074 return -ENOMEM; 1075 orig = opts; 1076 1077 while ((p = strsep(&opts, ",")) != NULL) { 1078 int token; 1079 1080 if (!*p) 1081 continue; 1082 1083 token = match_token(p, tokens, args); 1084 if (token == Opt_device) { 1085 device_name = match_strdup(&args[0]); 1086 if (!device_name) { 1087 error = -ENOMEM; 1088 goto out; 1089 } 1090 device = btrfs_scan_one_device(device_name, flags, 1091 holder); 1092 kfree(device_name); 1093 if (IS_ERR(device)) { 1094 error = PTR_ERR(device); 1095 goto out; 1096 } 1097 } 1098 } 1099 1100 out: 1101 kfree(orig); 1102 return error; 1103 } 1104 1105 /* 1106 * Parse mount options that are related to subvolume id 1107 * 1108 * The value is later passed to mount_subvol() 1109 */ 1110 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1111 u64 *subvol_objectid) 1112 { 1113 substring_t args[MAX_OPT_ARGS]; 1114 char *opts, *orig, *p; 1115 int error = 0; 1116 u64 subvolid; 1117 1118 if (!options) 1119 return 0; 1120 1121 /* 1122 * strsep changes the string, duplicate it because 1123 * btrfs_parse_device_options gets called later 1124 */ 1125 opts = kstrdup(options, GFP_KERNEL); 1126 if (!opts) 1127 return -ENOMEM; 1128 orig = opts; 1129 1130 while ((p = strsep(&opts, ",")) != NULL) { 1131 int token; 1132 if (!*p) 1133 continue; 1134 1135 token = match_token(p, tokens, args); 1136 switch (token) { 1137 case Opt_subvol: 1138 kfree(*subvol_name); 1139 *subvol_name = match_strdup(&args[0]); 1140 if (!*subvol_name) { 1141 error = -ENOMEM; 1142 goto out; 1143 } 1144 break; 1145 case Opt_subvolid: 1146 error = match_u64(&args[0], &subvolid); 1147 if (error) 1148 goto out; 1149 1150 /* we want the original fs_tree */ 1151 if (subvolid == 0) 1152 subvolid = BTRFS_FS_TREE_OBJECTID; 1153 1154 *subvol_objectid = subvolid; 1155 break; 1156 default: 1157 break; 1158 } 1159 } 1160 1161 out: 1162 kfree(orig); 1163 return error; 1164 } 1165 1166 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1167 u64 subvol_objectid) 1168 { 1169 struct btrfs_root *root = fs_info->tree_root; 1170 struct btrfs_root *fs_root = NULL; 1171 struct btrfs_root_ref *root_ref; 1172 struct btrfs_inode_ref *inode_ref; 1173 struct btrfs_key key; 1174 struct btrfs_path *path = NULL; 1175 char *name = NULL, *ptr; 1176 u64 dirid; 1177 int len; 1178 int ret; 1179 1180 path = btrfs_alloc_path(); 1181 if (!path) { 1182 ret = -ENOMEM; 1183 goto err; 1184 } 1185 1186 name = kmalloc(PATH_MAX, GFP_KERNEL); 1187 if (!name) { 1188 ret = -ENOMEM; 1189 goto err; 1190 } 1191 ptr = name + PATH_MAX - 1; 1192 ptr[0] = '\0'; 1193 1194 /* 1195 * Walk up the subvolume trees in the tree of tree roots by root 1196 * backrefs until we hit the top-level subvolume. 1197 */ 1198 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1199 key.objectid = subvol_objectid; 1200 key.type = BTRFS_ROOT_BACKREF_KEY; 1201 key.offset = (u64)-1; 1202 1203 ret = btrfs_search_backwards(root, &key, path); 1204 if (ret < 0) { 1205 goto err; 1206 } else if (ret > 0) { 1207 ret = -ENOENT; 1208 goto err; 1209 } 1210 1211 subvol_objectid = key.offset; 1212 1213 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1214 struct btrfs_root_ref); 1215 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1216 ptr -= len + 1; 1217 if (ptr < name) { 1218 ret = -ENAMETOOLONG; 1219 goto err; 1220 } 1221 read_extent_buffer(path->nodes[0], ptr + 1, 1222 (unsigned long)(root_ref + 1), len); 1223 ptr[0] = '/'; 1224 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1225 btrfs_release_path(path); 1226 1227 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1228 if (IS_ERR(fs_root)) { 1229 ret = PTR_ERR(fs_root); 1230 fs_root = NULL; 1231 goto err; 1232 } 1233 1234 /* 1235 * Walk up the filesystem tree by inode refs until we hit the 1236 * root directory. 1237 */ 1238 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1239 key.objectid = dirid; 1240 key.type = BTRFS_INODE_REF_KEY; 1241 key.offset = (u64)-1; 1242 1243 ret = btrfs_search_backwards(fs_root, &key, path); 1244 if (ret < 0) { 1245 goto err; 1246 } else if (ret > 0) { 1247 ret = -ENOENT; 1248 goto err; 1249 } 1250 1251 dirid = key.offset; 1252 1253 inode_ref = btrfs_item_ptr(path->nodes[0], 1254 path->slots[0], 1255 struct btrfs_inode_ref); 1256 len = btrfs_inode_ref_name_len(path->nodes[0], 1257 inode_ref); 1258 ptr -= len + 1; 1259 if (ptr < name) { 1260 ret = -ENAMETOOLONG; 1261 goto err; 1262 } 1263 read_extent_buffer(path->nodes[0], ptr + 1, 1264 (unsigned long)(inode_ref + 1), len); 1265 ptr[0] = '/'; 1266 btrfs_release_path(path); 1267 } 1268 btrfs_put_root(fs_root); 1269 fs_root = NULL; 1270 } 1271 1272 btrfs_free_path(path); 1273 if (ptr == name + PATH_MAX - 1) { 1274 name[0] = '/'; 1275 name[1] = '\0'; 1276 } else { 1277 memmove(name, ptr, name + PATH_MAX - ptr); 1278 } 1279 return name; 1280 1281 err: 1282 btrfs_put_root(fs_root); 1283 btrfs_free_path(path); 1284 kfree(name); 1285 return ERR_PTR(ret); 1286 } 1287 1288 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1289 { 1290 struct btrfs_root *root = fs_info->tree_root; 1291 struct btrfs_dir_item *di; 1292 struct btrfs_path *path; 1293 struct btrfs_key location; 1294 u64 dir_id; 1295 1296 path = btrfs_alloc_path(); 1297 if (!path) 1298 return -ENOMEM; 1299 1300 /* 1301 * Find the "default" dir item which points to the root item that we 1302 * will mount by default if we haven't been given a specific subvolume 1303 * to mount. 1304 */ 1305 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1306 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1307 if (IS_ERR(di)) { 1308 btrfs_free_path(path); 1309 return PTR_ERR(di); 1310 } 1311 if (!di) { 1312 /* 1313 * Ok the default dir item isn't there. This is weird since 1314 * it's always been there, but don't freak out, just try and 1315 * mount the top-level subvolume. 1316 */ 1317 btrfs_free_path(path); 1318 *objectid = BTRFS_FS_TREE_OBJECTID; 1319 return 0; 1320 } 1321 1322 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1323 btrfs_free_path(path); 1324 *objectid = location.objectid; 1325 return 0; 1326 } 1327 1328 static int btrfs_fill_super(struct super_block *sb, 1329 struct btrfs_fs_devices *fs_devices, 1330 void *data) 1331 { 1332 struct inode *inode; 1333 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1334 int err; 1335 1336 sb->s_maxbytes = MAX_LFS_FILESIZE; 1337 sb->s_magic = BTRFS_SUPER_MAGIC; 1338 sb->s_op = &btrfs_super_ops; 1339 sb->s_d_op = &btrfs_dentry_operations; 1340 sb->s_export_op = &btrfs_export_ops; 1341 #ifdef CONFIG_FS_VERITY 1342 sb->s_vop = &btrfs_verityops; 1343 #endif 1344 sb->s_xattr = btrfs_xattr_handlers; 1345 sb->s_time_gran = 1; 1346 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1347 sb->s_flags |= SB_POSIXACL; 1348 #endif 1349 sb->s_flags |= SB_I_VERSION; 1350 sb->s_iflags |= SB_I_CGROUPWB; 1351 1352 err = super_setup_bdi(sb); 1353 if (err) { 1354 btrfs_err(fs_info, "super_setup_bdi failed"); 1355 return err; 1356 } 1357 1358 err = open_ctree(sb, fs_devices, (char *)data); 1359 if (err) { 1360 btrfs_err(fs_info, "open_ctree failed"); 1361 return err; 1362 } 1363 1364 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1365 if (IS_ERR(inode)) { 1366 err = PTR_ERR(inode); 1367 goto fail_close; 1368 } 1369 1370 sb->s_root = d_make_root(inode); 1371 if (!sb->s_root) { 1372 err = -ENOMEM; 1373 goto fail_close; 1374 } 1375 1376 sb->s_flags |= SB_ACTIVE; 1377 return 0; 1378 1379 fail_close: 1380 close_ctree(fs_info); 1381 return err; 1382 } 1383 1384 int btrfs_sync_fs(struct super_block *sb, int wait) 1385 { 1386 struct btrfs_trans_handle *trans; 1387 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1388 struct btrfs_root *root = fs_info->tree_root; 1389 1390 trace_btrfs_sync_fs(fs_info, wait); 1391 1392 if (!wait) { 1393 filemap_flush(fs_info->btree_inode->i_mapping); 1394 return 0; 1395 } 1396 1397 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1398 1399 trans = btrfs_attach_transaction_barrier(root); 1400 if (IS_ERR(trans)) { 1401 /* no transaction, don't bother */ 1402 if (PTR_ERR(trans) == -ENOENT) { 1403 /* 1404 * Exit unless we have some pending changes 1405 * that need to go through commit 1406 */ 1407 if (fs_info->pending_changes == 0) 1408 return 0; 1409 /* 1410 * A non-blocking test if the fs is frozen. We must not 1411 * start a new transaction here otherwise a deadlock 1412 * happens. The pending operations are delayed to the 1413 * next commit after thawing. 1414 */ 1415 if (sb_start_write_trylock(sb)) 1416 sb_end_write(sb); 1417 else 1418 return 0; 1419 trans = btrfs_start_transaction(root, 0); 1420 } 1421 if (IS_ERR(trans)) 1422 return PTR_ERR(trans); 1423 } 1424 return btrfs_commit_transaction(trans); 1425 } 1426 1427 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1428 { 1429 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1430 *printed = true; 1431 } 1432 1433 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1434 { 1435 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1436 const char *compress_type; 1437 const char *subvol_name; 1438 bool printed = false; 1439 1440 if (btrfs_test_opt(info, DEGRADED)) 1441 seq_puts(seq, ",degraded"); 1442 if (btrfs_test_opt(info, NODATASUM)) 1443 seq_puts(seq, ",nodatasum"); 1444 if (btrfs_test_opt(info, NODATACOW)) 1445 seq_puts(seq, ",nodatacow"); 1446 if (btrfs_test_opt(info, NOBARRIER)) 1447 seq_puts(seq, ",nobarrier"); 1448 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1449 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1450 if (info->thread_pool_size != min_t(unsigned long, 1451 num_online_cpus() + 2, 8)) 1452 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1453 if (btrfs_test_opt(info, COMPRESS)) { 1454 compress_type = btrfs_compress_type2str(info->compress_type); 1455 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1456 seq_printf(seq, ",compress-force=%s", compress_type); 1457 else 1458 seq_printf(seq, ",compress=%s", compress_type); 1459 if (info->compress_level) 1460 seq_printf(seq, ":%d", info->compress_level); 1461 } 1462 if (btrfs_test_opt(info, NOSSD)) 1463 seq_puts(seq, ",nossd"); 1464 if (btrfs_test_opt(info, SSD_SPREAD)) 1465 seq_puts(seq, ",ssd_spread"); 1466 else if (btrfs_test_opt(info, SSD)) 1467 seq_puts(seq, ",ssd"); 1468 if (btrfs_test_opt(info, NOTREELOG)) 1469 seq_puts(seq, ",notreelog"); 1470 if (btrfs_test_opt(info, NOLOGREPLAY)) 1471 print_rescue_option(seq, "nologreplay", &printed); 1472 if (btrfs_test_opt(info, USEBACKUPROOT)) 1473 print_rescue_option(seq, "usebackuproot", &printed); 1474 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1475 print_rescue_option(seq, "ignorebadroots", &printed); 1476 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1477 print_rescue_option(seq, "ignoredatacsums", &printed); 1478 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1479 seq_puts(seq, ",flushoncommit"); 1480 if (btrfs_test_opt(info, DISCARD_SYNC)) 1481 seq_puts(seq, ",discard"); 1482 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1483 seq_puts(seq, ",discard=async"); 1484 if (!(info->sb->s_flags & SB_POSIXACL)) 1485 seq_puts(seq, ",noacl"); 1486 if (btrfs_free_space_cache_v1_active(info)) 1487 seq_puts(seq, ",space_cache"); 1488 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1489 seq_puts(seq, ",space_cache=v2"); 1490 else 1491 seq_puts(seq, ",nospace_cache"); 1492 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1493 seq_puts(seq, ",rescan_uuid_tree"); 1494 if (btrfs_test_opt(info, CLEAR_CACHE)) 1495 seq_puts(seq, ",clear_cache"); 1496 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1497 seq_puts(seq, ",user_subvol_rm_allowed"); 1498 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1499 seq_puts(seq, ",enospc_debug"); 1500 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1501 seq_puts(seq, ",autodefrag"); 1502 if (btrfs_test_opt(info, SKIP_BALANCE)) 1503 seq_puts(seq, ",skip_balance"); 1504 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1505 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1506 seq_puts(seq, ",check_int_data"); 1507 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1508 seq_puts(seq, ",check_int"); 1509 if (info->check_integrity_print_mask) 1510 seq_printf(seq, ",check_int_print_mask=%d", 1511 info->check_integrity_print_mask); 1512 #endif 1513 if (info->metadata_ratio) 1514 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1515 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1516 seq_puts(seq, ",fatal_errors=panic"); 1517 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1518 seq_printf(seq, ",commit=%u", info->commit_interval); 1519 #ifdef CONFIG_BTRFS_DEBUG 1520 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1521 seq_puts(seq, ",fragment=data"); 1522 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1523 seq_puts(seq, ",fragment=metadata"); 1524 #endif 1525 if (btrfs_test_opt(info, REF_VERIFY)) 1526 seq_puts(seq, ",ref_verify"); 1527 seq_printf(seq, ",subvolid=%llu", 1528 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1529 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1530 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1531 if (!IS_ERR(subvol_name)) { 1532 seq_puts(seq, ",subvol="); 1533 seq_escape(seq, subvol_name, " \t\n\\"); 1534 kfree(subvol_name); 1535 } 1536 return 0; 1537 } 1538 1539 static int btrfs_test_super(struct super_block *s, void *data) 1540 { 1541 struct btrfs_fs_info *p = data; 1542 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1543 1544 return fs_info->fs_devices == p->fs_devices; 1545 } 1546 1547 static int btrfs_set_super(struct super_block *s, void *data) 1548 { 1549 int err = set_anon_super(s, data); 1550 if (!err) 1551 s->s_fs_info = data; 1552 return err; 1553 } 1554 1555 /* 1556 * subvolumes are identified by ino 256 1557 */ 1558 static inline int is_subvolume_inode(struct inode *inode) 1559 { 1560 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1561 return 1; 1562 return 0; 1563 } 1564 1565 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1566 struct vfsmount *mnt) 1567 { 1568 struct dentry *root; 1569 int ret; 1570 1571 if (!subvol_name) { 1572 if (!subvol_objectid) { 1573 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1574 &subvol_objectid); 1575 if (ret) { 1576 root = ERR_PTR(ret); 1577 goto out; 1578 } 1579 } 1580 subvol_name = btrfs_get_subvol_name_from_objectid( 1581 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1582 if (IS_ERR(subvol_name)) { 1583 root = ERR_CAST(subvol_name); 1584 subvol_name = NULL; 1585 goto out; 1586 } 1587 1588 } 1589 1590 root = mount_subtree(mnt, subvol_name); 1591 /* mount_subtree() drops our reference on the vfsmount. */ 1592 mnt = NULL; 1593 1594 if (!IS_ERR(root)) { 1595 struct super_block *s = root->d_sb; 1596 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1597 struct inode *root_inode = d_inode(root); 1598 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1599 1600 ret = 0; 1601 if (!is_subvolume_inode(root_inode)) { 1602 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1603 subvol_name); 1604 ret = -EINVAL; 1605 } 1606 if (subvol_objectid && root_objectid != subvol_objectid) { 1607 /* 1608 * This will also catch a race condition where a 1609 * subvolume which was passed by ID is renamed and 1610 * another subvolume is renamed over the old location. 1611 */ 1612 btrfs_err(fs_info, 1613 "subvol '%s' does not match subvolid %llu", 1614 subvol_name, subvol_objectid); 1615 ret = -EINVAL; 1616 } 1617 if (ret) { 1618 dput(root); 1619 root = ERR_PTR(ret); 1620 deactivate_locked_super(s); 1621 } 1622 } 1623 1624 out: 1625 mntput(mnt); 1626 kfree(subvol_name); 1627 return root; 1628 } 1629 1630 /* 1631 * Find a superblock for the given device / mount point. 1632 * 1633 * Note: This is based on mount_bdev from fs/super.c with a few additions 1634 * for multiple device setup. Make sure to keep it in sync. 1635 */ 1636 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1637 int flags, const char *device_name, void *data) 1638 { 1639 struct block_device *bdev = NULL; 1640 struct super_block *s; 1641 struct btrfs_device *device = NULL; 1642 struct btrfs_fs_devices *fs_devices = NULL; 1643 struct btrfs_fs_info *fs_info = NULL; 1644 void *new_sec_opts = NULL; 1645 fmode_t mode = FMODE_READ; 1646 int error = 0; 1647 1648 if (!(flags & SB_RDONLY)) 1649 mode |= FMODE_WRITE; 1650 1651 if (data) { 1652 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1653 if (error) 1654 return ERR_PTR(error); 1655 } 1656 1657 /* 1658 * Setup a dummy root and fs_info for test/set super. This is because 1659 * we don't actually fill this stuff out until open_ctree, but we need 1660 * then open_ctree will properly initialize the file system specific 1661 * settings later. btrfs_init_fs_info initializes the static elements 1662 * of the fs_info (locks and such) to make cleanup easier if we find a 1663 * superblock with our given fs_devices later on at sget() time. 1664 */ 1665 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1666 if (!fs_info) { 1667 error = -ENOMEM; 1668 goto error_sec_opts; 1669 } 1670 btrfs_init_fs_info(fs_info); 1671 1672 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1673 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1674 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1675 error = -ENOMEM; 1676 goto error_fs_info; 1677 } 1678 1679 mutex_lock(&uuid_mutex); 1680 error = btrfs_parse_device_options(data, mode, fs_type); 1681 if (error) { 1682 mutex_unlock(&uuid_mutex); 1683 goto error_fs_info; 1684 } 1685 1686 device = btrfs_scan_one_device(device_name, mode, fs_type); 1687 if (IS_ERR(device)) { 1688 mutex_unlock(&uuid_mutex); 1689 error = PTR_ERR(device); 1690 goto error_fs_info; 1691 } 1692 1693 fs_devices = device->fs_devices; 1694 fs_info->fs_devices = fs_devices; 1695 1696 error = btrfs_open_devices(fs_devices, mode, fs_type); 1697 mutex_unlock(&uuid_mutex); 1698 if (error) 1699 goto error_fs_info; 1700 1701 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1702 error = -EACCES; 1703 goto error_close_devices; 1704 } 1705 1706 bdev = fs_devices->latest_dev->bdev; 1707 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1708 fs_info); 1709 if (IS_ERR(s)) { 1710 error = PTR_ERR(s); 1711 goto error_close_devices; 1712 } 1713 1714 if (s->s_root) { 1715 btrfs_close_devices(fs_devices); 1716 btrfs_free_fs_info(fs_info); 1717 if ((flags ^ s->s_flags) & SB_RDONLY) 1718 error = -EBUSY; 1719 } else { 1720 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1721 btrfs_sb(s)->bdev_holder = fs_type; 1722 if (!strstr(crc32c_impl(), "generic")) 1723 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1724 error = btrfs_fill_super(s, fs_devices, data); 1725 } 1726 if (!error) 1727 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1728 security_free_mnt_opts(&new_sec_opts); 1729 if (error) { 1730 deactivate_locked_super(s); 1731 return ERR_PTR(error); 1732 } 1733 1734 return dget(s->s_root); 1735 1736 error_close_devices: 1737 btrfs_close_devices(fs_devices); 1738 error_fs_info: 1739 btrfs_free_fs_info(fs_info); 1740 error_sec_opts: 1741 security_free_mnt_opts(&new_sec_opts); 1742 return ERR_PTR(error); 1743 } 1744 1745 /* 1746 * Mount function which is called by VFS layer. 1747 * 1748 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1749 * which needs vfsmount* of device's root (/). This means device's root has to 1750 * be mounted internally in any case. 1751 * 1752 * Operation flow: 1753 * 1. Parse subvol id related options for later use in mount_subvol(). 1754 * 1755 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1756 * 1757 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1758 * first place. In order to avoid calling btrfs_mount() again, we use 1759 * different file_system_type which is not registered to VFS by 1760 * register_filesystem() (btrfs_root_fs_type). As a result, 1761 * btrfs_mount_root() is called. The return value will be used by 1762 * mount_subtree() in mount_subvol(). 1763 * 1764 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1765 * "btrfs subvolume set-default", mount_subvol() is called always. 1766 */ 1767 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1768 const char *device_name, void *data) 1769 { 1770 struct vfsmount *mnt_root; 1771 struct dentry *root; 1772 char *subvol_name = NULL; 1773 u64 subvol_objectid = 0; 1774 int error = 0; 1775 1776 error = btrfs_parse_subvol_options(data, &subvol_name, 1777 &subvol_objectid); 1778 if (error) { 1779 kfree(subvol_name); 1780 return ERR_PTR(error); 1781 } 1782 1783 /* mount device's root (/) */ 1784 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1785 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1786 if (flags & SB_RDONLY) { 1787 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1788 flags & ~SB_RDONLY, device_name, data); 1789 } else { 1790 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1791 flags | SB_RDONLY, device_name, data); 1792 if (IS_ERR(mnt_root)) { 1793 root = ERR_CAST(mnt_root); 1794 kfree(subvol_name); 1795 goto out; 1796 } 1797 1798 down_write(&mnt_root->mnt_sb->s_umount); 1799 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1800 up_write(&mnt_root->mnt_sb->s_umount); 1801 if (error < 0) { 1802 root = ERR_PTR(error); 1803 mntput(mnt_root); 1804 kfree(subvol_name); 1805 goto out; 1806 } 1807 } 1808 } 1809 if (IS_ERR(mnt_root)) { 1810 root = ERR_CAST(mnt_root); 1811 kfree(subvol_name); 1812 goto out; 1813 } 1814 1815 /* mount_subvol() will free subvol_name and mnt_root */ 1816 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1817 1818 out: 1819 return root; 1820 } 1821 1822 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1823 u32 new_pool_size, u32 old_pool_size) 1824 { 1825 if (new_pool_size == old_pool_size) 1826 return; 1827 1828 fs_info->thread_pool_size = new_pool_size; 1829 1830 btrfs_info(fs_info, "resize thread pool %d -> %d", 1831 old_pool_size, new_pool_size); 1832 1833 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1834 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1835 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1836 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1837 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1838 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1839 new_pool_size); 1840 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1841 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1842 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1843 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1844 new_pool_size); 1845 } 1846 1847 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1848 unsigned long old_opts, int flags) 1849 { 1850 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1851 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1852 (flags & SB_RDONLY))) { 1853 /* wait for any defraggers to finish */ 1854 wait_event(fs_info->transaction_wait, 1855 (atomic_read(&fs_info->defrag_running) == 0)); 1856 if (flags & SB_RDONLY) 1857 sync_filesystem(fs_info->sb); 1858 } 1859 } 1860 1861 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1862 unsigned long old_opts) 1863 { 1864 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1865 1866 /* 1867 * We need to cleanup all defragable inodes if the autodefragment is 1868 * close or the filesystem is read only. 1869 */ 1870 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1871 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1872 btrfs_cleanup_defrag_inodes(fs_info); 1873 } 1874 1875 /* If we toggled discard async */ 1876 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1877 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1878 btrfs_discard_resume(fs_info); 1879 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1880 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1881 btrfs_discard_cleanup(fs_info); 1882 1883 /* If we toggled space cache */ 1884 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1885 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1886 } 1887 1888 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1889 { 1890 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1891 unsigned old_flags = sb->s_flags; 1892 unsigned long old_opts = fs_info->mount_opt; 1893 unsigned long old_compress_type = fs_info->compress_type; 1894 u64 old_max_inline = fs_info->max_inline; 1895 u32 old_thread_pool_size = fs_info->thread_pool_size; 1896 u32 old_metadata_ratio = fs_info->metadata_ratio; 1897 int ret; 1898 1899 sync_filesystem(sb); 1900 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1901 1902 if (data) { 1903 void *new_sec_opts = NULL; 1904 1905 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1906 if (!ret) 1907 ret = security_sb_remount(sb, new_sec_opts); 1908 security_free_mnt_opts(&new_sec_opts); 1909 if (ret) 1910 goto restore; 1911 } 1912 1913 ret = btrfs_parse_options(fs_info, data, *flags); 1914 if (ret) 1915 goto restore; 1916 1917 btrfs_remount_begin(fs_info, old_opts, *flags); 1918 btrfs_resize_thread_pool(fs_info, 1919 fs_info->thread_pool_size, old_thread_pool_size); 1920 1921 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1922 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1923 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 1924 btrfs_warn(fs_info, 1925 "remount supports changing free space tree only from ro to rw"); 1926 /* Make sure free space cache options match the state on disk */ 1927 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1928 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1929 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1930 } 1931 if (btrfs_free_space_cache_v1_active(fs_info)) { 1932 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1933 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1934 } 1935 } 1936 1937 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1938 goto out; 1939 1940 if (*flags & SB_RDONLY) { 1941 /* 1942 * this also happens on 'umount -rf' or on shutdown, when 1943 * the filesystem is busy. 1944 */ 1945 cancel_work_sync(&fs_info->async_reclaim_work); 1946 cancel_work_sync(&fs_info->async_data_reclaim_work); 1947 1948 btrfs_discard_cleanup(fs_info); 1949 1950 /* wait for the uuid_scan task to finish */ 1951 down(&fs_info->uuid_tree_rescan_sem); 1952 /* avoid complains from lockdep et al. */ 1953 up(&fs_info->uuid_tree_rescan_sem); 1954 1955 btrfs_set_sb_rdonly(sb); 1956 1957 /* 1958 * Setting SB_RDONLY will put the cleaner thread to 1959 * sleep at the next loop if it's already active. 1960 * If it's already asleep, we'll leave unused block 1961 * groups on disk until we're mounted read-write again 1962 * unless we clean them up here. 1963 */ 1964 btrfs_delete_unused_bgs(fs_info); 1965 1966 /* 1967 * The cleaner task could be already running before we set the 1968 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 1969 * We must make sure that after we finish the remount, i.e. after 1970 * we call btrfs_commit_super(), the cleaner can no longer start 1971 * a transaction - either because it was dropping a dead root, 1972 * running delayed iputs or deleting an unused block group (the 1973 * cleaner picked a block group from the list of unused block 1974 * groups before we were able to in the previous call to 1975 * btrfs_delete_unused_bgs()). 1976 */ 1977 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 1978 TASK_UNINTERRUPTIBLE); 1979 1980 /* 1981 * We've set the superblock to RO mode, so we might have made 1982 * the cleaner task sleep without running all pending delayed 1983 * iputs. Go through all the delayed iputs here, so that if an 1984 * unmount happens without remounting RW we don't end up at 1985 * finishing close_ctree() with a non-empty list of delayed 1986 * iputs. 1987 */ 1988 btrfs_run_delayed_iputs(fs_info); 1989 1990 btrfs_dev_replace_suspend_for_unmount(fs_info); 1991 btrfs_scrub_cancel(fs_info); 1992 btrfs_pause_balance(fs_info); 1993 1994 /* 1995 * Pause the qgroup rescan worker if it is running. We don't want 1996 * it to be still running after we are in RO mode, as after that, 1997 * by the time we unmount, it might have left a transaction open, 1998 * so we would leak the transaction and/or crash. 1999 */ 2000 btrfs_qgroup_wait_for_completion(fs_info, false); 2001 2002 ret = btrfs_commit_super(fs_info); 2003 if (ret) 2004 goto restore; 2005 } else { 2006 if (BTRFS_FS_ERROR(fs_info)) { 2007 btrfs_err(fs_info, 2008 "Remounting read-write after error is not allowed"); 2009 ret = -EINVAL; 2010 goto restore; 2011 } 2012 if (fs_info->fs_devices->rw_devices == 0) { 2013 ret = -EACCES; 2014 goto restore; 2015 } 2016 2017 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2018 btrfs_warn(fs_info, 2019 "too many missing devices, writable remount is not allowed"); 2020 ret = -EACCES; 2021 goto restore; 2022 } 2023 2024 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2025 btrfs_warn(fs_info, 2026 "mount required to replay tree-log, cannot remount read-write"); 2027 ret = -EINVAL; 2028 goto restore; 2029 } 2030 2031 /* 2032 * NOTE: when remounting with a change that does writes, don't 2033 * put it anywhere above this point, as we are not sure to be 2034 * safe to write until we pass the above checks. 2035 */ 2036 ret = btrfs_start_pre_rw_mount(fs_info); 2037 if (ret) 2038 goto restore; 2039 2040 btrfs_clear_sb_rdonly(sb); 2041 2042 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2043 } 2044 out: 2045 /* 2046 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2047 * since the absence of the flag means it can be toggled off by remount. 2048 */ 2049 *flags |= SB_I_VERSION; 2050 2051 wake_up_process(fs_info->transaction_kthread); 2052 btrfs_remount_cleanup(fs_info, old_opts); 2053 btrfs_clear_oneshot_options(fs_info); 2054 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2055 2056 return 0; 2057 2058 restore: 2059 /* We've hit an error - don't reset SB_RDONLY */ 2060 if (sb_rdonly(sb)) 2061 old_flags |= SB_RDONLY; 2062 if (!(old_flags & SB_RDONLY)) 2063 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2064 sb->s_flags = old_flags; 2065 fs_info->mount_opt = old_opts; 2066 fs_info->compress_type = old_compress_type; 2067 fs_info->max_inline = old_max_inline; 2068 btrfs_resize_thread_pool(fs_info, 2069 old_thread_pool_size, fs_info->thread_pool_size); 2070 fs_info->metadata_ratio = old_metadata_ratio; 2071 btrfs_remount_cleanup(fs_info, old_opts); 2072 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2073 2074 return ret; 2075 } 2076 2077 /* Used to sort the devices by max_avail(descending sort) */ 2078 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 2079 { 2080 const struct btrfs_device_info *dev_info1 = a; 2081 const struct btrfs_device_info *dev_info2 = b; 2082 2083 if (dev_info1->max_avail > dev_info2->max_avail) 2084 return -1; 2085 else if (dev_info1->max_avail < dev_info2->max_avail) 2086 return 1; 2087 return 0; 2088 } 2089 2090 /* 2091 * sort the devices by max_avail, in which max free extent size of each device 2092 * is stored.(Descending Sort) 2093 */ 2094 static inline void btrfs_descending_sort_devices( 2095 struct btrfs_device_info *devices, 2096 size_t nr_devices) 2097 { 2098 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2099 btrfs_cmp_device_free_bytes, NULL); 2100 } 2101 2102 /* 2103 * The helper to calc the free space on the devices that can be used to store 2104 * file data. 2105 */ 2106 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2107 u64 *free_bytes) 2108 { 2109 struct btrfs_device_info *devices_info; 2110 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2111 struct btrfs_device *device; 2112 u64 type; 2113 u64 avail_space; 2114 u64 min_stripe_size; 2115 int num_stripes = 1; 2116 int i = 0, nr_devices; 2117 const struct btrfs_raid_attr *rattr; 2118 2119 /* 2120 * We aren't under the device list lock, so this is racy-ish, but good 2121 * enough for our purposes. 2122 */ 2123 nr_devices = fs_info->fs_devices->open_devices; 2124 if (!nr_devices) { 2125 smp_mb(); 2126 nr_devices = fs_info->fs_devices->open_devices; 2127 ASSERT(nr_devices); 2128 if (!nr_devices) { 2129 *free_bytes = 0; 2130 return 0; 2131 } 2132 } 2133 2134 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2135 GFP_KERNEL); 2136 if (!devices_info) 2137 return -ENOMEM; 2138 2139 /* calc min stripe number for data space allocation */ 2140 type = btrfs_data_alloc_profile(fs_info); 2141 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2142 2143 if (type & BTRFS_BLOCK_GROUP_RAID0) 2144 num_stripes = nr_devices; 2145 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2146 num_stripes = 2; 2147 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2148 num_stripes = 3; 2149 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2150 num_stripes = 4; 2151 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2152 num_stripes = 4; 2153 2154 /* Adjust for more than 1 stripe per device */ 2155 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2156 2157 rcu_read_lock(); 2158 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2159 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2160 &device->dev_state) || 2161 !device->bdev || 2162 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2163 continue; 2164 2165 if (i >= nr_devices) 2166 break; 2167 2168 avail_space = device->total_bytes - device->bytes_used; 2169 2170 /* align with stripe_len */ 2171 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2172 2173 /* 2174 * In order to avoid overwriting the superblock on the drive, 2175 * btrfs starts at an offset of at least 1MB when doing chunk 2176 * allocation. 2177 * 2178 * This ensures we have at least min_stripe_size free space 2179 * after excluding 1MB. 2180 */ 2181 if (avail_space <= SZ_1M + min_stripe_size) 2182 continue; 2183 2184 avail_space -= SZ_1M; 2185 2186 devices_info[i].dev = device; 2187 devices_info[i].max_avail = avail_space; 2188 2189 i++; 2190 } 2191 rcu_read_unlock(); 2192 2193 nr_devices = i; 2194 2195 btrfs_descending_sort_devices(devices_info, nr_devices); 2196 2197 i = nr_devices - 1; 2198 avail_space = 0; 2199 while (nr_devices >= rattr->devs_min) { 2200 num_stripes = min(num_stripes, nr_devices); 2201 2202 if (devices_info[i].max_avail >= min_stripe_size) { 2203 int j; 2204 u64 alloc_size; 2205 2206 avail_space += devices_info[i].max_avail * num_stripes; 2207 alloc_size = devices_info[i].max_avail; 2208 for (j = i + 1 - num_stripes; j <= i; j++) 2209 devices_info[j].max_avail -= alloc_size; 2210 } 2211 i--; 2212 nr_devices--; 2213 } 2214 2215 kfree(devices_info); 2216 *free_bytes = avail_space; 2217 return 0; 2218 } 2219 2220 /* 2221 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2222 * 2223 * If there's a redundant raid level at DATA block groups, use the respective 2224 * multiplier to scale the sizes. 2225 * 2226 * Unused device space usage is based on simulating the chunk allocator 2227 * algorithm that respects the device sizes and order of allocations. This is 2228 * a close approximation of the actual use but there are other factors that may 2229 * change the result (like a new metadata chunk). 2230 * 2231 * If metadata is exhausted, f_bavail will be 0. 2232 */ 2233 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2234 { 2235 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2236 struct btrfs_super_block *disk_super = fs_info->super_copy; 2237 struct btrfs_space_info *found; 2238 u64 total_used = 0; 2239 u64 total_free_data = 0; 2240 u64 total_free_meta = 0; 2241 u32 bits = fs_info->sectorsize_bits; 2242 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2243 unsigned factor = 1; 2244 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2245 int ret; 2246 u64 thresh = 0; 2247 int mixed = 0; 2248 2249 list_for_each_entry(found, &fs_info->space_info, list) { 2250 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2251 int i; 2252 2253 total_free_data += found->disk_total - found->disk_used; 2254 total_free_data -= 2255 btrfs_account_ro_block_groups_free_space(found); 2256 2257 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2258 if (!list_empty(&found->block_groups[i])) 2259 factor = btrfs_bg_type_to_factor( 2260 btrfs_raid_array[i].bg_flag); 2261 } 2262 } 2263 2264 /* 2265 * Metadata in mixed block goup profiles are accounted in data 2266 */ 2267 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2268 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2269 mixed = 1; 2270 else 2271 total_free_meta += found->disk_total - 2272 found->disk_used; 2273 } 2274 2275 total_used += found->disk_used; 2276 } 2277 2278 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2279 buf->f_blocks >>= bits; 2280 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2281 2282 /* Account global block reserve as used, it's in logical size already */ 2283 spin_lock(&block_rsv->lock); 2284 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2285 if (buf->f_bfree >= block_rsv->size >> bits) 2286 buf->f_bfree -= block_rsv->size >> bits; 2287 else 2288 buf->f_bfree = 0; 2289 spin_unlock(&block_rsv->lock); 2290 2291 buf->f_bavail = div_u64(total_free_data, factor); 2292 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2293 if (ret) 2294 return ret; 2295 buf->f_bavail += div_u64(total_free_data, factor); 2296 buf->f_bavail = buf->f_bavail >> bits; 2297 2298 /* 2299 * We calculate the remaining metadata space minus global reserve. If 2300 * this is (supposedly) smaller than zero, there's no space. But this 2301 * does not hold in practice, the exhausted state happens where's still 2302 * some positive delta. So we apply some guesswork and compare the 2303 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2304 * 2305 * We probably cannot calculate the exact threshold value because this 2306 * depends on the internal reservations requested by various 2307 * operations, so some operations that consume a few metadata will 2308 * succeed even if the Avail is zero. But this is better than the other 2309 * way around. 2310 */ 2311 thresh = SZ_4M; 2312 2313 /* 2314 * We only want to claim there's no available space if we can no longer 2315 * allocate chunks for our metadata profile and our global reserve will 2316 * not fit in the free metadata space. If we aren't ->full then we 2317 * still can allocate chunks and thus are fine using the currently 2318 * calculated f_bavail. 2319 */ 2320 if (!mixed && block_rsv->space_info->full && 2321 total_free_meta - thresh < block_rsv->size) 2322 buf->f_bavail = 0; 2323 2324 buf->f_type = BTRFS_SUPER_MAGIC; 2325 buf->f_bsize = dentry->d_sb->s_blocksize; 2326 buf->f_namelen = BTRFS_NAME_LEN; 2327 2328 /* We treat it as constant endianness (it doesn't matter _which_) 2329 because we want the fsid to come out the same whether mounted 2330 on a big-endian or little-endian host */ 2331 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2332 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2333 /* Mask in the root object ID too, to disambiguate subvols */ 2334 buf->f_fsid.val[0] ^= 2335 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2336 buf->f_fsid.val[1] ^= 2337 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2338 2339 return 0; 2340 } 2341 2342 static void btrfs_kill_super(struct super_block *sb) 2343 { 2344 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2345 kill_anon_super(sb); 2346 btrfs_free_fs_info(fs_info); 2347 } 2348 2349 static struct file_system_type btrfs_fs_type = { 2350 .owner = THIS_MODULE, 2351 .name = "btrfs", 2352 .mount = btrfs_mount, 2353 .kill_sb = btrfs_kill_super, 2354 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2355 }; 2356 2357 static struct file_system_type btrfs_root_fs_type = { 2358 .owner = THIS_MODULE, 2359 .name = "btrfs", 2360 .mount = btrfs_mount_root, 2361 .kill_sb = btrfs_kill_super, 2362 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2363 }; 2364 2365 MODULE_ALIAS_FS("btrfs"); 2366 2367 static int btrfs_control_open(struct inode *inode, struct file *file) 2368 { 2369 /* 2370 * The control file's private_data is used to hold the 2371 * transaction when it is started and is used to keep 2372 * track of whether a transaction is already in progress. 2373 */ 2374 file->private_data = NULL; 2375 return 0; 2376 } 2377 2378 /* 2379 * Used by /dev/btrfs-control for devices ioctls. 2380 */ 2381 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2382 unsigned long arg) 2383 { 2384 struct btrfs_ioctl_vol_args *vol; 2385 struct btrfs_device *device = NULL; 2386 int ret = -ENOTTY; 2387 2388 if (!capable(CAP_SYS_ADMIN)) 2389 return -EPERM; 2390 2391 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2392 if (IS_ERR(vol)) 2393 return PTR_ERR(vol); 2394 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2395 2396 switch (cmd) { 2397 case BTRFS_IOC_SCAN_DEV: 2398 mutex_lock(&uuid_mutex); 2399 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2400 &btrfs_root_fs_type); 2401 ret = PTR_ERR_OR_ZERO(device); 2402 mutex_unlock(&uuid_mutex); 2403 break; 2404 case BTRFS_IOC_FORGET_DEV: 2405 ret = btrfs_forget_devices(vol->name); 2406 break; 2407 case BTRFS_IOC_DEVICES_READY: 2408 mutex_lock(&uuid_mutex); 2409 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2410 &btrfs_root_fs_type); 2411 if (IS_ERR(device)) { 2412 mutex_unlock(&uuid_mutex); 2413 ret = PTR_ERR(device); 2414 break; 2415 } 2416 ret = !(device->fs_devices->num_devices == 2417 device->fs_devices->total_devices); 2418 mutex_unlock(&uuid_mutex); 2419 break; 2420 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2421 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2422 break; 2423 } 2424 2425 kfree(vol); 2426 return ret; 2427 } 2428 2429 static int btrfs_freeze(struct super_block *sb) 2430 { 2431 struct btrfs_trans_handle *trans; 2432 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2433 struct btrfs_root *root = fs_info->tree_root; 2434 2435 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2436 /* 2437 * We don't need a barrier here, we'll wait for any transaction that 2438 * could be in progress on other threads (and do delayed iputs that 2439 * we want to avoid on a frozen filesystem), or do the commit 2440 * ourselves. 2441 */ 2442 trans = btrfs_attach_transaction_barrier(root); 2443 if (IS_ERR(trans)) { 2444 /* no transaction, don't bother */ 2445 if (PTR_ERR(trans) == -ENOENT) 2446 return 0; 2447 return PTR_ERR(trans); 2448 } 2449 return btrfs_commit_transaction(trans); 2450 } 2451 2452 static int btrfs_unfreeze(struct super_block *sb) 2453 { 2454 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2455 2456 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2457 return 0; 2458 } 2459 2460 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2461 { 2462 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2463 2464 /* 2465 * There should be always a valid pointer in latest_dev, it may be stale 2466 * for a short moment in case it's being deleted but still valid until 2467 * the end of RCU grace period. 2468 */ 2469 rcu_read_lock(); 2470 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\"); 2471 rcu_read_unlock(); 2472 2473 return 0; 2474 } 2475 2476 static const struct super_operations btrfs_super_ops = { 2477 .drop_inode = btrfs_drop_inode, 2478 .evict_inode = btrfs_evict_inode, 2479 .put_super = btrfs_put_super, 2480 .sync_fs = btrfs_sync_fs, 2481 .show_options = btrfs_show_options, 2482 .show_devname = btrfs_show_devname, 2483 .alloc_inode = btrfs_alloc_inode, 2484 .destroy_inode = btrfs_destroy_inode, 2485 .free_inode = btrfs_free_inode, 2486 .statfs = btrfs_statfs, 2487 .remount_fs = btrfs_remount, 2488 .freeze_fs = btrfs_freeze, 2489 .unfreeze_fs = btrfs_unfreeze, 2490 }; 2491 2492 static const struct file_operations btrfs_ctl_fops = { 2493 .open = btrfs_control_open, 2494 .unlocked_ioctl = btrfs_control_ioctl, 2495 .compat_ioctl = compat_ptr_ioctl, 2496 .owner = THIS_MODULE, 2497 .llseek = noop_llseek, 2498 }; 2499 2500 static struct miscdevice btrfs_misc = { 2501 .minor = BTRFS_MINOR, 2502 .name = "btrfs-control", 2503 .fops = &btrfs_ctl_fops 2504 }; 2505 2506 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2507 MODULE_ALIAS("devname:btrfs-control"); 2508 2509 static int __init btrfs_interface_init(void) 2510 { 2511 return misc_register(&btrfs_misc); 2512 } 2513 2514 static __cold void btrfs_interface_exit(void) 2515 { 2516 misc_deregister(&btrfs_misc); 2517 } 2518 2519 static void __init btrfs_print_mod_info(void) 2520 { 2521 static const char options[] = "" 2522 #ifdef CONFIG_BTRFS_DEBUG 2523 ", debug=on" 2524 #endif 2525 #ifdef CONFIG_BTRFS_ASSERT 2526 ", assert=on" 2527 #endif 2528 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2529 ", integrity-checker=on" 2530 #endif 2531 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2532 ", ref-verify=on" 2533 #endif 2534 #ifdef CONFIG_BLK_DEV_ZONED 2535 ", zoned=yes" 2536 #else 2537 ", zoned=no" 2538 #endif 2539 #ifdef CONFIG_FS_VERITY 2540 ", fsverity=yes" 2541 #else 2542 ", fsverity=no" 2543 #endif 2544 ; 2545 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2546 } 2547 2548 static int __init init_btrfs_fs(void) 2549 { 2550 int err; 2551 2552 btrfs_props_init(); 2553 2554 err = btrfs_init_sysfs(); 2555 if (err) 2556 return err; 2557 2558 btrfs_init_compress(); 2559 2560 err = btrfs_init_cachep(); 2561 if (err) 2562 goto free_compress; 2563 2564 err = extent_io_init(); 2565 if (err) 2566 goto free_cachep; 2567 2568 err = extent_state_cache_init(); 2569 if (err) 2570 goto free_extent_io; 2571 2572 err = extent_map_init(); 2573 if (err) 2574 goto free_extent_state_cache; 2575 2576 err = ordered_data_init(); 2577 if (err) 2578 goto free_extent_map; 2579 2580 err = btrfs_delayed_inode_init(); 2581 if (err) 2582 goto free_ordered_data; 2583 2584 err = btrfs_auto_defrag_init(); 2585 if (err) 2586 goto free_delayed_inode; 2587 2588 err = btrfs_delayed_ref_init(); 2589 if (err) 2590 goto free_auto_defrag; 2591 2592 err = btrfs_prelim_ref_init(); 2593 if (err) 2594 goto free_delayed_ref; 2595 2596 err = btrfs_end_io_wq_init(); 2597 if (err) 2598 goto free_prelim_ref; 2599 2600 err = btrfs_interface_init(); 2601 if (err) 2602 goto free_end_io_wq; 2603 2604 btrfs_print_mod_info(); 2605 2606 err = btrfs_run_sanity_tests(); 2607 if (err) 2608 goto unregister_ioctl; 2609 2610 err = register_filesystem(&btrfs_fs_type); 2611 if (err) 2612 goto unregister_ioctl; 2613 2614 return 0; 2615 2616 unregister_ioctl: 2617 btrfs_interface_exit(); 2618 free_end_io_wq: 2619 btrfs_end_io_wq_exit(); 2620 free_prelim_ref: 2621 btrfs_prelim_ref_exit(); 2622 free_delayed_ref: 2623 btrfs_delayed_ref_exit(); 2624 free_auto_defrag: 2625 btrfs_auto_defrag_exit(); 2626 free_delayed_inode: 2627 btrfs_delayed_inode_exit(); 2628 free_ordered_data: 2629 ordered_data_exit(); 2630 free_extent_map: 2631 extent_map_exit(); 2632 free_extent_state_cache: 2633 extent_state_cache_exit(); 2634 free_extent_io: 2635 extent_io_exit(); 2636 free_cachep: 2637 btrfs_destroy_cachep(); 2638 free_compress: 2639 btrfs_exit_compress(); 2640 btrfs_exit_sysfs(); 2641 2642 return err; 2643 } 2644 2645 static void __exit exit_btrfs_fs(void) 2646 { 2647 btrfs_destroy_cachep(); 2648 btrfs_delayed_ref_exit(); 2649 btrfs_auto_defrag_exit(); 2650 btrfs_delayed_inode_exit(); 2651 btrfs_prelim_ref_exit(); 2652 ordered_data_exit(); 2653 extent_map_exit(); 2654 extent_state_cache_exit(); 2655 extent_io_exit(); 2656 btrfs_interface_exit(); 2657 btrfs_end_io_wq_exit(); 2658 unregister_filesystem(&btrfs_fs_type); 2659 btrfs_exit_sysfs(); 2660 btrfs_cleanup_fs_uuids(); 2661 btrfs_exit_compress(); 2662 } 2663 2664 late_initcall(init_btrfs_fs); 2665 module_exit(exit_btrfs_fs) 2666 2667 MODULE_LICENSE("GPL"); 2668 MODULE_SOFTDEP("pre: crc32c"); 2669 MODULE_SOFTDEP("pre: xxhash64"); 2670 MODULE_SOFTDEP("pre: sha256"); 2671 MODULE_SOFTDEP("pre: blake2b-256"); 2672