xref: /linux/fs/btrfs/super.c (revision ae77cbc1e7b90473a2b0963bce0e1eb163873214)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "export.h"
55 #include "compression.h"
56 #include "rcu-string.h"
57 #include "dev-replace.h"
58 #include "free-space-cache.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/btrfs.h>
62 
63 static const struct super_operations btrfs_super_ops;
64 static struct file_system_type btrfs_fs_type;
65 
66 static const char *btrfs_decode_error(int errno)
67 {
68 	char *errstr = "unknown";
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	case -ENOSPC:
84 		errstr = "No space left";
85 		break;
86 	case -ENOENT:
87 		errstr = "No such entry";
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 static void save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 	/*
97 	 * today we only save the error info into ram.  Long term we'll
98 	 * also send it down to the disk
99 	 */
100 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
101 }
102 
103 /* btrfs handle error by forcing the filesystem readonly */
104 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
105 {
106 	struct super_block *sb = fs_info->sb;
107 
108 	if (sb->s_flags & MS_RDONLY)
109 		return;
110 
111 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
112 		sb->s_flags |= MS_RDONLY;
113 		btrfs_info(fs_info, "forced readonly");
114 		/*
115 		 * Note that a running device replace operation is not
116 		 * canceled here although there is no way to update
117 		 * the progress. It would add the risk of a deadlock,
118 		 * therefore the canceling is ommited. The only penalty
119 		 * is that some I/O remains active until the procedure
120 		 * completes. The next time when the filesystem is
121 		 * mounted writeable again, the device replace
122 		 * operation continues.
123 		 */
124 	}
125 }
126 
127 #ifdef CONFIG_PRINTK
128 /*
129  * __btrfs_std_error decodes expected errors from the caller and
130  * invokes the approciate error response.
131  */
132 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133 		       unsigned int line, int errno, const char *fmt, ...)
134 {
135 	struct super_block *sb = fs_info->sb;
136 	const char *errstr;
137 
138 	/*
139 	 * Special case: if the error is EROFS, and we're already
140 	 * under MS_RDONLY, then it is safe here.
141 	 */
142 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143   		return;
144 
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 			sb->s_id, function, line, errno, errstr, &vaf);
156 		va_end(args);
157 	} else {
158 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
159 			sb->s_id, function, line, errno, errstr);
160 	}
161 
162 	/* Don't go through full error handling during mount */
163 	save_error_info(fs_info);
164 	if (sb->s_flags & MS_BORN)
165 		btrfs_handle_error(fs_info);
166 }
167 
168 static const char * const logtypes[] = {
169 	"emergency",
170 	"alert",
171 	"critical",
172 	"error",
173 	"warning",
174 	"notice",
175 	"info",
176 	"debug",
177 };
178 
179 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
180 {
181 	struct super_block *sb = fs_info->sb;
182 	char lvl[4];
183 	struct va_format vaf;
184 	va_list args;
185 	const char *type = logtypes[4];
186 	int kern_level;
187 
188 	va_start(args, fmt);
189 
190 	kern_level = printk_get_level(fmt);
191 	if (kern_level) {
192 		size_t size = printk_skip_level(fmt) - fmt;
193 		memcpy(lvl, fmt,  size);
194 		lvl[size] = '\0';
195 		fmt += size;
196 		type = logtypes[kern_level - '0'];
197 	} else
198 		*lvl = '\0';
199 
200 	vaf.fmt = fmt;
201 	vaf.va = &args;
202 
203 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
204 
205 	va_end(args);
206 }
207 
208 #else
209 
210 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
211 		       unsigned int line, int errno, const char *fmt, ...)
212 {
213 	struct super_block *sb = fs_info->sb;
214 
215 	/*
216 	 * Special case: if the error is EROFS, and we're already
217 	 * under MS_RDONLY, then it is safe here.
218 	 */
219 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
220 		return;
221 
222 	/* Don't go through full error handling during mount */
223 	if (sb->s_flags & MS_BORN) {
224 		save_error_info(fs_info);
225 		btrfs_handle_error(fs_info);
226 	}
227 }
228 #endif
229 
230 /*
231  * We only mark the transaction aborted and then set the file system read-only.
232  * This will prevent new transactions from starting or trying to join this
233  * one.
234  *
235  * This means that error recovery at the call site is limited to freeing
236  * any local memory allocations and passing the error code up without
237  * further cleanup. The transaction should complete as it normally would
238  * in the call path but will return -EIO.
239  *
240  * We'll complete the cleanup in btrfs_end_transaction and
241  * btrfs_commit_transaction.
242  */
243 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
244 			       struct btrfs_root *root, const char *function,
245 			       unsigned int line, int errno)
246 {
247 	/*
248 	 * Report first abort since mount
249 	 */
250 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
251 				&root->fs_info->fs_state)) {
252 		WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
253 				errno);
254 	}
255 	trans->aborted = errno;
256 	/* Nothing used. The other threads that have joined this
257 	 * transaction may be able to continue. */
258 	if (!trans->blocks_used) {
259 		const char *errstr;
260 
261 		errstr = btrfs_decode_error(errno);
262 		btrfs_warn(root->fs_info,
263 		           "%s:%d: Aborting unused transaction(%s).",
264 		           function, line, errstr);
265 		return;
266 	}
267 	ACCESS_ONCE(trans->transaction->aborted) = errno;
268 	/* Wake up anybody who may be waiting on this transaction */
269 	wake_up(&root->fs_info->transaction_wait);
270 	wake_up(&root->fs_info->transaction_blocked_wait);
271 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
272 }
273 /*
274  * __btrfs_panic decodes unexpected, fatal errors from the caller,
275  * issues an alert, and either panics or BUGs, depending on mount options.
276  */
277 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
278 		   unsigned int line, int errno, const char *fmt, ...)
279 {
280 	char *s_id = "<unknown>";
281 	const char *errstr;
282 	struct va_format vaf = { .fmt = fmt };
283 	va_list args;
284 
285 	if (fs_info)
286 		s_id = fs_info->sb->s_id;
287 
288 	va_start(args, fmt);
289 	vaf.va = &args;
290 
291 	errstr = btrfs_decode_error(errno);
292 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
293 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
294 			s_id, function, line, &vaf, errno, errstr);
295 
296 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 	       s_id, function, line, &vaf, errno, errstr);
298 	va_end(args);
299 	/* Caller calls BUG() */
300 }
301 
302 static void btrfs_put_super(struct super_block *sb)
303 {
304 	(void)close_ctree(btrfs_sb(sb)->tree_root);
305 	/* FIXME: need to fix VFS to return error? */
306 	/* AV: return it _where_?  ->put_super() can be triggered by any number
307 	 * of async events, up to and including delivery of SIGKILL to the
308 	 * last process that kept it busy.  Or segfault in the aforementioned
309 	 * process...  Whom would you report that to?
310 	 */
311 }
312 
313 enum {
314 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
315 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
316 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
317 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
318 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
319 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
320 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
321 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
322 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
323 	Opt_check_integrity_print_mask, Opt_fatal_errors,
324 	Opt_err,
325 };
326 
327 static match_table_t tokens = {
328 	{Opt_degraded, "degraded"},
329 	{Opt_subvol, "subvol=%s"},
330 	{Opt_subvolid, "subvolid=%d"},
331 	{Opt_device, "device=%s"},
332 	{Opt_nodatasum, "nodatasum"},
333 	{Opt_nodatacow, "nodatacow"},
334 	{Opt_nobarrier, "nobarrier"},
335 	{Opt_max_inline, "max_inline=%s"},
336 	{Opt_alloc_start, "alloc_start=%s"},
337 	{Opt_thread_pool, "thread_pool=%d"},
338 	{Opt_compress, "compress"},
339 	{Opt_compress_type, "compress=%s"},
340 	{Opt_compress_force, "compress-force"},
341 	{Opt_compress_force_type, "compress-force=%s"},
342 	{Opt_ssd, "ssd"},
343 	{Opt_ssd_spread, "ssd_spread"},
344 	{Opt_nossd, "nossd"},
345 	{Opt_noacl, "noacl"},
346 	{Opt_notreelog, "notreelog"},
347 	{Opt_flushoncommit, "flushoncommit"},
348 	{Opt_ratio, "metadata_ratio=%d"},
349 	{Opt_discard, "discard"},
350 	{Opt_space_cache, "space_cache"},
351 	{Opt_clear_cache, "clear_cache"},
352 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
353 	{Opt_enospc_debug, "enospc_debug"},
354 	{Opt_subvolrootid, "subvolrootid=%d"},
355 	{Opt_defrag, "autodefrag"},
356 	{Opt_inode_cache, "inode_cache"},
357 	{Opt_no_space_cache, "nospace_cache"},
358 	{Opt_recovery, "recovery"},
359 	{Opt_skip_balance, "skip_balance"},
360 	{Opt_check_integrity, "check_int"},
361 	{Opt_check_integrity_including_extent_data, "check_int_data"},
362 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
363 	{Opt_fatal_errors, "fatal_errors=%s"},
364 	{Opt_err, NULL},
365 };
366 
367 /*
368  * Regular mount options parser.  Everything that is needed only when
369  * reading in a new superblock is parsed here.
370  * XXX JDM: This needs to be cleaned up for remount.
371  */
372 int btrfs_parse_options(struct btrfs_root *root, char *options)
373 {
374 	struct btrfs_fs_info *info = root->fs_info;
375 	substring_t args[MAX_OPT_ARGS];
376 	char *p, *num, *orig = NULL;
377 	u64 cache_gen;
378 	int intarg;
379 	int ret = 0;
380 	char *compress_type;
381 	bool compress_force = false;
382 
383 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
384 	if (cache_gen)
385 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
386 
387 	if (!options)
388 		goto out;
389 
390 	/*
391 	 * strsep changes the string, duplicate it because parse_options
392 	 * gets called twice
393 	 */
394 	options = kstrdup(options, GFP_NOFS);
395 	if (!options)
396 		return -ENOMEM;
397 
398 	orig = options;
399 
400 	while ((p = strsep(&options, ",")) != NULL) {
401 		int token;
402 		if (!*p)
403 			continue;
404 
405 		token = match_token(p, tokens, args);
406 		switch (token) {
407 		case Opt_degraded:
408 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
409 			btrfs_set_opt(info->mount_opt, DEGRADED);
410 			break;
411 		case Opt_subvol:
412 		case Opt_subvolid:
413 		case Opt_subvolrootid:
414 		case Opt_device:
415 			/*
416 			 * These are parsed by btrfs_parse_early_options
417 			 * and can be happily ignored here.
418 			 */
419 			break;
420 		case Opt_nodatasum:
421 			printk(KERN_INFO "btrfs: setting nodatasum\n");
422 			btrfs_set_opt(info->mount_opt, NODATASUM);
423 			break;
424 		case Opt_nodatacow:
425 			if (!btrfs_test_opt(root, COMPRESS) ||
426 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
427 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
428 			} else {
429 				printk(KERN_INFO "btrfs: setting nodatacow\n");
430 			}
431 			info->compress_type = BTRFS_COMPRESS_NONE;
432 			btrfs_clear_opt(info->mount_opt, COMPRESS);
433 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
434 			btrfs_set_opt(info->mount_opt, NODATACOW);
435 			btrfs_set_opt(info->mount_opt, NODATASUM);
436 			break;
437 		case Opt_compress_force:
438 		case Opt_compress_force_type:
439 			compress_force = true;
440 			/* Fallthrough */
441 		case Opt_compress:
442 		case Opt_compress_type:
443 			if (token == Opt_compress ||
444 			    token == Opt_compress_force ||
445 			    strcmp(args[0].from, "zlib") == 0) {
446 				compress_type = "zlib";
447 				info->compress_type = BTRFS_COMPRESS_ZLIB;
448 				btrfs_set_opt(info->mount_opt, COMPRESS);
449 				btrfs_clear_opt(info->mount_opt, NODATACOW);
450 				btrfs_clear_opt(info->mount_opt, NODATASUM);
451 			} else if (strcmp(args[0].from, "lzo") == 0) {
452 				compress_type = "lzo";
453 				info->compress_type = BTRFS_COMPRESS_LZO;
454 				btrfs_set_opt(info->mount_opt, COMPRESS);
455 				btrfs_clear_opt(info->mount_opt, NODATACOW);
456 				btrfs_clear_opt(info->mount_opt, NODATASUM);
457 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
458 			} else if (strncmp(args[0].from, "no", 2) == 0) {
459 				compress_type = "no";
460 				info->compress_type = BTRFS_COMPRESS_NONE;
461 				btrfs_clear_opt(info->mount_opt, COMPRESS);
462 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
463 				compress_force = false;
464 			} else {
465 				ret = -EINVAL;
466 				goto out;
467 			}
468 
469 			if (compress_force) {
470 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
471 				pr_info("btrfs: force %s compression\n",
472 					compress_type);
473 			} else
474 				pr_info("btrfs: use %s compression\n",
475 					compress_type);
476 			break;
477 		case Opt_ssd:
478 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
479 			btrfs_set_opt(info->mount_opt, SSD);
480 			break;
481 		case Opt_ssd_spread:
482 			printk(KERN_INFO "btrfs: use spread ssd "
483 			       "allocation scheme\n");
484 			btrfs_set_opt(info->mount_opt, SSD);
485 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
486 			break;
487 		case Opt_nossd:
488 			printk(KERN_INFO "btrfs: not using ssd allocation "
489 			       "scheme\n");
490 			btrfs_set_opt(info->mount_opt, NOSSD);
491 			btrfs_clear_opt(info->mount_opt, SSD);
492 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
493 			break;
494 		case Opt_nobarrier:
495 			printk(KERN_INFO "btrfs: turning off barriers\n");
496 			btrfs_set_opt(info->mount_opt, NOBARRIER);
497 			break;
498 		case Opt_thread_pool:
499 			intarg = 0;
500 			match_int(&args[0], &intarg);
501 			if (intarg)
502 				info->thread_pool_size = intarg;
503 			break;
504 		case Opt_max_inline:
505 			num = match_strdup(&args[0]);
506 			if (num) {
507 				info->max_inline = memparse(num, NULL);
508 				kfree(num);
509 
510 				if (info->max_inline) {
511 					info->max_inline = max_t(u64,
512 						info->max_inline,
513 						root->sectorsize);
514 				}
515 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
516 					(unsigned long long)info->max_inline);
517 			}
518 			break;
519 		case Opt_alloc_start:
520 			num = match_strdup(&args[0]);
521 			if (num) {
522 				mutex_lock(&info->chunk_mutex);
523 				info->alloc_start = memparse(num, NULL);
524 				mutex_unlock(&info->chunk_mutex);
525 				kfree(num);
526 				printk(KERN_INFO
527 					"btrfs: allocations start at %llu\n",
528 					(unsigned long long)info->alloc_start);
529 			}
530 			break;
531 		case Opt_noacl:
532 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
533 			break;
534 		case Opt_notreelog:
535 			printk(KERN_INFO "btrfs: disabling tree log\n");
536 			btrfs_set_opt(info->mount_opt, NOTREELOG);
537 			break;
538 		case Opt_flushoncommit:
539 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
540 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
541 			break;
542 		case Opt_ratio:
543 			intarg = 0;
544 			match_int(&args[0], &intarg);
545 			if (intarg) {
546 				info->metadata_ratio = intarg;
547 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
548 				       info->metadata_ratio);
549 			}
550 			break;
551 		case Opt_discard:
552 			btrfs_set_opt(info->mount_opt, DISCARD);
553 			break;
554 		case Opt_space_cache:
555 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
556 			break;
557 		case Opt_no_space_cache:
558 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
559 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
560 			break;
561 		case Opt_inode_cache:
562 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
563 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
564 			break;
565 		case Opt_clear_cache:
566 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
567 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
568 			break;
569 		case Opt_user_subvol_rm_allowed:
570 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
571 			break;
572 		case Opt_enospc_debug:
573 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
574 			break;
575 		case Opt_defrag:
576 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
577 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
578 			break;
579 		case Opt_recovery:
580 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
581 			btrfs_set_opt(info->mount_opt, RECOVERY);
582 			break;
583 		case Opt_skip_balance:
584 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
585 			break;
586 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
587 		case Opt_check_integrity_including_extent_data:
588 			printk(KERN_INFO "btrfs: enabling check integrity"
589 			       " including extent data\n");
590 			btrfs_set_opt(info->mount_opt,
591 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
592 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
593 			break;
594 		case Opt_check_integrity:
595 			printk(KERN_INFO "btrfs: enabling check integrity\n");
596 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
597 			break;
598 		case Opt_check_integrity_print_mask:
599 			intarg = 0;
600 			match_int(&args[0], &intarg);
601 			if (intarg) {
602 				info->check_integrity_print_mask = intarg;
603 				printk(KERN_INFO "btrfs:"
604 				       " check_integrity_print_mask 0x%x\n",
605 				       info->check_integrity_print_mask);
606 			}
607 			break;
608 #else
609 		case Opt_check_integrity_including_extent_data:
610 		case Opt_check_integrity:
611 		case Opt_check_integrity_print_mask:
612 			printk(KERN_ERR "btrfs: support for check_integrity*"
613 			       " not compiled in!\n");
614 			ret = -EINVAL;
615 			goto out;
616 #endif
617 		case Opt_fatal_errors:
618 			if (strcmp(args[0].from, "panic") == 0)
619 				btrfs_set_opt(info->mount_opt,
620 					      PANIC_ON_FATAL_ERROR);
621 			else if (strcmp(args[0].from, "bug") == 0)
622 				btrfs_clear_opt(info->mount_opt,
623 					      PANIC_ON_FATAL_ERROR);
624 			else {
625 				ret = -EINVAL;
626 				goto out;
627 			}
628 			break;
629 		case Opt_err:
630 			printk(KERN_INFO "btrfs: unrecognized mount option "
631 			       "'%s'\n", p);
632 			ret = -EINVAL;
633 			goto out;
634 		default:
635 			break;
636 		}
637 	}
638 out:
639 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
640 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
641 	kfree(orig);
642 	return ret;
643 }
644 
645 /*
646  * Parse mount options that are required early in the mount process.
647  *
648  * All other options will be parsed on much later in the mount process and
649  * only when we need to allocate a new super block.
650  */
651 static int btrfs_parse_early_options(const char *options, fmode_t flags,
652 		void *holder, char **subvol_name, u64 *subvol_objectid,
653 		struct btrfs_fs_devices **fs_devices)
654 {
655 	substring_t args[MAX_OPT_ARGS];
656 	char *device_name, *opts, *orig, *p;
657 	int error = 0;
658 	int intarg;
659 
660 	if (!options)
661 		return 0;
662 
663 	/*
664 	 * strsep changes the string, duplicate it because parse_options
665 	 * gets called twice
666 	 */
667 	opts = kstrdup(options, GFP_KERNEL);
668 	if (!opts)
669 		return -ENOMEM;
670 	orig = opts;
671 
672 	while ((p = strsep(&opts, ",")) != NULL) {
673 		int token;
674 		if (!*p)
675 			continue;
676 
677 		token = match_token(p, tokens, args);
678 		switch (token) {
679 		case Opt_subvol:
680 			kfree(*subvol_name);
681 			*subvol_name = match_strdup(&args[0]);
682 			break;
683 		case Opt_subvolid:
684 			intarg = 0;
685 			error = match_int(&args[0], &intarg);
686 			if (!error) {
687 				/* we want the original fs_tree */
688 				if (!intarg)
689 					*subvol_objectid =
690 						BTRFS_FS_TREE_OBJECTID;
691 				else
692 					*subvol_objectid = intarg;
693 			}
694 			break;
695 		case Opt_subvolrootid:
696 			printk(KERN_WARNING
697 				"btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
698 			break;
699 		case Opt_device:
700 			device_name = match_strdup(&args[0]);
701 			if (!device_name) {
702 				error = -ENOMEM;
703 				goto out;
704 			}
705 			error = btrfs_scan_one_device(device_name,
706 					flags, holder, fs_devices);
707 			kfree(device_name);
708 			if (error)
709 				goto out;
710 			break;
711 		default:
712 			break;
713 		}
714 	}
715 
716 out:
717 	kfree(orig);
718 	return error;
719 }
720 
721 static struct dentry *get_default_root(struct super_block *sb,
722 				       u64 subvol_objectid)
723 {
724 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
725 	struct btrfs_root *root = fs_info->tree_root;
726 	struct btrfs_root *new_root;
727 	struct btrfs_dir_item *di;
728 	struct btrfs_path *path;
729 	struct btrfs_key location;
730 	struct inode *inode;
731 	u64 dir_id;
732 	int new = 0;
733 
734 	/*
735 	 * We have a specific subvol we want to mount, just setup location and
736 	 * go look up the root.
737 	 */
738 	if (subvol_objectid) {
739 		location.objectid = subvol_objectid;
740 		location.type = BTRFS_ROOT_ITEM_KEY;
741 		location.offset = (u64)-1;
742 		goto find_root;
743 	}
744 
745 	path = btrfs_alloc_path();
746 	if (!path)
747 		return ERR_PTR(-ENOMEM);
748 	path->leave_spinning = 1;
749 
750 	/*
751 	 * Find the "default" dir item which points to the root item that we
752 	 * will mount by default if we haven't been given a specific subvolume
753 	 * to mount.
754 	 */
755 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
756 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
757 	if (IS_ERR(di)) {
758 		btrfs_free_path(path);
759 		return ERR_CAST(di);
760 	}
761 	if (!di) {
762 		/*
763 		 * Ok the default dir item isn't there.  This is weird since
764 		 * it's always been there, but don't freak out, just try and
765 		 * mount to root most subvolume.
766 		 */
767 		btrfs_free_path(path);
768 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
769 		new_root = fs_info->fs_root;
770 		goto setup_root;
771 	}
772 
773 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
774 	btrfs_free_path(path);
775 
776 find_root:
777 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
778 	if (IS_ERR(new_root))
779 		return ERR_CAST(new_root);
780 
781 	dir_id = btrfs_root_dirid(&new_root->root_item);
782 setup_root:
783 	location.objectid = dir_id;
784 	location.type = BTRFS_INODE_ITEM_KEY;
785 	location.offset = 0;
786 
787 	inode = btrfs_iget(sb, &location, new_root, &new);
788 	if (IS_ERR(inode))
789 		return ERR_CAST(inode);
790 
791 	/*
792 	 * If we're just mounting the root most subvol put the inode and return
793 	 * a reference to the dentry.  We will have already gotten a reference
794 	 * to the inode in btrfs_fill_super so we're good to go.
795 	 */
796 	if (!new && sb->s_root->d_inode == inode) {
797 		iput(inode);
798 		return dget(sb->s_root);
799 	}
800 
801 	return d_obtain_alias(inode);
802 }
803 
804 static int btrfs_fill_super(struct super_block *sb,
805 			    struct btrfs_fs_devices *fs_devices,
806 			    void *data, int silent)
807 {
808 	struct inode *inode;
809 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
810 	struct btrfs_key key;
811 	int err;
812 
813 	sb->s_maxbytes = MAX_LFS_FILESIZE;
814 	sb->s_magic = BTRFS_SUPER_MAGIC;
815 	sb->s_op = &btrfs_super_ops;
816 	sb->s_d_op = &btrfs_dentry_operations;
817 	sb->s_export_op = &btrfs_export_ops;
818 	sb->s_xattr = btrfs_xattr_handlers;
819 	sb->s_time_gran = 1;
820 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
821 	sb->s_flags |= MS_POSIXACL;
822 #endif
823 	sb->s_flags |= MS_I_VERSION;
824 	err = open_ctree(sb, fs_devices, (char *)data);
825 	if (err) {
826 		printk("btrfs: open_ctree failed\n");
827 		return err;
828 	}
829 
830 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
831 	key.type = BTRFS_INODE_ITEM_KEY;
832 	key.offset = 0;
833 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
834 	if (IS_ERR(inode)) {
835 		err = PTR_ERR(inode);
836 		goto fail_close;
837 	}
838 
839 	sb->s_root = d_make_root(inode);
840 	if (!sb->s_root) {
841 		err = -ENOMEM;
842 		goto fail_close;
843 	}
844 
845 	save_mount_options(sb, data);
846 	cleancache_init_fs(sb);
847 	sb->s_flags |= MS_ACTIVE;
848 	return 0;
849 
850 fail_close:
851 	close_ctree(fs_info->tree_root);
852 	return err;
853 }
854 
855 int btrfs_sync_fs(struct super_block *sb, int wait)
856 {
857 	struct btrfs_trans_handle *trans;
858 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
859 	struct btrfs_root *root = fs_info->tree_root;
860 
861 	trace_btrfs_sync_fs(wait);
862 
863 	if (!wait) {
864 		filemap_flush(fs_info->btree_inode->i_mapping);
865 		return 0;
866 	}
867 
868 	btrfs_wait_all_ordered_extents(fs_info, 1);
869 
870 	trans = btrfs_attach_transaction_barrier(root);
871 	if (IS_ERR(trans)) {
872 		/* no transaction, don't bother */
873 		if (PTR_ERR(trans) == -ENOENT)
874 			return 0;
875 		return PTR_ERR(trans);
876 	}
877 	return btrfs_commit_transaction(trans, root);
878 }
879 
880 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
881 {
882 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
883 	struct btrfs_root *root = info->tree_root;
884 	char *compress_type;
885 
886 	if (btrfs_test_opt(root, DEGRADED))
887 		seq_puts(seq, ",degraded");
888 	if (btrfs_test_opt(root, NODATASUM))
889 		seq_puts(seq, ",nodatasum");
890 	if (btrfs_test_opt(root, NODATACOW))
891 		seq_puts(seq, ",nodatacow");
892 	if (btrfs_test_opt(root, NOBARRIER))
893 		seq_puts(seq, ",nobarrier");
894 	if (info->max_inline != 8192 * 1024)
895 		seq_printf(seq, ",max_inline=%llu",
896 			   (unsigned long long)info->max_inline);
897 	if (info->alloc_start != 0)
898 		seq_printf(seq, ",alloc_start=%llu",
899 			   (unsigned long long)info->alloc_start);
900 	if (info->thread_pool_size !=  min_t(unsigned long,
901 					     num_online_cpus() + 2, 8))
902 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
903 	if (btrfs_test_opt(root, COMPRESS)) {
904 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
905 			compress_type = "zlib";
906 		else
907 			compress_type = "lzo";
908 		if (btrfs_test_opt(root, FORCE_COMPRESS))
909 			seq_printf(seq, ",compress-force=%s", compress_type);
910 		else
911 			seq_printf(seq, ",compress=%s", compress_type);
912 	}
913 	if (btrfs_test_opt(root, NOSSD))
914 		seq_puts(seq, ",nossd");
915 	if (btrfs_test_opt(root, SSD_SPREAD))
916 		seq_puts(seq, ",ssd_spread");
917 	else if (btrfs_test_opt(root, SSD))
918 		seq_puts(seq, ",ssd");
919 	if (btrfs_test_opt(root, NOTREELOG))
920 		seq_puts(seq, ",notreelog");
921 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
922 		seq_puts(seq, ",flushoncommit");
923 	if (btrfs_test_opt(root, DISCARD))
924 		seq_puts(seq, ",discard");
925 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
926 		seq_puts(seq, ",noacl");
927 	if (btrfs_test_opt(root, SPACE_CACHE))
928 		seq_puts(seq, ",space_cache");
929 	else
930 		seq_puts(seq, ",nospace_cache");
931 	if (btrfs_test_opt(root, CLEAR_CACHE))
932 		seq_puts(seq, ",clear_cache");
933 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
934 		seq_puts(seq, ",user_subvol_rm_allowed");
935 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
936 		seq_puts(seq, ",enospc_debug");
937 	if (btrfs_test_opt(root, AUTO_DEFRAG))
938 		seq_puts(seq, ",autodefrag");
939 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
940 		seq_puts(seq, ",inode_cache");
941 	if (btrfs_test_opt(root, SKIP_BALANCE))
942 		seq_puts(seq, ",skip_balance");
943 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
944 		seq_puts(seq, ",fatal_errors=panic");
945 	return 0;
946 }
947 
948 static int btrfs_test_super(struct super_block *s, void *data)
949 {
950 	struct btrfs_fs_info *p = data;
951 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
952 
953 	return fs_info->fs_devices == p->fs_devices;
954 }
955 
956 static int btrfs_set_super(struct super_block *s, void *data)
957 {
958 	int err = set_anon_super(s, data);
959 	if (!err)
960 		s->s_fs_info = data;
961 	return err;
962 }
963 
964 /*
965  * subvolumes are identified by ino 256
966  */
967 static inline int is_subvolume_inode(struct inode *inode)
968 {
969 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
970 		return 1;
971 	return 0;
972 }
973 
974 /*
975  * This will strip out the subvol=%s argument for an argument string and add
976  * subvolid=0 to make sure we get the actual tree root for path walking to the
977  * subvol we want.
978  */
979 static char *setup_root_args(char *args)
980 {
981 	unsigned len = strlen(args) + 2 + 1;
982 	char *src, *dst, *buf;
983 
984 	/*
985 	 * We need the same args as before, but with this substitution:
986 	 * s!subvol=[^,]+!subvolid=0!
987 	 *
988 	 * Since the replacement string is up to 2 bytes longer than the
989 	 * original, allocate strlen(args) + 2 + 1 bytes.
990 	 */
991 
992 	src = strstr(args, "subvol=");
993 	/* This shouldn't happen, but just in case.. */
994 	if (!src)
995 		return NULL;
996 
997 	buf = dst = kmalloc(len, GFP_NOFS);
998 	if (!buf)
999 		return NULL;
1000 
1001 	/*
1002 	 * If the subvol= arg is not at the start of the string,
1003 	 * copy whatever precedes it into buf.
1004 	 */
1005 	if (src != args) {
1006 		*src++ = '\0';
1007 		strcpy(buf, args);
1008 		dst += strlen(args);
1009 	}
1010 
1011 	strcpy(dst, "subvolid=0");
1012 	dst += strlen("subvolid=0");
1013 
1014 	/*
1015 	 * If there is a "," after the original subvol=... string,
1016 	 * copy that suffix into our buffer.  Otherwise, we're done.
1017 	 */
1018 	src = strchr(src, ',');
1019 	if (src)
1020 		strcpy(dst, src);
1021 
1022 	return buf;
1023 }
1024 
1025 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1026 				   const char *device_name, char *data)
1027 {
1028 	struct dentry *root;
1029 	struct vfsmount *mnt;
1030 	char *newargs;
1031 
1032 	newargs = setup_root_args(data);
1033 	if (!newargs)
1034 		return ERR_PTR(-ENOMEM);
1035 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1036 			     newargs);
1037 	kfree(newargs);
1038 	if (IS_ERR(mnt))
1039 		return ERR_CAST(mnt);
1040 
1041 	root = mount_subtree(mnt, subvol_name);
1042 
1043 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1044 		struct super_block *s = root->d_sb;
1045 		dput(root);
1046 		root = ERR_PTR(-EINVAL);
1047 		deactivate_locked_super(s);
1048 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1049 				subvol_name);
1050 	}
1051 
1052 	return root;
1053 }
1054 
1055 /*
1056  * Find a superblock for the given device / mount point.
1057  *
1058  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1059  *	  for multiple device setup.  Make sure to keep it in sync.
1060  */
1061 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1062 		const char *device_name, void *data)
1063 {
1064 	struct block_device *bdev = NULL;
1065 	struct super_block *s;
1066 	struct dentry *root;
1067 	struct btrfs_fs_devices *fs_devices = NULL;
1068 	struct btrfs_fs_info *fs_info = NULL;
1069 	fmode_t mode = FMODE_READ;
1070 	char *subvol_name = NULL;
1071 	u64 subvol_objectid = 0;
1072 	int error = 0;
1073 
1074 	if (!(flags & MS_RDONLY))
1075 		mode |= FMODE_WRITE;
1076 
1077 	error = btrfs_parse_early_options(data, mode, fs_type,
1078 					  &subvol_name, &subvol_objectid,
1079 					  &fs_devices);
1080 	if (error) {
1081 		kfree(subvol_name);
1082 		return ERR_PTR(error);
1083 	}
1084 
1085 	if (subvol_name) {
1086 		root = mount_subvol(subvol_name, flags, device_name, data);
1087 		kfree(subvol_name);
1088 		return root;
1089 	}
1090 
1091 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1092 	if (error)
1093 		return ERR_PTR(error);
1094 
1095 	/*
1096 	 * Setup a dummy root and fs_info for test/set super.  This is because
1097 	 * we don't actually fill this stuff out until open_ctree, but we need
1098 	 * it for searching for existing supers, so this lets us do that and
1099 	 * then open_ctree will properly initialize everything later.
1100 	 */
1101 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1102 	if (!fs_info)
1103 		return ERR_PTR(-ENOMEM);
1104 
1105 	fs_info->fs_devices = fs_devices;
1106 
1107 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1108 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1110 		error = -ENOMEM;
1111 		goto error_fs_info;
1112 	}
1113 
1114 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1115 	if (error)
1116 		goto error_fs_info;
1117 
1118 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1119 		error = -EACCES;
1120 		goto error_close_devices;
1121 	}
1122 
1123 	bdev = fs_devices->latest_bdev;
1124 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1125 		 fs_info);
1126 	if (IS_ERR(s)) {
1127 		error = PTR_ERR(s);
1128 		goto error_close_devices;
1129 	}
1130 
1131 	if (s->s_root) {
1132 		btrfs_close_devices(fs_devices);
1133 		free_fs_info(fs_info);
1134 		if ((flags ^ s->s_flags) & MS_RDONLY)
1135 			error = -EBUSY;
1136 	} else {
1137 		char b[BDEVNAME_SIZE];
1138 
1139 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1140 		btrfs_sb(s)->bdev_holder = fs_type;
1141 		error = btrfs_fill_super(s, fs_devices, data,
1142 					 flags & MS_SILENT ? 1 : 0);
1143 	}
1144 
1145 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1146 	if (IS_ERR(root))
1147 		deactivate_locked_super(s);
1148 
1149 	return root;
1150 
1151 error_close_devices:
1152 	btrfs_close_devices(fs_devices);
1153 error_fs_info:
1154 	free_fs_info(fs_info);
1155 	return ERR_PTR(error);
1156 }
1157 
1158 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1159 {
1160 	spin_lock_irq(&workers->lock);
1161 	workers->max_workers = new_limit;
1162 	spin_unlock_irq(&workers->lock);
1163 }
1164 
1165 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1166 				     int new_pool_size, int old_pool_size)
1167 {
1168 	if (new_pool_size == old_pool_size)
1169 		return;
1170 
1171 	fs_info->thread_pool_size = new_pool_size;
1172 
1173 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1174 	       old_pool_size, new_pool_size);
1175 
1176 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1177 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1178 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1179 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1180 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1181 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1182 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1183 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1184 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1185 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1186 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1187 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1188 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1189 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1190 			      new_pool_size);
1191 }
1192 
1193 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1194 {
1195 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1196 }
1197 
1198 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1199 				       unsigned long old_opts, int flags)
1200 {
1201 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1202 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1203 	     (flags & MS_RDONLY))) {
1204 		/* wait for any defraggers to finish */
1205 		wait_event(fs_info->transaction_wait,
1206 			   (atomic_read(&fs_info->defrag_running) == 0));
1207 		if (flags & MS_RDONLY)
1208 			sync_filesystem(fs_info->sb);
1209 	}
1210 }
1211 
1212 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1213 					 unsigned long old_opts)
1214 {
1215 	/*
1216 	 * We need cleanup all defragable inodes if the autodefragment is
1217 	 * close or the fs is R/O.
1218 	 */
1219 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1220 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1221 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1222 		btrfs_cleanup_defrag_inodes(fs_info);
1223 	}
1224 
1225 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1226 }
1227 
1228 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1229 {
1230 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1231 	struct btrfs_root *root = fs_info->tree_root;
1232 	unsigned old_flags = sb->s_flags;
1233 	unsigned long old_opts = fs_info->mount_opt;
1234 	unsigned long old_compress_type = fs_info->compress_type;
1235 	u64 old_max_inline = fs_info->max_inline;
1236 	u64 old_alloc_start = fs_info->alloc_start;
1237 	int old_thread_pool_size = fs_info->thread_pool_size;
1238 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1239 	int ret;
1240 
1241 	btrfs_remount_prepare(fs_info);
1242 
1243 	ret = btrfs_parse_options(root, data);
1244 	if (ret) {
1245 		ret = -EINVAL;
1246 		goto restore;
1247 	}
1248 
1249 	btrfs_remount_begin(fs_info, old_opts, *flags);
1250 	btrfs_resize_thread_pool(fs_info,
1251 		fs_info->thread_pool_size, old_thread_pool_size);
1252 
1253 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1254 		goto out;
1255 
1256 	if (*flags & MS_RDONLY) {
1257 		/*
1258 		 * this also happens on 'umount -rf' or on shutdown, when
1259 		 * the filesystem is busy.
1260 		 */
1261 		sb->s_flags |= MS_RDONLY;
1262 
1263 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1264 		btrfs_scrub_cancel(fs_info);
1265 		btrfs_pause_balance(fs_info);
1266 
1267 		ret = btrfs_commit_super(root);
1268 		if (ret)
1269 			goto restore;
1270 	} else {
1271 		if (fs_info->fs_devices->rw_devices == 0) {
1272 			ret = -EACCES;
1273 			goto restore;
1274 		}
1275 
1276 		if (fs_info->fs_devices->missing_devices >
1277 		     fs_info->num_tolerated_disk_barrier_failures &&
1278 		    !(*flags & MS_RDONLY)) {
1279 			printk(KERN_WARNING
1280 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1281 			ret = -EACCES;
1282 			goto restore;
1283 		}
1284 
1285 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1286 			ret = -EINVAL;
1287 			goto restore;
1288 		}
1289 
1290 		ret = btrfs_cleanup_fs_roots(fs_info);
1291 		if (ret)
1292 			goto restore;
1293 
1294 		/* recover relocation */
1295 		ret = btrfs_recover_relocation(root);
1296 		if (ret)
1297 			goto restore;
1298 
1299 		ret = btrfs_resume_balance_async(fs_info);
1300 		if (ret)
1301 			goto restore;
1302 
1303 		ret = btrfs_resume_dev_replace_async(fs_info);
1304 		if (ret) {
1305 			pr_warn("btrfs: failed to resume dev_replace\n");
1306 			goto restore;
1307 		}
1308 		sb->s_flags &= ~MS_RDONLY;
1309 	}
1310 out:
1311 	btrfs_remount_cleanup(fs_info, old_opts);
1312 	return 0;
1313 
1314 restore:
1315 	/* We've hit an error - don't reset MS_RDONLY */
1316 	if (sb->s_flags & MS_RDONLY)
1317 		old_flags |= MS_RDONLY;
1318 	sb->s_flags = old_flags;
1319 	fs_info->mount_opt = old_opts;
1320 	fs_info->compress_type = old_compress_type;
1321 	fs_info->max_inline = old_max_inline;
1322 	mutex_lock(&fs_info->chunk_mutex);
1323 	fs_info->alloc_start = old_alloc_start;
1324 	mutex_unlock(&fs_info->chunk_mutex);
1325 	btrfs_resize_thread_pool(fs_info,
1326 		old_thread_pool_size, fs_info->thread_pool_size);
1327 	fs_info->metadata_ratio = old_metadata_ratio;
1328 	btrfs_remount_cleanup(fs_info, old_opts);
1329 	return ret;
1330 }
1331 
1332 /* Used to sort the devices by max_avail(descending sort) */
1333 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1334 				       const void *dev_info2)
1335 {
1336 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1337 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1338 		return -1;
1339 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1340 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1341 		return 1;
1342 	else
1343 	return 0;
1344 }
1345 
1346 /*
1347  * sort the devices by max_avail, in which max free extent size of each device
1348  * is stored.(Descending Sort)
1349  */
1350 static inline void btrfs_descending_sort_devices(
1351 					struct btrfs_device_info *devices,
1352 					size_t nr_devices)
1353 {
1354 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1355 	     btrfs_cmp_device_free_bytes, NULL);
1356 }
1357 
1358 /*
1359  * The helper to calc the free space on the devices that can be used to store
1360  * file data.
1361  */
1362 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1363 {
1364 	struct btrfs_fs_info *fs_info = root->fs_info;
1365 	struct btrfs_device_info *devices_info;
1366 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1367 	struct btrfs_device *device;
1368 	u64 skip_space;
1369 	u64 type;
1370 	u64 avail_space;
1371 	u64 used_space;
1372 	u64 min_stripe_size;
1373 	int min_stripes = 1, num_stripes = 1;
1374 	int i = 0, nr_devices;
1375 	int ret;
1376 
1377 	nr_devices = fs_info->fs_devices->open_devices;
1378 	BUG_ON(!nr_devices);
1379 
1380 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1381 			       GFP_NOFS);
1382 	if (!devices_info)
1383 		return -ENOMEM;
1384 
1385 	/* calc min stripe number for data space alloction */
1386 	type = btrfs_get_alloc_profile(root, 1);
1387 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1388 		min_stripes = 2;
1389 		num_stripes = nr_devices;
1390 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1391 		min_stripes = 2;
1392 		num_stripes = 2;
1393 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1394 		min_stripes = 4;
1395 		num_stripes = 4;
1396 	}
1397 
1398 	if (type & BTRFS_BLOCK_GROUP_DUP)
1399 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1400 	else
1401 		min_stripe_size = BTRFS_STRIPE_LEN;
1402 
1403 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1404 		if (!device->in_fs_metadata || !device->bdev ||
1405 		    device->is_tgtdev_for_dev_replace)
1406 			continue;
1407 
1408 		avail_space = device->total_bytes - device->bytes_used;
1409 
1410 		/* align with stripe_len */
1411 		do_div(avail_space, BTRFS_STRIPE_LEN);
1412 		avail_space *= BTRFS_STRIPE_LEN;
1413 
1414 		/*
1415 		 * In order to avoid overwritting the superblock on the drive,
1416 		 * btrfs starts at an offset of at least 1MB when doing chunk
1417 		 * allocation.
1418 		 */
1419 		skip_space = 1024 * 1024;
1420 
1421 		/* user can set the offset in fs_info->alloc_start. */
1422 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1423 		    device->total_bytes)
1424 			skip_space = max(fs_info->alloc_start, skip_space);
1425 
1426 		/*
1427 		 * btrfs can not use the free space in [0, skip_space - 1],
1428 		 * we must subtract it from the total. In order to implement
1429 		 * it, we account the used space in this range first.
1430 		 */
1431 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1432 						     &used_space);
1433 		if (ret) {
1434 			kfree(devices_info);
1435 			return ret;
1436 		}
1437 
1438 		/* calc the free space in [0, skip_space - 1] */
1439 		skip_space -= used_space;
1440 
1441 		/*
1442 		 * we can use the free space in [0, skip_space - 1], subtract
1443 		 * it from the total.
1444 		 */
1445 		if (avail_space && avail_space >= skip_space)
1446 			avail_space -= skip_space;
1447 		else
1448 			avail_space = 0;
1449 
1450 		if (avail_space < min_stripe_size)
1451 			continue;
1452 
1453 		devices_info[i].dev = device;
1454 		devices_info[i].max_avail = avail_space;
1455 
1456 		i++;
1457 	}
1458 
1459 	nr_devices = i;
1460 
1461 	btrfs_descending_sort_devices(devices_info, nr_devices);
1462 
1463 	i = nr_devices - 1;
1464 	avail_space = 0;
1465 	while (nr_devices >= min_stripes) {
1466 		if (num_stripes > nr_devices)
1467 			num_stripes = nr_devices;
1468 
1469 		if (devices_info[i].max_avail >= min_stripe_size) {
1470 			int j;
1471 			u64 alloc_size;
1472 
1473 			avail_space += devices_info[i].max_avail * num_stripes;
1474 			alloc_size = devices_info[i].max_avail;
1475 			for (j = i + 1 - num_stripes; j <= i; j++)
1476 				devices_info[j].max_avail -= alloc_size;
1477 		}
1478 		i--;
1479 		nr_devices--;
1480 	}
1481 
1482 	kfree(devices_info);
1483 	*free_bytes = avail_space;
1484 	return 0;
1485 }
1486 
1487 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1488 {
1489 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1490 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1491 	struct list_head *head = &fs_info->space_info;
1492 	struct btrfs_space_info *found;
1493 	u64 total_used = 0;
1494 	u64 total_free_data = 0;
1495 	int bits = dentry->d_sb->s_blocksize_bits;
1496 	__be32 *fsid = (__be32 *)fs_info->fsid;
1497 	int ret;
1498 
1499 	/* holding chunk_muext to avoid allocating new chunks */
1500 	mutex_lock(&fs_info->chunk_mutex);
1501 	rcu_read_lock();
1502 	list_for_each_entry_rcu(found, head, list) {
1503 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1504 			total_free_data += found->disk_total - found->disk_used;
1505 			total_free_data -=
1506 				btrfs_account_ro_block_groups_free_space(found);
1507 		}
1508 
1509 		total_used += found->disk_used;
1510 	}
1511 	rcu_read_unlock();
1512 
1513 	buf->f_namelen = BTRFS_NAME_LEN;
1514 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1515 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1516 	buf->f_bsize = dentry->d_sb->s_blocksize;
1517 	buf->f_type = BTRFS_SUPER_MAGIC;
1518 	buf->f_bavail = total_free_data;
1519 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1520 	if (ret) {
1521 		mutex_unlock(&fs_info->chunk_mutex);
1522 		return ret;
1523 	}
1524 	buf->f_bavail += total_free_data;
1525 	buf->f_bavail = buf->f_bavail >> bits;
1526 	mutex_unlock(&fs_info->chunk_mutex);
1527 
1528 	/* We treat it as constant endianness (it doesn't matter _which_)
1529 	   because we want the fsid to come out the same whether mounted
1530 	   on a big-endian or little-endian host */
1531 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1532 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1533 	/* Mask in the root object ID too, to disambiguate subvols */
1534 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1535 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1536 
1537 	return 0;
1538 }
1539 
1540 static void btrfs_kill_super(struct super_block *sb)
1541 {
1542 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1543 	kill_anon_super(sb);
1544 	free_fs_info(fs_info);
1545 }
1546 
1547 static struct file_system_type btrfs_fs_type = {
1548 	.owner		= THIS_MODULE,
1549 	.name		= "btrfs",
1550 	.mount		= btrfs_mount,
1551 	.kill_sb	= btrfs_kill_super,
1552 	.fs_flags	= FS_REQUIRES_DEV,
1553 };
1554 MODULE_ALIAS_FS("btrfs");
1555 
1556 /*
1557  * used by btrfsctl to scan devices when no FS is mounted
1558  */
1559 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1560 				unsigned long arg)
1561 {
1562 	struct btrfs_ioctl_vol_args *vol;
1563 	struct btrfs_fs_devices *fs_devices;
1564 	int ret = -ENOTTY;
1565 
1566 	if (!capable(CAP_SYS_ADMIN))
1567 		return -EPERM;
1568 
1569 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1570 	if (IS_ERR(vol))
1571 		return PTR_ERR(vol);
1572 
1573 	switch (cmd) {
1574 	case BTRFS_IOC_SCAN_DEV:
1575 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1576 					    &btrfs_fs_type, &fs_devices);
1577 		break;
1578 	case BTRFS_IOC_DEVICES_READY:
1579 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1580 					    &btrfs_fs_type, &fs_devices);
1581 		if (ret)
1582 			break;
1583 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1584 		break;
1585 	}
1586 
1587 	kfree(vol);
1588 	return ret;
1589 }
1590 
1591 static int btrfs_freeze(struct super_block *sb)
1592 {
1593 	struct btrfs_trans_handle *trans;
1594 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1595 
1596 	trans = btrfs_attach_transaction_barrier(root);
1597 	if (IS_ERR(trans)) {
1598 		/* no transaction, don't bother */
1599 		if (PTR_ERR(trans) == -ENOENT)
1600 			return 0;
1601 		return PTR_ERR(trans);
1602 	}
1603 	return btrfs_commit_transaction(trans, root);
1604 }
1605 
1606 static int btrfs_unfreeze(struct super_block *sb)
1607 {
1608 	return 0;
1609 }
1610 
1611 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1612 {
1613 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1614 	struct btrfs_fs_devices *cur_devices;
1615 	struct btrfs_device *dev, *first_dev = NULL;
1616 	struct list_head *head;
1617 	struct rcu_string *name;
1618 
1619 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1620 	cur_devices = fs_info->fs_devices;
1621 	while (cur_devices) {
1622 		head = &cur_devices->devices;
1623 		list_for_each_entry(dev, head, dev_list) {
1624 			if (dev->missing)
1625 				continue;
1626 			if (!first_dev || dev->devid < first_dev->devid)
1627 				first_dev = dev;
1628 		}
1629 		cur_devices = cur_devices->seed;
1630 	}
1631 
1632 	if (first_dev) {
1633 		rcu_read_lock();
1634 		name = rcu_dereference(first_dev->name);
1635 		seq_escape(m, name->str, " \t\n\\");
1636 		rcu_read_unlock();
1637 	} else {
1638 		WARN_ON(1);
1639 	}
1640 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1641 	return 0;
1642 }
1643 
1644 static const struct super_operations btrfs_super_ops = {
1645 	.drop_inode	= btrfs_drop_inode,
1646 	.evict_inode	= btrfs_evict_inode,
1647 	.put_super	= btrfs_put_super,
1648 	.sync_fs	= btrfs_sync_fs,
1649 	.show_options	= btrfs_show_options,
1650 	.show_devname	= btrfs_show_devname,
1651 	.write_inode	= btrfs_write_inode,
1652 	.alloc_inode	= btrfs_alloc_inode,
1653 	.destroy_inode	= btrfs_destroy_inode,
1654 	.statfs		= btrfs_statfs,
1655 	.remount_fs	= btrfs_remount,
1656 	.freeze_fs	= btrfs_freeze,
1657 	.unfreeze_fs	= btrfs_unfreeze,
1658 };
1659 
1660 static const struct file_operations btrfs_ctl_fops = {
1661 	.unlocked_ioctl	 = btrfs_control_ioctl,
1662 	.compat_ioctl = btrfs_control_ioctl,
1663 	.owner	 = THIS_MODULE,
1664 	.llseek = noop_llseek,
1665 };
1666 
1667 static struct miscdevice btrfs_misc = {
1668 	.minor		= BTRFS_MINOR,
1669 	.name		= "btrfs-control",
1670 	.fops		= &btrfs_ctl_fops
1671 };
1672 
1673 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1674 MODULE_ALIAS("devname:btrfs-control");
1675 
1676 static int btrfs_interface_init(void)
1677 {
1678 	return misc_register(&btrfs_misc);
1679 }
1680 
1681 static void btrfs_interface_exit(void)
1682 {
1683 	if (misc_deregister(&btrfs_misc) < 0)
1684 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1685 }
1686 
1687 static void btrfs_print_info(void)
1688 {
1689 	printk(KERN_INFO "Btrfs loaded"
1690 #ifdef CONFIG_BTRFS_DEBUG
1691 			", debug=on"
1692 #endif
1693 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1694 			", integrity-checker=on"
1695 #endif
1696 			"\n");
1697 }
1698 
1699 static int __init init_btrfs_fs(void)
1700 {
1701 	int err;
1702 
1703 	err = btrfs_init_sysfs();
1704 	if (err)
1705 		return err;
1706 
1707 	btrfs_init_compress();
1708 
1709 	err = btrfs_init_cachep();
1710 	if (err)
1711 		goto free_compress;
1712 
1713 	err = extent_io_init();
1714 	if (err)
1715 		goto free_cachep;
1716 
1717 	err = extent_map_init();
1718 	if (err)
1719 		goto free_extent_io;
1720 
1721 	err = ordered_data_init();
1722 	if (err)
1723 		goto free_extent_map;
1724 
1725 	err = btrfs_delayed_inode_init();
1726 	if (err)
1727 		goto free_ordered_data;
1728 
1729 	err = btrfs_auto_defrag_init();
1730 	if (err)
1731 		goto free_delayed_inode;
1732 
1733 	err = btrfs_delayed_ref_init();
1734 	if (err)
1735 		goto free_auto_defrag;
1736 
1737 	err = btrfs_interface_init();
1738 	if (err)
1739 		goto free_delayed_ref;
1740 
1741 	err = register_filesystem(&btrfs_fs_type);
1742 	if (err)
1743 		goto unregister_ioctl;
1744 
1745 	btrfs_init_lockdep();
1746 
1747 	btrfs_print_info();
1748 	btrfs_test_free_space_cache();
1749 
1750 	return 0;
1751 
1752 unregister_ioctl:
1753 	btrfs_interface_exit();
1754 free_delayed_ref:
1755 	btrfs_delayed_ref_exit();
1756 free_auto_defrag:
1757 	btrfs_auto_defrag_exit();
1758 free_delayed_inode:
1759 	btrfs_delayed_inode_exit();
1760 free_ordered_data:
1761 	ordered_data_exit();
1762 free_extent_map:
1763 	extent_map_exit();
1764 free_extent_io:
1765 	extent_io_exit();
1766 free_cachep:
1767 	btrfs_destroy_cachep();
1768 free_compress:
1769 	btrfs_exit_compress();
1770 	btrfs_exit_sysfs();
1771 	return err;
1772 }
1773 
1774 static void __exit exit_btrfs_fs(void)
1775 {
1776 	btrfs_destroy_cachep();
1777 	btrfs_delayed_ref_exit();
1778 	btrfs_auto_defrag_exit();
1779 	btrfs_delayed_inode_exit();
1780 	ordered_data_exit();
1781 	extent_map_exit();
1782 	extent_io_exit();
1783 	btrfs_interface_exit();
1784 	unregister_filesystem(&btrfs_fs_type);
1785 	btrfs_exit_sysfs();
1786 	btrfs_cleanup_fs_uuids();
1787 	btrfs_exit_compress();
1788 }
1789 
1790 module_init(init_btrfs_fs)
1791 module_exit(exit_btrfs_fs)
1792 
1793 MODULE_LICENSE("GPL");
1794