1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "zoned.h" 48 #include "tests/btrfs-tests.h" 49 #include "block-group.h" 50 #include "discard.h" 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 /* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85 const char * __attribute_const__ btrfs_decode_error(int errno) 86 { 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120 } 121 122 /* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126 __cold 127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129 { 130 struct super_block *sb = fs_info->sb; 131 #ifdef CONFIG_PRINTK 132 const char *errstr; 133 #endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142 #ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159 #endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 btrfs_set_sb_rdonly(sb); 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187 } 188 189 #ifdef CONFIG_PRINTK 190 static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199 }; 200 201 202 /* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206 static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215 }; 216 217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218 { 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) { 244 if (fs_info) 245 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 246 fs_info->sb->s_id, &vaf); 247 else 248 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 249 } 250 251 va_end(args); 252 } 253 #endif 254 255 #if BITS_PER_LONG == 32 256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) 257 { 258 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { 259 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); 260 btrfs_warn(fs_info, 261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", 262 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 263 btrfs_warn(fs_info, 264 "please consider upgrading to 64bit kernel/hardware"); 265 } 266 } 267 268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) 269 { 270 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { 271 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); 272 btrfs_err(fs_info, 273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", 274 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 275 btrfs_err(fs_info, 276 "please consider upgrading to 64bit kernel/hardware"); 277 } 278 } 279 #endif 280 281 /* 282 * We only mark the transaction aborted and then set the file system read-only. 283 * This will prevent new transactions from starting or trying to join this 284 * one. 285 * 286 * This means that error recovery at the call site is limited to freeing 287 * any local memory allocations and passing the error code up without 288 * further cleanup. The transaction should complete as it normally would 289 * in the call path but will return -EIO. 290 * 291 * We'll complete the cleanup in btrfs_end_transaction and 292 * btrfs_commit_transaction. 293 */ 294 __cold 295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 296 const char *function, 297 unsigned int line, int errno) 298 { 299 struct btrfs_fs_info *fs_info = trans->fs_info; 300 301 WRITE_ONCE(trans->aborted, errno); 302 WRITE_ONCE(trans->transaction->aborted, errno); 303 /* Wake up anybody who may be waiting on this transaction */ 304 wake_up(&fs_info->transaction_wait); 305 wake_up(&fs_info->transaction_blocked_wait); 306 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 307 } 308 /* 309 * __btrfs_panic decodes unexpected, fatal errors from the caller, 310 * issues an alert, and either panics or BUGs, depending on mount options. 311 */ 312 __cold 313 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 314 unsigned int line, int errno, const char *fmt, ...) 315 { 316 char *s_id = "<unknown>"; 317 const char *errstr; 318 struct va_format vaf = { .fmt = fmt }; 319 va_list args; 320 321 if (fs_info) 322 s_id = fs_info->sb->s_id; 323 324 va_start(args, fmt); 325 vaf.va = &args; 326 327 errstr = btrfs_decode_error(errno); 328 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 329 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 330 s_id, function, line, &vaf, errno, errstr); 331 332 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 333 function, line, &vaf, errno, errstr); 334 va_end(args); 335 /* Caller calls BUG() */ 336 } 337 338 static void btrfs_put_super(struct super_block *sb) 339 { 340 close_ctree(btrfs_sb(sb)); 341 } 342 343 enum { 344 Opt_acl, Opt_noacl, 345 Opt_clear_cache, 346 Opt_commit_interval, 347 Opt_compress, 348 Opt_compress_force, 349 Opt_compress_force_type, 350 Opt_compress_type, 351 Opt_degraded, 352 Opt_device, 353 Opt_fatal_errors, 354 Opt_flushoncommit, Opt_noflushoncommit, 355 Opt_max_inline, 356 Opt_barrier, Opt_nobarrier, 357 Opt_datacow, Opt_nodatacow, 358 Opt_datasum, Opt_nodatasum, 359 Opt_defrag, Opt_nodefrag, 360 Opt_discard, Opt_nodiscard, 361 Opt_discard_mode, 362 Opt_norecovery, 363 Opt_ratio, 364 Opt_rescan_uuid_tree, 365 Opt_skip_balance, 366 Opt_space_cache, Opt_no_space_cache, 367 Opt_space_cache_version, 368 Opt_ssd, Opt_nossd, 369 Opt_ssd_spread, Opt_nossd_spread, 370 Opt_subvol, 371 Opt_subvol_empty, 372 Opt_subvolid, 373 Opt_thread_pool, 374 Opt_treelog, Opt_notreelog, 375 Opt_user_subvol_rm_allowed, 376 377 /* Rescue options */ 378 Opt_rescue, 379 Opt_usebackuproot, 380 Opt_nologreplay, 381 Opt_ignorebadroots, 382 Opt_ignoredatacsums, 383 Opt_rescue_all, 384 385 /* Deprecated options */ 386 Opt_recovery, 387 Opt_inode_cache, Opt_noinode_cache, 388 389 /* Debugging options */ 390 Opt_check_integrity, 391 Opt_check_integrity_including_extent_data, 392 Opt_check_integrity_print_mask, 393 Opt_enospc_debug, Opt_noenospc_debug, 394 #ifdef CONFIG_BTRFS_DEBUG 395 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 396 #endif 397 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 398 Opt_ref_verify, 399 #endif 400 Opt_err, 401 }; 402 403 static const match_table_t tokens = { 404 {Opt_acl, "acl"}, 405 {Opt_noacl, "noacl"}, 406 {Opt_clear_cache, "clear_cache"}, 407 {Opt_commit_interval, "commit=%u"}, 408 {Opt_compress, "compress"}, 409 {Opt_compress_type, "compress=%s"}, 410 {Opt_compress_force, "compress-force"}, 411 {Opt_compress_force_type, "compress-force=%s"}, 412 {Opt_degraded, "degraded"}, 413 {Opt_device, "device=%s"}, 414 {Opt_fatal_errors, "fatal_errors=%s"}, 415 {Opt_flushoncommit, "flushoncommit"}, 416 {Opt_noflushoncommit, "noflushoncommit"}, 417 {Opt_inode_cache, "inode_cache"}, 418 {Opt_noinode_cache, "noinode_cache"}, 419 {Opt_max_inline, "max_inline=%s"}, 420 {Opt_barrier, "barrier"}, 421 {Opt_nobarrier, "nobarrier"}, 422 {Opt_datacow, "datacow"}, 423 {Opt_nodatacow, "nodatacow"}, 424 {Opt_datasum, "datasum"}, 425 {Opt_nodatasum, "nodatasum"}, 426 {Opt_defrag, "autodefrag"}, 427 {Opt_nodefrag, "noautodefrag"}, 428 {Opt_discard, "discard"}, 429 {Opt_discard_mode, "discard=%s"}, 430 {Opt_nodiscard, "nodiscard"}, 431 {Opt_norecovery, "norecovery"}, 432 {Opt_ratio, "metadata_ratio=%u"}, 433 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 434 {Opt_skip_balance, "skip_balance"}, 435 {Opt_space_cache, "space_cache"}, 436 {Opt_no_space_cache, "nospace_cache"}, 437 {Opt_space_cache_version, "space_cache=%s"}, 438 {Opt_ssd, "ssd"}, 439 {Opt_nossd, "nossd"}, 440 {Opt_ssd_spread, "ssd_spread"}, 441 {Opt_nossd_spread, "nossd_spread"}, 442 {Opt_subvol, "subvol=%s"}, 443 {Opt_subvol_empty, "subvol="}, 444 {Opt_subvolid, "subvolid=%s"}, 445 {Opt_thread_pool, "thread_pool=%u"}, 446 {Opt_treelog, "treelog"}, 447 {Opt_notreelog, "notreelog"}, 448 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 449 450 /* Rescue options */ 451 {Opt_rescue, "rescue=%s"}, 452 /* Deprecated, with alias rescue=nologreplay */ 453 {Opt_nologreplay, "nologreplay"}, 454 /* Deprecated, with alias rescue=usebackuproot */ 455 {Opt_usebackuproot, "usebackuproot"}, 456 457 /* Deprecated options */ 458 {Opt_recovery, "recovery"}, 459 460 /* Debugging options */ 461 {Opt_check_integrity, "check_int"}, 462 {Opt_check_integrity_including_extent_data, "check_int_data"}, 463 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 464 {Opt_enospc_debug, "enospc_debug"}, 465 {Opt_noenospc_debug, "noenospc_debug"}, 466 #ifdef CONFIG_BTRFS_DEBUG 467 {Opt_fragment_data, "fragment=data"}, 468 {Opt_fragment_metadata, "fragment=metadata"}, 469 {Opt_fragment_all, "fragment=all"}, 470 #endif 471 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 472 {Opt_ref_verify, "ref_verify"}, 473 #endif 474 {Opt_err, NULL}, 475 }; 476 477 static const match_table_t rescue_tokens = { 478 {Opt_usebackuproot, "usebackuproot"}, 479 {Opt_nologreplay, "nologreplay"}, 480 {Opt_ignorebadroots, "ignorebadroots"}, 481 {Opt_ignorebadroots, "ibadroots"}, 482 {Opt_ignoredatacsums, "ignoredatacsums"}, 483 {Opt_ignoredatacsums, "idatacsums"}, 484 {Opt_rescue_all, "all"}, 485 {Opt_err, NULL}, 486 }; 487 488 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 489 const char *opt_name) 490 { 491 if (fs_info->mount_opt & opt) { 492 btrfs_err(fs_info, "%s must be used with ro mount option", 493 opt_name); 494 return true; 495 } 496 return false; 497 } 498 499 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 500 { 501 char *opts; 502 char *orig; 503 char *p; 504 substring_t args[MAX_OPT_ARGS]; 505 int ret = 0; 506 507 opts = kstrdup(options, GFP_KERNEL); 508 if (!opts) 509 return -ENOMEM; 510 orig = opts; 511 512 while ((p = strsep(&opts, ":")) != NULL) { 513 int token; 514 515 if (!*p) 516 continue; 517 token = match_token(p, rescue_tokens, args); 518 switch (token){ 519 case Opt_usebackuproot: 520 btrfs_info(info, 521 "trying to use backup root at mount time"); 522 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 523 break; 524 case Opt_nologreplay: 525 btrfs_set_and_info(info, NOLOGREPLAY, 526 "disabling log replay at mount time"); 527 break; 528 case Opt_ignorebadroots: 529 btrfs_set_and_info(info, IGNOREBADROOTS, 530 "ignoring bad roots"); 531 break; 532 case Opt_ignoredatacsums: 533 btrfs_set_and_info(info, IGNOREDATACSUMS, 534 "ignoring data csums"); 535 break; 536 case Opt_rescue_all: 537 btrfs_info(info, "enabling all of the rescue options"); 538 btrfs_set_and_info(info, IGNOREDATACSUMS, 539 "ignoring data csums"); 540 btrfs_set_and_info(info, IGNOREBADROOTS, 541 "ignoring bad roots"); 542 btrfs_set_and_info(info, NOLOGREPLAY, 543 "disabling log replay at mount time"); 544 break; 545 case Opt_err: 546 btrfs_info(info, "unrecognized rescue option '%s'", p); 547 ret = -EINVAL; 548 goto out; 549 default: 550 break; 551 } 552 553 } 554 out: 555 kfree(orig); 556 return ret; 557 } 558 559 /* 560 * Regular mount options parser. Everything that is needed only when 561 * reading in a new superblock is parsed here. 562 * XXX JDM: This needs to be cleaned up for remount. 563 */ 564 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 565 unsigned long new_flags) 566 { 567 substring_t args[MAX_OPT_ARGS]; 568 char *p, *num; 569 int intarg; 570 int ret = 0; 571 char *compress_type; 572 bool compress_force = false; 573 enum btrfs_compression_type saved_compress_type; 574 int saved_compress_level; 575 bool saved_compress_force; 576 int no_compress = 0; 577 578 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 579 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 580 else if (btrfs_free_space_cache_v1_active(info)) { 581 if (btrfs_is_zoned(info)) { 582 btrfs_info(info, 583 "zoned: clearing existing space cache"); 584 btrfs_set_super_cache_generation(info->super_copy, 0); 585 } else { 586 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 587 } 588 } 589 590 /* 591 * Even the options are empty, we still need to do extra check 592 * against new flags 593 */ 594 if (!options) 595 goto check; 596 597 while ((p = strsep(&options, ",")) != NULL) { 598 int token; 599 if (!*p) 600 continue; 601 602 token = match_token(p, tokens, args); 603 switch (token) { 604 case Opt_degraded: 605 btrfs_info(info, "allowing degraded mounts"); 606 btrfs_set_opt(info->mount_opt, DEGRADED); 607 break; 608 case Opt_subvol: 609 case Opt_subvol_empty: 610 case Opt_subvolid: 611 case Opt_device: 612 /* 613 * These are parsed by btrfs_parse_subvol_options or 614 * btrfs_parse_device_options and can be ignored here. 615 */ 616 break; 617 case Opt_nodatasum: 618 btrfs_set_and_info(info, NODATASUM, 619 "setting nodatasum"); 620 break; 621 case Opt_datasum: 622 if (btrfs_test_opt(info, NODATASUM)) { 623 if (btrfs_test_opt(info, NODATACOW)) 624 btrfs_info(info, 625 "setting datasum, datacow enabled"); 626 else 627 btrfs_info(info, "setting datasum"); 628 } 629 btrfs_clear_opt(info->mount_opt, NODATACOW); 630 btrfs_clear_opt(info->mount_opt, NODATASUM); 631 break; 632 case Opt_nodatacow: 633 if (!btrfs_test_opt(info, NODATACOW)) { 634 if (!btrfs_test_opt(info, COMPRESS) || 635 !btrfs_test_opt(info, FORCE_COMPRESS)) { 636 btrfs_info(info, 637 "setting nodatacow, compression disabled"); 638 } else { 639 btrfs_info(info, "setting nodatacow"); 640 } 641 } 642 btrfs_clear_opt(info->mount_opt, COMPRESS); 643 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 644 btrfs_set_opt(info->mount_opt, NODATACOW); 645 btrfs_set_opt(info->mount_opt, NODATASUM); 646 break; 647 case Opt_datacow: 648 btrfs_clear_and_info(info, NODATACOW, 649 "setting datacow"); 650 break; 651 case Opt_compress_force: 652 case Opt_compress_force_type: 653 compress_force = true; 654 fallthrough; 655 case Opt_compress: 656 case Opt_compress_type: 657 saved_compress_type = btrfs_test_opt(info, 658 COMPRESS) ? 659 info->compress_type : BTRFS_COMPRESS_NONE; 660 saved_compress_force = 661 btrfs_test_opt(info, FORCE_COMPRESS); 662 saved_compress_level = info->compress_level; 663 if (token == Opt_compress || 664 token == Opt_compress_force || 665 strncmp(args[0].from, "zlib", 4) == 0) { 666 compress_type = "zlib"; 667 668 info->compress_type = BTRFS_COMPRESS_ZLIB; 669 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 670 /* 671 * args[0] contains uninitialized data since 672 * for these tokens we don't expect any 673 * parameter. 674 */ 675 if (token != Opt_compress && 676 token != Opt_compress_force) 677 info->compress_level = 678 btrfs_compress_str2level( 679 BTRFS_COMPRESS_ZLIB, 680 args[0].from + 4); 681 btrfs_set_opt(info->mount_opt, COMPRESS); 682 btrfs_clear_opt(info->mount_opt, NODATACOW); 683 btrfs_clear_opt(info->mount_opt, NODATASUM); 684 no_compress = 0; 685 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 686 compress_type = "lzo"; 687 info->compress_type = BTRFS_COMPRESS_LZO; 688 info->compress_level = 0; 689 btrfs_set_opt(info->mount_opt, COMPRESS); 690 btrfs_clear_opt(info->mount_opt, NODATACOW); 691 btrfs_clear_opt(info->mount_opt, NODATASUM); 692 btrfs_set_fs_incompat(info, COMPRESS_LZO); 693 no_compress = 0; 694 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 695 compress_type = "zstd"; 696 info->compress_type = BTRFS_COMPRESS_ZSTD; 697 info->compress_level = 698 btrfs_compress_str2level( 699 BTRFS_COMPRESS_ZSTD, 700 args[0].from + 4); 701 btrfs_set_opt(info->mount_opt, COMPRESS); 702 btrfs_clear_opt(info->mount_opt, NODATACOW); 703 btrfs_clear_opt(info->mount_opt, NODATASUM); 704 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 705 no_compress = 0; 706 } else if (strncmp(args[0].from, "no", 2) == 0) { 707 compress_type = "no"; 708 info->compress_level = 0; 709 info->compress_type = 0; 710 btrfs_clear_opt(info->mount_opt, COMPRESS); 711 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 712 compress_force = false; 713 no_compress++; 714 } else { 715 ret = -EINVAL; 716 goto out; 717 } 718 719 if (compress_force) { 720 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 721 } else { 722 /* 723 * If we remount from compress-force=xxx to 724 * compress=xxx, we need clear FORCE_COMPRESS 725 * flag, otherwise, there is no way for users 726 * to disable forcible compression separately. 727 */ 728 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 729 } 730 if (no_compress == 1) { 731 btrfs_info(info, "use no compression"); 732 } else if ((info->compress_type != saved_compress_type) || 733 (compress_force != saved_compress_force) || 734 (info->compress_level != saved_compress_level)) { 735 btrfs_info(info, "%s %s compression, level %d", 736 (compress_force) ? "force" : "use", 737 compress_type, info->compress_level); 738 } 739 compress_force = false; 740 break; 741 case Opt_ssd: 742 btrfs_set_and_info(info, SSD, 743 "enabling ssd optimizations"); 744 btrfs_clear_opt(info->mount_opt, NOSSD); 745 break; 746 case Opt_ssd_spread: 747 btrfs_set_and_info(info, SSD, 748 "enabling ssd optimizations"); 749 btrfs_set_and_info(info, SSD_SPREAD, 750 "using spread ssd allocation scheme"); 751 btrfs_clear_opt(info->mount_opt, NOSSD); 752 break; 753 case Opt_nossd: 754 btrfs_set_opt(info->mount_opt, NOSSD); 755 btrfs_clear_and_info(info, SSD, 756 "not using ssd optimizations"); 757 fallthrough; 758 case Opt_nossd_spread: 759 btrfs_clear_and_info(info, SSD_SPREAD, 760 "not using spread ssd allocation scheme"); 761 break; 762 case Opt_barrier: 763 btrfs_clear_and_info(info, NOBARRIER, 764 "turning on barriers"); 765 break; 766 case Opt_nobarrier: 767 btrfs_set_and_info(info, NOBARRIER, 768 "turning off barriers"); 769 break; 770 case Opt_thread_pool: 771 ret = match_int(&args[0], &intarg); 772 if (ret) { 773 goto out; 774 } else if (intarg == 0) { 775 ret = -EINVAL; 776 goto out; 777 } 778 info->thread_pool_size = intarg; 779 break; 780 case Opt_max_inline: 781 num = match_strdup(&args[0]); 782 if (num) { 783 info->max_inline = memparse(num, NULL); 784 kfree(num); 785 786 if (info->max_inline) { 787 info->max_inline = min_t(u64, 788 info->max_inline, 789 info->sectorsize); 790 } 791 btrfs_info(info, "max_inline at %llu", 792 info->max_inline); 793 } else { 794 ret = -ENOMEM; 795 goto out; 796 } 797 break; 798 case Opt_acl: 799 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 800 info->sb->s_flags |= SB_POSIXACL; 801 break; 802 #else 803 btrfs_err(info, "support for ACL not compiled in!"); 804 ret = -EINVAL; 805 goto out; 806 #endif 807 case Opt_noacl: 808 info->sb->s_flags &= ~SB_POSIXACL; 809 break; 810 case Opt_notreelog: 811 btrfs_set_and_info(info, NOTREELOG, 812 "disabling tree log"); 813 break; 814 case Opt_treelog: 815 btrfs_clear_and_info(info, NOTREELOG, 816 "enabling tree log"); 817 break; 818 case Opt_norecovery: 819 case Opt_nologreplay: 820 btrfs_warn(info, 821 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 822 btrfs_set_and_info(info, NOLOGREPLAY, 823 "disabling log replay at mount time"); 824 break; 825 case Opt_flushoncommit: 826 btrfs_set_and_info(info, FLUSHONCOMMIT, 827 "turning on flush-on-commit"); 828 break; 829 case Opt_noflushoncommit: 830 btrfs_clear_and_info(info, FLUSHONCOMMIT, 831 "turning off flush-on-commit"); 832 break; 833 case Opt_ratio: 834 ret = match_int(&args[0], &intarg); 835 if (ret) 836 goto out; 837 info->metadata_ratio = intarg; 838 btrfs_info(info, "metadata ratio %u", 839 info->metadata_ratio); 840 break; 841 case Opt_discard: 842 case Opt_discard_mode: 843 if (token == Opt_discard || 844 strcmp(args[0].from, "sync") == 0) { 845 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 846 btrfs_set_and_info(info, DISCARD_SYNC, 847 "turning on sync discard"); 848 } else if (strcmp(args[0].from, "async") == 0) { 849 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 850 btrfs_set_and_info(info, DISCARD_ASYNC, 851 "turning on async discard"); 852 } else { 853 ret = -EINVAL; 854 goto out; 855 } 856 break; 857 case Opt_nodiscard: 858 btrfs_clear_and_info(info, DISCARD_SYNC, 859 "turning off discard"); 860 btrfs_clear_and_info(info, DISCARD_ASYNC, 861 "turning off async discard"); 862 break; 863 case Opt_space_cache: 864 case Opt_space_cache_version: 865 if (token == Opt_space_cache || 866 strcmp(args[0].from, "v1") == 0) { 867 btrfs_clear_opt(info->mount_opt, 868 FREE_SPACE_TREE); 869 btrfs_set_and_info(info, SPACE_CACHE, 870 "enabling disk space caching"); 871 } else if (strcmp(args[0].from, "v2") == 0) { 872 btrfs_clear_opt(info->mount_opt, 873 SPACE_CACHE); 874 btrfs_set_and_info(info, FREE_SPACE_TREE, 875 "enabling free space tree"); 876 } else { 877 ret = -EINVAL; 878 goto out; 879 } 880 break; 881 case Opt_rescan_uuid_tree: 882 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 883 break; 884 case Opt_no_space_cache: 885 if (btrfs_test_opt(info, SPACE_CACHE)) { 886 btrfs_clear_and_info(info, SPACE_CACHE, 887 "disabling disk space caching"); 888 } 889 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 890 btrfs_clear_and_info(info, FREE_SPACE_TREE, 891 "disabling free space tree"); 892 } 893 break; 894 case Opt_inode_cache: 895 case Opt_noinode_cache: 896 btrfs_warn(info, 897 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 898 break; 899 case Opt_clear_cache: 900 btrfs_set_and_info(info, CLEAR_CACHE, 901 "force clearing of disk cache"); 902 break; 903 case Opt_user_subvol_rm_allowed: 904 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 905 break; 906 case Opt_enospc_debug: 907 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 908 break; 909 case Opt_noenospc_debug: 910 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 911 break; 912 case Opt_defrag: 913 btrfs_set_and_info(info, AUTO_DEFRAG, 914 "enabling auto defrag"); 915 break; 916 case Opt_nodefrag: 917 btrfs_clear_and_info(info, AUTO_DEFRAG, 918 "disabling auto defrag"); 919 break; 920 case Opt_recovery: 921 case Opt_usebackuproot: 922 btrfs_warn(info, 923 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 924 token == Opt_recovery ? "recovery" : 925 "usebackuproot"); 926 btrfs_info(info, 927 "trying to use backup root at mount time"); 928 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 929 break; 930 case Opt_skip_balance: 931 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 932 break; 933 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 934 case Opt_check_integrity_including_extent_data: 935 btrfs_info(info, 936 "enabling check integrity including extent data"); 937 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 938 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 939 break; 940 case Opt_check_integrity: 941 btrfs_info(info, "enabling check integrity"); 942 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 943 break; 944 case Opt_check_integrity_print_mask: 945 ret = match_int(&args[0], &intarg); 946 if (ret) 947 goto out; 948 info->check_integrity_print_mask = intarg; 949 btrfs_info(info, "check_integrity_print_mask 0x%x", 950 info->check_integrity_print_mask); 951 break; 952 #else 953 case Opt_check_integrity_including_extent_data: 954 case Opt_check_integrity: 955 case Opt_check_integrity_print_mask: 956 btrfs_err(info, 957 "support for check_integrity* not compiled in!"); 958 ret = -EINVAL; 959 goto out; 960 #endif 961 case Opt_fatal_errors: 962 if (strcmp(args[0].from, "panic") == 0) 963 btrfs_set_opt(info->mount_opt, 964 PANIC_ON_FATAL_ERROR); 965 else if (strcmp(args[0].from, "bug") == 0) 966 btrfs_clear_opt(info->mount_opt, 967 PANIC_ON_FATAL_ERROR); 968 else { 969 ret = -EINVAL; 970 goto out; 971 } 972 break; 973 case Opt_commit_interval: 974 intarg = 0; 975 ret = match_int(&args[0], &intarg); 976 if (ret) 977 goto out; 978 if (intarg == 0) { 979 btrfs_info(info, 980 "using default commit interval %us", 981 BTRFS_DEFAULT_COMMIT_INTERVAL); 982 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 983 } else if (intarg > 300) { 984 btrfs_warn(info, "excessive commit interval %d", 985 intarg); 986 } 987 info->commit_interval = intarg; 988 break; 989 case Opt_rescue: 990 ret = parse_rescue_options(info, args[0].from); 991 if (ret < 0) 992 goto out; 993 break; 994 #ifdef CONFIG_BTRFS_DEBUG 995 case Opt_fragment_all: 996 btrfs_info(info, "fragmenting all space"); 997 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 998 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 999 break; 1000 case Opt_fragment_metadata: 1001 btrfs_info(info, "fragmenting metadata"); 1002 btrfs_set_opt(info->mount_opt, 1003 FRAGMENT_METADATA); 1004 break; 1005 case Opt_fragment_data: 1006 btrfs_info(info, "fragmenting data"); 1007 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1008 break; 1009 #endif 1010 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1011 case Opt_ref_verify: 1012 btrfs_info(info, "doing ref verification"); 1013 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1014 break; 1015 #endif 1016 case Opt_err: 1017 btrfs_err(info, "unrecognized mount option '%s'", p); 1018 ret = -EINVAL; 1019 goto out; 1020 default: 1021 break; 1022 } 1023 } 1024 check: 1025 /* We're read-only, don't have to check. */ 1026 if (new_flags & SB_RDONLY) 1027 goto out; 1028 1029 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1030 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1031 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1032 ret = -EINVAL; 1033 out: 1034 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1035 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1036 !btrfs_test_opt(info, CLEAR_CACHE)) { 1037 btrfs_err(info, "cannot disable free space tree"); 1038 ret = -EINVAL; 1039 1040 } 1041 if (!ret) 1042 ret = btrfs_check_mountopts_zoned(info); 1043 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1044 btrfs_info(info, "disk space caching is enabled"); 1045 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1046 btrfs_info(info, "using free space tree"); 1047 return ret; 1048 } 1049 1050 /* 1051 * Parse mount options that are required early in the mount process. 1052 * 1053 * All other options will be parsed on much later in the mount process and 1054 * only when we need to allocate a new super block. 1055 */ 1056 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1057 void *holder) 1058 { 1059 substring_t args[MAX_OPT_ARGS]; 1060 char *device_name, *opts, *orig, *p; 1061 struct btrfs_device *device = NULL; 1062 int error = 0; 1063 1064 lockdep_assert_held(&uuid_mutex); 1065 1066 if (!options) 1067 return 0; 1068 1069 /* 1070 * strsep changes the string, duplicate it because btrfs_parse_options 1071 * gets called later 1072 */ 1073 opts = kstrdup(options, GFP_KERNEL); 1074 if (!opts) 1075 return -ENOMEM; 1076 orig = opts; 1077 1078 while ((p = strsep(&opts, ",")) != NULL) { 1079 int token; 1080 1081 if (!*p) 1082 continue; 1083 1084 token = match_token(p, tokens, args); 1085 if (token == Opt_device) { 1086 device_name = match_strdup(&args[0]); 1087 if (!device_name) { 1088 error = -ENOMEM; 1089 goto out; 1090 } 1091 device = btrfs_scan_one_device(device_name, flags, 1092 holder); 1093 kfree(device_name); 1094 if (IS_ERR(device)) { 1095 error = PTR_ERR(device); 1096 goto out; 1097 } 1098 } 1099 } 1100 1101 out: 1102 kfree(orig); 1103 return error; 1104 } 1105 1106 /* 1107 * Parse mount options that are related to subvolume id 1108 * 1109 * The value is later passed to mount_subvol() 1110 */ 1111 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1112 u64 *subvol_objectid) 1113 { 1114 substring_t args[MAX_OPT_ARGS]; 1115 char *opts, *orig, *p; 1116 int error = 0; 1117 u64 subvolid; 1118 1119 if (!options) 1120 return 0; 1121 1122 /* 1123 * strsep changes the string, duplicate it because 1124 * btrfs_parse_device_options gets called later 1125 */ 1126 opts = kstrdup(options, GFP_KERNEL); 1127 if (!opts) 1128 return -ENOMEM; 1129 orig = opts; 1130 1131 while ((p = strsep(&opts, ",")) != NULL) { 1132 int token; 1133 if (!*p) 1134 continue; 1135 1136 token = match_token(p, tokens, args); 1137 switch (token) { 1138 case Opt_subvol: 1139 kfree(*subvol_name); 1140 *subvol_name = match_strdup(&args[0]); 1141 if (!*subvol_name) { 1142 error = -ENOMEM; 1143 goto out; 1144 } 1145 break; 1146 case Opt_subvolid: 1147 error = match_u64(&args[0], &subvolid); 1148 if (error) 1149 goto out; 1150 1151 /* we want the original fs_tree */ 1152 if (subvolid == 0) 1153 subvolid = BTRFS_FS_TREE_OBJECTID; 1154 1155 *subvol_objectid = subvolid; 1156 break; 1157 default: 1158 break; 1159 } 1160 } 1161 1162 out: 1163 kfree(orig); 1164 return error; 1165 } 1166 1167 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1168 u64 subvol_objectid) 1169 { 1170 struct btrfs_root *root = fs_info->tree_root; 1171 struct btrfs_root *fs_root = NULL; 1172 struct btrfs_root_ref *root_ref; 1173 struct btrfs_inode_ref *inode_ref; 1174 struct btrfs_key key; 1175 struct btrfs_path *path = NULL; 1176 char *name = NULL, *ptr; 1177 u64 dirid; 1178 int len; 1179 int ret; 1180 1181 path = btrfs_alloc_path(); 1182 if (!path) { 1183 ret = -ENOMEM; 1184 goto err; 1185 } 1186 1187 name = kmalloc(PATH_MAX, GFP_KERNEL); 1188 if (!name) { 1189 ret = -ENOMEM; 1190 goto err; 1191 } 1192 ptr = name + PATH_MAX - 1; 1193 ptr[0] = '\0'; 1194 1195 /* 1196 * Walk up the subvolume trees in the tree of tree roots by root 1197 * backrefs until we hit the top-level subvolume. 1198 */ 1199 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1200 key.objectid = subvol_objectid; 1201 key.type = BTRFS_ROOT_BACKREF_KEY; 1202 key.offset = (u64)-1; 1203 1204 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1205 if (ret < 0) { 1206 goto err; 1207 } else if (ret > 0) { 1208 ret = btrfs_previous_item(root, path, subvol_objectid, 1209 BTRFS_ROOT_BACKREF_KEY); 1210 if (ret < 0) { 1211 goto err; 1212 } else if (ret > 0) { 1213 ret = -ENOENT; 1214 goto err; 1215 } 1216 } 1217 1218 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1219 subvol_objectid = key.offset; 1220 1221 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1222 struct btrfs_root_ref); 1223 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1224 ptr -= len + 1; 1225 if (ptr < name) { 1226 ret = -ENAMETOOLONG; 1227 goto err; 1228 } 1229 read_extent_buffer(path->nodes[0], ptr + 1, 1230 (unsigned long)(root_ref + 1), len); 1231 ptr[0] = '/'; 1232 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1233 btrfs_release_path(path); 1234 1235 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1236 if (IS_ERR(fs_root)) { 1237 ret = PTR_ERR(fs_root); 1238 fs_root = NULL; 1239 goto err; 1240 } 1241 1242 /* 1243 * Walk up the filesystem tree by inode refs until we hit the 1244 * root directory. 1245 */ 1246 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1247 key.objectid = dirid; 1248 key.type = BTRFS_INODE_REF_KEY; 1249 key.offset = (u64)-1; 1250 1251 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1252 if (ret < 0) { 1253 goto err; 1254 } else if (ret > 0) { 1255 ret = btrfs_previous_item(fs_root, path, dirid, 1256 BTRFS_INODE_REF_KEY); 1257 if (ret < 0) { 1258 goto err; 1259 } else if (ret > 0) { 1260 ret = -ENOENT; 1261 goto err; 1262 } 1263 } 1264 1265 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1266 dirid = key.offset; 1267 1268 inode_ref = btrfs_item_ptr(path->nodes[0], 1269 path->slots[0], 1270 struct btrfs_inode_ref); 1271 len = btrfs_inode_ref_name_len(path->nodes[0], 1272 inode_ref); 1273 ptr -= len + 1; 1274 if (ptr < name) { 1275 ret = -ENAMETOOLONG; 1276 goto err; 1277 } 1278 read_extent_buffer(path->nodes[0], ptr + 1, 1279 (unsigned long)(inode_ref + 1), len); 1280 ptr[0] = '/'; 1281 btrfs_release_path(path); 1282 } 1283 btrfs_put_root(fs_root); 1284 fs_root = NULL; 1285 } 1286 1287 btrfs_free_path(path); 1288 if (ptr == name + PATH_MAX - 1) { 1289 name[0] = '/'; 1290 name[1] = '\0'; 1291 } else { 1292 memmove(name, ptr, name + PATH_MAX - ptr); 1293 } 1294 return name; 1295 1296 err: 1297 btrfs_put_root(fs_root); 1298 btrfs_free_path(path); 1299 kfree(name); 1300 return ERR_PTR(ret); 1301 } 1302 1303 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1304 { 1305 struct btrfs_root *root = fs_info->tree_root; 1306 struct btrfs_dir_item *di; 1307 struct btrfs_path *path; 1308 struct btrfs_key location; 1309 u64 dir_id; 1310 1311 path = btrfs_alloc_path(); 1312 if (!path) 1313 return -ENOMEM; 1314 1315 /* 1316 * Find the "default" dir item which points to the root item that we 1317 * will mount by default if we haven't been given a specific subvolume 1318 * to mount. 1319 */ 1320 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1321 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1322 if (IS_ERR(di)) { 1323 btrfs_free_path(path); 1324 return PTR_ERR(di); 1325 } 1326 if (!di) { 1327 /* 1328 * Ok the default dir item isn't there. This is weird since 1329 * it's always been there, but don't freak out, just try and 1330 * mount the top-level subvolume. 1331 */ 1332 btrfs_free_path(path); 1333 *objectid = BTRFS_FS_TREE_OBJECTID; 1334 return 0; 1335 } 1336 1337 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1338 btrfs_free_path(path); 1339 *objectid = location.objectid; 1340 return 0; 1341 } 1342 1343 static int btrfs_fill_super(struct super_block *sb, 1344 struct btrfs_fs_devices *fs_devices, 1345 void *data) 1346 { 1347 struct inode *inode; 1348 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1349 int err; 1350 1351 sb->s_maxbytes = MAX_LFS_FILESIZE; 1352 sb->s_magic = BTRFS_SUPER_MAGIC; 1353 sb->s_op = &btrfs_super_ops; 1354 sb->s_d_op = &btrfs_dentry_operations; 1355 sb->s_export_op = &btrfs_export_ops; 1356 sb->s_xattr = btrfs_xattr_handlers; 1357 sb->s_time_gran = 1; 1358 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1359 sb->s_flags |= SB_POSIXACL; 1360 #endif 1361 sb->s_flags |= SB_I_VERSION; 1362 sb->s_iflags |= SB_I_CGROUPWB; 1363 1364 err = super_setup_bdi(sb); 1365 if (err) { 1366 btrfs_err(fs_info, "super_setup_bdi failed"); 1367 return err; 1368 } 1369 1370 err = open_ctree(sb, fs_devices, (char *)data); 1371 if (err) { 1372 btrfs_err(fs_info, "open_ctree failed"); 1373 return err; 1374 } 1375 1376 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1377 if (IS_ERR(inode)) { 1378 err = PTR_ERR(inode); 1379 goto fail_close; 1380 } 1381 1382 sb->s_root = d_make_root(inode); 1383 if (!sb->s_root) { 1384 err = -ENOMEM; 1385 goto fail_close; 1386 } 1387 1388 cleancache_init_fs(sb); 1389 sb->s_flags |= SB_ACTIVE; 1390 return 0; 1391 1392 fail_close: 1393 close_ctree(fs_info); 1394 return err; 1395 } 1396 1397 int btrfs_sync_fs(struct super_block *sb, int wait) 1398 { 1399 struct btrfs_trans_handle *trans; 1400 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1401 struct btrfs_root *root = fs_info->tree_root; 1402 1403 trace_btrfs_sync_fs(fs_info, wait); 1404 1405 if (!wait) { 1406 filemap_flush(fs_info->btree_inode->i_mapping); 1407 return 0; 1408 } 1409 1410 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1411 1412 trans = btrfs_attach_transaction_barrier(root); 1413 if (IS_ERR(trans)) { 1414 /* no transaction, don't bother */ 1415 if (PTR_ERR(trans) == -ENOENT) { 1416 /* 1417 * Exit unless we have some pending changes 1418 * that need to go through commit 1419 */ 1420 if (fs_info->pending_changes == 0) 1421 return 0; 1422 /* 1423 * A non-blocking test if the fs is frozen. We must not 1424 * start a new transaction here otherwise a deadlock 1425 * happens. The pending operations are delayed to the 1426 * next commit after thawing. 1427 */ 1428 if (sb_start_write_trylock(sb)) 1429 sb_end_write(sb); 1430 else 1431 return 0; 1432 trans = btrfs_start_transaction(root, 0); 1433 } 1434 if (IS_ERR(trans)) 1435 return PTR_ERR(trans); 1436 } 1437 return btrfs_commit_transaction(trans); 1438 } 1439 1440 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1441 { 1442 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1443 *printed = true; 1444 } 1445 1446 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1447 { 1448 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1449 const char *compress_type; 1450 const char *subvol_name; 1451 bool printed = false; 1452 1453 if (btrfs_test_opt(info, DEGRADED)) 1454 seq_puts(seq, ",degraded"); 1455 if (btrfs_test_opt(info, NODATASUM)) 1456 seq_puts(seq, ",nodatasum"); 1457 if (btrfs_test_opt(info, NODATACOW)) 1458 seq_puts(seq, ",nodatacow"); 1459 if (btrfs_test_opt(info, NOBARRIER)) 1460 seq_puts(seq, ",nobarrier"); 1461 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1462 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1463 if (info->thread_pool_size != min_t(unsigned long, 1464 num_online_cpus() + 2, 8)) 1465 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1466 if (btrfs_test_opt(info, COMPRESS)) { 1467 compress_type = btrfs_compress_type2str(info->compress_type); 1468 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1469 seq_printf(seq, ",compress-force=%s", compress_type); 1470 else 1471 seq_printf(seq, ",compress=%s", compress_type); 1472 if (info->compress_level) 1473 seq_printf(seq, ":%d", info->compress_level); 1474 } 1475 if (btrfs_test_opt(info, NOSSD)) 1476 seq_puts(seq, ",nossd"); 1477 if (btrfs_test_opt(info, SSD_SPREAD)) 1478 seq_puts(seq, ",ssd_spread"); 1479 else if (btrfs_test_opt(info, SSD)) 1480 seq_puts(seq, ",ssd"); 1481 if (btrfs_test_opt(info, NOTREELOG)) 1482 seq_puts(seq, ",notreelog"); 1483 if (btrfs_test_opt(info, NOLOGREPLAY)) 1484 print_rescue_option(seq, "nologreplay", &printed); 1485 if (btrfs_test_opt(info, USEBACKUPROOT)) 1486 print_rescue_option(seq, "usebackuproot", &printed); 1487 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1488 print_rescue_option(seq, "ignorebadroots", &printed); 1489 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1490 print_rescue_option(seq, "ignoredatacsums", &printed); 1491 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1492 seq_puts(seq, ",flushoncommit"); 1493 if (btrfs_test_opt(info, DISCARD_SYNC)) 1494 seq_puts(seq, ",discard"); 1495 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1496 seq_puts(seq, ",discard=async"); 1497 if (!(info->sb->s_flags & SB_POSIXACL)) 1498 seq_puts(seq, ",noacl"); 1499 if (btrfs_free_space_cache_v1_active(info)) 1500 seq_puts(seq, ",space_cache"); 1501 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1502 seq_puts(seq, ",space_cache=v2"); 1503 else 1504 seq_puts(seq, ",nospace_cache"); 1505 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1506 seq_puts(seq, ",rescan_uuid_tree"); 1507 if (btrfs_test_opt(info, CLEAR_CACHE)) 1508 seq_puts(seq, ",clear_cache"); 1509 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1510 seq_puts(seq, ",user_subvol_rm_allowed"); 1511 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1512 seq_puts(seq, ",enospc_debug"); 1513 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1514 seq_puts(seq, ",autodefrag"); 1515 if (btrfs_test_opt(info, SKIP_BALANCE)) 1516 seq_puts(seq, ",skip_balance"); 1517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1518 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1519 seq_puts(seq, ",check_int_data"); 1520 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1521 seq_puts(seq, ",check_int"); 1522 if (info->check_integrity_print_mask) 1523 seq_printf(seq, ",check_int_print_mask=%d", 1524 info->check_integrity_print_mask); 1525 #endif 1526 if (info->metadata_ratio) 1527 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1528 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1529 seq_puts(seq, ",fatal_errors=panic"); 1530 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1531 seq_printf(seq, ",commit=%u", info->commit_interval); 1532 #ifdef CONFIG_BTRFS_DEBUG 1533 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1534 seq_puts(seq, ",fragment=data"); 1535 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1536 seq_puts(seq, ",fragment=metadata"); 1537 #endif 1538 if (btrfs_test_opt(info, REF_VERIFY)) 1539 seq_puts(seq, ",ref_verify"); 1540 seq_printf(seq, ",subvolid=%llu", 1541 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1542 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1543 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1544 if (!IS_ERR(subvol_name)) { 1545 seq_puts(seq, ",subvol="); 1546 seq_escape(seq, subvol_name, " \t\n\\"); 1547 kfree(subvol_name); 1548 } 1549 return 0; 1550 } 1551 1552 static int btrfs_test_super(struct super_block *s, void *data) 1553 { 1554 struct btrfs_fs_info *p = data; 1555 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1556 1557 return fs_info->fs_devices == p->fs_devices; 1558 } 1559 1560 static int btrfs_set_super(struct super_block *s, void *data) 1561 { 1562 int err = set_anon_super(s, data); 1563 if (!err) 1564 s->s_fs_info = data; 1565 return err; 1566 } 1567 1568 /* 1569 * subvolumes are identified by ino 256 1570 */ 1571 static inline int is_subvolume_inode(struct inode *inode) 1572 { 1573 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1574 return 1; 1575 return 0; 1576 } 1577 1578 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1579 struct vfsmount *mnt) 1580 { 1581 struct dentry *root; 1582 int ret; 1583 1584 if (!subvol_name) { 1585 if (!subvol_objectid) { 1586 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1587 &subvol_objectid); 1588 if (ret) { 1589 root = ERR_PTR(ret); 1590 goto out; 1591 } 1592 } 1593 subvol_name = btrfs_get_subvol_name_from_objectid( 1594 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1595 if (IS_ERR(subvol_name)) { 1596 root = ERR_CAST(subvol_name); 1597 subvol_name = NULL; 1598 goto out; 1599 } 1600 1601 } 1602 1603 root = mount_subtree(mnt, subvol_name); 1604 /* mount_subtree() drops our reference on the vfsmount. */ 1605 mnt = NULL; 1606 1607 if (!IS_ERR(root)) { 1608 struct super_block *s = root->d_sb; 1609 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1610 struct inode *root_inode = d_inode(root); 1611 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1612 1613 ret = 0; 1614 if (!is_subvolume_inode(root_inode)) { 1615 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1616 subvol_name); 1617 ret = -EINVAL; 1618 } 1619 if (subvol_objectid && root_objectid != subvol_objectid) { 1620 /* 1621 * This will also catch a race condition where a 1622 * subvolume which was passed by ID is renamed and 1623 * another subvolume is renamed over the old location. 1624 */ 1625 btrfs_err(fs_info, 1626 "subvol '%s' does not match subvolid %llu", 1627 subvol_name, subvol_objectid); 1628 ret = -EINVAL; 1629 } 1630 if (ret) { 1631 dput(root); 1632 root = ERR_PTR(ret); 1633 deactivate_locked_super(s); 1634 } 1635 } 1636 1637 out: 1638 mntput(mnt); 1639 kfree(subvol_name); 1640 return root; 1641 } 1642 1643 /* 1644 * Find a superblock for the given device / mount point. 1645 * 1646 * Note: This is based on mount_bdev from fs/super.c with a few additions 1647 * for multiple device setup. Make sure to keep it in sync. 1648 */ 1649 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1650 int flags, const char *device_name, void *data) 1651 { 1652 struct block_device *bdev = NULL; 1653 struct super_block *s; 1654 struct btrfs_device *device = NULL; 1655 struct btrfs_fs_devices *fs_devices = NULL; 1656 struct btrfs_fs_info *fs_info = NULL; 1657 void *new_sec_opts = NULL; 1658 fmode_t mode = FMODE_READ; 1659 int error = 0; 1660 1661 if (!(flags & SB_RDONLY)) 1662 mode |= FMODE_WRITE; 1663 1664 if (data) { 1665 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1666 if (error) 1667 return ERR_PTR(error); 1668 } 1669 1670 /* 1671 * Setup a dummy root and fs_info for test/set super. This is because 1672 * we don't actually fill this stuff out until open_ctree, but we need 1673 * then open_ctree will properly initialize the file system specific 1674 * settings later. btrfs_init_fs_info initializes the static elements 1675 * of the fs_info (locks and such) to make cleanup easier if we find a 1676 * superblock with our given fs_devices later on at sget() time. 1677 */ 1678 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1679 if (!fs_info) { 1680 error = -ENOMEM; 1681 goto error_sec_opts; 1682 } 1683 btrfs_init_fs_info(fs_info); 1684 1685 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1686 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1687 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1688 error = -ENOMEM; 1689 goto error_fs_info; 1690 } 1691 1692 mutex_lock(&uuid_mutex); 1693 error = btrfs_parse_device_options(data, mode, fs_type); 1694 if (error) { 1695 mutex_unlock(&uuid_mutex); 1696 goto error_fs_info; 1697 } 1698 1699 device = btrfs_scan_one_device(device_name, mode, fs_type); 1700 if (IS_ERR(device)) { 1701 mutex_unlock(&uuid_mutex); 1702 error = PTR_ERR(device); 1703 goto error_fs_info; 1704 } 1705 1706 fs_devices = device->fs_devices; 1707 fs_info->fs_devices = fs_devices; 1708 1709 error = btrfs_open_devices(fs_devices, mode, fs_type); 1710 mutex_unlock(&uuid_mutex); 1711 if (error) 1712 goto error_fs_info; 1713 1714 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1715 error = -EACCES; 1716 goto error_close_devices; 1717 } 1718 1719 bdev = fs_devices->latest_bdev; 1720 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1721 fs_info); 1722 if (IS_ERR(s)) { 1723 error = PTR_ERR(s); 1724 goto error_close_devices; 1725 } 1726 1727 if (s->s_root) { 1728 btrfs_close_devices(fs_devices); 1729 btrfs_free_fs_info(fs_info); 1730 if ((flags ^ s->s_flags) & SB_RDONLY) 1731 error = -EBUSY; 1732 } else { 1733 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1734 btrfs_sb(s)->bdev_holder = fs_type; 1735 if (!strstr(crc32c_impl(), "generic")) 1736 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1737 error = btrfs_fill_super(s, fs_devices, data); 1738 } 1739 if (!error) 1740 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1741 security_free_mnt_opts(&new_sec_opts); 1742 if (error) { 1743 deactivate_locked_super(s); 1744 return ERR_PTR(error); 1745 } 1746 1747 return dget(s->s_root); 1748 1749 error_close_devices: 1750 btrfs_close_devices(fs_devices); 1751 error_fs_info: 1752 btrfs_free_fs_info(fs_info); 1753 error_sec_opts: 1754 security_free_mnt_opts(&new_sec_opts); 1755 return ERR_PTR(error); 1756 } 1757 1758 /* 1759 * Mount function which is called by VFS layer. 1760 * 1761 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1762 * which needs vfsmount* of device's root (/). This means device's root has to 1763 * be mounted internally in any case. 1764 * 1765 * Operation flow: 1766 * 1. Parse subvol id related options for later use in mount_subvol(). 1767 * 1768 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1769 * 1770 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1771 * first place. In order to avoid calling btrfs_mount() again, we use 1772 * different file_system_type which is not registered to VFS by 1773 * register_filesystem() (btrfs_root_fs_type). As a result, 1774 * btrfs_mount_root() is called. The return value will be used by 1775 * mount_subtree() in mount_subvol(). 1776 * 1777 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1778 * "btrfs subvolume set-default", mount_subvol() is called always. 1779 */ 1780 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1781 const char *device_name, void *data) 1782 { 1783 struct vfsmount *mnt_root; 1784 struct dentry *root; 1785 char *subvol_name = NULL; 1786 u64 subvol_objectid = 0; 1787 int error = 0; 1788 1789 error = btrfs_parse_subvol_options(data, &subvol_name, 1790 &subvol_objectid); 1791 if (error) { 1792 kfree(subvol_name); 1793 return ERR_PTR(error); 1794 } 1795 1796 /* mount device's root (/) */ 1797 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1798 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1799 if (flags & SB_RDONLY) { 1800 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1801 flags & ~SB_RDONLY, device_name, data); 1802 } else { 1803 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1804 flags | SB_RDONLY, device_name, data); 1805 if (IS_ERR(mnt_root)) { 1806 root = ERR_CAST(mnt_root); 1807 kfree(subvol_name); 1808 goto out; 1809 } 1810 1811 down_write(&mnt_root->mnt_sb->s_umount); 1812 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1813 up_write(&mnt_root->mnt_sb->s_umount); 1814 if (error < 0) { 1815 root = ERR_PTR(error); 1816 mntput(mnt_root); 1817 kfree(subvol_name); 1818 goto out; 1819 } 1820 } 1821 } 1822 if (IS_ERR(mnt_root)) { 1823 root = ERR_CAST(mnt_root); 1824 kfree(subvol_name); 1825 goto out; 1826 } 1827 1828 /* mount_subvol() will free subvol_name and mnt_root */ 1829 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1830 1831 out: 1832 return root; 1833 } 1834 1835 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1836 u32 new_pool_size, u32 old_pool_size) 1837 { 1838 if (new_pool_size == old_pool_size) 1839 return; 1840 1841 fs_info->thread_pool_size = new_pool_size; 1842 1843 btrfs_info(fs_info, "resize thread pool %d -> %d", 1844 old_pool_size, new_pool_size); 1845 1846 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1847 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1848 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1849 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1850 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1851 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1852 new_pool_size); 1853 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1854 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1855 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1856 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1857 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1858 new_pool_size); 1859 } 1860 1861 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1862 unsigned long old_opts, int flags) 1863 { 1864 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1865 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1866 (flags & SB_RDONLY))) { 1867 /* wait for any defraggers to finish */ 1868 wait_event(fs_info->transaction_wait, 1869 (atomic_read(&fs_info->defrag_running) == 0)); 1870 if (flags & SB_RDONLY) 1871 sync_filesystem(fs_info->sb); 1872 } 1873 } 1874 1875 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1876 unsigned long old_opts) 1877 { 1878 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1879 1880 /* 1881 * We need to cleanup all defragable inodes if the autodefragment is 1882 * close or the filesystem is read only. 1883 */ 1884 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1885 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1886 btrfs_cleanup_defrag_inodes(fs_info); 1887 } 1888 1889 /* If we toggled discard async */ 1890 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1891 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1892 btrfs_discard_resume(fs_info); 1893 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1894 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1895 btrfs_discard_cleanup(fs_info); 1896 1897 /* If we toggled space cache */ 1898 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1899 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1900 } 1901 1902 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1903 { 1904 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1905 unsigned old_flags = sb->s_flags; 1906 unsigned long old_opts = fs_info->mount_opt; 1907 unsigned long old_compress_type = fs_info->compress_type; 1908 u64 old_max_inline = fs_info->max_inline; 1909 u32 old_thread_pool_size = fs_info->thread_pool_size; 1910 u32 old_metadata_ratio = fs_info->metadata_ratio; 1911 int ret; 1912 1913 sync_filesystem(sb); 1914 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1915 1916 if (data) { 1917 void *new_sec_opts = NULL; 1918 1919 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1920 if (!ret) 1921 ret = security_sb_remount(sb, new_sec_opts); 1922 security_free_mnt_opts(&new_sec_opts); 1923 if (ret) 1924 goto restore; 1925 } 1926 1927 ret = btrfs_parse_options(fs_info, data, *flags); 1928 if (ret) 1929 goto restore; 1930 1931 btrfs_remount_begin(fs_info, old_opts, *flags); 1932 btrfs_resize_thread_pool(fs_info, 1933 fs_info->thread_pool_size, old_thread_pool_size); 1934 1935 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1936 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1937 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 1938 btrfs_warn(fs_info, 1939 "remount supports changing free space tree only from ro to rw"); 1940 /* Make sure free space cache options match the state on disk */ 1941 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1942 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1943 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1944 } 1945 if (btrfs_free_space_cache_v1_active(fs_info)) { 1946 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1947 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1948 } 1949 } 1950 1951 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1952 goto out; 1953 1954 if (*flags & SB_RDONLY) { 1955 /* 1956 * this also happens on 'umount -rf' or on shutdown, when 1957 * the filesystem is busy. 1958 */ 1959 cancel_work_sync(&fs_info->async_reclaim_work); 1960 cancel_work_sync(&fs_info->async_data_reclaim_work); 1961 1962 btrfs_discard_cleanup(fs_info); 1963 1964 /* wait for the uuid_scan task to finish */ 1965 down(&fs_info->uuid_tree_rescan_sem); 1966 /* avoid complains from lockdep et al. */ 1967 up(&fs_info->uuid_tree_rescan_sem); 1968 1969 btrfs_set_sb_rdonly(sb); 1970 1971 /* 1972 * Setting SB_RDONLY will put the cleaner thread to 1973 * sleep at the next loop if it's already active. 1974 * If it's already asleep, we'll leave unused block 1975 * groups on disk until we're mounted read-write again 1976 * unless we clean them up here. 1977 */ 1978 btrfs_delete_unused_bgs(fs_info); 1979 1980 /* 1981 * The cleaner task could be already running before we set the 1982 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 1983 * We must make sure that after we finish the remount, i.e. after 1984 * we call btrfs_commit_super(), the cleaner can no longer start 1985 * a transaction - either because it was dropping a dead root, 1986 * running delayed iputs or deleting an unused block group (the 1987 * cleaner picked a block group from the list of unused block 1988 * groups before we were able to in the previous call to 1989 * btrfs_delete_unused_bgs()). 1990 */ 1991 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 1992 TASK_UNINTERRUPTIBLE); 1993 1994 /* 1995 * We've set the superblock to RO mode, so we might have made 1996 * the cleaner task sleep without running all pending delayed 1997 * iputs. Go through all the delayed iputs here, so that if an 1998 * unmount happens without remounting RW we don't end up at 1999 * finishing close_ctree() with a non-empty list of delayed 2000 * iputs. 2001 */ 2002 btrfs_run_delayed_iputs(fs_info); 2003 2004 btrfs_dev_replace_suspend_for_unmount(fs_info); 2005 btrfs_scrub_cancel(fs_info); 2006 btrfs_pause_balance(fs_info); 2007 2008 /* 2009 * Pause the qgroup rescan worker if it is running. We don't want 2010 * it to be still running after we are in RO mode, as after that, 2011 * by the time we unmount, it might have left a transaction open, 2012 * so we would leak the transaction and/or crash. 2013 */ 2014 btrfs_qgroup_wait_for_completion(fs_info, false); 2015 2016 ret = btrfs_commit_super(fs_info); 2017 if (ret) 2018 goto restore; 2019 } else { 2020 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2021 btrfs_err(fs_info, 2022 "Remounting read-write after error is not allowed"); 2023 ret = -EINVAL; 2024 goto restore; 2025 } 2026 if (fs_info->fs_devices->rw_devices == 0) { 2027 ret = -EACCES; 2028 goto restore; 2029 } 2030 2031 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2032 btrfs_warn(fs_info, 2033 "too many missing devices, writable remount is not allowed"); 2034 ret = -EACCES; 2035 goto restore; 2036 } 2037 2038 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2039 btrfs_warn(fs_info, 2040 "mount required to replay tree-log, cannot remount read-write"); 2041 ret = -EINVAL; 2042 goto restore; 2043 } 2044 if (fs_info->sectorsize < PAGE_SIZE) { 2045 btrfs_warn(fs_info, 2046 "read-write mount is not yet allowed for sectorsize %u page size %lu", 2047 fs_info->sectorsize, PAGE_SIZE); 2048 ret = -EINVAL; 2049 goto restore; 2050 } 2051 2052 /* 2053 * NOTE: when remounting with a change that does writes, don't 2054 * put it anywhere above this point, as we are not sure to be 2055 * safe to write until we pass the above checks. 2056 */ 2057 ret = btrfs_start_pre_rw_mount(fs_info); 2058 if (ret) 2059 goto restore; 2060 2061 btrfs_clear_sb_rdonly(sb); 2062 2063 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2064 } 2065 out: 2066 /* 2067 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2068 * since the absence of the flag means it can be toggled off by remount. 2069 */ 2070 *flags |= SB_I_VERSION; 2071 2072 wake_up_process(fs_info->transaction_kthread); 2073 btrfs_remount_cleanup(fs_info, old_opts); 2074 btrfs_clear_oneshot_options(fs_info); 2075 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2076 2077 return 0; 2078 2079 restore: 2080 /* We've hit an error - don't reset SB_RDONLY */ 2081 if (sb_rdonly(sb)) 2082 old_flags |= SB_RDONLY; 2083 if (!(old_flags & SB_RDONLY)) 2084 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2085 sb->s_flags = old_flags; 2086 fs_info->mount_opt = old_opts; 2087 fs_info->compress_type = old_compress_type; 2088 fs_info->max_inline = old_max_inline; 2089 btrfs_resize_thread_pool(fs_info, 2090 old_thread_pool_size, fs_info->thread_pool_size); 2091 fs_info->metadata_ratio = old_metadata_ratio; 2092 btrfs_remount_cleanup(fs_info, old_opts); 2093 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2094 2095 return ret; 2096 } 2097 2098 /* Used to sort the devices by max_avail(descending sort) */ 2099 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 2100 const void *dev_info2) 2101 { 2102 if (((struct btrfs_device_info *)dev_info1)->max_avail > 2103 ((struct btrfs_device_info *)dev_info2)->max_avail) 2104 return -1; 2105 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 2106 ((struct btrfs_device_info *)dev_info2)->max_avail) 2107 return 1; 2108 else 2109 return 0; 2110 } 2111 2112 /* 2113 * sort the devices by max_avail, in which max free extent size of each device 2114 * is stored.(Descending Sort) 2115 */ 2116 static inline void btrfs_descending_sort_devices( 2117 struct btrfs_device_info *devices, 2118 size_t nr_devices) 2119 { 2120 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2121 btrfs_cmp_device_free_bytes, NULL); 2122 } 2123 2124 /* 2125 * The helper to calc the free space on the devices that can be used to store 2126 * file data. 2127 */ 2128 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2129 u64 *free_bytes) 2130 { 2131 struct btrfs_device_info *devices_info; 2132 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2133 struct btrfs_device *device; 2134 u64 type; 2135 u64 avail_space; 2136 u64 min_stripe_size; 2137 int num_stripes = 1; 2138 int i = 0, nr_devices; 2139 const struct btrfs_raid_attr *rattr; 2140 2141 /* 2142 * We aren't under the device list lock, so this is racy-ish, but good 2143 * enough for our purposes. 2144 */ 2145 nr_devices = fs_info->fs_devices->open_devices; 2146 if (!nr_devices) { 2147 smp_mb(); 2148 nr_devices = fs_info->fs_devices->open_devices; 2149 ASSERT(nr_devices); 2150 if (!nr_devices) { 2151 *free_bytes = 0; 2152 return 0; 2153 } 2154 } 2155 2156 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2157 GFP_KERNEL); 2158 if (!devices_info) 2159 return -ENOMEM; 2160 2161 /* calc min stripe number for data space allocation */ 2162 type = btrfs_data_alloc_profile(fs_info); 2163 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2164 2165 if (type & BTRFS_BLOCK_GROUP_RAID0) 2166 num_stripes = nr_devices; 2167 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2168 num_stripes = 2; 2169 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2170 num_stripes = 3; 2171 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2172 num_stripes = 4; 2173 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2174 num_stripes = 4; 2175 2176 /* Adjust for more than 1 stripe per device */ 2177 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2178 2179 rcu_read_lock(); 2180 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2181 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2182 &device->dev_state) || 2183 !device->bdev || 2184 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2185 continue; 2186 2187 if (i >= nr_devices) 2188 break; 2189 2190 avail_space = device->total_bytes - device->bytes_used; 2191 2192 /* align with stripe_len */ 2193 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2194 2195 /* 2196 * In order to avoid overwriting the superblock on the drive, 2197 * btrfs starts at an offset of at least 1MB when doing chunk 2198 * allocation. 2199 * 2200 * This ensures we have at least min_stripe_size free space 2201 * after excluding 1MB. 2202 */ 2203 if (avail_space <= SZ_1M + min_stripe_size) 2204 continue; 2205 2206 avail_space -= SZ_1M; 2207 2208 devices_info[i].dev = device; 2209 devices_info[i].max_avail = avail_space; 2210 2211 i++; 2212 } 2213 rcu_read_unlock(); 2214 2215 nr_devices = i; 2216 2217 btrfs_descending_sort_devices(devices_info, nr_devices); 2218 2219 i = nr_devices - 1; 2220 avail_space = 0; 2221 while (nr_devices >= rattr->devs_min) { 2222 num_stripes = min(num_stripes, nr_devices); 2223 2224 if (devices_info[i].max_avail >= min_stripe_size) { 2225 int j; 2226 u64 alloc_size; 2227 2228 avail_space += devices_info[i].max_avail * num_stripes; 2229 alloc_size = devices_info[i].max_avail; 2230 for (j = i + 1 - num_stripes; j <= i; j++) 2231 devices_info[j].max_avail -= alloc_size; 2232 } 2233 i--; 2234 nr_devices--; 2235 } 2236 2237 kfree(devices_info); 2238 *free_bytes = avail_space; 2239 return 0; 2240 } 2241 2242 /* 2243 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2244 * 2245 * If there's a redundant raid level at DATA block groups, use the respective 2246 * multiplier to scale the sizes. 2247 * 2248 * Unused device space usage is based on simulating the chunk allocator 2249 * algorithm that respects the device sizes and order of allocations. This is 2250 * a close approximation of the actual use but there are other factors that may 2251 * change the result (like a new metadata chunk). 2252 * 2253 * If metadata is exhausted, f_bavail will be 0. 2254 */ 2255 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2256 { 2257 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2258 struct btrfs_super_block *disk_super = fs_info->super_copy; 2259 struct btrfs_space_info *found; 2260 u64 total_used = 0; 2261 u64 total_free_data = 0; 2262 u64 total_free_meta = 0; 2263 u32 bits = fs_info->sectorsize_bits; 2264 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2265 unsigned factor = 1; 2266 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2267 int ret; 2268 u64 thresh = 0; 2269 int mixed = 0; 2270 2271 list_for_each_entry(found, &fs_info->space_info, list) { 2272 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2273 int i; 2274 2275 total_free_data += found->disk_total - found->disk_used; 2276 total_free_data -= 2277 btrfs_account_ro_block_groups_free_space(found); 2278 2279 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2280 if (!list_empty(&found->block_groups[i])) 2281 factor = btrfs_bg_type_to_factor( 2282 btrfs_raid_array[i].bg_flag); 2283 } 2284 } 2285 2286 /* 2287 * Metadata in mixed block goup profiles are accounted in data 2288 */ 2289 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2290 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2291 mixed = 1; 2292 else 2293 total_free_meta += found->disk_total - 2294 found->disk_used; 2295 } 2296 2297 total_used += found->disk_used; 2298 } 2299 2300 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2301 buf->f_blocks >>= bits; 2302 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2303 2304 /* Account global block reserve as used, it's in logical size already */ 2305 spin_lock(&block_rsv->lock); 2306 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2307 if (buf->f_bfree >= block_rsv->size >> bits) 2308 buf->f_bfree -= block_rsv->size >> bits; 2309 else 2310 buf->f_bfree = 0; 2311 spin_unlock(&block_rsv->lock); 2312 2313 buf->f_bavail = div_u64(total_free_data, factor); 2314 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2315 if (ret) 2316 return ret; 2317 buf->f_bavail += div_u64(total_free_data, factor); 2318 buf->f_bavail = buf->f_bavail >> bits; 2319 2320 /* 2321 * We calculate the remaining metadata space minus global reserve. If 2322 * this is (supposedly) smaller than zero, there's no space. But this 2323 * does not hold in practice, the exhausted state happens where's still 2324 * some positive delta. So we apply some guesswork and compare the 2325 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2326 * 2327 * We probably cannot calculate the exact threshold value because this 2328 * depends on the internal reservations requested by various 2329 * operations, so some operations that consume a few metadata will 2330 * succeed even if the Avail is zero. But this is better than the other 2331 * way around. 2332 */ 2333 thresh = SZ_4M; 2334 2335 /* 2336 * We only want to claim there's no available space if we can no longer 2337 * allocate chunks for our metadata profile and our global reserve will 2338 * not fit in the free metadata space. If we aren't ->full then we 2339 * still can allocate chunks and thus are fine using the currently 2340 * calculated f_bavail. 2341 */ 2342 if (!mixed && block_rsv->space_info->full && 2343 total_free_meta - thresh < block_rsv->size) 2344 buf->f_bavail = 0; 2345 2346 buf->f_type = BTRFS_SUPER_MAGIC; 2347 buf->f_bsize = dentry->d_sb->s_blocksize; 2348 buf->f_namelen = BTRFS_NAME_LEN; 2349 2350 /* We treat it as constant endianness (it doesn't matter _which_) 2351 because we want the fsid to come out the same whether mounted 2352 on a big-endian or little-endian host */ 2353 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2354 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2355 /* Mask in the root object ID too, to disambiguate subvols */ 2356 buf->f_fsid.val[0] ^= 2357 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2358 buf->f_fsid.val[1] ^= 2359 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2360 2361 return 0; 2362 } 2363 2364 static void btrfs_kill_super(struct super_block *sb) 2365 { 2366 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2367 kill_anon_super(sb); 2368 btrfs_free_fs_info(fs_info); 2369 } 2370 2371 static struct file_system_type btrfs_fs_type = { 2372 .owner = THIS_MODULE, 2373 .name = "btrfs", 2374 .mount = btrfs_mount, 2375 .kill_sb = btrfs_kill_super, 2376 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2377 }; 2378 2379 static struct file_system_type btrfs_root_fs_type = { 2380 .owner = THIS_MODULE, 2381 .name = "btrfs", 2382 .mount = btrfs_mount_root, 2383 .kill_sb = btrfs_kill_super, 2384 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2385 }; 2386 2387 MODULE_ALIAS_FS("btrfs"); 2388 2389 static int btrfs_control_open(struct inode *inode, struct file *file) 2390 { 2391 /* 2392 * The control file's private_data is used to hold the 2393 * transaction when it is started and is used to keep 2394 * track of whether a transaction is already in progress. 2395 */ 2396 file->private_data = NULL; 2397 return 0; 2398 } 2399 2400 /* 2401 * Used by /dev/btrfs-control for devices ioctls. 2402 */ 2403 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2404 unsigned long arg) 2405 { 2406 struct btrfs_ioctl_vol_args *vol; 2407 struct btrfs_device *device = NULL; 2408 int ret = -ENOTTY; 2409 2410 if (!capable(CAP_SYS_ADMIN)) 2411 return -EPERM; 2412 2413 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2414 if (IS_ERR(vol)) 2415 return PTR_ERR(vol); 2416 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2417 2418 switch (cmd) { 2419 case BTRFS_IOC_SCAN_DEV: 2420 mutex_lock(&uuid_mutex); 2421 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2422 &btrfs_root_fs_type); 2423 ret = PTR_ERR_OR_ZERO(device); 2424 mutex_unlock(&uuid_mutex); 2425 break; 2426 case BTRFS_IOC_FORGET_DEV: 2427 ret = btrfs_forget_devices(vol->name); 2428 break; 2429 case BTRFS_IOC_DEVICES_READY: 2430 mutex_lock(&uuid_mutex); 2431 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2432 &btrfs_root_fs_type); 2433 if (IS_ERR(device)) { 2434 mutex_unlock(&uuid_mutex); 2435 ret = PTR_ERR(device); 2436 break; 2437 } 2438 ret = !(device->fs_devices->num_devices == 2439 device->fs_devices->total_devices); 2440 mutex_unlock(&uuid_mutex); 2441 break; 2442 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2443 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2444 break; 2445 } 2446 2447 kfree(vol); 2448 return ret; 2449 } 2450 2451 static int btrfs_freeze(struct super_block *sb) 2452 { 2453 struct btrfs_trans_handle *trans; 2454 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2455 struct btrfs_root *root = fs_info->tree_root; 2456 2457 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2458 /* 2459 * We don't need a barrier here, we'll wait for any transaction that 2460 * could be in progress on other threads (and do delayed iputs that 2461 * we want to avoid on a frozen filesystem), or do the commit 2462 * ourselves. 2463 */ 2464 trans = btrfs_attach_transaction_barrier(root); 2465 if (IS_ERR(trans)) { 2466 /* no transaction, don't bother */ 2467 if (PTR_ERR(trans) == -ENOENT) 2468 return 0; 2469 return PTR_ERR(trans); 2470 } 2471 return btrfs_commit_transaction(trans); 2472 } 2473 2474 static int btrfs_unfreeze(struct super_block *sb) 2475 { 2476 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2477 2478 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2479 return 0; 2480 } 2481 2482 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2483 { 2484 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2485 struct btrfs_device *dev, *first_dev = NULL; 2486 2487 /* 2488 * Lightweight locking of the devices. We should not need 2489 * device_list_mutex here as we only read the device data and the list 2490 * is protected by RCU. Even if a device is deleted during the list 2491 * traversals, we'll get valid data, the freeing callback will wait at 2492 * least until the rcu_read_unlock. 2493 */ 2494 rcu_read_lock(); 2495 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2496 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2497 continue; 2498 if (!dev->name) 2499 continue; 2500 if (!first_dev || dev->devid < first_dev->devid) 2501 first_dev = dev; 2502 } 2503 2504 if (first_dev) 2505 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2506 else 2507 WARN_ON(1); 2508 rcu_read_unlock(); 2509 return 0; 2510 } 2511 2512 static const struct super_operations btrfs_super_ops = { 2513 .drop_inode = btrfs_drop_inode, 2514 .evict_inode = btrfs_evict_inode, 2515 .put_super = btrfs_put_super, 2516 .sync_fs = btrfs_sync_fs, 2517 .show_options = btrfs_show_options, 2518 .show_devname = btrfs_show_devname, 2519 .alloc_inode = btrfs_alloc_inode, 2520 .destroy_inode = btrfs_destroy_inode, 2521 .free_inode = btrfs_free_inode, 2522 .statfs = btrfs_statfs, 2523 .remount_fs = btrfs_remount, 2524 .freeze_fs = btrfs_freeze, 2525 .unfreeze_fs = btrfs_unfreeze, 2526 }; 2527 2528 static const struct file_operations btrfs_ctl_fops = { 2529 .open = btrfs_control_open, 2530 .unlocked_ioctl = btrfs_control_ioctl, 2531 .compat_ioctl = compat_ptr_ioctl, 2532 .owner = THIS_MODULE, 2533 .llseek = noop_llseek, 2534 }; 2535 2536 static struct miscdevice btrfs_misc = { 2537 .minor = BTRFS_MINOR, 2538 .name = "btrfs-control", 2539 .fops = &btrfs_ctl_fops 2540 }; 2541 2542 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2543 MODULE_ALIAS("devname:btrfs-control"); 2544 2545 static int __init btrfs_interface_init(void) 2546 { 2547 return misc_register(&btrfs_misc); 2548 } 2549 2550 static __cold void btrfs_interface_exit(void) 2551 { 2552 misc_deregister(&btrfs_misc); 2553 } 2554 2555 static void __init btrfs_print_mod_info(void) 2556 { 2557 static const char options[] = "" 2558 #ifdef CONFIG_BTRFS_DEBUG 2559 ", debug=on" 2560 #endif 2561 #ifdef CONFIG_BTRFS_ASSERT 2562 ", assert=on" 2563 #endif 2564 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2565 ", integrity-checker=on" 2566 #endif 2567 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2568 ", ref-verify=on" 2569 #endif 2570 #ifdef CONFIG_BLK_DEV_ZONED 2571 ", zoned=yes" 2572 #else 2573 ", zoned=no" 2574 #endif 2575 ; 2576 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2577 } 2578 2579 static int __init init_btrfs_fs(void) 2580 { 2581 int err; 2582 2583 btrfs_props_init(); 2584 2585 err = btrfs_init_sysfs(); 2586 if (err) 2587 return err; 2588 2589 btrfs_init_compress(); 2590 2591 err = btrfs_init_cachep(); 2592 if (err) 2593 goto free_compress; 2594 2595 err = extent_io_init(); 2596 if (err) 2597 goto free_cachep; 2598 2599 err = extent_state_cache_init(); 2600 if (err) 2601 goto free_extent_io; 2602 2603 err = extent_map_init(); 2604 if (err) 2605 goto free_extent_state_cache; 2606 2607 err = ordered_data_init(); 2608 if (err) 2609 goto free_extent_map; 2610 2611 err = btrfs_delayed_inode_init(); 2612 if (err) 2613 goto free_ordered_data; 2614 2615 err = btrfs_auto_defrag_init(); 2616 if (err) 2617 goto free_delayed_inode; 2618 2619 err = btrfs_delayed_ref_init(); 2620 if (err) 2621 goto free_auto_defrag; 2622 2623 err = btrfs_prelim_ref_init(); 2624 if (err) 2625 goto free_delayed_ref; 2626 2627 err = btrfs_end_io_wq_init(); 2628 if (err) 2629 goto free_prelim_ref; 2630 2631 err = btrfs_interface_init(); 2632 if (err) 2633 goto free_end_io_wq; 2634 2635 btrfs_print_mod_info(); 2636 2637 err = btrfs_run_sanity_tests(); 2638 if (err) 2639 goto unregister_ioctl; 2640 2641 err = register_filesystem(&btrfs_fs_type); 2642 if (err) 2643 goto unregister_ioctl; 2644 2645 return 0; 2646 2647 unregister_ioctl: 2648 btrfs_interface_exit(); 2649 free_end_io_wq: 2650 btrfs_end_io_wq_exit(); 2651 free_prelim_ref: 2652 btrfs_prelim_ref_exit(); 2653 free_delayed_ref: 2654 btrfs_delayed_ref_exit(); 2655 free_auto_defrag: 2656 btrfs_auto_defrag_exit(); 2657 free_delayed_inode: 2658 btrfs_delayed_inode_exit(); 2659 free_ordered_data: 2660 ordered_data_exit(); 2661 free_extent_map: 2662 extent_map_exit(); 2663 free_extent_state_cache: 2664 extent_state_cache_exit(); 2665 free_extent_io: 2666 extent_io_exit(); 2667 free_cachep: 2668 btrfs_destroy_cachep(); 2669 free_compress: 2670 btrfs_exit_compress(); 2671 btrfs_exit_sysfs(); 2672 2673 return err; 2674 } 2675 2676 static void __exit exit_btrfs_fs(void) 2677 { 2678 btrfs_destroy_cachep(); 2679 btrfs_delayed_ref_exit(); 2680 btrfs_auto_defrag_exit(); 2681 btrfs_delayed_inode_exit(); 2682 btrfs_prelim_ref_exit(); 2683 ordered_data_exit(); 2684 extent_map_exit(); 2685 extent_state_cache_exit(); 2686 extent_io_exit(); 2687 btrfs_interface_exit(); 2688 btrfs_end_io_wq_exit(); 2689 unregister_filesystem(&btrfs_fs_type); 2690 btrfs_exit_sysfs(); 2691 btrfs_cleanup_fs_uuids(); 2692 btrfs_exit_compress(); 2693 } 2694 2695 late_initcall(init_btrfs_fs); 2696 module_exit(exit_btrfs_fs) 2697 2698 MODULE_LICENSE("GPL"); 2699 MODULE_SOFTDEP("pre: crc32c"); 2700 MODULE_SOFTDEP("pre: xxhash64"); 2701 MODULE_SOFTDEP("pre: sha256"); 2702 MODULE_SOFTDEP("pre: blake2b-256"); 2703