xref: /linux/fs/btrfs/super.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60 
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63 
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 				      char nbuf[16])
66 {
67 	char *errstr = NULL;
68 
69 	switch (errno) {
70 	case -EIO:
71 		errstr = "IO failure";
72 		break;
73 	case -ENOMEM:
74 		errstr = "Out of memory";
75 		break;
76 	case -EROFS:
77 		errstr = "Readonly filesystem";
78 		break;
79 	default:
80 		if (nbuf) {
81 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82 				errstr = nbuf;
83 		}
84 		break;
85 	}
86 
87 	return errstr;
88 }
89 
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92 	/*
93 	 * today we only save the error info into ram.  Long term we'll
94 	 * also send it down to the disk
95 	 */
96 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98 
99 /* NOTE:
100  *	We move write_super stuff at umount in order to avoid deadlock
101  *	for umount hold all lock.
102  */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 	__save_error_info(fs_info);
106 }
107 
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 	struct super_block *sb = fs_info->sb;
112 
113 	if (sb->s_flags & MS_RDONLY)
114 		return;
115 
116 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 		sb->s_flags |= MS_RDONLY;
118 		printk(KERN_INFO "btrfs is forced readonly\n");
119 	}
120 }
121 
122 /*
123  * __btrfs_std_error decodes expected errors from the caller and
124  * invokes the approciate error response.
125  */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127 		     unsigned int line, int errno)
128 {
129 	struct super_block *sb = fs_info->sb;
130 	char nbuf[16];
131 	const char *errstr;
132 
133 	/*
134 	 * Special case: if the error is EROFS, and we're already
135 	 * under MS_RDONLY, then it is safe here.
136 	 */
137 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 		return;
139 
140 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
141 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142 		sb->s_id, function, line, errstr);
143 	save_error_info(fs_info);
144 
145 	btrfs_handle_error(fs_info);
146 }
147 
148 static void btrfs_put_super(struct super_block *sb)
149 {
150 	struct btrfs_root *root = btrfs_sb(sb);
151 	int ret;
152 
153 	ret = close_ctree(root);
154 	sb->s_fs_info = NULL;
155 
156 	(void)ret; /* FIXME: need to fix VFS to return error? */
157 }
158 
159 enum {
160 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167 	Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err,
168 };
169 
170 static match_table_t tokens = {
171 	{Opt_degraded, "degraded"},
172 	{Opt_subvol, "subvol=%s"},
173 	{Opt_subvolid, "subvolid=%d"},
174 	{Opt_device, "device=%s"},
175 	{Opt_nodatasum, "nodatasum"},
176 	{Opt_nodatacow, "nodatacow"},
177 	{Opt_nobarrier, "nobarrier"},
178 	{Opt_max_inline, "max_inline=%s"},
179 	{Opt_alloc_start, "alloc_start=%s"},
180 	{Opt_thread_pool, "thread_pool=%d"},
181 	{Opt_compress, "compress"},
182 	{Opt_compress_type, "compress=%s"},
183 	{Opt_compress_force, "compress-force"},
184 	{Opt_compress_force_type, "compress-force=%s"},
185 	{Opt_ssd, "ssd"},
186 	{Opt_ssd_spread, "ssd_spread"},
187 	{Opt_nossd, "nossd"},
188 	{Opt_noacl, "noacl"},
189 	{Opt_notreelog, "notreelog"},
190 	{Opt_flushoncommit, "flushoncommit"},
191 	{Opt_ratio, "metadata_ratio=%d"},
192 	{Opt_discard, "discard"},
193 	{Opt_space_cache, "space_cache"},
194 	{Opt_clear_cache, "clear_cache"},
195 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196 	{Opt_enospc_debug, "enospc_debug"},
197 	{Opt_subvolrootid, "subvolrootid=%d"},
198 	{Opt_defrag, "autodefrag"},
199 	{Opt_inode_cache, "inode_cache"},
200 	{Opt_no_space_cache, "no_space_cache"},
201 	{Opt_recovery, "recovery"},
202 	{Opt_err, NULL},
203 };
204 
205 /*
206  * Regular mount options parser.  Everything that is needed only when
207  * reading in a new superblock is parsed here.
208  */
209 int btrfs_parse_options(struct btrfs_root *root, char *options)
210 {
211 	struct btrfs_fs_info *info = root->fs_info;
212 	substring_t args[MAX_OPT_ARGS];
213 	char *p, *num, *orig = NULL;
214 	u64 cache_gen;
215 	int intarg;
216 	int ret = 0;
217 	char *compress_type;
218 	bool compress_force = false;
219 
220 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
221 	if (cache_gen)
222 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
223 
224 	if (!options)
225 		goto out;
226 
227 	/*
228 	 * strsep changes the string, duplicate it because parse_options
229 	 * gets called twice
230 	 */
231 	options = kstrdup(options, GFP_NOFS);
232 	if (!options)
233 		return -ENOMEM;
234 
235 	orig = options;
236 
237 	while ((p = strsep(&options, ",")) != NULL) {
238 		int token;
239 		if (!*p)
240 			continue;
241 
242 		token = match_token(p, tokens, args);
243 		switch (token) {
244 		case Opt_degraded:
245 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
246 			btrfs_set_opt(info->mount_opt, DEGRADED);
247 			break;
248 		case Opt_subvol:
249 		case Opt_subvolid:
250 		case Opt_subvolrootid:
251 		case Opt_device:
252 			/*
253 			 * These are parsed by btrfs_parse_early_options
254 			 * and can be happily ignored here.
255 			 */
256 			break;
257 		case Opt_nodatasum:
258 			printk(KERN_INFO "btrfs: setting nodatasum\n");
259 			btrfs_set_opt(info->mount_opt, NODATASUM);
260 			break;
261 		case Opt_nodatacow:
262 			printk(KERN_INFO "btrfs: setting nodatacow\n");
263 			btrfs_set_opt(info->mount_opt, NODATACOW);
264 			btrfs_set_opt(info->mount_opt, NODATASUM);
265 			break;
266 		case Opt_compress_force:
267 		case Opt_compress_force_type:
268 			compress_force = true;
269 		case Opt_compress:
270 		case Opt_compress_type:
271 			if (token == Opt_compress ||
272 			    token == Opt_compress_force ||
273 			    strcmp(args[0].from, "zlib") == 0) {
274 				compress_type = "zlib";
275 				info->compress_type = BTRFS_COMPRESS_ZLIB;
276 			} else if (strcmp(args[0].from, "lzo") == 0) {
277 				compress_type = "lzo";
278 				info->compress_type = BTRFS_COMPRESS_LZO;
279 			} else {
280 				ret = -EINVAL;
281 				goto out;
282 			}
283 
284 			btrfs_set_opt(info->mount_opt, COMPRESS);
285 			if (compress_force) {
286 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
287 				pr_info("btrfs: force %s compression\n",
288 					compress_type);
289 			} else
290 				pr_info("btrfs: use %s compression\n",
291 					compress_type);
292 			break;
293 		case Opt_ssd:
294 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
295 			btrfs_set_opt(info->mount_opt, SSD);
296 			break;
297 		case Opt_ssd_spread:
298 			printk(KERN_INFO "btrfs: use spread ssd "
299 			       "allocation scheme\n");
300 			btrfs_set_opt(info->mount_opt, SSD);
301 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
302 			break;
303 		case Opt_nossd:
304 			printk(KERN_INFO "btrfs: not using ssd allocation "
305 			       "scheme\n");
306 			btrfs_set_opt(info->mount_opt, NOSSD);
307 			btrfs_clear_opt(info->mount_opt, SSD);
308 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
309 			break;
310 		case Opt_nobarrier:
311 			printk(KERN_INFO "btrfs: turning off barriers\n");
312 			btrfs_set_opt(info->mount_opt, NOBARRIER);
313 			break;
314 		case Opt_thread_pool:
315 			intarg = 0;
316 			match_int(&args[0], &intarg);
317 			if (intarg) {
318 				info->thread_pool_size = intarg;
319 				printk(KERN_INFO "btrfs: thread pool %d\n",
320 				       info->thread_pool_size);
321 			}
322 			break;
323 		case Opt_max_inline:
324 			num = match_strdup(&args[0]);
325 			if (num) {
326 				info->max_inline = memparse(num, NULL);
327 				kfree(num);
328 
329 				if (info->max_inline) {
330 					info->max_inline = max_t(u64,
331 						info->max_inline,
332 						root->sectorsize);
333 				}
334 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
335 					(unsigned long long)info->max_inline);
336 			}
337 			break;
338 		case Opt_alloc_start:
339 			num = match_strdup(&args[0]);
340 			if (num) {
341 				info->alloc_start = memparse(num, NULL);
342 				kfree(num);
343 				printk(KERN_INFO
344 					"btrfs: allocations start at %llu\n",
345 					(unsigned long long)info->alloc_start);
346 			}
347 			break;
348 		case Opt_noacl:
349 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
350 			break;
351 		case Opt_notreelog:
352 			printk(KERN_INFO "btrfs: disabling tree log\n");
353 			btrfs_set_opt(info->mount_opt, NOTREELOG);
354 			break;
355 		case Opt_flushoncommit:
356 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
357 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
358 			break;
359 		case Opt_ratio:
360 			intarg = 0;
361 			match_int(&args[0], &intarg);
362 			if (intarg) {
363 				info->metadata_ratio = intarg;
364 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
365 				       info->metadata_ratio);
366 			}
367 			break;
368 		case Opt_discard:
369 			btrfs_set_opt(info->mount_opt, DISCARD);
370 			break;
371 		case Opt_space_cache:
372 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
373 			break;
374 		case Opt_no_space_cache:
375 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
376 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
377 			break;
378 		case Opt_inode_cache:
379 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
380 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
381 			break;
382 		case Opt_clear_cache:
383 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
384 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
385 			break;
386 		case Opt_user_subvol_rm_allowed:
387 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
388 			break;
389 		case Opt_enospc_debug:
390 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
391 			break;
392 		case Opt_defrag:
393 			printk(KERN_INFO "btrfs: enabling auto defrag");
394 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
395 			break;
396 		case Opt_recovery:
397 			printk(KERN_INFO "btrfs: enabling auto recovery");
398 			btrfs_set_opt(info->mount_opt, RECOVERY);
399 			break;
400 		case Opt_err:
401 			printk(KERN_INFO "btrfs: unrecognized mount option "
402 			       "'%s'\n", p);
403 			ret = -EINVAL;
404 			goto out;
405 		default:
406 			break;
407 		}
408 	}
409 out:
410 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
411 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
412 	kfree(orig);
413 	return ret;
414 }
415 
416 /*
417  * Parse mount options that are required early in the mount process.
418  *
419  * All other options will be parsed on much later in the mount process and
420  * only when we need to allocate a new super block.
421  */
422 static int btrfs_parse_early_options(const char *options, fmode_t flags,
423 		void *holder, char **subvol_name, u64 *subvol_objectid,
424 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
425 {
426 	substring_t args[MAX_OPT_ARGS];
427 	char *device_name, *opts, *orig, *p;
428 	int error = 0;
429 	int intarg;
430 
431 	if (!options)
432 		return 0;
433 
434 	/*
435 	 * strsep changes the string, duplicate it because parse_options
436 	 * gets called twice
437 	 */
438 	opts = kstrdup(options, GFP_KERNEL);
439 	if (!opts)
440 		return -ENOMEM;
441 	orig = opts;
442 
443 	while ((p = strsep(&opts, ",")) != NULL) {
444 		int token;
445 		if (!*p)
446 			continue;
447 
448 		token = match_token(p, tokens, args);
449 		switch (token) {
450 		case Opt_subvol:
451 			*subvol_name = match_strdup(&args[0]);
452 			break;
453 		case Opt_subvolid:
454 			intarg = 0;
455 			error = match_int(&args[0], &intarg);
456 			if (!error) {
457 				/* we want the original fs_tree */
458 				if (!intarg)
459 					*subvol_objectid =
460 						BTRFS_FS_TREE_OBJECTID;
461 				else
462 					*subvol_objectid = intarg;
463 			}
464 			break;
465 		case Opt_subvolrootid:
466 			intarg = 0;
467 			error = match_int(&args[0], &intarg);
468 			if (!error) {
469 				/* we want the original fs_tree */
470 				if (!intarg)
471 					*subvol_rootid =
472 						BTRFS_FS_TREE_OBJECTID;
473 				else
474 					*subvol_rootid = intarg;
475 			}
476 			break;
477 		case Opt_device:
478 			device_name = match_strdup(&args[0]);
479 			if (!device_name) {
480 				error = -ENOMEM;
481 				goto out;
482 			}
483 			error = btrfs_scan_one_device(device_name,
484 					flags, holder, fs_devices);
485 			kfree(device_name);
486 			if (error)
487 				goto out;
488 			break;
489 		default:
490 			break;
491 		}
492 	}
493 
494 out:
495 	kfree(orig);
496 	return error;
497 }
498 
499 static struct dentry *get_default_root(struct super_block *sb,
500 				       u64 subvol_objectid)
501 {
502 	struct btrfs_root *root = sb->s_fs_info;
503 	struct btrfs_root *new_root;
504 	struct btrfs_dir_item *di;
505 	struct btrfs_path *path;
506 	struct btrfs_key location;
507 	struct inode *inode;
508 	u64 dir_id;
509 	int new = 0;
510 
511 	/*
512 	 * We have a specific subvol we want to mount, just setup location and
513 	 * go look up the root.
514 	 */
515 	if (subvol_objectid) {
516 		location.objectid = subvol_objectid;
517 		location.type = BTRFS_ROOT_ITEM_KEY;
518 		location.offset = (u64)-1;
519 		goto find_root;
520 	}
521 
522 	path = btrfs_alloc_path();
523 	if (!path)
524 		return ERR_PTR(-ENOMEM);
525 	path->leave_spinning = 1;
526 
527 	/*
528 	 * Find the "default" dir item which points to the root item that we
529 	 * will mount by default if we haven't been given a specific subvolume
530 	 * to mount.
531 	 */
532 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
533 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
534 	if (IS_ERR(di)) {
535 		btrfs_free_path(path);
536 		return ERR_CAST(di);
537 	}
538 	if (!di) {
539 		/*
540 		 * Ok the default dir item isn't there.  This is weird since
541 		 * it's always been there, but don't freak out, just try and
542 		 * mount to root most subvolume.
543 		 */
544 		btrfs_free_path(path);
545 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
546 		new_root = root->fs_info->fs_root;
547 		goto setup_root;
548 	}
549 
550 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
551 	btrfs_free_path(path);
552 
553 find_root:
554 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
555 	if (IS_ERR(new_root))
556 		return ERR_CAST(new_root);
557 
558 	if (btrfs_root_refs(&new_root->root_item) == 0)
559 		return ERR_PTR(-ENOENT);
560 
561 	dir_id = btrfs_root_dirid(&new_root->root_item);
562 setup_root:
563 	location.objectid = dir_id;
564 	location.type = BTRFS_INODE_ITEM_KEY;
565 	location.offset = 0;
566 
567 	inode = btrfs_iget(sb, &location, new_root, &new);
568 	if (IS_ERR(inode))
569 		return ERR_CAST(inode);
570 
571 	/*
572 	 * If we're just mounting the root most subvol put the inode and return
573 	 * a reference to the dentry.  We will have already gotten a reference
574 	 * to the inode in btrfs_fill_super so we're good to go.
575 	 */
576 	if (!new && sb->s_root->d_inode == inode) {
577 		iput(inode);
578 		return dget(sb->s_root);
579 	}
580 
581 	return d_obtain_alias(inode);
582 }
583 
584 static int btrfs_fill_super(struct super_block *sb,
585 			    struct btrfs_fs_devices *fs_devices,
586 			    void *data, int silent)
587 {
588 	struct inode *inode;
589 	struct dentry *root_dentry;
590 	struct btrfs_root *tree_root;
591 	struct btrfs_key key;
592 	int err;
593 
594 	sb->s_maxbytes = MAX_LFS_FILESIZE;
595 	sb->s_magic = BTRFS_SUPER_MAGIC;
596 	sb->s_op = &btrfs_super_ops;
597 	sb->s_d_op = &btrfs_dentry_operations;
598 	sb->s_export_op = &btrfs_export_ops;
599 	sb->s_xattr = btrfs_xattr_handlers;
600 	sb->s_time_gran = 1;
601 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
602 	sb->s_flags |= MS_POSIXACL;
603 #endif
604 
605 	tree_root = open_ctree(sb, fs_devices, (char *)data);
606 
607 	if (IS_ERR(tree_root)) {
608 		printk("btrfs: open_ctree failed\n");
609 		return PTR_ERR(tree_root);
610 	}
611 	sb->s_fs_info = tree_root;
612 
613 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
614 	key.type = BTRFS_INODE_ITEM_KEY;
615 	key.offset = 0;
616 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
617 	if (IS_ERR(inode)) {
618 		err = PTR_ERR(inode);
619 		goto fail_close;
620 	}
621 
622 	root_dentry = d_alloc_root(inode);
623 	if (!root_dentry) {
624 		iput(inode);
625 		err = -ENOMEM;
626 		goto fail_close;
627 	}
628 
629 	sb->s_root = root_dentry;
630 
631 	save_mount_options(sb, data);
632 	cleancache_init_fs(sb);
633 	return 0;
634 
635 fail_close:
636 	close_ctree(tree_root);
637 	return err;
638 }
639 
640 int btrfs_sync_fs(struct super_block *sb, int wait)
641 {
642 	struct btrfs_trans_handle *trans;
643 	struct btrfs_root *root = btrfs_sb(sb);
644 	int ret;
645 
646 	trace_btrfs_sync_fs(wait);
647 
648 	if (!wait) {
649 		filemap_flush(root->fs_info->btree_inode->i_mapping);
650 		return 0;
651 	}
652 
653 	btrfs_start_delalloc_inodes(root, 0);
654 	btrfs_wait_ordered_extents(root, 0, 0);
655 
656 	trans = btrfs_start_transaction(root, 0);
657 	if (IS_ERR(trans))
658 		return PTR_ERR(trans);
659 	ret = btrfs_commit_transaction(trans, root);
660 	return ret;
661 }
662 
663 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
664 {
665 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
666 	struct btrfs_fs_info *info = root->fs_info;
667 	char *compress_type;
668 
669 	if (btrfs_test_opt(root, DEGRADED))
670 		seq_puts(seq, ",degraded");
671 	if (btrfs_test_opt(root, NODATASUM))
672 		seq_puts(seq, ",nodatasum");
673 	if (btrfs_test_opt(root, NODATACOW))
674 		seq_puts(seq, ",nodatacow");
675 	if (btrfs_test_opt(root, NOBARRIER))
676 		seq_puts(seq, ",nobarrier");
677 	if (info->max_inline != 8192 * 1024)
678 		seq_printf(seq, ",max_inline=%llu",
679 			   (unsigned long long)info->max_inline);
680 	if (info->alloc_start != 0)
681 		seq_printf(seq, ",alloc_start=%llu",
682 			   (unsigned long long)info->alloc_start);
683 	if (info->thread_pool_size !=  min_t(unsigned long,
684 					     num_online_cpus() + 2, 8))
685 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
686 	if (btrfs_test_opt(root, COMPRESS)) {
687 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
688 			compress_type = "zlib";
689 		else
690 			compress_type = "lzo";
691 		if (btrfs_test_opt(root, FORCE_COMPRESS))
692 			seq_printf(seq, ",compress-force=%s", compress_type);
693 		else
694 			seq_printf(seq, ",compress=%s", compress_type);
695 	}
696 	if (btrfs_test_opt(root, NOSSD))
697 		seq_puts(seq, ",nossd");
698 	if (btrfs_test_opt(root, SSD_SPREAD))
699 		seq_puts(seq, ",ssd_spread");
700 	else if (btrfs_test_opt(root, SSD))
701 		seq_puts(seq, ",ssd");
702 	if (btrfs_test_opt(root, NOTREELOG))
703 		seq_puts(seq, ",notreelog");
704 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
705 		seq_puts(seq, ",flushoncommit");
706 	if (btrfs_test_opt(root, DISCARD))
707 		seq_puts(seq, ",discard");
708 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
709 		seq_puts(seq, ",noacl");
710 	if (btrfs_test_opt(root, SPACE_CACHE))
711 		seq_puts(seq, ",space_cache");
712 	else
713 		seq_puts(seq, ",no_space_cache");
714 	if (btrfs_test_opt(root, CLEAR_CACHE))
715 		seq_puts(seq, ",clear_cache");
716 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
717 		seq_puts(seq, ",user_subvol_rm_allowed");
718 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
719 		seq_puts(seq, ",enospc_debug");
720 	if (btrfs_test_opt(root, AUTO_DEFRAG))
721 		seq_puts(seq, ",autodefrag");
722 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
723 		seq_puts(seq, ",inode_cache");
724 	return 0;
725 }
726 
727 static int btrfs_test_super(struct super_block *s, void *data)
728 {
729 	struct btrfs_root *test_root = data;
730 	struct btrfs_root *root = btrfs_sb(s);
731 
732 	/*
733 	 * If this super block is going away, return false as it
734 	 * can't match as an existing super block.
735 	 */
736 	if (!atomic_read(&s->s_active))
737 		return 0;
738 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
739 }
740 
741 static int btrfs_set_super(struct super_block *s, void *data)
742 {
743 	s->s_fs_info = data;
744 
745 	return set_anon_super(s, data);
746 }
747 
748 /*
749  * subvolumes are identified by ino 256
750  */
751 static inline int is_subvolume_inode(struct inode *inode)
752 {
753 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
754 		return 1;
755 	return 0;
756 }
757 
758 /*
759  * This will strip out the subvol=%s argument for an argument string and add
760  * subvolid=0 to make sure we get the actual tree root for path walking to the
761  * subvol we want.
762  */
763 static char *setup_root_args(char *args)
764 {
765 	unsigned copied = 0;
766 	unsigned len = strlen(args) + 2;
767 	char *pos;
768 	char *ret;
769 
770 	/*
771 	 * We need the same args as before, but minus
772 	 *
773 	 * subvol=a
774 	 *
775 	 * and add
776 	 *
777 	 * subvolid=0
778 	 *
779 	 * which is a difference of 2 characters, so we allocate strlen(args) +
780 	 * 2 characters.
781 	 */
782 	ret = kzalloc(len * sizeof(char), GFP_NOFS);
783 	if (!ret)
784 		return NULL;
785 	pos = strstr(args, "subvol=");
786 
787 	/* This shouldn't happen, but just in case.. */
788 	if (!pos) {
789 		kfree(ret);
790 		return NULL;
791 	}
792 
793 	/*
794 	 * The subvol=<> arg is not at the front of the string, copy everybody
795 	 * up to that into ret.
796 	 */
797 	if (pos != args) {
798 		*pos = '\0';
799 		strcpy(ret, args);
800 		copied += strlen(args);
801 		pos++;
802 	}
803 
804 	strncpy(ret + copied, "subvolid=0", len - copied);
805 
806 	/* Length of subvolid=0 */
807 	copied += 10;
808 
809 	/*
810 	 * If there is no , after the subvol= option then we know there's no
811 	 * other options and we can just return.
812 	 */
813 	pos = strchr(pos, ',');
814 	if (!pos)
815 		return ret;
816 
817 	/* Copy the rest of the arguments into our buffer */
818 	strncpy(ret + copied, pos, len - copied);
819 	copied += strlen(pos);
820 
821 	return ret;
822 }
823 
824 static struct dentry *mount_subvol(const char *subvol_name, int flags,
825 				   const char *device_name, char *data)
826 {
827 	struct super_block *s;
828 	struct dentry *root;
829 	struct vfsmount *mnt;
830 	struct mnt_namespace *ns_private;
831 	char *newargs;
832 	struct path path;
833 	int error;
834 
835 	newargs = setup_root_args(data);
836 	if (!newargs)
837 		return ERR_PTR(-ENOMEM);
838 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
839 			     newargs);
840 	kfree(newargs);
841 	if (IS_ERR(mnt))
842 		return ERR_CAST(mnt);
843 
844 	ns_private = create_mnt_ns(mnt);
845 	if (IS_ERR(ns_private)) {
846 		mntput(mnt);
847 		return ERR_CAST(ns_private);
848 	}
849 
850 	/*
851 	 * This will trigger the automount of the subvol so we can just
852 	 * drop the mnt we have here and return the dentry that we
853 	 * found.
854 	 */
855 	error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
856 				LOOKUP_FOLLOW, &path);
857 	put_mnt_ns(ns_private);
858 	if (error)
859 		return ERR_PTR(error);
860 
861 	if (!is_subvolume_inode(path.dentry->d_inode)) {
862 		path_put(&path);
863 		mntput(mnt);
864 		error = -EINVAL;
865 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
866 				subvol_name);
867 		return ERR_PTR(-EINVAL);
868 	}
869 
870 	/* Get a ref to the sb and the dentry we found and return it */
871 	s = path.mnt->mnt_sb;
872 	atomic_inc(&s->s_active);
873 	root = dget(path.dentry);
874 	path_put(&path);
875 	down_write(&s->s_umount);
876 
877 	return root;
878 }
879 
880 /*
881  * Find a superblock for the given device / mount point.
882  *
883  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
884  *	  for multiple device setup.  Make sure to keep it in sync.
885  */
886 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
887 		const char *device_name, void *data)
888 {
889 	struct block_device *bdev = NULL;
890 	struct super_block *s;
891 	struct dentry *root;
892 	struct btrfs_fs_devices *fs_devices = NULL;
893 	struct btrfs_root *tree_root = NULL;
894 	struct btrfs_fs_info *fs_info = NULL;
895 	fmode_t mode = FMODE_READ;
896 	char *subvol_name = NULL;
897 	u64 subvol_objectid = 0;
898 	u64 subvol_rootid = 0;
899 	int error = 0;
900 
901 	if (!(flags & MS_RDONLY))
902 		mode |= FMODE_WRITE;
903 
904 	error = btrfs_parse_early_options(data, mode, fs_type,
905 					  &subvol_name, &subvol_objectid,
906 					  &subvol_rootid, &fs_devices);
907 	if (error)
908 		return ERR_PTR(error);
909 
910 	if (subvol_name) {
911 		root = mount_subvol(subvol_name, flags, device_name, data);
912 		kfree(subvol_name);
913 		return root;
914 	}
915 
916 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
917 	if (error)
918 		return ERR_PTR(error);
919 
920 	error = btrfs_open_devices(fs_devices, mode, fs_type);
921 	if (error)
922 		return ERR_PTR(error);
923 
924 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
925 		error = -EACCES;
926 		goto error_close_devices;
927 	}
928 
929 	/*
930 	 * Setup a dummy root and fs_info for test/set super.  This is because
931 	 * we don't actually fill this stuff out until open_ctree, but we need
932 	 * it for searching for existing supers, so this lets us do that and
933 	 * then open_ctree will properly initialize everything later.
934 	 */
935 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
936 	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
937 	if (!fs_info || !tree_root) {
938 		error = -ENOMEM;
939 		goto error_close_devices;
940 	}
941 	fs_info->tree_root = tree_root;
942 	fs_info->fs_devices = fs_devices;
943 	tree_root->fs_info = fs_info;
944 
945 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
946 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
947 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
948 		error = -ENOMEM;
949 		goto error_close_devices;
950 	}
951 
952 	bdev = fs_devices->latest_bdev;
953 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
954 	if (IS_ERR(s)) {
955 		error = PTR_ERR(s);
956 		goto error_close_devices;
957 	}
958 
959 	if (s->s_root) {
960 		if ((flags ^ s->s_flags) & MS_RDONLY) {
961 			deactivate_locked_super(s);
962 			return ERR_PTR(-EBUSY);
963 		}
964 
965 		btrfs_close_devices(fs_devices);
966 		free_fs_info(fs_info);
967 		kfree(tree_root);
968 	} else {
969 		char b[BDEVNAME_SIZE];
970 
971 		s->s_flags = flags | MS_NOSEC;
972 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
973 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
974 		error = btrfs_fill_super(s, fs_devices, data,
975 					 flags & MS_SILENT ? 1 : 0);
976 		if (error) {
977 			deactivate_locked_super(s);
978 			return ERR_PTR(error);
979 		}
980 
981 		s->s_flags |= MS_ACTIVE;
982 	}
983 
984 	root = get_default_root(s, subvol_objectid);
985 	if (IS_ERR(root)) {
986 		deactivate_locked_super(s);
987 		return root;
988 	}
989 
990 	return root;
991 
992 error_close_devices:
993 	btrfs_close_devices(fs_devices);
994 	free_fs_info(fs_info);
995 	kfree(tree_root);
996 	return ERR_PTR(error);
997 }
998 
999 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1000 {
1001 	struct btrfs_root *root = btrfs_sb(sb);
1002 	int ret;
1003 
1004 	ret = btrfs_parse_options(root, data);
1005 	if (ret)
1006 		return -EINVAL;
1007 
1008 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1009 		return 0;
1010 
1011 	if (*flags & MS_RDONLY) {
1012 		sb->s_flags |= MS_RDONLY;
1013 
1014 		ret =  btrfs_commit_super(root);
1015 		WARN_ON(ret);
1016 	} else {
1017 		if (root->fs_info->fs_devices->rw_devices == 0)
1018 			return -EACCES;
1019 
1020 		if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1021 			return -EINVAL;
1022 
1023 		ret = btrfs_cleanup_fs_roots(root->fs_info);
1024 		WARN_ON(ret);
1025 
1026 		/* recover relocation */
1027 		ret = btrfs_recover_relocation(root);
1028 		WARN_ON(ret);
1029 
1030 		sb->s_flags &= ~MS_RDONLY;
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 /* Used to sort the devices by max_avail(descending sort) */
1037 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1038 				       const void *dev_info2)
1039 {
1040 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1041 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1042 		return -1;
1043 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1044 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1045 		return 1;
1046 	else
1047 	return 0;
1048 }
1049 
1050 /*
1051  * sort the devices by max_avail, in which max free extent size of each device
1052  * is stored.(Descending Sort)
1053  */
1054 static inline void btrfs_descending_sort_devices(
1055 					struct btrfs_device_info *devices,
1056 					size_t nr_devices)
1057 {
1058 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1059 	     btrfs_cmp_device_free_bytes, NULL);
1060 }
1061 
1062 /*
1063  * The helper to calc the free space on the devices that can be used to store
1064  * file data.
1065  */
1066 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1067 {
1068 	struct btrfs_fs_info *fs_info = root->fs_info;
1069 	struct btrfs_device_info *devices_info;
1070 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1071 	struct btrfs_device *device;
1072 	u64 skip_space;
1073 	u64 type;
1074 	u64 avail_space;
1075 	u64 used_space;
1076 	u64 min_stripe_size;
1077 	int min_stripes = 1;
1078 	int i = 0, nr_devices;
1079 	int ret;
1080 
1081 	nr_devices = fs_info->fs_devices->rw_devices;
1082 	BUG_ON(!nr_devices);
1083 
1084 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1085 			       GFP_NOFS);
1086 	if (!devices_info)
1087 		return -ENOMEM;
1088 
1089 	/* calc min stripe number for data space alloction */
1090 	type = btrfs_get_alloc_profile(root, 1);
1091 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1092 		min_stripes = 2;
1093 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
1094 		min_stripes = 2;
1095 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1096 		min_stripes = 4;
1097 
1098 	if (type & BTRFS_BLOCK_GROUP_DUP)
1099 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1100 	else
1101 		min_stripe_size = BTRFS_STRIPE_LEN;
1102 
1103 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1104 		if (!device->in_fs_metadata)
1105 			continue;
1106 
1107 		avail_space = device->total_bytes - device->bytes_used;
1108 
1109 		/* align with stripe_len */
1110 		do_div(avail_space, BTRFS_STRIPE_LEN);
1111 		avail_space *= BTRFS_STRIPE_LEN;
1112 
1113 		/*
1114 		 * In order to avoid overwritting the superblock on the drive,
1115 		 * btrfs starts at an offset of at least 1MB when doing chunk
1116 		 * allocation.
1117 		 */
1118 		skip_space = 1024 * 1024;
1119 
1120 		/* user can set the offset in fs_info->alloc_start. */
1121 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1122 		    device->total_bytes)
1123 			skip_space = max(fs_info->alloc_start, skip_space);
1124 
1125 		/*
1126 		 * btrfs can not use the free space in [0, skip_space - 1],
1127 		 * we must subtract it from the total. In order to implement
1128 		 * it, we account the used space in this range first.
1129 		 */
1130 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1131 						     &used_space);
1132 		if (ret) {
1133 			kfree(devices_info);
1134 			return ret;
1135 		}
1136 
1137 		/* calc the free space in [0, skip_space - 1] */
1138 		skip_space -= used_space;
1139 
1140 		/*
1141 		 * we can use the free space in [0, skip_space - 1], subtract
1142 		 * it from the total.
1143 		 */
1144 		if (avail_space && avail_space >= skip_space)
1145 			avail_space -= skip_space;
1146 		else
1147 			avail_space = 0;
1148 
1149 		if (avail_space < min_stripe_size)
1150 			continue;
1151 
1152 		devices_info[i].dev = device;
1153 		devices_info[i].max_avail = avail_space;
1154 
1155 		i++;
1156 	}
1157 
1158 	nr_devices = i;
1159 
1160 	btrfs_descending_sort_devices(devices_info, nr_devices);
1161 
1162 	i = nr_devices - 1;
1163 	avail_space = 0;
1164 	while (nr_devices >= min_stripes) {
1165 		if (devices_info[i].max_avail >= min_stripe_size) {
1166 			int j;
1167 			u64 alloc_size;
1168 
1169 			avail_space += devices_info[i].max_avail * min_stripes;
1170 			alloc_size = devices_info[i].max_avail;
1171 			for (j = i + 1 - min_stripes; j <= i; j++)
1172 				devices_info[j].max_avail -= alloc_size;
1173 		}
1174 		i--;
1175 		nr_devices--;
1176 	}
1177 
1178 	kfree(devices_info);
1179 	*free_bytes = avail_space;
1180 	return 0;
1181 }
1182 
1183 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1184 {
1185 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1186 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1187 	struct list_head *head = &root->fs_info->space_info;
1188 	struct btrfs_space_info *found;
1189 	u64 total_used = 0;
1190 	u64 total_free_data = 0;
1191 	int bits = dentry->d_sb->s_blocksize_bits;
1192 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1193 	int ret;
1194 
1195 	/* holding chunk_muext to avoid allocating new chunks */
1196 	mutex_lock(&root->fs_info->chunk_mutex);
1197 	rcu_read_lock();
1198 	list_for_each_entry_rcu(found, head, list) {
1199 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1200 			total_free_data += found->disk_total - found->disk_used;
1201 			total_free_data -=
1202 				btrfs_account_ro_block_groups_free_space(found);
1203 		}
1204 
1205 		total_used += found->disk_used;
1206 	}
1207 	rcu_read_unlock();
1208 
1209 	buf->f_namelen = BTRFS_NAME_LEN;
1210 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1211 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1212 	buf->f_bsize = dentry->d_sb->s_blocksize;
1213 	buf->f_type = BTRFS_SUPER_MAGIC;
1214 	buf->f_bavail = total_free_data;
1215 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1216 	if (ret) {
1217 		mutex_unlock(&root->fs_info->chunk_mutex);
1218 		return ret;
1219 	}
1220 	buf->f_bavail += total_free_data;
1221 	buf->f_bavail = buf->f_bavail >> bits;
1222 	mutex_unlock(&root->fs_info->chunk_mutex);
1223 
1224 	/* We treat it as constant endianness (it doesn't matter _which_)
1225 	   because we want the fsid to come out the same whether mounted
1226 	   on a big-endian or little-endian host */
1227 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1228 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1229 	/* Mask in the root object ID too, to disambiguate subvols */
1230 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1231 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1232 
1233 	return 0;
1234 }
1235 
1236 static struct file_system_type btrfs_fs_type = {
1237 	.owner		= THIS_MODULE,
1238 	.name		= "btrfs",
1239 	.mount		= btrfs_mount,
1240 	.kill_sb	= kill_anon_super,
1241 	.fs_flags	= FS_REQUIRES_DEV,
1242 };
1243 
1244 /*
1245  * used by btrfsctl to scan devices when no FS is mounted
1246  */
1247 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1248 				unsigned long arg)
1249 {
1250 	struct btrfs_ioctl_vol_args *vol;
1251 	struct btrfs_fs_devices *fs_devices;
1252 	int ret = -ENOTTY;
1253 
1254 	if (!capable(CAP_SYS_ADMIN))
1255 		return -EPERM;
1256 
1257 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1258 	if (IS_ERR(vol))
1259 		return PTR_ERR(vol);
1260 
1261 	switch (cmd) {
1262 	case BTRFS_IOC_SCAN_DEV:
1263 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1264 					    &btrfs_fs_type, &fs_devices);
1265 		break;
1266 	}
1267 
1268 	kfree(vol);
1269 	return ret;
1270 }
1271 
1272 static int btrfs_freeze(struct super_block *sb)
1273 {
1274 	struct btrfs_root *root = btrfs_sb(sb);
1275 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1276 	mutex_lock(&root->fs_info->cleaner_mutex);
1277 	return 0;
1278 }
1279 
1280 static int btrfs_unfreeze(struct super_block *sb)
1281 {
1282 	struct btrfs_root *root = btrfs_sb(sb);
1283 	mutex_unlock(&root->fs_info->cleaner_mutex);
1284 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1285 	return 0;
1286 }
1287 
1288 static const struct super_operations btrfs_super_ops = {
1289 	.drop_inode	= btrfs_drop_inode,
1290 	.evict_inode	= btrfs_evict_inode,
1291 	.put_super	= btrfs_put_super,
1292 	.sync_fs	= btrfs_sync_fs,
1293 	.show_options	= btrfs_show_options,
1294 	.write_inode	= btrfs_write_inode,
1295 	.dirty_inode	= btrfs_dirty_inode,
1296 	.alloc_inode	= btrfs_alloc_inode,
1297 	.destroy_inode	= btrfs_destroy_inode,
1298 	.statfs		= btrfs_statfs,
1299 	.remount_fs	= btrfs_remount,
1300 	.freeze_fs	= btrfs_freeze,
1301 	.unfreeze_fs	= btrfs_unfreeze,
1302 };
1303 
1304 static const struct file_operations btrfs_ctl_fops = {
1305 	.unlocked_ioctl	 = btrfs_control_ioctl,
1306 	.compat_ioctl = btrfs_control_ioctl,
1307 	.owner	 = THIS_MODULE,
1308 	.llseek = noop_llseek,
1309 };
1310 
1311 static struct miscdevice btrfs_misc = {
1312 	.minor		= BTRFS_MINOR,
1313 	.name		= "btrfs-control",
1314 	.fops		= &btrfs_ctl_fops
1315 };
1316 
1317 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1318 MODULE_ALIAS("devname:btrfs-control");
1319 
1320 static int btrfs_interface_init(void)
1321 {
1322 	return misc_register(&btrfs_misc);
1323 }
1324 
1325 static void btrfs_interface_exit(void)
1326 {
1327 	if (misc_deregister(&btrfs_misc) < 0)
1328 		printk(KERN_INFO "misc_deregister failed for control device");
1329 }
1330 
1331 static int __init init_btrfs_fs(void)
1332 {
1333 	int err;
1334 
1335 	err = btrfs_init_sysfs();
1336 	if (err)
1337 		return err;
1338 
1339 	err = btrfs_init_compress();
1340 	if (err)
1341 		goto free_sysfs;
1342 
1343 	err = btrfs_init_cachep();
1344 	if (err)
1345 		goto free_compress;
1346 
1347 	err = extent_io_init();
1348 	if (err)
1349 		goto free_cachep;
1350 
1351 	err = extent_map_init();
1352 	if (err)
1353 		goto free_extent_io;
1354 
1355 	err = btrfs_delayed_inode_init();
1356 	if (err)
1357 		goto free_extent_map;
1358 
1359 	err = btrfs_interface_init();
1360 	if (err)
1361 		goto free_delayed_inode;
1362 
1363 	err = register_filesystem(&btrfs_fs_type);
1364 	if (err)
1365 		goto unregister_ioctl;
1366 
1367 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1368 	return 0;
1369 
1370 unregister_ioctl:
1371 	btrfs_interface_exit();
1372 free_delayed_inode:
1373 	btrfs_delayed_inode_exit();
1374 free_extent_map:
1375 	extent_map_exit();
1376 free_extent_io:
1377 	extent_io_exit();
1378 free_cachep:
1379 	btrfs_destroy_cachep();
1380 free_compress:
1381 	btrfs_exit_compress();
1382 free_sysfs:
1383 	btrfs_exit_sysfs();
1384 	return err;
1385 }
1386 
1387 static void __exit exit_btrfs_fs(void)
1388 {
1389 	btrfs_destroy_cachep();
1390 	btrfs_delayed_inode_exit();
1391 	extent_map_exit();
1392 	extent_io_exit();
1393 	btrfs_interface_exit();
1394 	unregister_filesystem(&btrfs_fs_type);
1395 	btrfs_exit_sysfs();
1396 	btrfs_cleanup_fs_uuids();
1397 	btrfs_exit_compress();
1398 }
1399 
1400 module_init(init_btrfs_fs)
1401 module_exit(exit_btrfs_fs)
1402 
1403 MODULE_LICENSE("GPL");
1404