xref: /linux/fs/btrfs/super.c (revision 9f7861c56b51b84d30114e7fea9d744a9d5ba9b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include "messages.h"
31 #include "delayed-inode.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "props.h"
38 #include "xattr.h"
39 #include "bio.h"
40 #include "export.h"
41 #include "compression.h"
42 #include "rcu-string.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 
68 /*
69  * Types for mounting the default subvolume and a subvolume explicitly
70  * requested by subvol=/path. That way the callchain is straightforward and we
71  * don't have to play tricks with the mount options and recursive calls to
72  * btrfs_mount.
73  *
74  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
75  */
76 static struct file_system_type btrfs_fs_type;
77 static struct file_system_type btrfs_root_fs_type;
78 
79 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
80 
81 static void btrfs_put_super(struct super_block *sb)
82 {
83 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
84 
85 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
86 	close_ctree(fs_info);
87 }
88 
89 enum {
90 	Opt_acl, Opt_noacl,
91 	Opt_clear_cache,
92 	Opt_commit_interval,
93 	Opt_compress,
94 	Opt_compress_force,
95 	Opt_compress_force_type,
96 	Opt_compress_type,
97 	Opt_degraded,
98 	Opt_device,
99 	Opt_fatal_errors,
100 	Opt_flushoncommit, Opt_noflushoncommit,
101 	Opt_max_inline,
102 	Opt_barrier, Opt_nobarrier,
103 	Opt_datacow, Opt_nodatacow,
104 	Opt_datasum, Opt_nodatasum,
105 	Opt_defrag, Opt_nodefrag,
106 	Opt_discard, Opt_nodiscard,
107 	Opt_discard_mode,
108 	Opt_norecovery,
109 	Opt_ratio,
110 	Opt_rescan_uuid_tree,
111 	Opt_skip_balance,
112 	Opt_space_cache, Opt_no_space_cache,
113 	Opt_space_cache_version,
114 	Opt_ssd, Opt_nossd,
115 	Opt_ssd_spread, Opt_nossd_spread,
116 	Opt_subvol,
117 	Opt_subvol_empty,
118 	Opt_subvolid,
119 	Opt_thread_pool,
120 	Opt_treelog, Opt_notreelog,
121 	Opt_user_subvol_rm_allowed,
122 
123 	/* Rescue options */
124 	Opt_rescue,
125 	Opt_usebackuproot,
126 	Opt_nologreplay,
127 	Opt_ignorebadroots,
128 	Opt_ignoredatacsums,
129 	Opt_rescue_all,
130 
131 	/* Deprecated options */
132 	Opt_recovery,
133 	Opt_inode_cache, Opt_noinode_cache,
134 
135 	/* Debugging options */
136 	Opt_enospc_debug, Opt_noenospc_debug,
137 #ifdef CONFIG_BTRFS_DEBUG
138 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
139 #endif
140 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
141 	Opt_ref_verify,
142 #endif
143 	Opt_err,
144 };
145 
146 static const match_table_t tokens = {
147 	{Opt_acl, "acl"},
148 	{Opt_noacl, "noacl"},
149 	{Opt_clear_cache, "clear_cache"},
150 	{Opt_commit_interval, "commit=%u"},
151 	{Opt_compress, "compress"},
152 	{Opt_compress_type, "compress=%s"},
153 	{Opt_compress_force, "compress-force"},
154 	{Opt_compress_force_type, "compress-force=%s"},
155 	{Opt_degraded, "degraded"},
156 	{Opt_device, "device=%s"},
157 	{Opt_fatal_errors, "fatal_errors=%s"},
158 	{Opt_flushoncommit, "flushoncommit"},
159 	{Opt_noflushoncommit, "noflushoncommit"},
160 	{Opt_inode_cache, "inode_cache"},
161 	{Opt_noinode_cache, "noinode_cache"},
162 	{Opt_max_inline, "max_inline=%s"},
163 	{Opt_barrier, "barrier"},
164 	{Opt_nobarrier, "nobarrier"},
165 	{Opt_datacow, "datacow"},
166 	{Opt_nodatacow, "nodatacow"},
167 	{Opt_datasum, "datasum"},
168 	{Opt_nodatasum, "nodatasum"},
169 	{Opt_defrag, "autodefrag"},
170 	{Opt_nodefrag, "noautodefrag"},
171 	{Opt_discard, "discard"},
172 	{Opt_discard_mode, "discard=%s"},
173 	{Opt_nodiscard, "nodiscard"},
174 	{Opt_norecovery, "norecovery"},
175 	{Opt_ratio, "metadata_ratio=%u"},
176 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
177 	{Opt_skip_balance, "skip_balance"},
178 	{Opt_space_cache, "space_cache"},
179 	{Opt_no_space_cache, "nospace_cache"},
180 	{Opt_space_cache_version, "space_cache=%s"},
181 	{Opt_ssd, "ssd"},
182 	{Opt_nossd, "nossd"},
183 	{Opt_ssd_spread, "ssd_spread"},
184 	{Opt_nossd_spread, "nossd_spread"},
185 	{Opt_subvol, "subvol=%s"},
186 	{Opt_subvol_empty, "subvol="},
187 	{Opt_subvolid, "subvolid=%s"},
188 	{Opt_thread_pool, "thread_pool=%u"},
189 	{Opt_treelog, "treelog"},
190 	{Opt_notreelog, "notreelog"},
191 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
192 
193 	/* Rescue options */
194 	{Opt_rescue, "rescue=%s"},
195 	/* Deprecated, with alias rescue=nologreplay */
196 	{Opt_nologreplay, "nologreplay"},
197 	/* Deprecated, with alias rescue=usebackuproot */
198 	{Opt_usebackuproot, "usebackuproot"},
199 
200 	/* Deprecated options */
201 	{Opt_recovery, "recovery"},
202 
203 	/* Debugging options */
204 	{Opt_enospc_debug, "enospc_debug"},
205 	{Opt_noenospc_debug, "noenospc_debug"},
206 #ifdef CONFIG_BTRFS_DEBUG
207 	{Opt_fragment_data, "fragment=data"},
208 	{Opt_fragment_metadata, "fragment=metadata"},
209 	{Opt_fragment_all, "fragment=all"},
210 #endif
211 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
212 	{Opt_ref_verify, "ref_verify"},
213 #endif
214 	{Opt_err, NULL},
215 };
216 
217 static const match_table_t rescue_tokens = {
218 	{Opt_usebackuproot, "usebackuproot"},
219 	{Opt_nologreplay, "nologreplay"},
220 	{Opt_ignorebadroots, "ignorebadroots"},
221 	{Opt_ignorebadroots, "ibadroots"},
222 	{Opt_ignoredatacsums, "ignoredatacsums"},
223 	{Opt_ignoredatacsums, "idatacsums"},
224 	{Opt_rescue_all, "all"},
225 	{Opt_err, NULL},
226 };
227 
228 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
229 			    const char *opt_name)
230 {
231 	if (fs_info->mount_opt & opt) {
232 		btrfs_err(fs_info, "%s must be used with ro mount option",
233 			  opt_name);
234 		return true;
235 	}
236 	return false;
237 }
238 
239 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
240 {
241 	char *opts;
242 	char *orig;
243 	char *p;
244 	substring_t args[MAX_OPT_ARGS];
245 	int ret = 0;
246 
247 	opts = kstrdup(options, GFP_KERNEL);
248 	if (!opts)
249 		return -ENOMEM;
250 	orig = opts;
251 
252 	while ((p = strsep(&opts, ":")) != NULL) {
253 		int token;
254 
255 		if (!*p)
256 			continue;
257 		token = match_token(p, rescue_tokens, args);
258 		switch (token){
259 		case Opt_usebackuproot:
260 			btrfs_info(info,
261 				   "trying to use backup root at mount time");
262 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
263 			break;
264 		case Opt_nologreplay:
265 			btrfs_set_and_info(info, NOLOGREPLAY,
266 					   "disabling log replay at mount time");
267 			break;
268 		case Opt_ignorebadroots:
269 			btrfs_set_and_info(info, IGNOREBADROOTS,
270 					   "ignoring bad roots");
271 			break;
272 		case Opt_ignoredatacsums:
273 			btrfs_set_and_info(info, IGNOREDATACSUMS,
274 					   "ignoring data csums");
275 			break;
276 		case Opt_rescue_all:
277 			btrfs_info(info, "enabling all of the rescue options");
278 			btrfs_set_and_info(info, IGNOREDATACSUMS,
279 					   "ignoring data csums");
280 			btrfs_set_and_info(info, IGNOREBADROOTS,
281 					   "ignoring bad roots");
282 			btrfs_set_and_info(info, NOLOGREPLAY,
283 					   "disabling log replay at mount time");
284 			break;
285 		case Opt_err:
286 			btrfs_info(info, "unrecognized rescue option '%s'", p);
287 			ret = -EINVAL;
288 			goto out;
289 		default:
290 			break;
291 		}
292 
293 	}
294 out:
295 	kfree(orig);
296 	return ret;
297 }
298 
299 /*
300  * Regular mount options parser.  Everything that is needed only when
301  * reading in a new superblock is parsed here.
302  * XXX JDM: This needs to be cleaned up for remount.
303  */
304 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
305 			unsigned long new_flags)
306 {
307 	substring_t args[MAX_OPT_ARGS];
308 	char *p, *num;
309 	int intarg;
310 	int ret = 0;
311 	char *compress_type;
312 	bool compress_force = false;
313 	enum btrfs_compression_type saved_compress_type;
314 	int saved_compress_level;
315 	bool saved_compress_force;
316 	int no_compress = 0;
317 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
318 
319 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
320 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
321 	else if (btrfs_free_space_cache_v1_active(info)) {
322 		if (btrfs_is_zoned(info)) {
323 			btrfs_info(info,
324 			"zoned: clearing existing space cache");
325 			btrfs_set_super_cache_generation(info->super_copy, 0);
326 		} else {
327 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
328 		}
329 	}
330 
331 	/*
332 	 * Even the options are empty, we still need to do extra check
333 	 * against new flags
334 	 */
335 	if (!options)
336 		goto check;
337 
338 	while ((p = strsep(&options, ",")) != NULL) {
339 		int token;
340 		if (!*p)
341 			continue;
342 
343 		token = match_token(p, tokens, args);
344 		switch (token) {
345 		case Opt_degraded:
346 			btrfs_info(info, "allowing degraded mounts");
347 			btrfs_set_opt(info->mount_opt, DEGRADED);
348 			break;
349 		case Opt_subvol:
350 		case Opt_subvol_empty:
351 		case Opt_subvolid:
352 		case Opt_device:
353 			/*
354 			 * These are parsed by btrfs_parse_subvol_options or
355 			 * btrfs_parse_device_options and can be ignored here.
356 			 */
357 			break;
358 		case Opt_nodatasum:
359 			btrfs_set_and_info(info, NODATASUM,
360 					   "setting nodatasum");
361 			break;
362 		case Opt_datasum:
363 			if (btrfs_test_opt(info, NODATASUM)) {
364 				if (btrfs_test_opt(info, NODATACOW))
365 					btrfs_info(info,
366 						   "setting datasum, datacow enabled");
367 				else
368 					btrfs_info(info, "setting datasum");
369 			}
370 			btrfs_clear_opt(info->mount_opt, NODATACOW);
371 			btrfs_clear_opt(info->mount_opt, NODATASUM);
372 			break;
373 		case Opt_nodatacow:
374 			if (!btrfs_test_opt(info, NODATACOW)) {
375 				if (!btrfs_test_opt(info, COMPRESS) ||
376 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
377 					btrfs_info(info,
378 						   "setting nodatacow, compression disabled");
379 				} else {
380 					btrfs_info(info, "setting nodatacow");
381 				}
382 			}
383 			btrfs_clear_opt(info->mount_opt, COMPRESS);
384 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
385 			btrfs_set_opt(info->mount_opt, NODATACOW);
386 			btrfs_set_opt(info->mount_opt, NODATASUM);
387 			break;
388 		case Opt_datacow:
389 			btrfs_clear_and_info(info, NODATACOW,
390 					     "setting datacow");
391 			break;
392 		case Opt_compress_force:
393 		case Opt_compress_force_type:
394 			compress_force = true;
395 			fallthrough;
396 		case Opt_compress:
397 		case Opt_compress_type:
398 			saved_compress_type = btrfs_test_opt(info,
399 							     COMPRESS) ?
400 				info->compress_type : BTRFS_COMPRESS_NONE;
401 			saved_compress_force =
402 				btrfs_test_opt(info, FORCE_COMPRESS);
403 			saved_compress_level = info->compress_level;
404 			if (token == Opt_compress ||
405 			    token == Opt_compress_force ||
406 			    strncmp(args[0].from, "zlib", 4) == 0) {
407 				compress_type = "zlib";
408 
409 				info->compress_type = BTRFS_COMPRESS_ZLIB;
410 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
411 				/*
412 				 * args[0] contains uninitialized data since
413 				 * for these tokens we don't expect any
414 				 * parameter.
415 				 */
416 				if (token != Opt_compress &&
417 				    token != Opt_compress_force)
418 					info->compress_level =
419 					  btrfs_compress_str2level(
420 							BTRFS_COMPRESS_ZLIB,
421 							args[0].from + 4);
422 				btrfs_set_opt(info->mount_opt, COMPRESS);
423 				btrfs_clear_opt(info->mount_opt, NODATACOW);
424 				btrfs_clear_opt(info->mount_opt, NODATASUM);
425 				no_compress = 0;
426 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
427 				compress_type = "lzo";
428 				info->compress_type = BTRFS_COMPRESS_LZO;
429 				info->compress_level = 0;
430 				btrfs_set_opt(info->mount_opt, COMPRESS);
431 				btrfs_clear_opt(info->mount_opt, NODATACOW);
432 				btrfs_clear_opt(info->mount_opt, NODATASUM);
433 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
434 				no_compress = 0;
435 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
436 				compress_type = "zstd";
437 				info->compress_type = BTRFS_COMPRESS_ZSTD;
438 				info->compress_level =
439 					btrfs_compress_str2level(
440 							 BTRFS_COMPRESS_ZSTD,
441 							 args[0].from + 4);
442 				btrfs_set_opt(info->mount_opt, COMPRESS);
443 				btrfs_clear_opt(info->mount_opt, NODATACOW);
444 				btrfs_clear_opt(info->mount_opt, NODATASUM);
445 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
446 				no_compress = 0;
447 			} else if (strncmp(args[0].from, "no", 2) == 0) {
448 				compress_type = "no";
449 				info->compress_level = 0;
450 				info->compress_type = 0;
451 				btrfs_clear_opt(info->mount_opt, COMPRESS);
452 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
453 				compress_force = false;
454 				no_compress++;
455 			} else {
456 				btrfs_err(info, "unrecognized compression value %s",
457 					  args[0].from);
458 				ret = -EINVAL;
459 				goto out;
460 			}
461 
462 			if (compress_force) {
463 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
464 			} else {
465 				/*
466 				 * If we remount from compress-force=xxx to
467 				 * compress=xxx, we need clear FORCE_COMPRESS
468 				 * flag, otherwise, there is no way for users
469 				 * to disable forcible compression separately.
470 				 */
471 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
472 			}
473 			if (no_compress == 1) {
474 				btrfs_info(info, "use no compression");
475 			} else if ((info->compress_type != saved_compress_type) ||
476 				   (compress_force != saved_compress_force) ||
477 				   (info->compress_level != saved_compress_level)) {
478 				btrfs_info(info, "%s %s compression, level %d",
479 					   (compress_force) ? "force" : "use",
480 					   compress_type, info->compress_level);
481 			}
482 			compress_force = false;
483 			break;
484 		case Opt_ssd:
485 			btrfs_set_and_info(info, SSD,
486 					   "enabling ssd optimizations");
487 			btrfs_clear_opt(info->mount_opt, NOSSD);
488 			break;
489 		case Opt_ssd_spread:
490 			btrfs_set_and_info(info, SSD,
491 					   "enabling ssd optimizations");
492 			btrfs_set_and_info(info, SSD_SPREAD,
493 					   "using spread ssd allocation scheme");
494 			btrfs_clear_opt(info->mount_opt, NOSSD);
495 			break;
496 		case Opt_nossd:
497 			btrfs_set_opt(info->mount_opt, NOSSD);
498 			btrfs_clear_and_info(info, SSD,
499 					     "not using ssd optimizations");
500 			fallthrough;
501 		case Opt_nossd_spread:
502 			btrfs_clear_and_info(info, SSD_SPREAD,
503 					     "not using spread ssd allocation scheme");
504 			break;
505 		case Opt_barrier:
506 			btrfs_clear_and_info(info, NOBARRIER,
507 					     "turning on barriers");
508 			break;
509 		case Opt_nobarrier:
510 			btrfs_set_and_info(info, NOBARRIER,
511 					   "turning off barriers");
512 			break;
513 		case Opt_thread_pool:
514 			ret = match_int(&args[0], &intarg);
515 			if (ret) {
516 				btrfs_err(info, "unrecognized thread_pool value %s",
517 					  args[0].from);
518 				goto out;
519 			} else if (intarg == 0) {
520 				btrfs_err(info, "invalid value 0 for thread_pool");
521 				ret = -EINVAL;
522 				goto out;
523 			}
524 			info->thread_pool_size = intarg;
525 			break;
526 		case Opt_max_inline:
527 			num = match_strdup(&args[0]);
528 			if (num) {
529 				info->max_inline = memparse(num, NULL);
530 				kfree(num);
531 
532 				if (info->max_inline) {
533 					info->max_inline = min_t(u64,
534 						info->max_inline,
535 						info->sectorsize);
536 				}
537 				btrfs_info(info, "max_inline at %llu",
538 					   info->max_inline);
539 			} else {
540 				ret = -ENOMEM;
541 				goto out;
542 			}
543 			break;
544 		case Opt_acl:
545 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
546 			info->sb->s_flags |= SB_POSIXACL;
547 			break;
548 #else
549 			btrfs_err(info, "support for ACL not compiled in!");
550 			ret = -EINVAL;
551 			goto out;
552 #endif
553 		case Opt_noacl:
554 			info->sb->s_flags &= ~SB_POSIXACL;
555 			break;
556 		case Opt_notreelog:
557 			btrfs_set_and_info(info, NOTREELOG,
558 					   "disabling tree log");
559 			break;
560 		case Opt_treelog:
561 			btrfs_clear_and_info(info, NOTREELOG,
562 					     "enabling tree log");
563 			break;
564 		case Opt_norecovery:
565 		case Opt_nologreplay:
566 			btrfs_warn(info,
567 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
568 			btrfs_set_and_info(info, NOLOGREPLAY,
569 					   "disabling log replay at mount time");
570 			break;
571 		case Opt_flushoncommit:
572 			btrfs_set_and_info(info, FLUSHONCOMMIT,
573 					   "turning on flush-on-commit");
574 			break;
575 		case Opt_noflushoncommit:
576 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
577 					     "turning off flush-on-commit");
578 			break;
579 		case Opt_ratio:
580 			ret = match_int(&args[0], &intarg);
581 			if (ret) {
582 				btrfs_err(info, "unrecognized metadata_ratio value %s",
583 					  args[0].from);
584 				goto out;
585 			}
586 			info->metadata_ratio = intarg;
587 			btrfs_info(info, "metadata ratio %u",
588 				   info->metadata_ratio);
589 			break;
590 		case Opt_discard:
591 		case Opt_discard_mode:
592 			if (token == Opt_discard ||
593 			    strcmp(args[0].from, "sync") == 0) {
594 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
595 				btrfs_set_and_info(info, DISCARD_SYNC,
596 						   "turning on sync discard");
597 			} else if (strcmp(args[0].from, "async") == 0) {
598 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
599 				btrfs_set_and_info(info, DISCARD_ASYNC,
600 						   "turning on async discard");
601 			} else {
602 				btrfs_err(info, "unrecognized discard mode value %s",
603 					  args[0].from);
604 				ret = -EINVAL;
605 				goto out;
606 			}
607 			btrfs_clear_opt(info->mount_opt, NODISCARD);
608 			break;
609 		case Opt_nodiscard:
610 			btrfs_clear_and_info(info, DISCARD_SYNC,
611 					     "turning off discard");
612 			btrfs_clear_and_info(info, DISCARD_ASYNC,
613 					     "turning off async discard");
614 			btrfs_set_opt(info->mount_opt, NODISCARD);
615 			break;
616 		case Opt_space_cache:
617 		case Opt_space_cache_version:
618 			/*
619 			 * We already set FREE_SPACE_TREE above because we have
620 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
621 			 * to allow v1 to be set for extent tree v2, simply
622 			 * ignore this setting if we're extent tree v2.
623 			 */
624 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
625 				break;
626 			if (token == Opt_space_cache ||
627 			    strcmp(args[0].from, "v1") == 0) {
628 				btrfs_clear_opt(info->mount_opt,
629 						FREE_SPACE_TREE);
630 				btrfs_set_and_info(info, SPACE_CACHE,
631 					   "enabling disk space caching");
632 			} else if (strcmp(args[0].from, "v2") == 0) {
633 				btrfs_clear_opt(info->mount_opt,
634 						SPACE_CACHE);
635 				btrfs_set_and_info(info, FREE_SPACE_TREE,
636 						   "enabling free space tree");
637 			} else {
638 				btrfs_err(info, "unrecognized space_cache value %s",
639 					  args[0].from);
640 				ret = -EINVAL;
641 				goto out;
642 			}
643 			break;
644 		case Opt_rescan_uuid_tree:
645 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
646 			break;
647 		case Opt_no_space_cache:
648 			/*
649 			 * We cannot operate without the free space tree with
650 			 * extent tree v2, ignore this option.
651 			 */
652 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
653 				break;
654 			if (btrfs_test_opt(info, SPACE_CACHE)) {
655 				btrfs_clear_and_info(info, SPACE_CACHE,
656 					     "disabling disk space caching");
657 			}
658 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
659 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
660 					     "disabling free space tree");
661 			}
662 			break;
663 		case Opt_inode_cache:
664 		case Opt_noinode_cache:
665 			btrfs_warn(info,
666 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
667 			break;
668 		case Opt_clear_cache:
669 			/*
670 			 * We cannot clear the free space tree with extent tree
671 			 * v2, ignore this option.
672 			 */
673 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
674 				break;
675 			btrfs_set_and_info(info, CLEAR_CACHE,
676 					   "force clearing of disk cache");
677 			break;
678 		case Opt_user_subvol_rm_allowed:
679 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
680 			break;
681 		case Opt_enospc_debug:
682 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
683 			break;
684 		case Opt_noenospc_debug:
685 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
686 			break;
687 		case Opt_defrag:
688 			btrfs_set_and_info(info, AUTO_DEFRAG,
689 					   "enabling auto defrag");
690 			break;
691 		case Opt_nodefrag:
692 			btrfs_clear_and_info(info, AUTO_DEFRAG,
693 					     "disabling auto defrag");
694 			break;
695 		case Opt_recovery:
696 		case Opt_usebackuproot:
697 			btrfs_warn(info,
698 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
699 				   token == Opt_recovery ? "recovery" :
700 				   "usebackuproot");
701 			btrfs_info(info,
702 				   "trying to use backup root at mount time");
703 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
704 			break;
705 		case Opt_skip_balance:
706 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
707 			break;
708 		case Opt_fatal_errors:
709 			if (strcmp(args[0].from, "panic") == 0) {
710 				btrfs_set_opt(info->mount_opt,
711 					      PANIC_ON_FATAL_ERROR);
712 			} else if (strcmp(args[0].from, "bug") == 0) {
713 				btrfs_clear_opt(info->mount_opt,
714 					      PANIC_ON_FATAL_ERROR);
715 			} else {
716 				btrfs_err(info, "unrecognized fatal_errors value %s",
717 					  args[0].from);
718 				ret = -EINVAL;
719 				goto out;
720 			}
721 			break;
722 		case Opt_commit_interval:
723 			intarg = 0;
724 			ret = match_int(&args[0], &intarg);
725 			if (ret) {
726 				btrfs_err(info, "unrecognized commit_interval value %s",
727 					  args[0].from);
728 				ret = -EINVAL;
729 				goto out;
730 			}
731 			if (intarg == 0) {
732 				btrfs_info(info,
733 					   "using default commit interval %us",
734 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
735 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
736 			} else if (intarg > 300) {
737 				btrfs_warn(info, "excessive commit interval %d",
738 					   intarg);
739 			}
740 			info->commit_interval = intarg;
741 			break;
742 		case Opt_rescue:
743 			ret = parse_rescue_options(info, args[0].from);
744 			if (ret < 0) {
745 				btrfs_err(info, "unrecognized rescue value %s",
746 					  args[0].from);
747 				goto out;
748 			}
749 			break;
750 #ifdef CONFIG_BTRFS_DEBUG
751 		case Opt_fragment_all:
752 			btrfs_info(info, "fragmenting all space");
753 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
754 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
755 			break;
756 		case Opt_fragment_metadata:
757 			btrfs_info(info, "fragmenting metadata");
758 			btrfs_set_opt(info->mount_opt,
759 				      FRAGMENT_METADATA);
760 			break;
761 		case Opt_fragment_data:
762 			btrfs_info(info, "fragmenting data");
763 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
764 			break;
765 #endif
766 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
767 		case Opt_ref_verify:
768 			btrfs_info(info, "doing ref verification");
769 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
770 			break;
771 #endif
772 		case Opt_err:
773 			btrfs_err(info, "unrecognized mount option '%s'", p);
774 			ret = -EINVAL;
775 			goto out;
776 		default:
777 			break;
778 		}
779 	}
780 check:
781 	/* We're read-only, don't have to check. */
782 	if (new_flags & SB_RDONLY)
783 		goto out;
784 
785 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
786 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
787 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
788 		ret = -EINVAL;
789 out:
790 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
791 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
792 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
793 		btrfs_err(info, "cannot disable free space tree");
794 		ret = -EINVAL;
795 	}
796 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
797 	     !btrfs_test_opt(info, FREE_SPACE_TREE)) {
798 		btrfs_err(info, "cannot disable free space tree with block-group-tree feature");
799 		ret = -EINVAL;
800 	}
801 	if (!ret)
802 		ret = btrfs_check_mountopts_zoned(info);
803 	if (!ret && !remounting) {
804 		if (btrfs_test_opt(info, SPACE_CACHE))
805 			btrfs_info(info, "disk space caching is enabled");
806 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
807 			btrfs_info(info, "using free space tree");
808 	}
809 	return ret;
810 }
811 
812 /*
813  * Parse mount options that are required early in the mount process.
814  *
815  * All other options will be parsed on much later in the mount process and
816  * only when we need to allocate a new super block.
817  */
818 static int btrfs_parse_device_options(const char *options, blk_mode_t flags)
819 {
820 	substring_t args[MAX_OPT_ARGS];
821 	char *device_name, *opts, *orig, *p;
822 	struct btrfs_device *device = NULL;
823 	int error = 0;
824 
825 	lockdep_assert_held(&uuid_mutex);
826 
827 	if (!options)
828 		return 0;
829 
830 	/*
831 	 * strsep changes the string, duplicate it because btrfs_parse_options
832 	 * gets called later
833 	 */
834 	opts = kstrdup(options, GFP_KERNEL);
835 	if (!opts)
836 		return -ENOMEM;
837 	orig = opts;
838 
839 	while ((p = strsep(&opts, ",")) != NULL) {
840 		int token;
841 
842 		if (!*p)
843 			continue;
844 
845 		token = match_token(p, tokens, args);
846 		if (token == Opt_device) {
847 			device_name = match_strdup(&args[0]);
848 			if (!device_name) {
849 				error = -ENOMEM;
850 				goto out;
851 			}
852 			device = btrfs_scan_one_device(device_name, flags, false);
853 			kfree(device_name);
854 			if (IS_ERR(device)) {
855 				error = PTR_ERR(device);
856 				goto out;
857 			}
858 		}
859 	}
860 
861 out:
862 	kfree(orig);
863 	return error;
864 }
865 
866 /*
867  * Parse mount options that are related to subvolume id
868  *
869  * The value is later passed to mount_subvol()
870  */
871 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
872 		u64 *subvol_objectid)
873 {
874 	substring_t args[MAX_OPT_ARGS];
875 	char *opts, *orig, *p;
876 	int error = 0;
877 	u64 subvolid;
878 
879 	if (!options)
880 		return 0;
881 
882 	/*
883 	 * strsep changes the string, duplicate it because
884 	 * btrfs_parse_device_options gets called later
885 	 */
886 	opts = kstrdup(options, GFP_KERNEL);
887 	if (!opts)
888 		return -ENOMEM;
889 	orig = opts;
890 
891 	while ((p = strsep(&opts, ",")) != NULL) {
892 		int token;
893 		if (!*p)
894 			continue;
895 
896 		token = match_token(p, tokens, args);
897 		switch (token) {
898 		case Opt_subvol:
899 			kfree(*subvol_name);
900 			*subvol_name = match_strdup(&args[0]);
901 			if (!*subvol_name) {
902 				error = -ENOMEM;
903 				goto out;
904 			}
905 			break;
906 		case Opt_subvolid:
907 			error = match_u64(&args[0], &subvolid);
908 			if (error)
909 				goto out;
910 
911 			/* we want the original fs_tree */
912 			if (subvolid == 0)
913 				subvolid = BTRFS_FS_TREE_OBJECTID;
914 
915 			*subvol_objectid = subvolid;
916 			break;
917 		default:
918 			break;
919 		}
920 	}
921 
922 out:
923 	kfree(orig);
924 	return error;
925 }
926 
927 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
928 					  u64 subvol_objectid)
929 {
930 	struct btrfs_root *root = fs_info->tree_root;
931 	struct btrfs_root *fs_root = NULL;
932 	struct btrfs_root_ref *root_ref;
933 	struct btrfs_inode_ref *inode_ref;
934 	struct btrfs_key key;
935 	struct btrfs_path *path = NULL;
936 	char *name = NULL, *ptr;
937 	u64 dirid;
938 	int len;
939 	int ret;
940 
941 	path = btrfs_alloc_path();
942 	if (!path) {
943 		ret = -ENOMEM;
944 		goto err;
945 	}
946 
947 	name = kmalloc(PATH_MAX, GFP_KERNEL);
948 	if (!name) {
949 		ret = -ENOMEM;
950 		goto err;
951 	}
952 	ptr = name + PATH_MAX - 1;
953 	ptr[0] = '\0';
954 
955 	/*
956 	 * Walk up the subvolume trees in the tree of tree roots by root
957 	 * backrefs until we hit the top-level subvolume.
958 	 */
959 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
960 		key.objectid = subvol_objectid;
961 		key.type = BTRFS_ROOT_BACKREF_KEY;
962 		key.offset = (u64)-1;
963 
964 		ret = btrfs_search_backwards(root, &key, path);
965 		if (ret < 0) {
966 			goto err;
967 		} else if (ret > 0) {
968 			ret = -ENOENT;
969 			goto err;
970 		}
971 
972 		subvol_objectid = key.offset;
973 
974 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
975 					  struct btrfs_root_ref);
976 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
977 		ptr -= len + 1;
978 		if (ptr < name) {
979 			ret = -ENAMETOOLONG;
980 			goto err;
981 		}
982 		read_extent_buffer(path->nodes[0], ptr + 1,
983 				   (unsigned long)(root_ref + 1), len);
984 		ptr[0] = '/';
985 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
986 		btrfs_release_path(path);
987 
988 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
989 		if (IS_ERR(fs_root)) {
990 			ret = PTR_ERR(fs_root);
991 			fs_root = NULL;
992 			goto err;
993 		}
994 
995 		/*
996 		 * Walk up the filesystem tree by inode refs until we hit the
997 		 * root directory.
998 		 */
999 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1000 			key.objectid = dirid;
1001 			key.type = BTRFS_INODE_REF_KEY;
1002 			key.offset = (u64)-1;
1003 
1004 			ret = btrfs_search_backwards(fs_root, &key, path);
1005 			if (ret < 0) {
1006 				goto err;
1007 			} else if (ret > 0) {
1008 				ret = -ENOENT;
1009 				goto err;
1010 			}
1011 
1012 			dirid = key.offset;
1013 
1014 			inode_ref = btrfs_item_ptr(path->nodes[0],
1015 						   path->slots[0],
1016 						   struct btrfs_inode_ref);
1017 			len = btrfs_inode_ref_name_len(path->nodes[0],
1018 						       inode_ref);
1019 			ptr -= len + 1;
1020 			if (ptr < name) {
1021 				ret = -ENAMETOOLONG;
1022 				goto err;
1023 			}
1024 			read_extent_buffer(path->nodes[0], ptr + 1,
1025 					   (unsigned long)(inode_ref + 1), len);
1026 			ptr[0] = '/';
1027 			btrfs_release_path(path);
1028 		}
1029 		btrfs_put_root(fs_root);
1030 		fs_root = NULL;
1031 	}
1032 
1033 	btrfs_free_path(path);
1034 	if (ptr == name + PATH_MAX - 1) {
1035 		name[0] = '/';
1036 		name[1] = '\0';
1037 	} else {
1038 		memmove(name, ptr, name + PATH_MAX - ptr);
1039 	}
1040 	return name;
1041 
1042 err:
1043 	btrfs_put_root(fs_root);
1044 	btrfs_free_path(path);
1045 	kfree(name);
1046 	return ERR_PTR(ret);
1047 }
1048 
1049 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1050 {
1051 	struct btrfs_root *root = fs_info->tree_root;
1052 	struct btrfs_dir_item *di;
1053 	struct btrfs_path *path;
1054 	struct btrfs_key location;
1055 	struct fscrypt_str name = FSTR_INIT("default", 7);
1056 	u64 dir_id;
1057 
1058 	path = btrfs_alloc_path();
1059 	if (!path)
1060 		return -ENOMEM;
1061 
1062 	/*
1063 	 * Find the "default" dir item which points to the root item that we
1064 	 * will mount by default if we haven't been given a specific subvolume
1065 	 * to mount.
1066 	 */
1067 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1068 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1069 	if (IS_ERR(di)) {
1070 		btrfs_free_path(path);
1071 		return PTR_ERR(di);
1072 	}
1073 	if (!di) {
1074 		/*
1075 		 * Ok the default dir item isn't there.  This is weird since
1076 		 * it's always been there, but don't freak out, just try and
1077 		 * mount the top-level subvolume.
1078 		 */
1079 		btrfs_free_path(path);
1080 		*objectid = BTRFS_FS_TREE_OBJECTID;
1081 		return 0;
1082 	}
1083 
1084 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1085 	btrfs_free_path(path);
1086 	*objectid = location.objectid;
1087 	return 0;
1088 }
1089 
1090 static int btrfs_fill_super(struct super_block *sb,
1091 			    struct btrfs_fs_devices *fs_devices,
1092 			    void *data)
1093 {
1094 	struct inode *inode;
1095 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1096 	int err;
1097 
1098 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1099 	sb->s_magic = BTRFS_SUPER_MAGIC;
1100 	sb->s_op = &btrfs_super_ops;
1101 	sb->s_d_op = &btrfs_dentry_operations;
1102 	sb->s_export_op = &btrfs_export_ops;
1103 #ifdef CONFIG_FS_VERITY
1104 	sb->s_vop = &btrfs_verityops;
1105 #endif
1106 	sb->s_xattr = btrfs_xattr_handlers;
1107 	sb->s_time_gran = 1;
1108 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1109 	sb->s_flags |= SB_POSIXACL;
1110 #endif
1111 	sb->s_flags |= SB_I_VERSION;
1112 	sb->s_iflags |= SB_I_CGROUPWB;
1113 
1114 	err = super_setup_bdi(sb);
1115 	if (err) {
1116 		btrfs_err(fs_info, "super_setup_bdi failed");
1117 		return err;
1118 	}
1119 
1120 	err = open_ctree(sb, fs_devices, (char *)data);
1121 	if (err) {
1122 		btrfs_err(fs_info, "open_ctree failed");
1123 		return err;
1124 	}
1125 
1126 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1127 	if (IS_ERR(inode)) {
1128 		err = PTR_ERR(inode);
1129 		btrfs_handle_fs_error(fs_info, err, NULL);
1130 		goto fail_close;
1131 	}
1132 
1133 	sb->s_root = d_make_root(inode);
1134 	if (!sb->s_root) {
1135 		err = -ENOMEM;
1136 		goto fail_close;
1137 	}
1138 
1139 	sb->s_flags |= SB_ACTIVE;
1140 	return 0;
1141 
1142 fail_close:
1143 	close_ctree(fs_info);
1144 	return err;
1145 }
1146 
1147 int btrfs_sync_fs(struct super_block *sb, int wait)
1148 {
1149 	struct btrfs_trans_handle *trans;
1150 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1151 	struct btrfs_root *root = fs_info->tree_root;
1152 
1153 	trace_btrfs_sync_fs(fs_info, wait);
1154 
1155 	if (!wait) {
1156 		filemap_flush(fs_info->btree_inode->i_mapping);
1157 		return 0;
1158 	}
1159 
1160 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1161 
1162 	trans = btrfs_attach_transaction_barrier(root);
1163 	if (IS_ERR(trans)) {
1164 		/* no transaction, don't bother */
1165 		if (PTR_ERR(trans) == -ENOENT) {
1166 			/*
1167 			 * Exit unless we have some pending changes
1168 			 * that need to go through commit
1169 			 */
1170 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1171 				      &fs_info->flags))
1172 				return 0;
1173 			/*
1174 			 * A non-blocking test if the fs is frozen. We must not
1175 			 * start a new transaction here otherwise a deadlock
1176 			 * happens. The pending operations are delayed to the
1177 			 * next commit after thawing.
1178 			 */
1179 			if (sb_start_write_trylock(sb))
1180 				sb_end_write(sb);
1181 			else
1182 				return 0;
1183 			trans = btrfs_start_transaction(root, 0);
1184 		}
1185 		if (IS_ERR(trans))
1186 			return PTR_ERR(trans);
1187 	}
1188 	return btrfs_commit_transaction(trans);
1189 }
1190 
1191 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1192 {
1193 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1194 	*printed = true;
1195 }
1196 
1197 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1198 {
1199 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1200 	const char *compress_type;
1201 	const char *subvol_name;
1202 	bool printed = false;
1203 
1204 	if (btrfs_test_opt(info, DEGRADED))
1205 		seq_puts(seq, ",degraded");
1206 	if (btrfs_test_opt(info, NODATASUM))
1207 		seq_puts(seq, ",nodatasum");
1208 	if (btrfs_test_opt(info, NODATACOW))
1209 		seq_puts(seq, ",nodatacow");
1210 	if (btrfs_test_opt(info, NOBARRIER))
1211 		seq_puts(seq, ",nobarrier");
1212 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1213 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1214 	if (info->thread_pool_size !=  min_t(unsigned long,
1215 					     num_online_cpus() + 2, 8))
1216 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1217 	if (btrfs_test_opt(info, COMPRESS)) {
1218 		compress_type = btrfs_compress_type2str(info->compress_type);
1219 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1220 			seq_printf(seq, ",compress-force=%s", compress_type);
1221 		else
1222 			seq_printf(seq, ",compress=%s", compress_type);
1223 		if (info->compress_level)
1224 			seq_printf(seq, ":%d", info->compress_level);
1225 	}
1226 	if (btrfs_test_opt(info, NOSSD))
1227 		seq_puts(seq, ",nossd");
1228 	if (btrfs_test_opt(info, SSD_SPREAD))
1229 		seq_puts(seq, ",ssd_spread");
1230 	else if (btrfs_test_opt(info, SSD))
1231 		seq_puts(seq, ",ssd");
1232 	if (btrfs_test_opt(info, NOTREELOG))
1233 		seq_puts(seq, ",notreelog");
1234 	if (btrfs_test_opt(info, NOLOGREPLAY))
1235 		print_rescue_option(seq, "nologreplay", &printed);
1236 	if (btrfs_test_opt(info, USEBACKUPROOT))
1237 		print_rescue_option(seq, "usebackuproot", &printed);
1238 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1239 		print_rescue_option(seq, "ignorebadroots", &printed);
1240 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1241 		print_rescue_option(seq, "ignoredatacsums", &printed);
1242 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1243 		seq_puts(seq, ",flushoncommit");
1244 	if (btrfs_test_opt(info, DISCARD_SYNC))
1245 		seq_puts(seq, ",discard");
1246 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1247 		seq_puts(seq, ",discard=async");
1248 	if (!(info->sb->s_flags & SB_POSIXACL))
1249 		seq_puts(seq, ",noacl");
1250 	if (btrfs_free_space_cache_v1_active(info))
1251 		seq_puts(seq, ",space_cache");
1252 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1253 		seq_puts(seq, ",space_cache=v2");
1254 	else
1255 		seq_puts(seq, ",nospace_cache");
1256 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1257 		seq_puts(seq, ",rescan_uuid_tree");
1258 	if (btrfs_test_opt(info, CLEAR_CACHE))
1259 		seq_puts(seq, ",clear_cache");
1260 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1261 		seq_puts(seq, ",user_subvol_rm_allowed");
1262 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1263 		seq_puts(seq, ",enospc_debug");
1264 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1265 		seq_puts(seq, ",autodefrag");
1266 	if (btrfs_test_opt(info, SKIP_BALANCE))
1267 		seq_puts(seq, ",skip_balance");
1268 	if (info->metadata_ratio)
1269 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1270 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1271 		seq_puts(seq, ",fatal_errors=panic");
1272 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1273 		seq_printf(seq, ",commit=%u", info->commit_interval);
1274 #ifdef CONFIG_BTRFS_DEBUG
1275 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1276 		seq_puts(seq, ",fragment=data");
1277 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1278 		seq_puts(seq, ",fragment=metadata");
1279 #endif
1280 	if (btrfs_test_opt(info, REF_VERIFY))
1281 		seq_puts(seq, ",ref_verify");
1282 	seq_printf(seq, ",subvolid=%llu",
1283 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1284 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1285 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1286 	if (!IS_ERR(subvol_name)) {
1287 		seq_puts(seq, ",subvol=");
1288 		seq_escape(seq, subvol_name, " \t\n\\");
1289 		kfree(subvol_name);
1290 	}
1291 	return 0;
1292 }
1293 
1294 static int btrfs_test_super(struct super_block *s, void *data)
1295 {
1296 	struct btrfs_fs_info *p = data;
1297 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1298 
1299 	return fs_info->fs_devices == p->fs_devices;
1300 }
1301 
1302 static int btrfs_set_super(struct super_block *s, void *data)
1303 {
1304 	int err = set_anon_super(s, data);
1305 	if (!err)
1306 		s->s_fs_info = data;
1307 	return err;
1308 }
1309 
1310 /*
1311  * subvolumes are identified by ino 256
1312  */
1313 static inline int is_subvolume_inode(struct inode *inode)
1314 {
1315 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1316 		return 1;
1317 	return 0;
1318 }
1319 
1320 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1321 				   struct vfsmount *mnt)
1322 {
1323 	struct dentry *root;
1324 	int ret;
1325 
1326 	if (!subvol_name) {
1327 		if (!subvol_objectid) {
1328 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1329 							  &subvol_objectid);
1330 			if (ret) {
1331 				root = ERR_PTR(ret);
1332 				goto out;
1333 			}
1334 		}
1335 		subvol_name = btrfs_get_subvol_name_from_objectid(
1336 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1337 		if (IS_ERR(subvol_name)) {
1338 			root = ERR_CAST(subvol_name);
1339 			subvol_name = NULL;
1340 			goto out;
1341 		}
1342 
1343 	}
1344 
1345 	root = mount_subtree(mnt, subvol_name);
1346 	/* mount_subtree() drops our reference on the vfsmount. */
1347 	mnt = NULL;
1348 
1349 	if (!IS_ERR(root)) {
1350 		struct super_block *s = root->d_sb;
1351 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1352 		struct inode *root_inode = d_inode(root);
1353 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1354 
1355 		ret = 0;
1356 		if (!is_subvolume_inode(root_inode)) {
1357 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1358 			       subvol_name);
1359 			ret = -EINVAL;
1360 		}
1361 		if (subvol_objectid && root_objectid != subvol_objectid) {
1362 			/*
1363 			 * This will also catch a race condition where a
1364 			 * subvolume which was passed by ID is renamed and
1365 			 * another subvolume is renamed over the old location.
1366 			 */
1367 			btrfs_err(fs_info,
1368 				  "subvol '%s' does not match subvolid %llu",
1369 				  subvol_name, subvol_objectid);
1370 			ret = -EINVAL;
1371 		}
1372 		if (ret) {
1373 			dput(root);
1374 			root = ERR_PTR(ret);
1375 			deactivate_locked_super(s);
1376 		}
1377 	}
1378 
1379 out:
1380 	mntput(mnt);
1381 	kfree(subvol_name);
1382 	return root;
1383 }
1384 
1385 /*
1386  * Find a superblock for the given device / mount point.
1387  *
1388  * Note: This is based on mount_bdev from fs/super.c with a few additions
1389  *       for multiple device setup.  Make sure to keep it in sync.
1390  */
1391 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1392 		int flags, const char *device_name, void *data)
1393 {
1394 	struct block_device *bdev = NULL;
1395 	struct super_block *s;
1396 	struct btrfs_device *device = NULL;
1397 	struct btrfs_fs_devices *fs_devices = NULL;
1398 	struct btrfs_fs_info *fs_info = NULL;
1399 	void *new_sec_opts = NULL;
1400 	blk_mode_t mode = sb_open_mode(flags);
1401 	int error = 0;
1402 
1403 	if (data) {
1404 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1405 		if (error)
1406 			return ERR_PTR(error);
1407 	}
1408 
1409 	/*
1410 	 * Setup a dummy root and fs_info for test/set super.  This is because
1411 	 * we don't actually fill this stuff out until open_ctree, but we need
1412 	 * then open_ctree will properly initialize the file system specific
1413 	 * settings later.  btrfs_init_fs_info initializes the static elements
1414 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1415 	 * superblock with our given fs_devices later on at sget() time.
1416 	 */
1417 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1418 	if (!fs_info) {
1419 		error = -ENOMEM;
1420 		goto error_sec_opts;
1421 	}
1422 	btrfs_init_fs_info(fs_info);
1423 
1424 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1425 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1426 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1427 		error = -ENOMEM;
1428 		goto error_fs_info;
1429 	}
1430 
1431 	mutex_lock(&uuid_mutex);
1432 	error = btrfs_parse_device_options(data, mode);
1433 	if (error) {
1434 		mutex_unlock(&uuid_mutex);
1435 		goto error_fs_info;
1436 	}
1437 
1438 	/*
1439 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1440 	 * either a valid device or an error.
1441 	 */
1442 	device = btrfs_scan_one_device(device_name, mode, true);
1443 	ASSERT(device != NULL);
1444 	if (IS_ERR(device)) {
1445 		mutex_unlock(&uuid_mutex);
1446 		error = PTR_ERR(device);
1447 		goto error_fs_info;
1448 	}
1449 
1450 	fs_devices = device->fs_devices;
1451 	fs_info->fs_devices = fs_devices;
1452 
1453 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1454 	mutex_unlock(&uuid_mutex);
1455 	if (error)
1456 		goto error_fs_info;
1457 
1458 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1459 		error = -EACCES;
1460 		goto error_close_devices;
1461 	}
1462 
1463 	bdev = fs_devices->latest_dev->bdev;
1464 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1465 		 fs_info);
1466 	if (IS_ERR(s)) {
1467 		error = PTR_ERR(s);
1468 		goto error_close_devices;
1469 	}
1470 
1471 	if (s->s_root) {
1472 		btrfs_close_devices(fs_devices);
1473 		btrfs_free_fs_info(fs_info);
1474 		if ((flags ^ s->s_flags) & SB_RDONLY)
1475 			error = -EBUSY;
1476 	} else {
1477 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1478 		shrinker_debugfs_rename(s->s_shrink, "sb-%s:%s", fs_type->name,
1479 					s->s_id);
1480 		btrfs_sb(s)->bdev_holder = fs_type;
1481 		error = btrfs_fill_super(s, fs_devices, data);
1482 	}
1483 	if (!error)
1484 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1485 	security_free_mnt_opts(&new_sec_opts);
1486 	if (error) {
1487 		deactivate_locked_super(s);
1488 		return ERR_PTR(error);
1489 	}
1490 
1491 	return dget(s->s_root);
1492 
1493 error_close_devices:
1494 	btrfs_close_devices(fs_devices);
1495 error_fs_info:
1496 	btrfs_free_fs_info(fs_info);
1497 error_sec_opts:
1498 	security_free_mnt_opts(&new_sec_opts);
1499 	return ERR_PTR(error);
1500 }
1501 
1502 /*
1503  * Mount function which is called by VFS layer.
1504  *
1505  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1506  * which needs vfsmount* of device's root (/).  This means device's root has to
1507  * be mounted internally in any case.
1508  *
1509  * Operation flow:
1510  *   1. Parse subvol id related options for later use in mount_subvol().
1511  *
1512  *   2. Mount device's root (/) by calling vfs_kern_mount().
1513  *
1514  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1515  *      first place. In order to avoid calling btrfs_mount() again, we use
1516  *      different file_system_type which is not registered to VFS by
1517  *      register_filesystem() (btrfs_root_fs_type). As a result,
1518  *      btrfs_mount_root() is called. The return value will be used by
1519  *      mount_subtree() in mount_subvol().
1520  *
1521  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1522  *      "btrfs subvolume set-default", mount_subvol() is called always.
1523  */
1524 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1525 		const char *device_name, void *data)
1526 {
1527 	struct vfsmount *mnt_root;
1528 	struct dentry *root;
1529 	char *subvol_name = NULL;
1530 	u64 subvol_objectid = 0;
1531 	int error = 0;
1532 
1533 	error = btrfs_parse_subvol_options(data, &subvol_name,
1534 					&subvol_objectid);
1535 	if (error) {
1536 		kfree(subvol_name);
1537 		return ERR_PTR(error);
1538 	}
1539 
1540 	/* mount device's root (/) */
1541 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1542 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1543 		if (flags & SB_RDONLY) {
1544 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1545 				flags & ~SB_RDONLY, device_name, data);
1546 		} else {
1547 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1548 				flags | SB_RDONLY, device_name, data);
1549 			if (IS_ERR(mnt_root)) {
1550 				root = ERR_CAST(mnt_root);
1551 				kfree(subvol_name);
1552 				goto out;
1553 			}
1554 
1555 			down_write(&mnt_root->mnt_sb->s_umount);
1556 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1557 			up_write(&mnt_root->mnt_sb->s_umount);
1558 			if (error < 0) {
1559 				root = ERR_PTR(error);
1560 				mntput(mnt_root);
1561 				kfree(subvol_name);
1562 				goto out;
1563 			}
1564 		}
1565 	}
1566 	if (IS_ERR(mnt_root)) {
1567 		root = ERR_CAST(mnt_root);
1568 		kfree(subvol_name);
1569 		goto out;
1570 	}
1571 
1572 	/* mount_subvol() will free subvol_name and mnt_root */
1573 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1574 
1575 out:
1576 	return root;
1577 }
1578 
1579 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1580 				     u32 new_pool_size, u32 old_pool_size)
1581 {
1582 	if (new_pool_size == old_pool_size)
1583 		return;
1584 
1585 	fs_info->thread_pool_size = new_pool_size;
1586 
1587 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1588 	       old_pool_size, new_pool_size);
1589 
1590 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1591 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1592 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1593 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1594 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1595 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1596 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1597 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1598 }
1599 
1600 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1601 				       unsigned long old_opts, int flags)
1602 {
1603 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1604 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1605 	     (flags & SB_RDONLY))) {
1606 		/* wait for any defraggers to finish */
1607 		wait_event(fs_info->transaction_wait,
1608 			   (atomic_read(&fs_info->defrag_running) == 0));
1609 		if (flags & SB_RDONLY)
1610 			sync_filesystem(fs_info->sb);
1611 	}
1612 }
1613 
1614 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1615 					 unsigned long old_opts)
1616 {
1617 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1618 
1619 	/*
1620 	 * We need to cleanup all defragable inodes if the autodefragment is
1621 	 * close or the filesystem is read only.
1622 	 */
1623 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1624 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1625 		btrfs_cleanup_defrag_inodes(fs_info);
1626 	}
1627 
1628 	/* If we toggled discard async */
1629 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1630 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1631 		btrfs_discard_resume(fs_info);
1632 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1633 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1634 		btrfs_discard_cleanup(fs_info);
1635 
1636 	/* If we toggled space cache */
1637 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1638 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1639 }
1640 
1641 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1642 {
1643 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1644 	unsigned old_flags = sb->s_flags;
1645 	unsigned long old_opts = fs_info->mount_opt;
1646 	unsigned long old_compress_type = fs_info->compress_type;
1647 	u64 old_max_inline = fs_info->max_inline;
1648 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1649 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1650 	int ret;
1651 
1652 	sync_filesystem(sb);
1653 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1654 
1655 	if (data) {
1656 		void *new_sec_opts = NULL;
1657 
1658 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1659 		if (!ret)
1660 			ret = security_sb_remount(sb, new_sec_opts);
1661 		security_free_mnt_opts(&new_sec_opts);
1662 		if (ret)
1663 			goto restore;
1664 	}
1665 
1666 	ret = btrfs_parse_options(fs_info, data, *flags);
1667 	if (ret)
1668 		goto restore;
1669 
1670 	ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY));
1671 	if (ret < 0)
1672 		goto restore;
1673 
1674 	btrfs_remount_begin(fs_info, old_opts, *flags);
1675 	btrfs_resize_thread_pool(fs_info,
1676 		fs_info->thread_pool_size, old_thread_pool_size);
1677 
1678 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1679 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1680 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1681 		btrfs_warn(fs_info,
1682 		"remount supports changing free space tree only from ro to rw");
1683 		/* Make sure free space cache options match the state on disk */
1684 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1685 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1686 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1687 		}
1688 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1689 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1690 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1691 		}
1692 	}
1693 
1694 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1695 		goto out;
1696 
1697 	if (*flags & SB_RDONLY) {
1698 		/*
1699 		 * this also happens on 'umount -rf' or on shutdown, when
1700 		 * the filesystem is busy.
1701 		 */
1702 		cancel_work_sync(&fs_info->async_reclaim_work);
1703 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1704 
1705 		btrfs_discard_cleanup(fs_info);
1706 
1707 		/* wait for the uuid_scan task to finish */
1708 		down(&fs_info->uuid_tree_rescan_sem);
1709 		/* avoid complains from lockdep et al. */
1710 		up(&fs_info->uuid_tree_rescan_sem);
1711 
1712 		btrfs_set_sb_rdonly(sb);
1713 
1714 		/*
1715 		 * Setting SB_RDONLY will put the cleaner thread to
1716 		 * sleep at the next loop if it's already active.
1717 		 * If it's already asleep, we'll leave unused block
1718 		 * groups on disk until we're mounted read-write again
1719 		 * unless we clean them up here.
1720 		 */
1721 		btrfs_delete_unused_bgs(fs_info);
1722 
1723 		/*
1724 		 * The cleaner task could be already running before we set the
1725 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1726 		 * We must make sure that after we finish the remount, i.e. after
1727 		 * we call btrfs_commit_super(), the cleaner can no longer start
1728 		 * a transaction - either because it was dropping a dead root,
1729 		 * running delayed iputs or deleting an unused block group (the
1730 		 * cleaner picked a block group from the list of unused block
1731 		 * groups before we were able to in the previous call to
1732 		 * btrfs_delete_unused_bgs()).
1733 		 */
1734 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1735 			    TASK_UNINTERRUPTIBLE);
1736 
1737 		/*
1738 		 * We've set the superblock to RO mode, so we might have made
1739 		 * the cleaner task sleep without running all pending delayed
1740 		 * iputs. Go through all the delayed iputs here, so that if an
1741 		 * unmount happens without remounting RW we don't end up at
1742 		 * finishing close_ctree() with a non-empty list of delayed
1743 		 * iputs.
1744 		 */
1745 		btrfs_run_delayed_iputs(fs_info);
1746 
1747 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1748 		btrfs_scrub_cancel(fs_info);
1749 		btrfs_pause_balance(fs_info);
1750 
1751 		/*
1752 		 * Pause the qgroup rescan worker if it is running. We don't want
1753 		 * it to be still running after we are in RO mode, as after that,
1754 		 * by the time we unmount, it might have left a transaction open,
1755 		 * so we would leak the transaction and/or crash.
1756 		 */
1757 		btrfs_qgroup_wait_for_completion(fs_info, false);
1758 
1759 		ret = btrfs_commit_super(fs_info);
1760 		if (ret)
1761 			goto restore;
1762 	} else {
1763 		if (BTRFS_FS_ERROR(fs_info)) {
1764 			btrfs_err(fs_info,
1765 				"Remounting read-write after error is not allowed");
1766 			ret = -EINVAL;
1767 			goto restore;
1768 		}
1769 		if (fs_info->fs_devices->rw_devices == 0) {
1770 			ret = -EACCES;
1771 			goto restore;
1772 		}
1773 
1774 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1775 			btrfs_warn(fs_info,
1776 		"too many missing devices, writable remount is not allowed");
1777 			ret = -EACCES;
1778 			goto restore;
1779 		}
1780 
1781 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1782 			btrfs_warn(fs_info,
1783 		"mount required to replay tree-log, cannot remount read-write");
1784 			ret = -EINVAL;
1785 			goto restore;
1786 		}
1787 
1788 		/*
1789 		 * NOTE: when remounting with a change that does writes, don't
1790 		 * put it anywhere above this point, as we are not sure to be
1791 		 * safe to write until we pass the above checks.
1792 		 */
1793 		ret = btrfs_start_pre_rw_mount(fs_info);
1794 		if (ret)
1795 			goto restore;
1796 
1797 		btrfs_clear_sb_rdonly(sb);
1798 
1799 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1800 
1801 		/*
1802 		 * If we've gone from readonly -> read/write, we need to get
1803 		 * our sync/async discard lists in the right state.
1804 		 */
1805 		btrfs_discard_resume(fs_info);
1806 	}
1807 out:
1808 	/*
1809 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1810 	 * since the absence of the flag means it can be toggled off by remount.
1811 	 */
1812 	*flags |= SB_I_VERSION;
1813 
1814 	wake_up_process(fs_info->transaction_kthread);
1815 	btrfs_remount_cleanup(fs_info, old_opts);
1816 	btrfs_clear_oneshot_options(fs_info);
1817 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1818 
1819 	return 0;
1820 
1821 restore:
1822 	/* We've hit an error - don't reset SB_RDONLY */
1823 	if (sb_rdonly(sb))
1824 		old_flags |= SB_RDONLY;
1825 	if (!(old_flags & SB_RDONLY))
1826 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1827 	sb->s_flags = old_flags;
1828 	fs_info->mount_opt = old_opts;
1829 	fs_info->compress_type = old_compress_type;
1830 	fs_info->max_inline = old_max_inline;
1831 	btrfs_resize_thread_pool(fs_info,
1832 		old_thread_pool_size, fs_info->thread_pool_size);
1833 	fs_info->metadata_ratio = old_metadata_ratio;
1834 	btrfs_remount_cleanup(fs_info, old_opts);
1835 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1836 
1837 	return ret;
1838 }
1839 
1840 /* Used to sort the devices by max_avail(descending sort) */
1841 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1842 {
1843 	const struct btrfs_device_info *dev_info1 = a;
1844 	const struct btrfs_device_info *dev_info2 = b;
1845 
1846 	if (dev_info1->max_avail > dev_info2->max_avail)
1847 		return -1;
1848 	else if (dev_info1->max_avail < dev_info2->max_avail)
1849 		return 1;
1850 	return 0;
1851 }
1852 
1853 /*
1854  * sort the devices by max_avail, in which max free extent size of each device
1855  * is stored.(Descending Sort)
1856  */
1857 static inline void btrfs_descending_sort_devices(
1858 					struct btrfs_device_info *devices,
1859 					size_t nr_devices)
1860 {
1861 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1862 	     btrfs_cmp_device_free_bytes, NULL);
1863 }
1864 
1865 /*
1866  * The helper to calc the free space on the devices that can be used to store
1867  * file data.
1868  */
1869 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1870 					      u64 *free_bytes)
1871 {
1872 	struct btrfs_device_info *devices_info;
1873 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1874 	struct btrfs_device *device;
1875 	u64 type;
1876 	u64 avail_space;
1877 	u64 min_stripe_size;
1878 	int num_stripes = 1;
1879 	int i = 0, nr_devices;
1880 	const struct btrfs_raid_attr *rattr;
1881 
1882 	/*
1883 	 * We aren't under the device list lock, so this is racy-ish, but good
1884 	 * enough for our purposes.
1885 	 */
1886 	nr_devices = fs_info->fs_devices->open_devices;
1887 	if (!nr_devices) {
1888 		smp_mb();
1889 		nr_devices = fs_info->fs_devices->open_devices;
1890 		ASSERT(nr_devices);
1891 		if (!nr_devices) {
1892 			*free_bytes = 0;
1893 			return 0;
1894 		}
1895 	}
1896 
1897 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1898 			       GFP_KERNEL);
1899 	if (!devices_info)
1900 		return -ENOMEM;
1901 
1902 	/* calc min stripe number for data space allocation */
1903 	type = btrfs_data_alloc_profile(fs_info);
1904 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1905 
1906 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1907 		num_stripes = nr_devices;
1908 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1909 		num_stripes = rattr->ncopies;
1910 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1911 		num_stripes = 4;
1912 
1913 	/* Adjust for more than 1 stripe per device */
1914 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1915 
1916 	rcu_read_lock();
1917 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1918 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1919 						&device->dev_state) ||
1920 		    !device->bdev ||
1921 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1922 			continue;
1923 
1924 		if (i >= nr_devices)
1925 			break;
1926 
1927 		avail_space = device->total_bytes - device->bytes_used;
1928 
1929 		/* align with stripe_len */
1930 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1931 
1932 		/*
1933 		 * Ensure we have at least min_stripe_size on top of the
1934 		 * reserved space on the device.
1935 		 */
1936 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1937 			continue;
1938 
1939 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1940 
1941 		devices_info[i].dev = device;
1942 		devices_info[i].max_avail = avail_space;
1943 
1944 		i++;
1945 	}
1946 	rcu_read_unlock();
1947 
1948 	nr_devices = i;
1949 
1950 	btrfs_descending_sort_devices(devices_info, nr_devices);
1951 
1952 	i = nr_devices - 1;
1953 	avail_space = 0;
1954 	while (nr_devices >= rattr->devs_min) {
1955 		num_stripes = min(num_stripes, nr_devices);
1956 
1957 		if (devices_info[i].max_avail >= min_stripe_size) {
1958 			int j;
1959 			u64 alloc_size;
1960 
1961 			avail_space += devices_info[i].max_avail * num_stripes;
1962 			alloc_size = devices_info[i].max_avail;
1963 			for (j = i + 1 - num_stripes; j <= i; j++)
1964 				devices_info[j].max_avail -= alloc_size;
1965 		}
1966 		i--;
1967 		nr_devices--;
1968 	}
1969 
1970 	kfree(devices_info);
1971 	*free_bytes = avail_space;
1972 	return 0;
1973 }
1974 
1975 /*
1976  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1977  *
1978  * If there's a redundant raid level at DATA block groups, use the respective
1979  * multiplier to scale the sizes.
1980  *
1981  * Unused device space usage is based on simulating the chunk allocator
1982  * algorithm that respects the device sizes and order of allocations.  This is
1983  * a close approximation of the actual use but there are other factors that may
1984  * change the result (like a new metadata chunk).
1985  *
1986  * If metadata is exhausted, f_bavail will be 0.
1987  */
1988 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1989 {
1990 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1991 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1992 	struct btrfs_space_info *found;
1993 	u64 total_used = 0;
1994 	u64 total_free_data = 0;
1995 	u64 total_free_meta = 0;
1996 	u32 bits = fs_info->sectorsize_bits;
1997 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1998 	unsigned factor = 1;
1999 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2000 	int ret;
2001 	u64 thresh = 0;
2002 	int mixed = 0;
2003 
2004 	list_for_each_entry(found, &fs_info->space_info, list) {
2005 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2006 			int i;
2007 
2008 			total_free_data += found->disk_total - found->disk_used;
2009 			total_free_data -=
2010 				btrfs_account_ro_block_groups_free_space(found);
2011 
2012 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013 				if (!list_empty(&found->block_groups[i]))
2014 					factor = btrfs_bg_type_to_factor(
2015 						btrfs_raid_array[i].bg_flag);
2016 			}
2017 		}
2018 
2019 		/*
2020 		 * Metadata in mixed block group profiles are accounted in data
2021 		 */
2022 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2023 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2024 				mixed = 1;
2025 			else
2026 				total_free_meta += found->disk_total -
2027 					found->disk_used;
2028 		}
2029 
2030 		total_used += found->disk_used;
2031 	}
2032 
2033 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2034 	buf->f_blocks >>= bits;
2035 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2036 
2037 	/* Account global block reserve as used, it's in logical size already */
2038 	spin_lock(&block_rsv->lock);
2039 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2040 	if (buf->f_bfree >= block_rsv->size >> bits)
2041 		buf->f_bfree -= block_rsv->size >> bits;
2042 	else
2043 		buf->f_bfree = 0;
2044 	spin_unlock(&block_rsv->lock);
2045 
2046 	buf->f_bavail = div_u64(total_free_data, factor);
2047 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2048 	if (ret)
2049 		return ret;
2050 	buf->f_bavail += div_u64(total_free_data, factor);
2051 	buf->f_bavail = buf->f_bavail >> bits;
2052 
2053 	/*
2054 	 * We calculate the remaining metadata space minus global reserve. If
2055 	 * this is (supposedly) smaller than zero, there's no space. But this
2056 	 * does not hold in practice, the exhausted state happens where's still
2057 	 * some positive delta. So we apply some guesswork and compare the
2058 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2059 	 *
2060 	 * We probably cannot calculate the exact threshold value because this
2061 	 * depends on the internal reservations requested by various
2062 	 * operations, so some operations that consume a few metadata will
2063 	 * succeed even if the Avail is zero. But this is better than the other
2064 	 * way around.
2065 	 */
2066 	thresh = SZ_4M;
2067 
2068 	/*
2069 	 * We only want to claim there's no available space if we can no longer
2070 	 * allocate chunks for our metadata profile and our global reserve will
2071 	 * not fit in the free metadata space.  If we aren't ->full then we
2072 	 * still can allocate chunks and thus are fine using the currently
2073 	 * calculated f_bavail.
2074 	 */
2075 	if (!mixed && block_rsv->space_info->full &&
2076 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2077 		buf->f_bavail = 0;
2078 
2079 	buf->f_type = BTRFS_SUPER_MAGIC;
2080 	buf->f_bsize = dentry->d_sb->s_blocksize;
2081 	buf->f_namelen = BTRFS_NAME_LEN;
2082 
2083 	/* We treat it as constant endianness (it doesn't matter _which_)
2084 	   because we want the fsid to come out the same whether mounted
2085 	   on a big-endian or little-endian host */
2086 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2087 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2088 	/* Mask in the root object ID too, to disambiguate subvols */
2089 	buf->f_fsid.val[0] ^=
2090 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2091 	buf->f_fsid.val[1] ^=
2092 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2093 
2094 	return 0;
2095 }
2096 
2097 static void btrfs_kill_super(struct super_block *sb)
2098 {
2099 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2100 	kill_anon_super(sb);
2101 	btrfs_free_fs_info(fs_info);
2102 }
2103 
2104 static struct file_system_type btrfs_fs_type = {
2105 	.owner		= THIS_MODULE,
2106 	.name		= "btrfs",
2107 	.mount		= btrfs_mount,
2108 	.kill_sb	= btrfs_kill_super,
2109 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2110 };
2111 
2112 static struct file_system_type btrfs_root_fs_type = {
2113 	.owner		= THIS_MODULE,
2114 	.name		= "btrfs",
2115 	.mount		= btrfs_mount_root,
2116 	.kill_sb	= btrfs_kill_super,
2117 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2118 };
2119 
2120 MODULE_ALIAS_FS("btrfs");
2121 
2122 static int btrfs_control_open(struct inode *inode, struct file *file)
2123 {
2124 	/*
2125 	 * The control file's private_data is used to hold the
2126 	 * transaction when it is started and is used to keep
2127 	 * track of whether a transaction is already in progress.
2128 	 */
2129 	file->private_data = NULL;
2130 	return 0;
2131 }
2132 
2133 /*
2134  * Used by /dev/btrfs-control for devices ioctls.
2135  */
2136 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2137 				unsigned long arg)
2138 {
2139 	struct btrfs_ioctl_vol_args *vol;
2140 	struct btrfs_device *device = NULL;
2141 	dev_t devt = 0;
2142 	int ret = -ENOTTY;
2143 
2144 	if (!capable(CAP_SYS_ADMIN))
2145 		return -EPERM;
2146 
2147 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2148 	if (IS_ERR(vol))
2149 		return PTR_ERR(vol);
2150 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2151 
2152 	switch (cmd) {
2153 	case BTRFS_IOC_SCAN_DEV:
2154 		mutex_lock(&uuid_mutex);
2155 		/*
2156 		 * Scanning outside of mount can return NULL which would turn
2157 		 * into 0 error code.
2158 		 */
2159 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2160 		ret = PTR_ERR_OR_ZERO(device);
2161 		mutex_unlock(&uuid_mutex);
2162 		break;
2163 	case BTRFS_IOC_FORGET_DEV:
2164 		if (vol->name[0] != 0) {
2165 			ret = lookup_bdev(vol->name, &devt);
2166 			if (ret)
2167 				break;
2168 		}
2169 		ret = btrfs_forget_devices(devt);
2170 		break;
2171 	case BTRFS_IOC_DEVICES_READY:
2172 		mutex_lock(&uuid_mutex);
2173 		/*
2174 		 * Scanning outside of mount can return NULL which would turn
2175 		 * into 0 error code.
2176 		 */
2177 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2178 		if (IS_ERR_OR_NULL(device)) {
2179 			mutex_unlock(&uuid_mutex);
2180 			ret = PTR_ERR(device);
2181 			break;
2182 		}
2183 		ret = !(device->fs_devices->num_devices ==
2184 			device->fs_devices->total_devices);
2185 		mutex_unlock(&uuid_mutex);
2186 		break;
2187 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2188 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2189 		break;
2190 	}
2191 
2192 	kfree(vol);
2193 	return ret;
2194 }
2195 
2196 static int btrfs_freeze(struct super_block *sb)
2197 {
2198 	struct btrfs_trans_handle *trans;
2199 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2200 	struct btrfs_root *root = fs_info->tree_root;
2201 
2202 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2203 	/*
2204 	 * We don't need a barrier here, we'll wait for any transaction that
2205 	 * could be in progress on other threads (and do delayed iputs that
2206 	 * we want to avoid on a frozen filesystem), or do the commit
2207 	 * ourselves.
2208 	 */
2209 	trans = btrfs_attach_transaction_barrier(root);
2210 	if (IS_ERR(trans)) {
2211 		/* no transaction, don't bother */
2212 		if (PTR_ERR(trans) == -ENOENT)
2213 			return 0;
2214 		return PTR_ERR(trans);
2215 	}
2216 	return btrfs_commit_transaction(trans);
2217 }
2218 
2219 static int check_dev_super(struct btrfs_device *dev)
2220 {
2221 	struct btrfs_fs_info *fs_info = dev->fs_info;
2222 	struct btrfs_super_block *sb;
2223 	u64 last_trans;
2224 	u16 csum_type;
2225 	int ret = 0;
2226 
2227 	/* This should be called with fs still frozen. */
2228 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2229 
2230 	/* Missing dev, no need to check. */
2231 	if (!dev->bdev)
2232 		return 0;
2233 
2234 	/* Only need to check the primary super block. */
2235 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2236 	if (IS_ERR(sb))
2237 		return PTR_ERR(sb);
2238 
2239 	/* Verify the checksum. */
2240 	csum_type = btrfs_super_csum_type(sb);
2241 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2242 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2243 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2244 		ret = -EUCLEAN;
2245 		goto out;
2246 	}
2247 
2248 	if (btrfs_check_super_csum(fs_info, sb)) {
2249 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2250 		ret = -EUCLEAN;
2251 		goto out;
2252 	}
2253 
2254 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2255 	ret = btrfs_validate_super(fs_info, sb, 0);
2256 	if (ret < 0)
2257 		goto out;
2258 
2259 	last_trans = btrfs_get_last_trans_committed(fs_info);
2260 	if (btrfs_super_generation(sb) != last_trans) {
2261 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2262 			  btrfs_super_generation(sb), last_trans);
2263 		ret = -EUCLEAN;
2264 		goto out;
2265 	}
2266 out:
2267 	btrfs_release_disk_super(sb);
2268 	return ret;
2269 }
2270 
2271 static int btrfs_unfreeze(struct super_block *sb)
2272 {
2273 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2274 	struct btrfs_device *device;
2275 	int ret = 0;
2276 
2277 	/*
2278 	 * Make sure the fs is not changed by accident (like hibernation then
2279 	 * modified by other OS).
2280 	 * If we found anything wrong, we mark the fs error immediately.
2281 	 *
2282 	 * And since the fs is frozen, no one can modify the fs yet, thus
2283 	 * we don't need to hold device_list_mutex.
2284 	 */
2285 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2286 		ret = check_dev_super(device);
2287 		if (ret < 0) {
2288 			btrfs_handle_fs_error(fs_info, ret,
2289 				"super block on devid %llu got modified unexpectedly",
2290 				device->devid);
2291 			break;
2292 		}
2293 	}
2294 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2295 
2296 	/*
2297 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2298 	 * above checks failed. Since the fs is either fine or read-only, we're
2299 	 * safe to continue, without causing further damage.
2300 	 */
2301 	return 0;
2302 }
2303 
2304 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2305 {
2306 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2307 
2308 	/*
2309 	 * There should be always a valid pointer in latest_dev, it may be stale
2310 	 * for a short moment in case it's being deleted but still valid until
2311 	 * the end of RCU grace period.
2312 	 */
2313 	rcu_read_lock();
2314 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2315 	rcu_read_unlock();
2316 
2317 	return 0;
2318 }
2319 
2320 static const struct super_operations btrfs_super_ops = {
2321 	.drop_inode	= btrfs_drop_inode,
2322 	.evict_inode	= btrfs_evict_inode,
2323 	.put_super	= btrfs_put_super,
2324 	.sync_fs	= btrfs_sync_fs,
2325 	.show_options	= btrfs_show_options,
2326 	.show_devname	= btrfs_show_devname,
2327 	.alloc_inode	= btrfs_alloc_inode,
2328 	.destroy_inode	= btrfs_destroy_inode,
2329 	.free_inode	= btrfs_free_inode,
2330 	.statfs		= btrfs_statfs,
2331 	.remount_fs	= btrfs_remount,
2332 	.freeze_fs	= btrfs_freeze,
2333 	.unfreeze_fs	= btrfs_unfreeze,
2334 };
2335 
2336 static const struct file_operations btrfs_ctl_fops = {
2337 	.open = btrfs_control_open,
2338 	.unlocked_ioctl	 = btrfs_control_ioctl,
2339 	.compat_ioctl = compat_ptr_ioctl,
2340 	.owner	 = THIS_MODULE,
2341 	.llseek = noop_llseek,
2342 };
2343 
2344 static struct miscdevice btrfs_misc = {
2345 	.minor		= BTRFS_MINOR,
2346 	.name		= "btrfs-control",
2347 	.fops		= &btrfs_ctl_fops
2348 };
2349 
2350 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2351 MODULE_ALIAS("devname:btrfs-control");
2352 
2353 static int __init btrfs_interface_init(void)
2354 {
2355 	return misc_register(&btrfs_misc);
2356 }
2357 
2358 static __cold void btrfs_interface_exit(void)
2359 {
2360 	misc_deregister(&btrfs_misc);
2361 }
2362 
2363 static int __init btrfs_print_mod_info(void)
2364 {
2365 	static const char options[] = ""
2366 #ifdef CONFIG_BTRFS_DEBUG
2367 			", debug=on"
2368 #endif
2369 #ifdef CONFIG_BTRFS_ASSERT
2370 			", assert=on"
2371 #endif
2372 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2373 			", ref-verify=on"
2374 #endif
2375 #ifdef CONFIG_BLK_DEV_ZONED
2376 			", zoned=yes"
2377 #else
2378 			", zoned=no"
2379 #endif
2380 #ifdef CONFIG_FS_VERITY
2381 			", fsverity=yes"
2382 #else
2383 			", fsverity=no"
2384 #endif
2385 			;
2386 	pr_info("Btrfs loaded%s\n", options);
2387 	return 0;
2388 }
2389 
2390 static int register_btrfs(void)
2391 {
2392 	return register_filesystem(&btrfs_fs_type);
2393 }
2394 
2395 static void unregister_btrfs(void)
2396 {
2397 	unregister_filesystem(&btrfs_fs_type);
2398 }
2399 
2400 /* Helper structure for long init/exit functions. */
2401 struct init_sequence {
2402 	int (*init_func)(void);
2403 	/* Can be NULL if the init_func doesn't need cleanup. */
2404 	void (*exit_func)(void);
2405 };
2406 
2407 static const struct init_sequence mod_init_seq[] = {
2408 	{
2409 		.init_func = btrfs_props_init,
2410 		.exit_func = NULL,
2411 	}, {
2412 		.init_func = btrfs_init_sysfs,
2413 		.exit_func = btrfs_exit_sysfs,
2414 	}, {
2415 		.init_func = btrfs_init_compress,
2416 		.exit_func = btrfs_exit_compress,
2417 	}, {
2418 		.init_func = btrfs_init_cachep,
2419 		.exit_func = btrfs_destroy_cachep,
2420 	}, {
2421 		.init_func = btrfs_transaction_init,
2422 		.exit_func = btrfs_transaction_exit,
2423 	}, {
2424 		.init_func = btrfs_ctree_init,
2425 		.exit_func = btrfs_ctree_exit,
2426 	}, {
2427 		.init_func = btrfs_free_space_init,
2428 		.exit_func = btrfs_free_space_exit,
2429 	}, {
2430 		.init_func = extent_state_init_cachep,
2431 		.exit_func = extent_state_free_cachep,
2432 	}, {
2433 		.init_func = extent_buffer_init_cachep,
2434 		.exit_func = extent_buffer_free_cachep,
2435 	}, {
2436 		.init_func = btrfs_bioset_init,
2437 		.exit_func = btrfs_bioset_exit,
2438 	}, {
2439 		.init_func = extent_map_init,
2440 		.exit_func = extent_map_exit,
2441 	}, {
2442 		.init_func = ordered_data_init,
2443 		.exit_func = ordered_data_exit,
2444 	}, {
2445 		.init_func = btrfs_delayed_inode_init,
2446 		.exit_func = btrfs_delayed_inode_exit,
2447 	}, {
2448 		.init_func = btrfs_auto_defrag_init,
2449 		.exit_func = btrfs_auto_defrag_exit,
2450 	}, {
2451 		.init_func = btrfs_delayed_ref_init,
2452 		.exit_func = btrfs_delayed_ref_exit,
2453 	}, {
2454 		.init_func = btrfs_prelim_ref_init,
2455 		.exit_func = btrfs_prelim_ref_exit,
2456 	}, {
2457 		.init_func = btrfs_interface_init,
2458 		.exit_func = btrfs_interface_exit,
2459 	}, {
2460 		.init_func = btrfs_print_mod_info,
2461 		.exit_func = NULL,
2462 	}, {
2463 		.init_func = btrfs_run_sanity_tests,
2464 		.exit_func = NULL,
2465 	}, {
2466 		.init_func = register_btrfs,
2467 		.exit_func = unregister_btrfs,
2468 	}
2469 };
2470 
2471 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2472 
2473 static __always_inline void btrfs_exit_btrfs_fs(void)
2474 {
2475 	int i;
2476 
2477 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2478 		if (!mod_init_result[i])
2479 			continue;
2480 		if (mod_init_seq[i].exit_func)
2481 			mod_init_seq[i].exit_func();
2482 		mod_init_result[i] = false;
2483 	}
2484 }
2485 
2486 static void __exit exit_btrfs_fs(void)
2487 {
2488 	btrfs_exit_btrfs_fs();
2489 	btrfs_cleanup_fs_uuids();
2490 }
2491 
2492 static int __init init_btrfs_fs(void)
2493 {
2494 	int ret;
2495 	int i;
2496 
2497 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2498 		ASSERT(!mod_init_result[i]);
2499 		ret = mod_init_seq[i].init_func();
2500 		if (ret < 0) {
2501 			btrfs_exit_btrfs_fs();
2502 			return ret;
2503 		}
2504 		mod_init_result[i] = true;
2505 	}
2506 	return 0;
2507 }
2508 
2509 late_initcall(init_btrfs_fs);
2510 module_exit(exit_btrfs_fs)
2511 
2512 MODULE_LICENSE("GPL");
2513 MODULE_SOFTDEP("pre: crc32c");
2514 MODULE_SOFTDEP("pre: xxhash64");
2515 MODULE_SOFTDEP("pre: sha256");
2516 MODULE_SOFTDEP("pre: blake2b-256");
2517