xref: /linux/fs/btrfs/super.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 	/*
103 	 * today we only save the error info into ram.  Long term we'll
104 	 * also send it down to the disk
105 	 */
106 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108 
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 	struct super_block *sb = fs_info->sb;
113 
114 	if (sb->s_flags & MS_RDONLY)
115 		return;
116 
117 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 		sb->s_flags |= MS_RDONLY;
119 		btrfs_info(fs_info, "forced readonly");
120 		/*
121 		 * Note that a running device replace operation is not
122 		 * canceled here although there is no way to update
123 		 * the progress. It would add the risk of a deadlock,
124 		 * therefore the canceling is ommited. The only penalty
125 		 * is that some I/O remains active until the procedure
126 		 * completes. The next time when the filesystem is
127 		 * mounted writeable again, the device replace
128 		 * operation continues.
129 		 */
130 	}
131 }
132 
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 __cold
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 		       unsigned int line, int errno, const char *fmt, ...)
140 {
141 	struct super_block *sb = fs_info->sb;
142 #ifdef CONFIG_PRINTK
143 	const char *errstr;
144 #endif
145 
146 	/*
147 	 * Special case: if the error is EROFS, and we're already
148 	 * under MS_RDONLY, then it is safe here.
149 	 */
150 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
151   		return;
152 
153 #ifdef CONFIG_PRINTK
154 	errstr = btrfs_decode_error(errno);
155 	if (fmt) {
156 		struct va_format vaf;
157 		va_list args;
158 
159 		va_start(args, fmt);
160 		vaf.fmt = fmt;
161 		vaf.va = &args;
162 
163 		printk(KERN_CRIT
164 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
165 			sb->s_id, function, line, errno, errstr, &vaf);
166 		va_end(args);
167 	} else {
168 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
169 			sb->s_id, function, line, errno, errstr);
170 	}
171 #endif
172 
173 	/* Don't go through full error handling during mount */
174 	save_error_info(fs_info);
175 	if (sb->s_flags & MS_BORN)
176 		btrfs_handle_error(fs_info);
177 }
178 
179 #ifdef CONFIG_PRINTK
180 static const char * const logtypes[] = {
181 	"emergency",
182 	"alert",
183 	"critical",
184 	"error",
185 	"warning",
186 	"notice",
187 	"info",
188 	"debug",
189 };
190 
191 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
192 {
193 	struct super_block *sb = fs_info->sb;
194 	char lvl[4];
195 	struct va_format vaf;
196 	va_list args;
197 	const char *type = logtypes[4];
198 	int kern_level;
199 
200 	va_start(args, fmt);
201 
202 	kern_level = printk_get_level(fmt);
203 	if (kern_level) {
204 		size_t size = printk_skip_level(fmt) - fmt;
205 		memcpy(lvl, fmt,  size);
206 		lvl[size] = '\0';
207 		fmt += size;
208 		type = logtypes[kern_level - '0'];
209 	} else
210 		*lvl = '\0';
211 
212 	vaf.fmt = fmt;
213 	vaf.va = &args;
214 
215 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
216 
217 	va_end(args);
218 }
219 #endif
220 
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 			       struct btrfs_root *root, const char *function,
237 			       unsigned int line, int errno)
238 {
239 	trans->aborted = errno;
240 	/* Nothing used. The other threads that have joined this
241 	 * transaction may be able to continue. */
242 	if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
243 		const char *errstr;
244 
245 		errstr = btrfs_decode_error(errno);
246 		btrfs_warn(root->fs_info,
247 		           "%s:%d: Aborting unused transaction(%s).",
248 		           function, line, errstr);
249 		return;
250 	}
251 	ACCESS_ONCE(trans->transaction->aborted) = errno;
252 	/* Wake up anybody who may be waiting on this transaction */
253 	wake_up(&root->fs_info->transaction_wait);
254 	wake_up(&root->fs_info->transaction_blocked_wait);
255 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
256 }
257 /*
258  * __btrfs_panic decodes unexpected, fatal errors from the caller,
259  * issues an alert, and either panics or BUGs, depending on mount options.
260  */
261 __cold
262 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
263 		   unsigned int line, int errno, const char *fmt, ...)
264 {
265 	char *s_id = "<unknown>";
266 	const char *errstr;
267 	struct va_format vaf = { .fmt = fmt };
268 	va_list args;
269 
270 	if (fs_info)
271 		s_id = fs_info->sb->s_id;
272 
273 	va_start(args, fmt);
274 	vaf.va = &args;
275 
276 	errstr = btrfs_decode_error(errno);
277 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
278 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
279 			s_id, function, line, &vaf, errno, errstr);
280 
281 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
282 		   function, line, &vaf, errno, errstr);
283 	va_end(args);
284 	/* Caller calls BUG() */
285 }
286 
287 static void btrfs_put_super(struct super_block *sb)
288 {
289 	close_ctree(btrfs_sb(sb)->tree_root);
290 }
291 
292 enum {
293 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
294 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
295 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
296 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
297 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
298 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
299 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
300 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
301 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
302 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
303 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
304 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
305 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
306 #ifdef CONFIG_BTRFS_DEBUG
307 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
308 #endif
309 	Opt_err,
310 };
311 
312 static match_table_t tokens = {
313 	{Opt_degraded, "degraded"},
314 	{Opt_subvol, "subvol=%s"},
315 	{Opt_subvolid, "subvolid=%s"},
316 	{Opt_device, "device=%s"},
317 	{Opt_nodatasum, "nodatasum"},
318 	{Opt_datasum, "datasum"},
319 	{Opt_nodatacow, "nodatacow"},
320 	{Opt_datacow, "datacow"},
321 	{Opt_nobarrier, "nobarrier"},
322 	{Opt_barrier, "barrier"},
323 	{Opt_max_inline, "max_inline=%s"},
324 	{Opt_alloc_start, "alloc_start=%s"},
325 	{Opt_thread_pool, "thread_pool=%d"},
326 	{Opt_compress, "compress"},
327 	{Opt_compress_type, "compress=%s"},
328 	{Opt_compress_force, "compress-force"},
329 	{Opt_compress_force_type, "compress-force=%s"},
330 	{Opt_ssd, "ssd"},
331 	{Opt_ssd_spread, "ssd_spread"},
332 	{Opt_nossd, "nossd"},
333 	{Opt_acl, "acl"},
334 	{Opt_noacl, "noacl"},
335 	{Opt_notreelog, "notreelog"},
336 	{Opt_treelog, "treelog"},
337 	{Opt_flushoncommit, "flushoncommit"},
338 	{Opt_noflushoncommit, "noflushoncommit"},
339 	{Opt_ratio, "metadata_ratio=%d"},
340 	{Opt_discard, "discard"},
341 	{Opt_nodiscard, "nodiscard"},
342 	{Opt_space_cache, "space_cache"},
343 	{Opt_clear_cache, "clear_cache"},
344 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
345 	{Opt_enospc_debug, "enospc_debug"},
346 	{Opt_noenospc_debug, "noenospc_debug"},
347 	{Opt_subvolrootid, "subvolrootid=%d"},
348 	{Opt_defrag, "autodefrag"},
349 	{Opt_nodefrag, "noautodefrag"},
350 	{Opt_inode_cache, "inode_cache"},
351 	{Opt_noinode_cache, "noinode_cache"},
352 	{Opt_no_space_cache, "nospace_cache"},
353 	{Opt_recovery, "recovery"},
354 	{Opt_skip_balance, "skip_balance"},
355 	{Opt_check_integrity, "check_int"},
356 	{Opt_check_integrity_including_extent_data, "check_int_data"},
357 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
358 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
359 	{Opt_fatal_errors, "fatal_errors=%s"},
360 	{Opt_commit_interval, "commit=%d"},
361 #ifdef CONFIG_BTRFS_DEBUG
362 	{Opt_fragment_data, "fragment=data"},
363 	{Opt_fragment_metadata, "fragment=metadata"},
364 	{Opt_fragment_all, "fragment=all"},
365 #endif
366 	{Opt_err, NULL},
367 };
368 
369 /*
370  * Regular mount options parser.  Everything that is needed only when
371  * reading in a new superblock is parsed here.
372  * XXX JDM: This needs to be cleaned up for remount.
373  */
374 int btrfs_parse_options(struct btrfs_root *root, char *options)
375 {
376 	struct btrfs_fs_info *info = root->fs_info;
377 	substring_t args[MAX_OPT_ARGS];
378 	char *p, *num, *orig = NULL;
379 	u64 cache_gen;
380 	int intarg;
381 	int ret = 0;
382 	char *compress_type;
383 	bool compress_force = false;
384 
385 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
386 	if (cache_gen)
387 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
388 
389 	if (!options)
390 		goto out;
391 
392 	/*
393 	 * strsep changes the string, duplicate it because parse_options
394 	 * gets called twice
395 	 */
396 	options = kstrdup(options, GFP_NOFS);
397 	if (!options)
398 		return -ENOMEM;
399 
400 	orig = options;
401 
402 	while ((p = strsep(&options, ",")) != NULL) {
403 		int token;
404 		if (!*p)
405 			continue;
406 
407 		token = match_token(p, tokens, args);
408 		switch (token) {
409 		case Opt_degraded:
410 			btrfs_info(root->fs_info, "allowing degraded mounts");
411 			btrfs_set_opt(info->mount_opt, DEGRADED);
412 			break;
413 		case Opt_subvol:
414 		case Opt_subvolid:
415 		case Opt_subvolrootid:
416 		case Opt_device:
417 			/*
418 			 * These are parsed by btrfs_parse_early_options
419 			 * and can be happily ignored here.
420 			 */
421 			break;
422 		case Opt_nodatasum:
423 			btrfs_set_and_info(root, NODATASUM,
424 					   "setting nodatasum");
425 			break;
426 		case Opt_datasum:
427 			if (btrfs_test_opt(root, NODATASUM)) {
428 				if (btrfs_test_opt(root, NODATACOW))
429 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
430 				else
431 					btrfs_info(root->fs_info, "setting datasum");
432 			}
433 			btrfs_clear_opt(info->mount_opt, NODATACOW);
434 			btrfs_clear_opt(info->mount_opt, NODATASUM);
435 			break;
436 		case Opt_nodatacow:
437 			if (!btrfs_test_opt(root, NODATACOW)) {
438 				if (!btrfs_test_opt(root, COMPRESS) ||
439 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
440 					btrfs_info(root->fs_info,
441 						   "setting nodatacow, compression disabled");
442 				} else {
443 					btrfs_info(root->fs_info, "setting nodatacow");
444 				}
445 			}
446 			btrfs_clear_opt(info->mount_opt, COMPRESS);
447 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
448 			btrfs_set_opt(info->mount_opt, NODATACOW);
449 			btrfs_set_opt(info->mount_opt, NODATASUM);
450 			break;
451 		case Opt_datacow:
452 			btrfs_clear_and_info(root, NODATACOW,
453 					     "setting datacow");
454 			break;
455 		case Opt_compress_force:
456 		case Opt_compress_force_type:
457 			compress_force = true;
458 			/* Fallthrough */
459 		case Opt_compress:
460 		case Opt_compress_type:
461 			if (token == Opt_compress ||
462 			    token == Opt_compress_force ||
463 			    strcmp(args[0].from, "zlib") == 0) {
464 				compress_type = "zlib";
465 				info->compress_type = BTRFS_COMPRESS_ZLIB;
466 				btrfs_set_opt(info->mount_opt, COMPRESS);
467 				btrfs_clear_opt(info->mount_opt, NODATACOW);
468 				btrfs_clear_opt(info->mount_opt, NODATASUM);
469 			} else if (strcmp(args[0].from, "lzo") == 0) {
470 				compress_type = "lzo";
471 				info->compress_type = BTRFS_COMPRESS_LZO;
472 				btrfs_set_opt(info->mount_opt, COMPRESS);
473 				btrfs_clear_opt(info->mount_opt, NODATACOW);
474 				btrfs_clear_opt(info->mount_opt, NODATASUM);
475 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
476 			} else if (strncmp(args[0].from, "no", 2) == 0) {
477 				compress_type = "no";
478 				btrfs_clear_opt(info->mount_opt, COMPRESS);
479 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
480 				compress_force = false;
481 			} else {
482 				ret = -EINVAL;
483 				goto out;
484 			}
485 
486 			if (compress_force) {
487 				btrfs_set_and_info(root, FORCE_COMPRESS,
488 						   "force %s compression",
489 						   compress_type);
490 			} else {
491 				if (!btrfs_test_opt(root, COMPRESS))
492 					btrfs_info(root->fs_info,
493 						   "btrfs: use %s compression",
494 						   compress_type);
495 				/*
496 				 * If we remount from compress-force=xxx to
497 				 * compress=xxx, we need clear FORCE_COMPRESS
498 				 * flag, otherwise, there is no way for users
499 				 * to disable forcible compression separately.
500 				 */
501 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
502 			}
503 			break;
504 		case Opt_ssd:
505 			btrfs_set_and_info(root, SSD,
506 					   "use ssd allocation scheme");
507 			break;
508 		case Opt_ssd_spread:
509 			btrfs_set_and_info(root, SSD_SPREAD,
510 					   "use spread ssd allocation scheme");
511 			btrfs_set_opt(info->mount_opt, SSD);
512 			break;
513 		case Opt_nossd:
514 			btrfs_set_and_info(root, NOSSD,
515 					     "not using ssd allocation scheme");
516 			btrfs_clear_opt(info->mount_opt, SSD);
517 			break;
518 		case Opt_barrier:
519 			btrfs_clear_and_info(root, NOBARRIER,
520 					     "turning on barriers");
521 			break;
522 		case Opt_nobarrier:
523 			btrfs_set_and_info(root, NOBARRIER,
524 					   "turning off barriers");
525 			break;
526 		case Opt_thread_pool:
527 			ret = match_int(&args[0], &intarg);
528 			if (ret) {
529 				goto out;
530 			} else if (intarg > 0) {
531 				info->thread_pool_size = intarg;
532 			} else {
533 				ret = -EINVAL;
534 				goto out;
535 			}
536 			break;
537 		case Opt_max_inline:
538 			num = match_strdup(&args[0]);
539 			if (num) {
540 				info->max_inline = memparse(num, NULL);
541 				kfree(num);
542 
543 				if (info->max_inline) {
544 					info->max_inline = min_t(u64,
545 						info->max_inline,
546 						root->sectorsize);
547 				}
548 				btrfs_info(root->fs_info, "max_inline at %llu",
549 					info->max_inline);
550 			} else {
551 				ret = -ENOMEM;
552 				goto out;
553 			}
554 			break;
555 		case Opt_alloc_start:
556 			num = match_strdup(&args[0]);
557 			if (num) {
558 				mutex_lock(&info->chunk_mutex);
559 				info->alloc_start = memparse(num, NULL);
560 				mutex_unlock(&info->chunk_mutex);
561 				kfree(num);
562 				btrfs_info(root->fs_info, "allocations start at %llu",
563 					info->alloc_start);
564 			} else {
565 				ret = -ENOMEM;
566 				goto out;
567 			}
568 			break;
569 		case Opt_acl:
570 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
571 			root->fs_info->sb->s_flags |= MS_POSIXACL;
572 			break;
573 #else
574 			btrfs_err(root->fs_info,
575 				"support for ACL not compiled in!");
576 			ret = -EINVAL;
577 			goto out;
578 #endif
579 		case Opt_noacl:
580 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
581 			break;
582 		case Opt_notreelog:
583 			btrfs_set_and_info(root, NOTREELOG,
584 					   "disabling tree log");
585 			break;
586 		case Opt_treelog:
587 			btrfs_clear_and_info(root, NOTREELOG,
588 					     "enabling tree log");
589 			break;
590 		case Opt_flushoncommit:
591 			btrfs_set_and_info(root, FLUSHONCOMMIT,
592 					   "turning on flush-on-commit");
593 			break;
594 		case Opt_noflushoncommit:
595 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
596 					     "turning off flush-on-commit");
597 			break;
598 		case Opt_ratio:
599 			ret = match_int(&args[0], &intarg);
600 			if (ret) {
601 				goto out;
602 			} else if (intarg >= 0) {
603 				info->metadata_ratio = intarg;
604 				btrfs_info(root->fs_info, "metadata ratio %d",
605 				       info->metadata_ratio);
606 			} else {
607 				ret = -EINVAL;
608 				goto out;
609 			}
610 			break;
611 		case Opt_discard:
612 			btrfs_set_and_info(root, DISCARD,
613 					   "turning on discard");
614 			break;
615 		case Opt_nodiscard:
616 			btrfs_clear_and_info(root, DISCARD,
617 					     "turning off discard");
618 			break;
619 		case Opt_space_cache:
620 			btrfs_set_and_info(root, SPACE_CACHE,
621 					   "enabling disk space caching");
622 			break;
623 		case Opt_rescan_uuid_tree:
624 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
625 			break;
626 		case Opt_no_space_cache:
627 			btrfs_clear_and_info(root, SPACE_CACHE,
628 					     "disabling disk space caching");
629 			break;
630 		case Opt_inode_cache:
631 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
632 					   "enabling inode map caching");
633 			break;
634 		case Opt_noinode_cache:
635 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
636 					     "disabling inode map caching");
637 			break;
638 		case Opt_clear_cache:
639 			btrfs_set_and_info(root, CLEAR_CACHE,
640 					   "force clearing of disk cache");
641 			break;
642 		case Opt_user_subvol_rm_allowed:
643 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
644 			break;
645 		case Opt_enospc_debug:
646 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
647 			break;
648 		case Opt_noenospc_debug:
649 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
650 			break;
651 		case Opt_defrag:
652 			btrfs_set_and_info(root, AUTO_DEFRAG,
653 					   "enabling auto defrag");
654 			break;
655 		case Opt_nodefrag:
656 			btrfs_clear_and_info(root, AUTO_DEFRAG,
657 					     "disabling auto defrag");
658 			break;
659 		case Opt_recovery:
660 			btrfs_info(root->fs_info, "enabling auto recovery");
661 			btrfs_set_opt(info->mount_opt, RECOVERY);
662 			break;
663 		case Opt_skip_balance:
664 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
665 			break;
666 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
667 		case Opt_check_integrity_including_extent_data:
668 			btrfs_info(root->fs_info,
669 				   "enabling check integrity including extent data");
670 			btrfs_set_opt(info->mount_opt,
671 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
672 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
673 			break;
674 		case Opt_check_integrity:
675 			btrfs_info(root->fs_info, "enabling check integrity");
676 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
677 			break;
678 		case Opt_check_integrity_print_mask:
679 			ret = match_int(&args[0], &intarg);
680 			if (ret) {
681 				goto out;
682 			} else if (intarg >= 0) {
683 				info->check_integrity_print_mask = intarg;
684 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
685 				       info->check_integrity_print_mask);
686 			} else {
687 				ret = -EINVAL;
688 				goto out;
689 			}
690 			break;
691 #else
692 		case Opt_check_integrity_including_extent_data:
693 		case Opt_check_integrity:
694 		case Opt_check_integrity_print_mask:
695 			btrfs_err(root->fs_info,
696 				"support for check_integrity* not compiled in!");
697 			ret = -EINVAL;
698 			goto out;
699 #endif
700 		case Opt_fatal_errors:
701 			if (strcmp(args[0].from, "panic") == 0)
702 				btrfs_set_opt(info->mount_opt,
703 					      PANIC_ON_FATAL_ERROR);
704 			else if (strcmp(args[0].from, "bug") == 0)
705 				btrfs_clear_opt(info->mount_opt,
706 					      PANIC_ON_FATAL_ERROR);
707 			else {
708 				ret = -EINVAL;
709 				goto out;
710 			}
711 			break;
712 		case Opt_commit_interval:
713 			intarg = 0;
714 			ret = match_int(&args[0], &intarg);
715 			if (ret < 0) {
716 				btrfs_err(root->fs_info, "invalid commit interval");
717 				ret = -EINVAL;
718 				goto out;
719 			}
720 			if (intarg > 0) {
721 				if (intarg > 300) {
722 					btrfs_warn(root->fs_info, "excessive commit interval %d",
723 							intarg);
724 				}
725 				info->commit_interval = intarg;
726 			} else {
727 				btrfs_info(root->fs_info, "using default commit interval %ds",
728 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
729 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
730 			}
731 			break;
732 #ifdef CONFIG_BTRFS_DEBUG
733 		case Opt_fragment_all:
734 			btrfs_info(root->fs_info, "fragmenting all space");
735 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
736 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
737 			break;
738 		case Opt_fragment_metadata:
739 			btrfs_info(root->fs_info, "fragmenting metadata");
740 			btrfs_set_opt(info->mount_opt,
741 				      FRAGMENT_METADATA);
742 			break;
743 		case Opt_fragment_data:
744 			btrfs_info(root->fs_info, "fragmenting data");
745 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
746 			break;
747 #endif
748 		case Opt_err:
749 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
750 			ret = -EINVAL;
751 			goto out;
752 		default:
753 			break;
754 		}
755 	}
756 out:
757 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
758 		btrfs_info(root->fs_info, "disk space caching is enabled");
759 	kfree(orig);
760 	return ret;
761 }
762 
763 /*
764  * Parse mount options that are required early in the mount process.
765  *
766  * All other options will be parsed on much later in the mount process and
767  * only when we need to allocate a new super block.
768  */
769 static int btrfs_parse_early_options(const char *options, fmode_t flags,
770 		void *holder, char **subvol_name, u64 *subvol_objectid,
771 		struct btrfs_fs_devices **fs_devices)
772 {
773 	substring_t args[MAX_OPT_ARGS];
774 	char *device_name, *opts, *orig, *p;
775 	char *num = NULL;
776 	int error = 0;
777 
778 	if (!options)
779 		return 0;
780 
781 	/*
782 	 * strsep changes the string, duplicate it because parse_options
783 	 * gets called twice
784 	 */
785 	opts = kstrdup(options, GFP_KERNEL);
786 	if (!opts)
787 		return -ENOMEM;
788 	orig = opts;
789 
790 	while ((p = strsep(&opts, ",")) != NULL) {
791 		int token;
792 		if (!*p)
793 			continue;
794 
795 		token = match_token(p, tokens, args);
796 		switch (token) {
797 		case Opt_subvol:
798 			kfree(*subvol_name);
799 			*subvol_name = match_strdup(&args[0]);
800 			if (!*subvol_name) {
801 				error = -ENOMEM;
802 				goto out;
803 			}
804 			break;
805 		case Opt_subvolid:
806 			num = match_strdup(&args[0]);
807 			if (num) {
808 				*subvol_objectid = memparse(num, NULL);
809 				kfree(num);
810 				/* we want the original fs_tree */
811 				if (!*subvol_objectid)
812 					*subvol_objectid =
813 						BTRFS_FS_TREE_OBJECTID;
814 			} else {
815 				error = -EINVAL;
816 				goto out;
817 			}
818 			break;
819 		case Opt_subvolrootid:
820 			printk(KERN_WARNING
821 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
822 				"no effect\n");
823 			break;
824 		case Opt_device:
825 			device_name = match_strdup(&args[0]);
826 			if (!device_name) {
827 				error = -ENOMEM;
828 				goto out;
829 			}
830 			error = btrfs_scan_one_device(device_name,
831 					flags, holder, fs_devices);
832 			kfree(device_name);
833 			if (error)
834 				goto out;
835 			break;
836 		default:
837 			break;
838 		}
839 	}
840 
841 out:
842 	kfree(orig);
843 	return error;
844 }
845 
846 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
847 					   u64 subvol_objectid)
848 {
849 	struct btrfs_root *root = fs_info->tree_root;
850 	struct btrfs_root *fs_root;
851 	struct btrfs_root_ref *root_ref;
852 	struct btrfs_inode_ref *inode_ref;
853 	struct btrfs_key key;
854 	struct btrfs_path *path = NULL;
855 	char *name = NULL, *ptr;
856 	u64 dirid;
857 	int len;
858 	int ret;
859 
860 	path = btrfs_alloc_path();
861 	if (!path) {
862 		ret = -ENOMEM;
863 		goto err;
864 	}
865 	path->leave_spinning = 1;
866 
867 	name = kmalloc(PATH_MAX, GFP_NOFS);
868 	if (!name) {
869 		ret = -ENOMEM;
870 		goto err;
871 	}
872 	ptr = name + PATH_MAX - 1;
873 	ptr[0] = '\0';
874 
875 	/*
876 	 * Walk up the subvolume trees in the tree of tree roots by root
877 	 * backrefs until we hit the top-level subvolume.
878 	 */
879 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
880 		key.objectid = subvol_objectid;
881 		key.type = BTRFS_ROOT_BACKREF_KEY;
882 		key.offset = (u64)-1;
883 
884 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
885 		if (ret < 0) {
886 			goto err;
887 		} else if (ret > 0) {
888 			ret = btrfs_previous_item(root, path, subvol_objectid,
889 						  BTRFS_ROOT_BACKREF_KEY);
890 			if (ret < 0) {
891 				goto err;
892 			} else if (ret > 0) {
893 				ret = -ENOENT;
894 				goto err;
895 			}
896 		}
897 
898 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
899 		subvol_objectid = key.offset;
900 
901 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
902 					  struct btrfs_root_ref);
903 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
904 		ptr -= len + 1;
905 		if (ptr < name) {
906 			ret = -ENAMETOOLONG;
907 			goto err;
908 		}
909 		read_extent_buffer(path->nodes[0], ptr + 1,
910 				   (unsigned long)(root_ref + 1), len);
911 		ptr[0] = '/';
912 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
913 		btrfs_release_path(path);
914 
915 		key.objectid = subvol_objectid;
916 		key.type = BTRFS_ROOT_ITEM_KEY;
917 		key.offset = (u64)-1;
918 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
919 		if (IS_ERR(fs_root)) {
920 			ret = PTR_ERR(fs_root);
921 			goto err;
922 		}
923 
924 		/*
925 		 * Walk up the filesystem tree by inode refs until we hit the
926 		 * root directory.
927 		 */
928 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
929 			key.objectid = dirid;
930 			key.type = BTRFS_INODE_REF_KEY;
931 			key.offset = (u64)-1;
932 
933 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
934 			if (ret < 0) {
935 				goto err;
936 			} else if (ret > 0) {
937 				ret = btrfs_previous_item(fs_root, path, dirid,
938 							  BTRFS_INODE_REF_KEY);
939 				if (ret < 0) {
940 					goto err;
941 				} else if (ret > 0) {
942 					ret = -ENOENT;
943 					goto err;
944 				}
945 			}
946 
947 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
948 			dirid = key.offset;
949 
950 			inode_ref = btrfs_item_ptr(path->nodes[0],
951 						   path->slots[0],
952 						   struct btrfs_inode_ref);
953 			len = btrfs_inode_ref_name_len(path->nodes[0],
954 						       inode_ref);
955 			ptr -= len + 1;
956 			if (ptr < name) {
957 				ret = -ENAMETOOLONG;
958 				goto err;
959 			}
960 			read_extent_buffer(path->nodes[0], ptr + 1,
961 					   (unsigned long)(inode_ref + 1), len);
962 			ptr[0] = '/';
963 			btrfs_release_path(path);
964 		}
965 	}
966 
967 	btrfs_free_path(path);
968 	if (ptr == name + PATH_MAX - 1) {
969 		name[0] = '/';
970 		name[1] = '\0';
971 	} else {
972 		memmove(name, ptr, name + PATH_MAX - ptr);
973 	}
974 	return name;
975 
976 err:
977 	btrfs_free_path(path);
978 	kfree(name);
979 	return ERR_PTR(ret);
980 }
981 
982 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
983 {
984 	struct btrfs_root *root = fs_info->tree_root;
985 	struct btrfs_dir_item *di;
986 	struct btrfs_path *path;
987 	struct btrfs_key location;
988 	u64 dir_id;
989 
990 	path = btrfs_alloc_path();
991 	if (!path)
992 		return -ENOMEM;
993 	path->leave_spinning = 1;
994 
995 	/*
996 	 * Find the "default" dir item which points to the root item that we
997 	 * will mount by default if we haven't been given a specific subvolume
998 	 * to mount.
999 	 */
1000 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1001 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1002 	if (IS_ERR(di)) {
1003 		btrfs_free_path(path);
1004 		return PTR_ERR(di);
1005 	}
1006 	if (!di) {
1007 		/*
1008 		 * Ok the default dir item isn't there.  This is weird since
1009 		 * it's always been there, but don't freak out, just try and
1010 		 * mount the top-level subvolume.
1011 		 */
1012 		btrfs_free_path(path);
1013 		*objectid = BTRFS_FS_TREE_OBJECTID;
1014 		return 0;
1015 	}
1016 
1017 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1018 	btrfs_free_path(path);
1019 	*objectid = location.objectid;
1020 	return 0;
1021 }
1022 
1023 static int btrfs_fill_super(struct super_block *sb,
1024 			    struct btrfs_fs_devices *fs_devices,
1025 			    void *data, int silent)
1026 {
1027 	struct inode *inode;
1028 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1029 	struct btrfs_key key;
1030 	int err;
1031 
1032 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1033 	sb->s_magic = BTRFS_SUPER_MAGIC;
1034 	sb->s_op = &btrfs_super_ops;
1035 	sb->s_d_op = &btrfs_dentry_operations;
1036 	sb->s_export_op = &btrfs_export_ops;
1037 	sb->s_xattr = btrfs_xattr_handlers;
1038 	sb->s_time_gran = 1;
1039 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1040 	sb->s_flags |= MS_POSIXACL;
1041 #endif
1042 	sb->s_flags |= MS_I_VERSION;
1043 	sb->s_iflags |= SB_I_CGROUPWB;
1044 	err = open_ctree(sb, fs_devices, (char *)data);
1045 	if (err) {
1046 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
1047 		return err;
1048 	}
1049 
1050 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1051 	key.type = BTRFS_INODE_ITEM_KEY;
1052 	key.offset = 0;
1053 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1054 	if (IS_ERR(inode)) {
1055 		err = PTR_ERR(inode);
1056 		goto fail_close;
1057 	}
1058 
1059 	sb->s_root = d_make_root(inode);
1060 	if (!sb->s_root) {
1061 		err = -ENOMEM;
1062 		goto fail_close;
1063 	}
1064 
1065 	save_mount_options(sb, data);
1066 	cleancache_init_fs(sb);
1067 	sb->s_flags |= MS_ACTIVE;
1068 	return 0;
1069 
1070 fail_close:
1071 	close_ctree(fs_info->tree_root);
1072 	return err;
1073 }
1074 
1075 int btrfs_sync_fs(struct super_block *sb, int wait)
1076 {
1077 	struct btrfs_trans_handle *trans;
1078 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1079 	struct btrfs_root *root = fs_info->tree_root;
1080 
1081 	trace_btrfs_sync_fs(wait);
1082 
1083 	if (!wait) {
1084 		filemap_flush(fs_info->btree_inode->i_mapping);
1085 		return 0;
1086 	}
1087 
1088 	btrfs_wait_ordered_roots(fs_info, -1);
1089 
1090 	trans = btrfs_attach_transaction_barrier(root);
1091 	if (IS_ERR(trans)) {
1092 		/* no transaction, don't bother */
1093 		if (PTR_ERR(trans) == -ENOENT) {
1094 			/*
1095 			 * Exit unless we have some pending changes
1096 			 * that need to go through commit
1097 			 */
1098 			if (fs_info->pending_changes == 0)
1099 				return 0;
1100 			/*
1101 			 * A non-blocking test if the fs is frozen. We must not
1102 			 * start a new transaction here otherwise a deadlock
1103 			 * happens. The pending operations are delayed to the
1104 			 * next commit after thawing.
1105 			 */
1106 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1107 				__sb_end_write(sb, SB_FREEZE_WRITE);
1108 			else
1109 				return 0;
1110 			trans = btrfs_start_transaction(root, 0);
1111 		}
1112 		if (IS_ERR(trans))
1113 			return PTR_ERR(trans);
1114 	}
1115 	return btrfs_commit_transaction(trans, root);
1116 }
1117 
1118 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1119 {
1120 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1121 	struct btrfs_root *root = info->tree_root;
1122 	char *compress_type;
1123 
1124 	if (btrfs_test_opt(root, DEGRADED))
1125 		seq_puts(seq, ",degraded");
1126 	if (btrfs_test_opt(root, NODATASUM))
1127 		seq_puts(seq, ",nodatasum");
1128 	if (btrfs_test_opt(root, NODATACOW))
1129 		seq_puts(seq, ",nodatacow");
1130 	if (btrfs_test_opt(root, NOBARRIER))
1131 		seq_puts(seq, ",nobarrier");
1132 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1133 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1134 	if (info->alloc_start != 0)
1135 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1136 	if (info->thread_pool_size !=  min_t(unsigned long,
1137 					     num_online_cpus() + 2, 8))
1138 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1139 	if (btrfs_test_opt(root, COMPRESS)) {
1140 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1141 			compress_type = "zlib";
1142 		else
1143 			compress_type = "lzo";
1144 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1145 			seq_printf(seq, ",compress-force=%s", compress_type);
1146 		else
1147 			seq_printf(seq, ",compress=%s", compress_type);
1148 	}
1149 	if (btrfs_test_opt(root, NOSSD))
1150 		seq_puts(seq, ",nossd");
1151 	if (btrfs_test_opt(root, SSD_SPREAD))
1152 		seq_puts(seq, ",ssd_spread");
1153 	else if (btrfs_test_opt(root, SSD))
1154 		seq_puts(seq, ",ssd");
1155 	if (btrfs_test_opt(root, NOTREELOG))
1156 		seq_puts(seq, ",notreelog");
1157 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1158 		seq_puts(seq, ",flushoncommit");
1159 	if (btrfs_test_opt(root, DISCARD))
1160 		seq_puts(seq, ",discard");
1161 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1162 		seq_puts(seq, ",noacl");
1163 	if (btrfs_test_opt(root, SPACE_CACHE))
1164 		seq_puts(seq, ",space_cache");
1165 	else
1166 		seq_puts(seq, ",nospace_cache");
1167 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1168 		seq_puts(seq, ",rescan_uuid_tree");
1169 	if (btrfs_test_opt(root, CLEAR_CACHE))
1170 		seq_puts(seq, ",clear_cache");
1171 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1172 		seq_puts(seq, ",user_subvol_rm_allowed");
1173 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1174 		seq_puts(seq, ",enospc_debug");
1175 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1176 		seq_puts(seq, ",autodefrag");
1177 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1178 		seq_puts(seq, ",inode_cache");
1179 	if (btrfs_test_opt(root, SKIP_BALANCE))
1180 		seq_puts(seq, ",skip_balance");
1181 	if (btrfs_test_opt(root, RECOVERY))
1182 		seq_puts(seq, ",recovery");
1183 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1184 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1185 		seq_puts(seq, ",check_int_data");
1186 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1187 		seq_puts(seq, ",check_int");
1188 	if (info->check_integrity_print_mask)
1189 		seq_printf(seq, ",check_int_print_mask=%d",
1190 				info->check_integrity_print_mask);
1191 #endif
1192 	if (info->metadata_ratio)
1193 		seq_printf(seq, ",metadata_ratio=%d",
1194 				info->metadata_ratio);
1195 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1196 		seq_puts(seq, ",fatal_errors=panic");
1197 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1198 		seq_printf(seq, ",commit=%d", info->commit_interval);
1199 #ifdef CONFIG_BTRFS_DEBUG
1200 	if (btrfs_test_opt(root, FRAGMENT_DATA))
1201 		seq_puts(seq, ",fragment=data");
1202 	if (btrfs_test_opt(root, FRAGMENT_METADATA))
1203 		seq_puts(seq, ",fragment=metadata");
1204 #endif
1205 	seq_printf(seq, ",subvolid=%llu",
1206 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1207 	seq_puts(seq, ",subvol=");
1208 	seq_dentry(seq, dentry, " \t\n\\");
1209 	return 0;
1210 }
1211 
1212 static int btrfs_test_super(struct super_block *s, void *data)
1213 {
1214 	struct btrfs_fs_info *p = data;
1215 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1216 
1217 	return fs_info->fs_devices == p->fs_devices;
1218 }
1219 
1220 static int btrfs_set_super(struct super_block *s, void *data)
1221 {
1222 	int err = set_anon_super(s, data);
1223 	if (!err)
1224 		s->s_fs_info = data;
1225 	return err;
1226 }
1227 
1228 /*
1229  * subvolumes are identified by ino 256
1230  */
1231 static inline int is_subvolume_inode(struct inode *inode)
1232 {
1233 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1234 		return 1;
1235 	return 0;
1236 }
1237 
1238 /*
1239  * This will add subvolid=0 to the argument string while removing any subvol=
1240  * and subvolid= arguments to make sure we get the top-level root for path
1241  * walking to the subvol we want.
1242  */
1243 static char *setup_root_args(char *args)
1244 {
1245 	char *buf, *dst, *sep;
1246 
1247 	if (!args)
1248 		return kstrdup("subvolid=0", GFP_NOFS);
1249 
1250 	/* The worst case is that we add ",subvolid=0" to the end. */
1251 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1252 	if (!buf)
1253 		return NULL;
1254 
1255 	while (1) {
1256 		sep = strchrnul(args, ',');
1257 		if (!strstarts(args, "subvol=") &&
1258 		    !strstarts(args, "subvolid=")) {
1259 			memcpy(dst, args, sep - args);
1260 			dst += sep - args;
1261 			*dst++ = ',';
1262 		}
1263 		if (*sep)
1264 			args = sep + 1;
1265 		else
1266 			break;
1267 	}
1268 	strcpy(dst, "subvolid=0");
1269 
1270 	return buf;
1271 }
1272 
1273 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1274 				   int flags, const char *device_name,
1275 				   char *data)
1276 {
1277 	struct dentry *root;
1278 	struct vfsmount *mnt = NULL;
1279 	char *newargs;
1280 	int ret;
1281 
1282 	newargs = setup_root_args(data);
1283 	if (!newargs) {
1284 		root = ERR_PTR(-ENOMEM);
1285 		goto out;
1286 	}
1287 
1288 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1289 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1290 		if (flags & MS_RDONLY) {
1291 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1292 					     device_name, newargs);
1293 		} else {
1294 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1295 					     device_name, newargs);
1296 			if (IS_ERR(mnt)) {
1297 				root = ERR_CAST(mnt);
1298 				mnt = NULL;
1299 				goto out;
1300 			}
1301 
1302 			down_write(&mnt->mnt_sb->s_umount);
1303 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1304 			up_write(&mnt->mnt_sb->s_umount);
1305 			if (ret < 0) {
1306 				root = ERR_PTR(ret);
1307 				goto out;
1308 			}
1309 		}
1310 	}
1311 	if (IS_ERR(mnt)) {
1312 		root = ERR_CAST(mnt);
1313 		mnt = NULL;
1314 		goto out;
1315 	}
1316 
1317 	if (!subvol_name) {
1318 		if (!subvol_objectid) {
1319 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1320 							  &subvol_objectid);
1321 			if (ret) {
1322 				root = ERR_PTR(ret);
1323 				goto out;
1324 			}
1325 		}
1326 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1327 							    subvol_objectid);
1328 		if (IS_ERR(subvol_name)) {
1329 			root = ERR_CAST(subvol_name);
1330 			subvol_name = NULL;
1331 			goto out;
1332 		}
1333 
1334 	}
1335 
1336 	root = mount_subtree(mnt, subvol_name);
1337 	/* mount_subtree() drops our reference on the vfsmount. */
1338 	mnt = NULL;
1339 
1340 	if (!IS_ERR(root)) {
1341 		struct super_block *s = root->d_sb;
1342 		struct inode *root_inode = d_inode(root);
1343 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1344 
1345 		ret = 0;
1346 		if (!is_subvolume_inode(root_inode)) {
1347 			pr_err("BTRFS: '%s' is not a valid subvolume\n",
1348 			       subvol_name);
1349 			ret = -EINVAL;
1350 		}
1351 		if (subvol_objectid && root_objectid != subvol_objectid) {
1352 			/*
1353 			 * This will also catch a race condition where a
1354 			 * subvolume which was passed by ID is renamed and
1355 			 * another subvolume is renamed over the old location.
1356 			 */
1357 			pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1358 			       subvol_name, subvol_objectid);
1359 			ret = -EINVAL;
1360 		}
1361 		if (ret) {
1362 			dput(root);
1363 			root = ERR_PTR(ret);
1364 			deactivate_locked_super(s);
1365 		}
1366 	}
1367 
1368 out:
1369 	mntput(mnt);
1370 	kfree(newargs);
1371 	kfree(subvol_name);
1372 	return root;
1373 }
1374 
1375 static int parse_security_options(char *orig_opts,
1376 				  struct security_mnt_opts *sec_opts)
1377 {
1378 	char *secdata = NULL;
1379 	int ret = 0;
1380 
1381 	secdata = alloc_secdata();
1382 	if (!secdata)
1383 		return -ENOMEM;
1384 	ret = security_sb_copy_data(orig_opts, secdata);
1385 	if (ret) {
1386 		free_secdata(secdata);
1387 		return ret;
1388 	}
1389 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1390 	free_secdata(secdata);
1391 	return ret;
1392 }
1393 
1394 static int setup_security_options(struct btrfs_fs_info *fs_info,
1395 				  struct super_block *sb,
1396 				  struct security_mnt_opts *sec_opts)
1397 {
1398 	int ret = 0;
1399 
1400 	/*
1401 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1402 	 * is valid.
1403 	 */
1404 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1405 	if (ret)
1406 		return ret;
1407 
1408 #ifdef CONFIG_SECURITY
1409 	if (!fs_info->security_opts.num_mnt_opts) {
1410 		/* first time security setup, copy sec_opts to fs_info */
1411 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1412 	} else {
1413 		/*
1414 		 * Since SELinux(the only one supports security_mnt_opts) does
1415 		 * NOT support changing context during remount/mount same sb,
1416 		 * This must be the same or part of the same security options,
1417 		 * just free it.
1418 		 */
1419 		security_free_mnt_opts(sec_opts);
1420 	}
1421 #endif
1422 	return ret;
1423 }
1424 
1425 /*
1426  * Find a superblock for the given device / mount point.
1427  *
1428  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1429  *	  for multiple device setup.  Make sure to keep it in sync.
1430  */
1431 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1432 		const char *device_name, void *data)
1433 {
1434 	struct block_device *bdev = NULL;
1435 	struct super_block *s;
1436 	struct btrfs_fs_devices *fs_devices = NULL;
1437 	struct btrfs_fs_info *fs_info = NULL;
1438 	struct security_mnt_opts new_sec_opts;
1439 	fmode_t mode = FMODE_READ;
1440 	char *subvol_name = NULL;
1441 	u64 subvol_objectid = 0;
1442 	int error = 0;
1443 
1444 	if (!(flags & MS_RDONLY))
1445 		mode |= FMODE_WRITE;
1446 
1447 	error = btrfs_parse_early_options(data, mode, fs_type,
1448 					  &subvol_name, &subvol_objectid,
1449 					  &fs_devices);
1450 	if (error) {
1451 		kfree(subvol_name);
1452 		return ERR_PTR(error);
1453 	}
1454 
1455 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1456 		/* mount_subvol() will free subvol_name. */
1457 		return mount_subvol(subvol_name, subvol_objectid, flags,
1458 				    device_name, data);
1459 	}
1460 
1461 	security_init_mnt_opts(&new_sec_opts);
1462 	if (data) {
1463 		error = parse_security_options(data, &new_sec_opts);
1464 		if (error)
1465 			return ERR_PTR(error);
1466 	}
1467 
1468 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1469 	if (error)
1470 		goto error_sec_opts;
1471 
1472 	/*
1473 	 * Setup a dummy root and fs_info for test/set super.  This is because
1474 	 * we don't actually fill this stuff out until open_ctree, but we need
1475 	 * it for searching for existing supers, so this lets us do that and
1476 	 * then open_ctree will properly initialize everything later.
1477 	 */
1478 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1479 	if (!fs_info) {
1480 		error = -ENOMEM;
1481 		goto error_sec_opts;
1482 	}
1483 
1484 	fs_info->fs_devices = fs_devices;
1485 
1486 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1487 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1488 	security_init_mnt_opts(&fs_info->security_opts);
1489 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1490 		error = -ENOMEM;
1491 		goto error_fs_info;
1492 	}
1493 
1494 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1495 	if (error)
1496 		goto error_fs_info;
1497 
1498 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1499 		error = -EACCES;
1500 		goto error_close_devices;
1501 	}
1502 
1503 	bdev = fs_devices->latest_bdev;
1504 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1505 		 fs_info);
1506 	if (IS_ERR(s)) {
1507 		error = PTR_ERR(s);
1508 		goto error_close_devices;
1509 	}
1510 
1511 	if (s->s_root) {
1512 		btrfs_close_devices(fs_devices);
1513 		free_fs_info(fs_info);
1514 		if ((flags ^ s->s_flags) & MS_RDONLY)
1515 			error = -EBUSY;
1516 	} else {
1517 		char b[BDEVNAME_SIZE];
1518 
1519 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1520 		btrfs_sb(s)->bdev_holder = fs_type;
1521 		error = btrfs_fill_super(s, fs_devices, data,
1522 					 flags & MS_SILENT ? 1 : 0);
1523 	}
1524 	if (error) {
1525 		deactivate_locked_super(s);
1526 		goto error_sec_opts;
1527 	}
1528 
1529 	fs_info = btrfs_sb(s);
1530 	error = setup_security_options(fs_info, s, &new_sec_opts);
1531 	if (error) {
1532 		deactivate_locked_super(s);
1533 		goto error_sec_opts;
1534 	}
1535 
1536 	return dget(s->s_root);
1537 
1538 error_close_devices:
1539 	btrfs_close_devices(fs_devices);
1540 error_fs_info:
1541 	free_fs_info(fs_info);
1542 error_sec_opts:
1543 	security_free_mnt_opts(&new_sec_opts);
1544 	return ERR_PTR(error);
1545 }
1546 
1547 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1548 				     int new_pool_size, int old_pool_size)
1549 {
1550 	if (new_pool_size == old_pool_size)
1551 		return;
1552 
1553 	fs_info->thread_pool_size = new_pool_size;
1554 
1555 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1556 	       old_pool_size, new_pool_size);
1557 
1558 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1559 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1560 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1561 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1562 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1563 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1564 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1565 				new_pool_size);
1566 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1567 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1568 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1569 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1570 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1571 				new_pool_size);
1572 }
1573 
1574 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1575 {
1576 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1577 }
1578 
1579 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1580 				       unsigned long old_opts, int flags)
1581 {
1582 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1583 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1584 	     (flags & MS_RDONLY))) {
1585 		/* wait for any defraggers to finish */
1586 		wait_event(fs_info->transaction_wait,
1587 			   (atomic_read(&fs_info->defrag_running) == 0));
1588 		if (flags & MS_RDONLY)
1589 			sync_filesystem(fs_info->sb);
1590 	}
1591 }
1592 
1593 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1594 					 unsigned long old_opts)
1595 {
1596 	/*
1597 	 * We need cleanup all defragable inodes if the autodefragment is
1598 	 * close or the fs is R/O.
1599 	 */
1600 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1601 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1602 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1603 		btrfs_cleanup_defrag_inodes(fs_info);
1604 	}
1605 
1606 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1607 }
1608 
1609 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1610 {
1611 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1612 	struct btrfs_root *root = fs_info->tree_root;
1613 	unsigned old_flags = sb->s_flags;
1614 	unsigned long old_opts = fs_info->mount_opt;
1615 	unsigned long old_compress_type = fs_info->compress_type;
1616 	u64 old_max_inline = fs_info->max_inline;
1617 	u64 old_alloc_start = fs_info->alloc_start;
1618 	int old_thread_pool_size = fs_info->thread_pool_size;
1619 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1620 	int ret;
1621 
1622 	sync_filesystem(sb);
1623 	btrfs_remount_prepare(fs_info);
1624 
1625 	if (data) {
1626 		struct security_mnt_opts new_sec_opts;
1627 
1628 		security_init_mnt_opts(&new_sec_opts);
1629 		ret = parse_security_options(data, &new_sec_opts);
1630 		if (ret)
1631 			goto restore;
1632 		ret = setup_security_options(fs_info, sb,
1633 					     &new_sec_opts);
1634 		if (ret) {
1635 			security_free_mnt_opts(&new_sec_opts);
1636 			goto restore;
1637 		}
1638 	}
1639 
1640 	ret = btrfs_parse_options(root, data);
1641 	if (ret) {
1642 		ret = -EINVAL;
1643 		goto restore;
1644 	}
1645 
1646 	btrfs_remount_begin(fs_info, old_opts, *flags);
1647 	btrfs_resize_thread_pool(fs_info,
1648 		fs_info->thread_pool_size, old_thread_pool_size);
1649 
1650 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1651 		goto out;
1652 
1653 	if (*flags & MS_RDONLY) {
1654 		/*
1655 		 * this also happens on 'umount -rf' or on shutdown, when
1656 		 * the filesystem is busy.
1657 		 */
1658 		cancel_work_sync(&fs_info->async_reclaim_work);
1659 
1660 		/* wait for the uuid_scan task to finish */
1661 		down(&fs_info->uuid_tree_rescan_sem);
1662 		/* avoid complains from lockdep et al. */
1663 		up(&fs_info->uuid_tree_rescan_sem);
1664 
1665 		sb->s_flags |= MS_RDONLY;
1666 
1667 		/*
1668 		 * Setting MS_RDONLY will put the cleaner thread to
1669 		 * sleep at the next loop if it's already active.
1670 		 * If it's already asleep, we'll leave unused block
1671 		 * groups on disk until we're mounted read-write again
1672 		 * unless we clean them up here.
1673 		 */
1674 		btrfs_delete_unused_bgs(fs_info);
1675 
1676 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1677 		btrfs_scrub_cancel(fs_info);
1678 		btrfs_pause_balance(fs_info);
1679 
1680 		ret = btrfs_commit_super(root);
1681 		if (ret)
1682 			goto restore;
1683 	} else {
1684 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1685 			btrfs_err(fs_info,
1686 				"Remounting read-write after error is not allowed");
1687 			ret = -EINVAL;
1688 			goto restore;
1689 		}
1690 		if (fs_info->fs_devices->rw_devices == 0) {
1691 			ret = -EACCES;
1692 			goto restore;
1693 		}
1694 
1695 		if (fs_info->fs_devices->missing_devices >
1696 		     fs_info->num_tolerated_disk_barrier_failures &&
1697 		    !(*flags & MS_RDONLY)) {
1698 			btrfs_warn(fs_info,
1699 				"too many missing devices, writeable remount is not allowed");
1700 			ret = -EACCES;
1701 			goto restore;
1702 		}
1703 
1704 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1705 			ret = -EINVAL;
1706 			goto restore;
1707 		}
1708 
1709 		ret = btrfs_cleanup_fs_roots(fs_info);
1710 		if (ret)
1711 			goto restore;
1712 
1713 		/* recover relocation */
1714 		mutex_lock(&fs_info->cleaner_mutex);
1715 		ret = btrfs_recover_relocation(root);
1716 		mutex_unlock(&fs_info->cleaner_mutex);
1717 		if (ret)
1718 			goto restore;
1719 
1720 		ret = btrfs_resume_balance_async(fs_info);
1721 		if (ret)
1722 			goto restore;
1723 
1724 		ret = btrfs_resume_dev_replace_async(fs_info);
1725 		if (ret) {
1726 			btrfs_warn(fs_info, "failed to resume dev_replace");
1727 			goto restore;
1728 		}
1729 
1730 		if (!fs_info->uuid_root) {
1731 			btrfs_info(fs_info, "creating UUID tree");
1732 			ret = btrfs_create_uuid_tree(fs_info);
1733 			if (ret) {
1734 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1735 				goto restore;
1736 			}
1737 		}
1738 		sb->s_flags &= ~MS_RDONLY;
1739 	}
1740 out:
1741 	wake_up_process(fs_info->transaction_kthread);
1742 	btrfs_remount_cleanup(fs_info, old_opts);
1743 	return 0;
1744 
1745 restore:
1746 	/* We've hit an error - don't reset MS_RDONLY */
1747 	if (sb->s_flags & MS_RDONLY)
1748 		old_flags |= MS_RDONLY;
1749 	sb->s_flags = old_flags;
1750 	fs_info->mount_opt = old_opts;
1751 	fs_info->compress_type = old_compress_type;
1752 	fs_info->max_inline = old_max_inline;
1753 	mutex_lock(&fs_info->chunk_mutex);
1754 	fs_info->alloc_start = old_alloc_start;
1755 	mutex_unlock(&fs_info->chunk_mutex);
1756 	btrfs_resize_thread_pool(fs_info,
1757 		old_thread_pool_size, fs_info->thread_pool_size);
1758 	fs_info->metadata_ratio = old_metadata_ratio;
1759 	btrfs_remount_cleanup(fs_info, old_opts);
1760 	return ret;
1761 }
1762 
1763 /* Used to sort the devices by max_avail(descending sort) */
1764 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1765 				       const void *dev_info2)
1766 {
1767 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1768 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1769 		return -1;
1770 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1771 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1772 		return 1;
1773 	else
1774 	return 0;
1775 }
1776 
1777 /*
1778  * sort the devices by max_avail, in which max free extent size of each device
1779  * is stored.(Descending Sort)
1780  */
1781 static inline void btrfs_descending_sort_devices(
1782 					struct btrfs_device_info *devices,
1783 					size_t nr_devices)
1784 {
1785 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1786 	     btrfs_cmp_device_free_bytes, NULL);
1787 }
1788 
1789 /*
1790  * The helper to calc the free space on the devices that can be used to store
1791  * file data.
1792  */
1793 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1794 {
1795 	struct btrfs_fs_info *fs_info = root->fs_info;
1796 	struct btrfs_device_info *devices_info;
1797 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1798 	struct btrfs_device *device;
1799 	u64 skip_space;
1800 	u64 type;
1801 	u64 avail_space;
1802 	u64 used_space;
1803 	u64 min_stripe_size;
1804 	int min_stripes = 1, num_stripes = 1;
1805 	int i = 0, nr_devices;
1806 	int ret;
1807 
1808 	/*
1809 	 * We aren't under the device list lock, so this is racey-ish, but good
1810 	 * enough for our purposes.
1811 	 */
1812 	nr_devices = fs_info->fs_devices->open_devices;
1813 	if (!nr_devices) {
1814 		smp_mb();
1815 		nr_devices = fs_info->fs_devices->open_devices;
1816 		ASSERT(nr_devices);
1817 		if (!nr_devices) {
1818 			*free_bytes = 0;
1819 			return 0;
1820 		}
1821 	}
1822 
1823 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1824 			       GFP_NOFS);
1825 	if (!devices_info)
1826 		return -ENOMEM;
1827 
1828 	/* calc min stripe number for data space alloction */
1829 	type = btrfs_get_alloc_profile(root, 1);
1830 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1831 		min_stripes = 2;
1832 		num_stripes = nr_devices;
1833 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1834 		min_stripes = 2;
1835 		num_stripes = 2;
1836 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1837 		min_stripes = 4;
1838 		num_stripes = 4;
1839 	}
1840 
1841 	if (type & BTRFS_BLOCK_GROUP_DUP)
1842 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1843 	else
1844 		min_stripe_size = BTRFS_STRIPE_LEN;
1845 
1846 	if (fs_info->alloc_start)
1847 		mutex_lock(&fs_devices->device_list_mutex);
1848 	rcu_read_lock();
1849 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1850 		if (!device->in_fs_metadata || !device->bdev ||
1851 		    device->is_tgtdev_for_dev_replace)
1852 			continue;
1853 
1854 		if (i >= nr_devices)
1855 			break;
1856 
1857 		avail_space = device->total_bytes - device->bytes_used;
1858 
1859 		/* align with stripe_len */
1860 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1861 		avail_space *= BTRFS_STRIPE_LEN;
1862 
1863 		/*
1864 		 * In order to avoid overwritting the superblock on the drive,
1865 		 * btrfs starts at an offset of at least 1MB when doing chunk
1866 		 * allocation.
1867 		 */
1868 		skip_space = 1024 * 1024;
1869 
1870 		/* user can set the offset in fs_info->alloc_start. */
1871 		if (fs_info->alloc_start &&
1872 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1873 		    device->total_bytes) {
1874 			rcu_read_unlock();
1875 			skip_space = max(fs_info->alloc_start, skip_space);
1876 
1877 			/*
1878 			 * btrfs can not use the free space in
1879 			 * [0, skip_space - 1], we must subtract it from the
1880 			 * total. In order to implement it, we account the used
1881 			 * space in this range first.
1882 			 */
1883 			ret = btrfs_account_dev_extents_size(device, 0,
1884 							     skip_space - 1,
1885 							     &used_space);
1886 			if (ret) {
1887 				kfree(devices_info);
1888 				mutex_unlock(&fs_devices->device_list_mutex);
1889 				return ret;
1890 			}
1891 
1892 			rcu_read_lock();
1893 
1894 			/* calc the free space in [0, skip_space - 1] */
1895 			skip_space -= used_space;
1896 		}
1897 
1898 		/*
1899 		 * we can use the free space in [0, skip_space - 1], subtract
1900 		 * it from the total.
1901 		 */
1902 		if (avail_space && avail_space >= skip_space)
1903 			avail_space -= skip_space;
1904 		else
1905 			avail_space = 0;
1906 
1907 		if (avail_space < min_stripe_size)
1908 			continue;
1909 
1910 		devices_info[i].dev = device;
1911 		devices_info[i].max_avail = avail_space;
1912 
1913 		i++;
1914 	}
1915 	rcu_read_unlock();
1916 	if (fs_info->alloc_start)
1917 		mutex_unlock(&fs_devices->device_list_mutex);
1918 
1919 	nr_devices = i;
1920 
1921 	btrfs_descending_sort_devices(devices_info, nr_devices);
1922 
1923 	i = nr_devices - 1;
1924 	avail_space = 0;
1925 	while (nr_devices >= min_stripes) {
1926 		if (num_stripes > nr_devices)
1927 			num_stripes = nr_devices;
1928 
1929 		if (devices_info[i].max_avail >= min_stripe_size) {
1930 			int j;
1931 			u64 alloc_size;
1932 
1933 			avail_space += devices_info[i].max_avail * num_stripes;
1934 			alloc_size = devices_info[i].max_avail;
1935 			for (j = i + 1 - num_stripes; j <= i; j++)
1936 				devices_info[j].max_avail -= alloc_size;
1937 		}
1938 		i--;
1939 		nr_devices--;
1940 	}
1941 
1942 	kfree(devices_info);
1943 	*free_bytes = avail_space;
1944 	return 0;
1945 }
1946 
1947 /*
1948  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1949  *
1950  * If there's a redundant raid level at DATA block groups, use the respective
1951  * multiplier to scale the sizes.
1952  *
1953  * Unused device space usage is based on simulating the chunk allocator
1954  * algorithm that respects the device sizes, order of allocations and the
1955  * 'alloc_start' value, this is a close approximation of the actual use but
1956  * there are other factors that may change the result (like a new metadata
1957  * chunk).
1958  *
1959  * FIXME: not accurate for mixed block groups, total and free/used are ok,
1960  * available appears slightly larger.
1961  */
1962 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1963 {
1964 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1965 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1966 	struct list_head *head = &fs_info->space_info;
1967 	struct btrfs_space_info *found;
1968 	u64 total_used = 0;
1969 	u64 total_free_data = 0;
1970 	int bits = dentry->d_sb->s_blocksize_bits;
1971 	__be32 *fsid = (__be32 *)fs_info->fsid;
1972 	unsigned factor = 1;
1973 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1974 	int ret;
1975 
1976 	/*
1977 	 * holding chunk_muext to avoid allocating new chunks, holding
1978 	 * device_list_mutex to avoid the device being removed
1979 	 */
1980 	rcu_read_lock();
1981 	list_for_each_entry_rcu(found, head, list) {
1982 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1983 			int i;
1984 
1985 			total_free_data += found->disk_total - found->disk_used;
1986 			total_free_data -=
1987 				btrfs_account_ro_block_groups_free_space(found);
1988 
1989 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1990 				if (!list_empty(&found->block_groups[i])) {
1991 					switch (i) {
1992 					case BTRFS_RAID_DUP:
1993 					case BTRFS_RAID_RAID1:
1994 					case BTRFS_RAID_RAID10:
1995 						factor = 2;
1996 					}
1997 				}
1998 			}
1999 		}
2000 
2001 		total_used += found->disk_used;
2002 	}
2003 
2004 	rcu_read_unlock();
2005 
2006 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2007 	buf->f_blocks >>= bits;
2008 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2009 
2010 	/* Account global block reserve as used, it's in logical size already */
2011 	spin_lock(&block_rsv->lock);
2012 	buf->f_bfree -= block_rsv->size >> bits;
2013 	spin_unlock(&block_rsv->lock);
2014 
2015 	buf->f_bavail = div_u64(total_free_data, factor);
2016 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2017 	if (ret)
2018 		return ret;
2019 	buf->f_bavail += div_u64(total_free_data, factor);
2020 	buf->f_bavail = buf->f_bavail >> bits;
2021 
2022 	buf->f_type = BTRFS_SUPER_MAGIC;
2023 	buf->f_bsize = dentry->d_sb->s_blocksize;
2024 	buf->f_namelen = BTRFS_NAME_LEN;
2025 
2026 	/* We treat it as constant endianness (it doesn't matter _which_)
2027 	   because we want the fsid to come out the same whether mounted
2028 	   on a big-endian or little-endian host */
2029 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2030 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2031 	/* Mask in the root object ID too, to disambiguate subvols */
2032 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2033 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2034 
2035 	return 0;
2036 }
2037 
2038 static void btrfs_kill_super(struct super_block *sb)
2039 {
2040 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2041 	kill_anon_super(sb);
2042 	free_fs_info(fs_info);
2043 }
2044 
2045 static struct file_system_type btrfs_fs_type = {
2046 	.owner		= THIS_MODULE,
2047 	.name		= "btrfs",
2048 	.mount		= btrfs_mount,
2049 	.kill_sb	= btrfs_kill_super,
2050 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2051 };
2052 MODULE_ALIAS_FS("btrfs");
2053 
2054 static int btrfs_control_open(struct inode *inode, struct file *file)
2055 {
2056 	/*
2057 	 * The control file's private_data is used to hold the
2058 	 * transaction when it is started and is used to keep
2059 	 * track of whether a transaction is already in progress.
2060 	 */
2061 	file->private_data = NULL;
2062 	return 0;
2063 }
2064 
2065 /*
2066  * used by btrfsctl to scan devices when no FS is mounted
2067  */
2068 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2069 				unsigned long arg)
2070 {
2071 	struct btrfs_ioctl_vol_args *vol;
2072 	struct btrfs_fs_devices *fs_devices;
2073 	int ret = -ENOTTY;
2074 
2075 	if (!capable(CAP_SYS_ADMIN))
2076 		return -EPERM;
2077 
2078 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2079 	if (IS_ERR(vol))
2080 		return PTR_ERR(vol);
2081 
2082 	switch (cmd) {
2083 	case BTRFS_IOC_SCAN_DEV:
2084 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2085 					    &btrfs_fs_type, &fs_devices);
2086 		break;
2087 	case BTRFS_IOC_DEVICES_READY:
2088 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2089 					    &btrfs_fs_type, &fs_devices);
2090 		if (ret)
2091 			break;
2092 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2093 		break;
2094 	}
2095 
2096 	kfree(vol);
2097 	return ret;
2098 }
2099 
2100 static int btrfs_freeze(struct super_block *sb)
2101 {
2102 	struct btrfs_trans_handle *trans;
2103 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2104 
2105 	trans = btrfs_attach_transaction_barrier(root);
2106 	if (IS_ERR(trans)) {
2107 		/* no transaction, don't bother */
2108 		if (PTR_ERR(trans) == -ENOENT)
2109 			return 0;
2110 		return PTR_ERR(trans);
2111 	}
2112 	return btrfs_commit_transaction(trans, root);
2113 }
2114 
2115 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2116 {
2117 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2118 	struct btrfs_fs_devices *cur_devices;
2119 	struct btrfs_device *dev, *first_dev = NULL;
2120 	struct list_head *head;
2121 	struct rcu_string *name;
2122 
2123 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2124 	cur_devices = fs_info->fs_devices;
2125 	while (cur_devices) {
2126 		head = &cur_devices->devices;
2127 		list_for_each_entry(dev, head, dev_list) {
2128 			if (dev->missing)
2129 				continue;
2130 			if (!dev->name)
2131 				continue;
2132 			if (!first_dev || dev->devid < first_dev->devid)
2133 				first_dev = dev;
2134 		}
2135 		cur_devices = cur_devices->seed;
2136 	}
2137 
2138 	if (first_dev) {
2139 		rcu_read_lock();
2140 		name = rcu_dereference(first_dev->name);
2141 		seq_escape(m, name->str, " \t\n\\");
2142 		rcu_read_unlock();
2143 	} else {
2144 		WARN_ON(1);
2145 	}
2146 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2147 	return 0;
2148 }
2149 
2150 static const struct super_operations btrfs_super_ops = {
2151 	.drop_inode	= btrfs_drop_inode,
2152 	.evict_inode	= btrfs_evict_inode,
2153 	.put_super	= btrfs_put_super,
2154 	.sync_fs	= btrfs_sync_fs,
2155 	.show_options	= btrfs_show_options,
2156 	.show_devname	= btrfs_show_devname,
2157 	.write_inode	= btrfs_write_inode,
2158 	.alloc_inode	= btrfs_alloc_inode,
2159 	.destroy_inode	= btrfs_destroy_inode,
2160 	.statfs		= btrfs_statfs,
2161 	.remount_fs	= btrfs_remount,
2162 	.freeze_fs	= btrfs_freeze,
2163 };
2164 
2165 static const struct file_operations btrfs_ctl_fops = {
2166 	.open = btrfs_control_open,
2167 	.unlocked_ioctl	 = btrfs_control_ioctl,
2168 	.compat_ioctl = btrfs_control_ioctl,
2169 	.owner	 = THIS_MODULE,
2170 	.llseek = noop_llseek,
2171 };
2172 
2173 static struct miscdevice btrfs_misc = {
2174 	.minor		= BTRFS_MINOR,
2175 	.name		= "btrfs-control",
2176 	.fops		= &btrfs_ctl_fops
2177 };
2178 
2179 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2180 MODULE_ALIAS("devname:btrfs-control");
2181 
2182 static int btrfs_interface_init(void)
2183 {
2184 	return misc_register(&btrfs_misc);
2185 }
2186 
2187 static void btrfs_interface_exit(void)
2188 {
2189 	misc_deregister(&btrfs_misc);
2190 }
2191 
2192 static void btrfs_print_info(void)
2193 {
2194 	printk(KERN_INFO "Btrfs loaded"
2195 #ifdef CONFIG_BTRFS_DEBUG
2196 			", debug=on"
2197 #endif
2198 #ifdef CONFIG_BTRFS_ASSERT
2199 			", assert=on"
2200 #endif
2201 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2202 			", integrity-checker=on"
2203 #endif
2204 			"\n");
2205 }
2206 
2207 static int btrfs_run_sanity_tests(void)
2208 {
2209 	int ret;
2210 
2211 	ret = btrfs_init_test_fs();
2212 	if (ret)
2213 		return ret;
2214 
2215 	ret = btrfs_test_free_space_cache();
2216 	if (ret)
2217 		goto out;
2218 	ret = btrfs_test_extent_buffer_operations();
2219 	if (ret)
2220 		goto out;
2221 	ret = btrfs_test_extent_io();
2222 	if (ret)
2223 		goto out;
2224 	ret = btrfs_test_inodes();
2225 	if (ret)
2226 		goto out;
2227 	ret = btrfs_test_qgroups();
2228 out:
2229 	btrfs_destroy_test_fs();
2230 	return ret;
2231 }
2232 
2233 static int __init init_btrfs_fs(void)
2234 {
2235 	int err;
2236 
2237 	err = btrfs_hash_init();
2238 	if (err)
2239 		return err;
2240 
2241 	btrfs_props_init();
2242 
2243 	err = btrfs_init_sysfs();
2244 	if (err)
2245 		goto free_hash;
2246 
2247 	btrfs_init_compress();
2248 
2249 	err = btrfs_init_cachep();
2250 	if (err)
2251 		goto free_compress;
2252 
2253 	err = extent_io_init();
2254 	if (err)
2255 		goto free_cachep;
2256 
2257 	err = extent_map_init();
2258 	if (err)
2259 		goto free_extent_io;
2260 
2261 	err = ordered_data_init();
2262 	if (err)
2263 		goto free_extent_map;
2264 
2265 	err = btrfs_delayed_inode_init();
2266 	if (err)
2267 		goto free_ordered_data;
2268 
2269 	err = btrfs_auto_defrag_init();
2270 	if (err)
2271 		goto free_delayed_inode;
2272 
2273 	err = btrfs_delayed_ref_init();
2274 	if (err)
2275 		goto free_auto_defrag;
2276 
2277 	err = btrfs_prelim_ref_init();
2278 	if (err)
2279 		goto free_delayed_ref;
2280 
2281 	err = btrfs_end_io_wq_init();
2282 	if (err)
2283 		goto free_prelim_ref;
2284 
2285 	err = btrfs_interface_init();
2286 	if (err)
2287 		goto free_end_io_wq;
2288 
2289 	btrfs_init_lockdep();
2290 
2291 	btrfs_print_info();
2292 
2293 	err = btrfs_run_sanity_tests();
2294 	if (err)
2295 		goto unregister_ioctl;
2296 
2297 	err = register_filesystem(&btrfs_fs_type);
2298 	if (err)
2299 		goto unregister_ioctl;
2300 
2301 	return 0;
2302 
2303 unregister_ioctl:
2304 	btrfs_interface_exit();
2305 free_end_io_wq:
2306 	btrfs_end_io_wq_exit();
2307 free_prelim_ref:
2308 	btrfs_prelim_ref_exit();
2309 free_delayed_ref:
2310 	btrfs_delayed_ref_exit();
2311 free_auto_defrag:
2312 	btrfs_auto_defrag_exit();
2313 free_delayed_inode:
2314 	btrfs_delayed_inode_exit();
2315 free_ordered_data:
2316 	ordered_data_exit();
2317 free_extent_map:
2318 	extent_map_exit();
2319 free_extent_io:
2320 	extent_io_exit();
2321 free_cachep:
2322 	btrfs_destroy_cachep();
2323 free_compress:
2324 	btrfs_exit_compress();
2325 	btrfs_exit_sysfs();
2326 free_hash:
2327 	btrfs_hash_exit();
2328 	return err;
2329 }
2330 
2331 static void __exit exit_btrfs_fs(void)
2332 {
2333 	btrfs_destroy_cachep();
2334 	btrfs_delayed_ref_exit();
2335 	btrfs_auto_defrag_exit();
2336 	btrfs_delayed_inode_exit();
2337 	btrfs_prelim_ref_exit();
2338 	ordered_data_exit();
2339 	extent_map_exit();
2340 	extent_io_exit();
2341 	btrfs_interface_exit();
2342 	btrfs_end_io_wq_exit();
2343 	unregister_filesystem(&btrfs_fs_type);
2344 	btrfs_exit_sysfs();
2345 	btrfs_cleanup_fs_uuids();
2346 	btrfs_exit_compress();
2347 	btrfs_hash_exit();
2348 }
2349 
2350 late_initcall(init_btrfs_fs);
2351 module_exit(exit_btrfs_fs)
2352 
2353 MODULE_LICENSE("GPL");
2354