1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 /* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85 const char * __attribute_const__ btrfs_decode_error(int errno) 86 { 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120 } 121 122 /* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126 __cold 127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129 { 130 struct super_block *sb = fs_info->sb; 131 #ifdef CONFIG_PRINTK 132 const char *errstr; 133 #endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142 #ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159 #endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 sb->s_flags |= SB_RDONLY; 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187 } 188 189 #ifdef CONFIG_PRINTK 190 static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199 }; 200 201 202 /* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206 static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215 }; 216 217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218 { 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) 244 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 245 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); 246 247 va_end(args); 248 } 249 #endif 250 251 /* 252 * We only mark the transaction aborted and then set the file system read-only. 253 * This will prevent new transactions from starting or trying to join this 254 * one. 255 * 256 * This means that error recovery at the call site is limited to freeing 257 * any local memory allocations and passing the error code up without 258 * further cleanup. The transaction should complete as it normally would 259 * in the call path but will return -EIO. 260 * 261 * We'll complete the cleanup in btrfs_end_transaction and 262 * btrfs_commit_transaction. 263 */ 264 __cold 265 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 266 const char *function, 267 unsigned int line, int errno) 268 { 269 struct btrfs_fs_info *fs_info = trans->fs_info; 270 271 WRITE_ONCE(trans->aborted, errno); 272 /* Nothing used. The other threads that have joined this 273 * transaction may be able to continue. */ 274 if (!trans->dirty && list_empty(&trans->new_bgs)) { 275 const char *errstr; 276 277 errstr = btrfs_decode_error(errno); 278 btrfs_warn(fs_info, 279 "%s:%d: Aborting unused transaction(%s).", 280 function, line, errstr); 281 return; 282 } 283 WRITE_ONCE(trans->transaction->aborted, errno); 284 /* Wake up anybody who may be waiting on this transaction */ 285 wake_up(&fs_info->transaction_wait); 286 wake_up(&fs_info->transaction_blocked_wait); 287 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 288 } 289 /* 290 * __btrfs_panic decodes unexpected, fatal errors from the caller, 291 * issues an alert, and either panics or BUGs, depending on mount options. 292 */ 293 __cold 294 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 295 unsigned int line, int errno, const char *fmt, ...) 296 { 297 char *s_id = "<unknown>"; 298 const char *errstr; 299 struct va_format vaf = { .fmt = fmt }; 300 va_list args; 301 302 if (fs_info) 303 s_id = fs_info->sb->s_id; 304 305 va_start(args, fmt); 306 vaf.va = &args; 307 308 errstr = btrfs_decode_error(errno); 309 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 310 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 311 s_id, function, line, &vaf, errno, errstr); 312 313 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 314 function, line, &vaf, errno, errstr); 315 va_end(args); 316 /* Caller calls BUG() */ 317 } 318 319 static void btrfs_put_super(struct super_block *sb) 320 { 321 close_ctree(btrfs_sb(sb)); 322 } 323 324 enum { 325 Opt_acl, Opt_noacl, 326 Opt_clear_cache, 327 Opt_commit_interval, 328 Opt_compress, 329 Opt_compress_force, 330 Opt_compress_force_type, 331 Opt_compress_type, 332 Opt_degraded, 333 Opt_device, 334 Opt_fatal_errors, 335 Opt_flushoncommit, Opt_noflushoncommit, 336 Opt_inode_cache, Opt_noinode_cache, 337 Opt_max_inline, 338 Opt_barrier, Opt_nobarrier, 339 Opt_datacow, Opt_nodatacow, 340 Opt_datasum, Opt_nodatasum, 341 Opt_defrag, Opt_nodefrag, 342 Opt_discard, Opt_nodiscard, 343 Opt_discard_mode, 344 Opt_norecovery, 345 Opt_ratio, 346 Opt_rescan_uuid_tree, 347 Opt_skip_balance, 348 Opt_space_cache, Opt_no_space_cache, 349 Opt_space_cache_version, 350 Opt_ssd, Opt_nossd, 351 Opt_ssd_spread, Opt_nossd_spread, 352 Opt_subvol, 353 Opt_subvol_empty, 354 Opt_subvolid, 355 Opt_thread_pool, 356 Opt_treelog, Opt_notreelog, 357 Opt_user_subvol_rm_allowed, 358 359 /* Rescue options */ 360 Opt_rescue, 361 Opt_usebackuproot, 362 Opt_nologreplay, 363 364 /* Deprecated options */ 365 Opt_recovery, 366 367 /* Debugging options */ 368 Opt_check_integrity, 369 Opt_check_integrity_including_extent_data, 370 Opt_check_integrity_print_mask, 371 Opt_enospc_debug, Opt_noenospc_debug, 372 #ifdef CONFIG_BTRFS_DEBUG 373 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 374 #endif 375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 376 Opt_ref_verify, 377 #endif 378 Opt_err, 379 }; 380 381 static const match_table_t tokens = { 382 {Opt_acl, "acl"}, 383 {Opt_noacl, "noacl"}, 384 {Opt_clear_cache, "clear_cache"}, 385 {Opt_commit_interval, "commit=%u"}, 386 {Opt_compress, "compress"}, 387 {Opt_compress_type, "compress=%s"}, 388 {Opt_compress_force, "compress-force"}, 389 {Opt_compress_force_type, "compress-force=%s"}, 390 {Opt_degraded, "degraded"}, 391 {Opt_device, "device=%s"}, 392 {Opt_fatal_errors, "fatal_errors=%s"}, 393 {Opt_flushoncommit, "flushoncommit"}, 394 {Opt_noflushoncommit, "noflushoncommit"}, 395 {Opt_inode_cache, "inode_cache"}, 396 {Opt_noinode_cache, "noinode_cache"}, 397 {Opt_max_inline, "max_inline=%s"}, 398 {Opt_barrier, "barrier"}, 399 {Opt_nobarrier, "nobarrier"}, 400 {Opt_datacow, "datacow"}, 401 {Opt_nodatacow, "nodatacow"}, 402 {Opt_datasum, "datasum"}, 403 {Opt_nodatasum, "nodatasum"}, 404 {Opt_defrag, "autodefrag"}, 405 {Opt_nodefrag, "noautodefrag"}, 406 {Opt_discard, "discard"}, 407 {Opt_discard_mode, "discard=%s"}, 408 {Opt_nodiscard, "nodiscard"}, 409 {Opt_norecovery, "norecovery"}, 410 {Opt_ratio, "metadata_ratio=%u"}, 411 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 412 {Opt_skip_balance, "skip_balance"}, 413 {Opt_space_cache, "space_cache"}, 414 {Opt_no_space_cache, "nospace_cache"}, 415 {Opt_space_cache_version, "space_cache=%s"}, 416 {Opt_ssd, "ssd"}, 417 {Opt_nossd, "nossd"}, 418 {Opt_ssd_spread, "ssd_spread"}, 419 {Opt_nossd_spread, "nossd_spread"}, 420 {Opt_subvol, "subvol=%s"}, 421 {Opt_subvol_empty, "subvol="}, 422 {Opt_subvolid, "subvolid=%s"}, 423 {Opt_thread_pool, "thread_pool=%u"}, 424 {Opt_treelog, "treelog"}, 425 {Opt_notreelog, "notreelog"}, 426 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 427 428 /* Rescue options */ 429 {Opt_rescue, "rescue=%s"}, 430 /* Deprecated, with alias rescue=nologreplay */ 431 {Opt_nologreplay, "nologreplay"}, 432 /* Deprecated, with alias rescue=usebackuproot */ 433 {Opt_usebackuproot, "usebackuproot"}, 434 435 /* Deprecated options */ 436 {Opt_recovery, "recovery"}, 437 438 /* Debugging options */ 439 {Opt_check_integrity, "check_int"}, 440 {Opt_check_integrity_including_extent_data, "check_int_data"}, 441 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 442 {Opt_enospc_debug, "enospc_debug"}, 443 {Opt_noenospc_debug, "noenospc_debug"}, 444 #ifdef CONFIG_BTRFS_DEBUG 445 {Opt_fragment_data, "fragment=data"}, 446 {Opt_fragment_metadata, "fragment=metadata"}, 447 {Opt_fragment_all, "fragment=all"}, 448 #endif 449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 450 {Opt_ref_verify, "ref_verify"}, 451 #endif 452 {Opt_err, NULL}, 453 }; 454 455 static const match_table_t rescue_tokens = { 456 {Opt_usebackuproot, "usebackuproot"}, 457 {Opt_nologreplay, "nologreplay"}, 458 {Opt_err, NULL}, 459 }; 460 461 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 462 { 463 char *opts; 464 char *orig; 465 char *p; 466 substring_t args[MAX_OPT_ARGS]; 467 int ret = 0; 468 469 opts = kstrdup(options, GFP_KERNEL); 470 if (!opts) 471 return -ENOMEM; 472 orig = opts; 473 474 while ((p = strsep(&opts, ":")) != NULL) { 475 int token; 476 477 if (!*p) 478 continue; 479 token = match_token(p, rescue_tokens, args); 480 switch (token){ 481 case Opt_usebackuproot: 482 btrfs_info(info, 483 "trying to use backup root at mount time"); 484 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 485 break; 486 case Opt_nologreplay: 487 btrfs_set_and_info(info, NOLOGREPLAY, 488 "disabling log replay at mount time"); 489 break; 490 case Opt_err: 491 btrfs_info(info, "unrecognized rescue option '%s'", p); 492 ret = -EINVAL; 493 goto out; 494 default: 495 break; 496 } 497 498 } 499 out: 500 kfree(orig); 501 return ret; 502 } 503 504 /* 505 * Regular mount options parser. Everything that is needed only when 506 * reading in a new superblock is parsed here. 507 * XXX JDM: This needs to be cleaned up for remount. 508 */ 509 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 510 unsigned long new_flags) 511 { 512 substring_t args[MAX_OPT_ARGS]; 513 char *p, *num; 514 u64 cache_gen; 515 int intarg; 516 int ret = 0; 517 char *compress_type; 518 bool compress_force = false; 519 enum btrfs_compression_type saved_compress_type; 520 int saved_compress_level; 521 bool saved_compress_force; 522 int no_compress = 0; 523 524 cache_gen = btrfs_super_cache_generation(info->super_copy); 525 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 526 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 527 else if (cache_gen) 528 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 529 530 /* 531 * Even the options are empty, we still need to do extra check 532 * against new flags 533 */ 534 if (!options) 535 goto check; 536 537 while ((p = strsep(&options, ",")) != NULL) { 538 int token; 539 if (!*p) 540 continue; 541 542 token = match_token(p, tokens, args); 543 switch (token) { 544 case Opt_degraded: 545 btrfs_info(info, "allowing degraded mounts"); 546 btrfs_set_opt(info->mount_opt, DEGRADED); 547 break; 548 case Opt_subvol: 549 case Opt_subvol_empty: 550 case Opt_subvolid: 551 case Opt_device: 552 /* 553 * These are parsed by btrfs_parse_subvol_options or 554 * btrfs_parse_device_options and can be ignored here. 555 */ 556 break; 557 case Opt_nodatasum: 558 btrfs_set_and_info(info, NODATASUM, 559 "setting nodatasum"); 560 break; 561 case Opt_datasum: 562 if (btrfs_test_opt(info, NODATASUM)) { 563 if (btrfs_test_opt(info, NODATACOW)) 564 btrfs_info(info, 565 "setting datasum, datacow enabled"); 566 else 567 btrfs_info(info, "setting datasum"); 568 } 569 btrfs_clear_opt(info->mount_opt, NODATACOW); 570 btrfs_clear_opt(info->mount_opt, NODATASUM); 571 break; 572 case Opt_nodatacow: 573 if (!btrfs_test_opt(info, NODATACOW)) { 574 if (!btrfs_test_opt(info, COMPRESS) || 575 !btrfs_test_opt(info, FORCE_COMPRESS)) { 576 btrfs_info(info, 577 "setting nodatacow, compression disabled"); 578 } else { 579 btrfs_info(info, "setting nodatacow"); 580 } 581 } 582 btrfs_clear_opt(info->mount_opt, COMPRESS); 583 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 584 btrfs_set_opt(info->mount_opt, NODATACOW); 585 btrfs_set_opt(info->mount_opt, NODATASUM); 586 break; 587 case Opt_datacow: 588 btrfs_clear_and_info(info, NODATACOW, 589 "setting datacow"); 590 break; 591 case Opt_compress_force: 592 case Opt_compress_force_type: 593 compress_force = true; 594 fallthrough; 595 case Opt_compress: 596 case Opt_compress_type: 597 saved_compress_type = btrfs_test_opt(info, 598 COMPRESS) ? 599 info->compress_type : BTRFS_COMPRESS_NONE; 600 saved_compress_force = 601 btrfs_test_opt(info, FORCE_COMPRESS); 602 saved_compress_level = info->compress_level; 603 if (token == Opt_compress || 604 token == Opt_compress_force || 605 strncmp(args[0].from, "zlib", 4) == 0) { 606 compress_type = "zlib"; 607 608 info->compress_type = BTRFS_COMPRESS_ZLIB; 609 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 610 /* 611 * args[0] contains uninitialized data since 612 * for these tokens we don't expect any 613 * parameter. 614 */ 615 if (token != Opt_compress && 616 token != Opt_compress_force) 617 info->compress_level = 618 btrfs_compress_str2level( 619 BTRFS_COMPRESS_ZLIB, 620 args[0].from + 4); 621 btrfs_set_opt(info->mount_opt, COMPRESS); 622 btrfs_clear_opt(info->mount_opt, NODATACOW); 623 btrfs_clear_opt(info->mount_opt, NODATASUM); 624 no_compress = 0; 625 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 626 compress_type = "lzo"; 627 info->compress_type = BTRFS_COMPRESS_LZO; 628 btrfs_set_opt(info->mount_opt, COMPRESS); 629 btrfs_clear_opt(info->mount_opt, NODATACOW); 630 btrfs_clear_opt(info->mount_opt, NODATASUM); 631 btrfs_set_fs_incompat(info, COMPRESS_LZO); 632 no_compress = 0; 633 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 634 compress_type = "zstd"; 635 info->compress_type = BTRFS_COMPRESS_ZSTD; 636 info->compress_level = 637 btrfs_compress_str2level( 638 BTRFS_COMPRESS_ZSTD, 639 args[0].from + 4); 640 btrfs_set_opt(info->mount_opt, COMPRESS); 641 btrfs_clear_opt(info->mount_opt, NODATACOW); 642 btrfs_clear_opt(info->mount_opt, NODATASUM); 643 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 644 no_compress = 0; 645 } else if (strncmp(args[0].from, "no", 2) == 0) { 646 compress_type = "no"; 647 info->compress_level = 0; 648 info->compress_type = 0; 649 btrfs_clear_opt(info->mount_opt, COMPRESS); 650 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 651 compress_force = false; 652 no_compress++; 653 } else { 654 ret = -EINVAL; 655 goto out; 656 } 657 658 if (compress_force) { 659 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 660 } else { 661 /* 662 * If we remount from compress-force=xxx to 663 * compress=xxx, we need clear FORCE_COMPRESS 664 * flag, otherwise, there is no way for users 665 * to disable forcible compression separately. 666 */ 667 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 668 } 669 if (no_compress == 1) { 670 btrfs_info(info, "use no compression"); 671 } else if ((info->compress_type != saved_compress_type) || 672 (compress_force != saved_compress_force) || 673 (info->compress_level != saved_compress_level)) { 674 btrfs_info(info, "%s %s compression, level %d", 675 (compress_force) ? "force" : "use", 676 compress_type, info->compress_level); 677 } 678 compress_force = false; 679 break; 680 case Opt_ssd: 681 btrfs_set_and_info(info, SSD, 682 "enabling ssd optimizations"); 683 btrfs_clear_opt(info->mount_opt, NOSSD); 684 break; 685 case Opt_ssd_spread: 686 btrfs_set_and_info(info, SSD, 687 "enabling ssd optimizations"); 688 btrfs_set_and_info(info, SSD_SPREAD, 689 "using spread ssd allocation scheme"); 690 btrfs_clear_opt(info->mount_opt, NOSSD); 691 break; 692 case Opt_nossd: 693 btrfs_set_opt(info->mount_opt, NOSSD); 694 btrfs_clear_and_info(info, SSD, 695 "not using ssd optimizations"); 696 fallthrough; 697 case Opt_nossd_spread: 698 btrfs_clear_and_info(info, SSD_SPREAD, 699 "not using spread ssd allocation scheme"); 700 break; 701 case Opt_barrier: 702 btrfs_clear_and_info(info, NOBARRIER, 703 "turning on barriers"); 704 break; 705 case Opt_nobarrier: 706 btrfs_set_and_info(info, NOBARRIER, 707 "turning off barriers"); 708 break; 709 case Opt_thread_pool: 710 ret = match_int(&args[0], &intarg); 711 if (ret) { 712 goto out; 713 } else if (intarg == 0) { 714 ret = -EINVAL; 715 goto out; 716 } 717 info->thread_pool_size = intarg; 718 break; 719 case Opt_max_inline: 720 num = match_strdup(&args[0]); 721 if (num) { 722 info->max_inline = memparse(num, NULL); 723 kfree(num); 724 725 if (info->max_inline) { 726 info->max_inline = min_t(u64, 727 info->max_inline, 728 info->sectorsize); 729 } 730 btrfs_info(info, "max_inline at %llu", 731 info->max_inline); 732 } else { 733 ret = -ENOMEM; 734 goto out; 735 } 736 break; 737 case Opt_acl: 738 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 739 info->sb->s_flags |= SB_POSIXACL; 740 break; 741 #else 742 btrfs_err(info, "support for ACL not compiled in!"); 743 ret = -EINVAL; 744 goto out; 745 #endif 746 case Opt_noacl: 747 info->sb->s_flags &= ~SB_POSIXACL; 748 break; 749 case Opt_notreelog: 750 btrfs_set_and_info(info, NOTREELOG, 751 "disabling tree log"); 752 break; 753 case Opt_treelog: 754 btrfs_clear_and_info(info, NOTREELOG, 755 "enabling tree log"); 756 break; 757 case Opt_norecovery: 758 case Opt_nologreplay: 759 btrfs_warn(info, 760 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 761 btrfs_set_and_info(info, NOLOGREPLAY, 762 "disabling log replay at mount time"); 763 break; 764 case Opt_flushoncommit: 765 btrfs_set_and_info(info, FLUSHONCOMMIT, 766 "turning on flush-on-commit"); 767 break; 768 case Opt_noflushoncommit: 769 btrfs_clear_and_info(info, FLUSHONCOMMIT, 770 "turning off flush-on-commit"); 771 break; 772 case Opt_ratio: 773 ret = match_int(&args[0], &intarg); 774 if (ret) 775 goto out; 776 info->metadata_ratio = intarg; 777 btrfs_info(info, "metadata ratio %u", 778 info->metadata_ratio); 779 break; 780 case Opt_discard: 781 case Opt_discard_mode: 782 if (token == Opt_discard || 783 strcmp(args[0].from, "sync") == 0) { 784 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 785 btrfs_set_and_info(info, DISCARD_SYNC, 786 "turning on sync discard"); 787 } else if (strcmp(args[0].from, "async") == 0) { 788 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 789 btrfs_set_and_info(info, DISCARD_ASYNC, 790 "turning on async discard"); 791 } else { 792 ret = -EINVAL; 793 goto out; 794 } 795 break; 796 case Opt_nodiscard: 797 btrfs_clear_and_info(info, DISCARD_SYNC, 798 "turning off discard"); 799 btrfs_clear_and_info(info, DISCARD_ASYNC, 800 "turning off async discard"); 801 break; 802 case Opt_space_cache: 803 case Opt_space_cache_version: 804 if (token == Opt_space_cache || 805 strcmp(args[0].from, "v1") == 0) { 806 btrfs_clear_opt(info->mount_opt, 807 FREE_SPACE_TREE); 808 btrfs_set_and_info(info, SPACE_CACHE, 809 "enabling disk space caching"); 810 } else if (strcmp(args[0].from, "v2") == 0) { 811 btrfs_clear_opt(info->mount_opt, 812 SPACE_CACHE); 813 btrfs_set_and_info(info, FREE_SPACE_TREE, 814 "enabling free space tree"); 815 } else { 816 ret = -EINVAL; 817 goto out; 818 } 819 break; 820 case Opt_rescan_uuid_tree: 821 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 822 break; 823 case Opt_no_space_cache: 824 if (btrfs_test_opt(info, SPACE_CACHE)) { 825 btrfs_clear_and_info(info, SPACE_CACHE, 826 "disabling disk space caching"); 827 } 828 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 829 btrfs_clear_and_info(info, FREE_SPACE_TREE, 830 "disabling free space tree"); 831 } 832 break; 833 case Opt_inode_cache: 834 btrfs_warn(info, 835 "the 'inode_cache' option is deprecated and will have no effect from 5.11"); 836 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 837 "enabling inode map caching"); 838 break; 839 case Opt_noinode_cache: 840 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 841 "disabling inode map caching"); 842 break; 843 case Opt_clear_cache: 844 btrfs_set_and_info(info, CLEAR_CACHE, 845 "force clearing of disk cache"); 846 break; 847 case Opt_user_subvol_rm_allowed: 848 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 849 break; 850 case Opt_enospc_debug: 851 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 852 break; 853 case Opt_noenospc_debug: 854 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 855 break; 856 case Opt_defrag: 857 btrfs_set_and_info(info, AUTO_DEFRAG, 858 "enabling auto defrag"); 859 break; 860 case Opt_nodefrag: 861 btrfs_clear_and_info(info, AUTO_DEFRAG, 862 "disabling auto defrag"); 863 break; 864 case Opt_recovery: 865 case Opt_usebackuproot: 866 btrfs_warn(info, 867 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 868 token == Opt_recovery ? "recovery" : 869 "usebackuproot"); 870 btrfs_info(info, 871 "trying to use backup root at mount time"); 872 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 873 break; 874 case Opt_skip_balance: 875 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 876 break; 877 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 878 case Opt_check_integrity_including_extent_data: 879 btrfs_info(info, 880 "enabling check integrity including extent data"); 881 btrfs_set_opt(info->mount_opt, 882 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 883 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 884 break; 885 case Opt_check_integrity: 886 btrfs_info(info, "enabling check integrity"); 887 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 888 break; 889 case Opt_check_integrity_print_mask: 890 ret = match_int(&args[0], &intarg); 891 if (ret) 892 goto out; 893 info->check_integrity_print_mask = intarg; 894 btrfs_info(info, "check_integrity_print_mask 0x%x", 895 info->check_integrity_print_mask); 896 break; 897 #else 898 case Opt_check_integrity_including_extent_data: 899 case Opt_check_integrity: 900 case Opt_check_integrity_print_mask: 901 btrfs_err(info, 902 "support for check_integrity* not compiled in!"); 903 ret = -EINVAL; 904 goto out; 905 #endif 906 case Opt_fatal_errors: 907 if (strcmp(args[0].from, "panic") == 0) 908 btrfs_set_opt(info->mount_opt, 909 PANIC_ON_FATAL_ERROR); 910 else if (strcmp(args[0].from, "bug") == 0) 911 btrfs_clear_opt(info->mount_opt, 912 PANIC_ON_FATAL_ERROR); 913 else { 914 ret = -EINVAL; 915 goto out; 916 } 917 break; 918 case Opt_commit_interval: 919 intarg = 0; 920 ret = match_int(&args[0], &intarg); 921 if (ret) 922 goto out; 923 if (intarg == 0) { 924 btrfs_info(info, 925 "using default commit interval %us", 926 BTRFS_DEFAULT_COMMIT_INTERVAL); 927 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 928 } else if (intarg > 300) { 929 btrfs_warn(info, "excessive commit interval %d", 930 intarg); 931 } 932 info->commit_interval = intarg; 933 break; 934 case Opt_rescue: 935 ret = parse_rescue_options(info, args[0].from); 936 if (ret < 0) 937 goto out; 938 break; 939 #ifdef CONFIG_BTRFS_DEBUG 940 case Opt_fragment_all: 941 btrfs_info(info, "fragmenting all space"); 942 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 943 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 944 break; 945 case Opt_fragment_metadata: 946 btrfs_info(info, "fragmenting metadata"); 947 btrfs_set_opt(info->mount_opt, 948 FRAGMENT_METADATA); 949 break; 950 case Opt_fragment_data: 951 btrfs_info(info, "fragmenting data"); 952 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 953 break; 954 #endif 955 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 956 case Opt_ref_verify: 957 btrfs_info(info, "doing ref verification"); 958 btrfs_set_opt(info->mount_opt, REF_VERIFY); 959 break; 960 #endif 961 case Opt_err: 962 btrfs_err(info, "unrecognized mount option '%s'", p); 963 ret = -EINVAL; 964 goto out; 965 default: 966 break; 967 } 968 } 969 check: 970 /* 971 * Extra check for current option against current flag 972 */ 973 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { 974 btrfs_err(info, 975 "nologreplay must be used with ro mount option"); 976 ret = -EINVAL; 977 } 978 out: 979 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 980 !btrfs_test_opt(info, FREE_SPACE_TREE) && 981 !btrfs_test_opt(info, CLEAR_CACHE)) { 982 btrfs_err(info, "cannot disable free space tree"); 983 ret = -EINVAL; 984 985 } 986 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 987 btrfs_info(info, "disk space caching is enabled"); 988 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 989 btrfs_info(info, "using free space tree"); 990 return ret; 991 } 992 993 /* 994 * Parse mount options that are required early in the mount process. 995 * 996 * All other options will be parsed on much later in the mount process and 997 * only when we need to allocate a new super block. 998 */ 999 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1000 void *holder) 1001 { 1002 substring_t args[MAX_OPT_ARGS]; 1003 char *device_name, *opts, *orig, *p; 1004 struct btrfs_device *device = NULL; 1005 int error = 0; 1006 1007 lockdep_assert_held(&uuid_mutex); 1008 1009 if (!options) 1010 return 0; 1011 1012 /* 1013 * strsep changes the string, duplicate it because btrfs_parse_options 1014 * gets called later 1015 */ 1016 opts = kstrdup(options, GFP_KERNEL); 1017 if (!opts) 1018 return -ENOMEM; 1019 orig = opts; 1020 1021 while ((p = strsep(&opts, ",")) != NULL) { 1022 int token; 1023 1024 if (!*p) 1025 continue; 1026 1027 token = match_token(p, tokens, args); 1028 if (token == Opt_device) { 1029 device_name = match_strdup(&args[0]); 1030 if (!device_name) { 1031 error = -ENOMEM; 1032 goto out; 1033 } 1034 device = btrfs_scan_one_device(device_name, flags, 1035 holder); 1036 kfree(device_name); 1037 if (IS_ERR(device)) { 1038 error = PTR_ERR(device); 1039 goto out; 1040 } 1041 } 1042 } 1043 1044 out: 1045 kfree(orig); 1046 return error; 1047 } 1048 1049 /* 1050 * Parse mount options that are related to subvolume id 1051 * 1052 * The value is later passed to mount_subvol() 1053 */ 1054 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1055 u64 *subvol_objectid) 1056 { 1057 substring_t args[MAX_OPT_ARGS]; 1058 char *opts, *orig, *p; 1059 int error = 0; 1060 u64 subvolid; 1061 1062 if (!options) 1063 return 0; 1064 1065 /* 1066 * strsep changes the string, duplicate it because 1067 * btrfs_parse_device_options gets called later 1068 */ 1069 opts = kstrdup(options, GFP_KERNEL); 1070 if (!opts) 1071 return -ENOMEM; 1072 orig = opts; 1073 1074 while ((p = strsep(&opts, ",")) != NULL) { 1075 int token; 1076 if (!*p) 1077 continue; 1078 1079 token = match_token(p, tokens, args); 1080 switch (token) { 1081 case Opt_subvol: 1082 kfree(*subvol_name); 1083 *subvol_name = match_strdup(&args[0]); 1084 if (!*subvol_name) { 1085 error = -ENOMEM; 1086 goto out; 1087 } 1088 break; 1089 case Opt_subvolid: 1090 error = match_u64(&args[0], &subvolid); 1091 if (error) 1092 goto out; 1093 1094 /* we want the original fs_tree */ 1095 if (subvolid == 0) 1096 subvolid = BTRFS_FS_TREE_OBJECTID; 1097 1098 *subvol_objectid = subvolid; 1099 break; 1100 default: 1101 break; 1102 } 1103 } 1104 1105 out: 1106 kfree(orig); 1107 return error; 1108 } 1109 1110 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1111 u64 subvol_objectid) 1112 { 1113 struct btrfs_root *root = fs_info->tree_root; 1114 struct btrfs_root *fs_root = NULL; 1115 struct btrfs_root_ref *root_ref; 1116 struct btrfs_inode_ref *inode_ref; 1117 struct btrfs_key key; 1118 struct btrfs_path *path = NULL; 1119 char *name = NULL, *ptr; 1120 u64 dirid; 1121 int len; 1122 int ret; 1123 1124 path = btrfs_alloc_path(); 1125 if (!path) { 1126 ret = -ENOMEM; 1127 goto err; 1128 } 1129 path->leave_spinning = 1; 1130 1131 name = kmalloc(PATH_MAX, GFP_KERNEL); 1132 if (!name) { 1133 ret = -ENOMEM; 1134 goto err; 1135 } 1136 ptr = name + PATH_MAX - 1; 1137 ptr[0] = '\0'; 1138 1139 /* 1140 * Walk up the subvolume trees in the tree of tree roots by root 1141 * backrefs until we hit the top-level subvolume. 1142 */ 1143 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1144 key.objectid = subvol_objectid; 1145 key.type = BTRFS_ROOT_BACKREF_KEY; 1146 key.offset = (u64)-1; 1147 1148 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1149 if (ret < 0) { 1150 goto err; 1151 } else if (ret > 0) { 1152 ret = btrfs_previous_item(root, path, subvol_objectid, 1153 BTRFS_ROOT_BACKREF_KEY); 1154 if (ret < 0) { 1155 goto err; 1156 } else if (ret > 0) { 1157 ret = -ENOENT; 1158 goto err; 1159 } 1160 } 1161 1162 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1163 subvol_objectid = key.offset; 1164 1165 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1166 struct btrfs_root_ref); 1167 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1168 ptr -= len + 1; 1169 if (ptr < name) { 1170 ret = -ENAMETOOLONG; 1171 goto err; 1172 } 1173 read_extent_buffer(path->nodes[0], ptr + 1, 1174 (unsigned long)(root_ref + 1), len); 1175 ptr[0] = '/'; 1176 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1177 btrfs_release_path(path); 1178 1179 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1180 if (IS_ERR(fs_root)) { 1181 ret = PTR_ERR(fs_root); 1182 fs_root = NULL; 1183 goto err; 1184 } 1185 1186 /* 1187 * Walk up the filesystem tree by inode refs until we hit the 1188 * root directory. 1189 */ 1190 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1191 key.objectid = dirid; 1192 key.type = BTRFS_INODE_REF_KEY; 1193 key.offset = (u64)-1; 1194 1195 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1196 if (ret < 0) { 1197 goto err; 1198 } else if (ret > 0) { 1199 ret = btrfs_previous_item(fs_root, path, dirid, 1200 BTRFS_INODE_REF_KEY); 1201 if (ret < 0) { 1202 goto err; 1203 } else if (ret > 0) { 1204 ret = -ENOENT; 1205 goto err; 1206 } 1207 } 1208 1209 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1210 dirid = key.offset; 1211 1212 inode_ref = btrfs_item_ptr(path->nodes[0], 1213 path->slots[0], 1214 struct btrfs_inode_ref); 1215 len = btrfs_inode_ref_name_len(path->nodes[0], 1216 inode_ref); 1217 ptr -= len + 1; 1218 if (ptr < name) { 1219 ret = -ENAMETOOLONG; 1220 goto err; 1221 } 1222 read_extent_buffer(path->nodes[0], ptr + 1, 1223 (unsigned long)(inode_ref + 1), len); 1224 ptr[0] = '/'; 1225 btrfs_release_path(path); 1226 } 1227 btrfs_put_root(fs_root); 1228 fs_root = NULL; 1229 } 1230 1231 btrfs_free_path(path); 1232 if (ptr == name + PATH_MAX - 1) { 1233 name[0] = '/'; 1234 name[1] = '\0'; 1235 } else { 1236 memmove(name, ptr, name + PATH_MAX - ptr); 1237 } 1238 return name; 1239 1240 err: 1241 btrfs_put_root(fs_root); 1242 btrfs_free_path(path); 1243 kfree(name); 1244 return ERR_PTR(ret); 1245 } 1246 1247 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1248 { 1249 struct btrfs_root *root = fs_info->tree_root; 1250 struct btrfs_dir_item *di; 1251 struct btrfs_path *path; 1252 struct btrfs_key location; 1253 u64 dir_id; 1254 1255 path = btrfs_alloc_path(); 1256 if (!path) 1257 return -ENOMEM; 1258 path->leave_spinning = 1; 1259 1260 /* 1261 * Find the "default" dir item which points to the root item that we 1262 * will mount by default if we haven't been given a specific subvolume 1263 * to mount. 1264 */ 1265 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1266 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1267 if (IS_ERR(di)) { 1268 btrfs_free_path(path); 1269 return PTR_ERR(di); 1270 } 1271 if (!di) { 1272 /* 1273 * Ok the default dir item isn't there. This is weird since 1274 * it's always been there, but don't freak out, just try and 1275 * mount the top-level subvolume. 1276 */ 1277 btrfs_free_path(path); 1278 *objectid = BTRFS_FS_TREE_OBJECTID; 1279 return 0; 1280 } 1281 1282 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1283 btrfs_free_path(path); 1284 *objectid = location.objectid; 1285 return 0; 1286 } 1287 1288 static int btrfs_fill_super(struct super_block *sb, 1289 struct btrfs_fs_devices *fs_devices, 1290 void *data) 1291 { 1292 struct inode *inode; 1293 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1294 int err; 1295 1296 sb->s_maxbytes = MAX_LFS_FILESIZE; 1297 sb->s_magic = BTRFS_SUPER_MAGIC; 1298 sb->s_op = &btrfs_super_ops; 1299 sb->s_d_op = &btrfs_dentry_operations; 1300 sb->s_export_op = &btrfs_export_ops; 1301 sb->s_xattr = btrfs_xattr_handlers; 1302 sb->s_time_gran = 1; 1303 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1304 sb->s_flags |= SB_POSIXACL; 1305 #endif 1306 sb->s_flags |= SB_I_VERSION; 1307 sb->s_iflags |= SB_I_CGROUPWB; 1308 1309 err = super_setup_bdi(sb); 1310 if (err) { 1311 btrfs_err(fs_info, "super_setup_bdi failed"); 1312 return err; 1313 } 1314 1315 err = open_ctree(sb, fs_devices, (char *)data); 1316 if (err) { 1317 btrfs_err(fs_info, "open_ctree failed"); 1318 return err; 1319 } 1320 1321 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1322 if (IS_ERR(inode)) { 1323 err = PTR_ERR(inode); 1324 goto fail_close; 1325 } 1326 1327 sb->s_root = d_make_root(inode); 1328 if (!sb->s_root) { 1329 err = -ENOMEM; 1330 goto fail_close; 1331 } 1332 1333 cleancache_init_fs(sb); 1334 sb->s_flags |= SB_ACTIVE; 1335 return 0; 1336 1337 fail_close: 1338 close_ctree(fs_info); 1339 return err; 1340 } 1341 1342 int btrfs_sync_fs(struct super_block *sb, int wait) 1343 { 1344 struct btrfs_trans_handle *trans; 1345 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1346 struct btrfs_root *root = fs_info->tree_root; 1347 1348 trace_btrfs_sync_fs(fs_info, wait); 1349 1350 if (!wait) { 1351 filemap_flush(fs_info->btree_inode->i_mapping); 1352 return 0; 1353 } 1354 1355 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1356 1357 trans = btrfs_attach_transaction_barrier(root); 1358 if (IS_ERR(trans)) { 1359 /* no transaction, don't bother */ 1360 if (PTR_ERR(trans) == -ENOENT) { 1361 /* 1362 * Exit unless we have some pending changes 1363 * that need to go through commit 1364 */ 1365 if (fs_info->pending_changes == 0) 1366 return 0; 1367 /* 1368 * A non-blocking test if the fs is frozen. We must not 1369 * start a new transaction here otherwise a deadlock 1370 * happens. The pending operations are delayed to the 1371 * next commit after thawing. 1372 */ 1373 if (sb_start_write_trylock(sb)) 1374 sb_end_write(sb); 1375 else 1376 return 0; 1377 trans = btrfs_start_transaction(root, 0); 1378 } 1379 if (IS_ERR(trans)) 1380 return PTR_ERR(trans); 1381 } 1382 return btrfs_commit_transaction(trans); 1383 } 1384 1385 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1386 { 1387 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1388 const char *compress_type; 1389 const char *subvol_name; 1390 1391 if (btrfs_test_opt(info, DEGRADED)) 1392 seq_puts(seq, ",degraded"); 1393 if (btrfs_test_opt(info, NODATASUM)) 1394 seq_puts(seq, ",nodatasum"); 1395 if (btrfs_test_opt(info, NODATACOW)) 1396 seq_puts(seq, ",nodatacow"); 1397 if (btrfs_test_opt(info, NOBARRIER)) 1398 seq_puts(seq, ",nobarrier"); 1399 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1400 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1401 if (info->thread_pool_size != min_t(unsigned long, 1402 num_online_cpus() + 2, 8)) 1403 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1404 if (btrfs_test_opt(info, COMPRESS)) { 1405 compress_type = btrfs_compress_type2str(info->compress_type); 1406 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1407 seq_printf(seq, ",compress-force=%s", compress_type); 1408 else 1409 seq_printf(seq, ",compress=%s", compress_type); 1410 if (info->compress_level) 1411 seq_printf(seq, ":%d", info->compress_level); 1412 } 1413 if (btrfs_test_opt(info, NOSSD)) 1414 seq_puts(seq, ",nossd"); 1415 if (btrfs_test_opt(info, SSD_SPREAD)) 1416 seq_puts(seq, ",ssd_spread"); 1417 else if (btrfs_test_opt(info, SSD)) 1418 seq_puts(seq, ",ssd"); 1419 if (btrfs_test_opt(info, NOTREELOG)) 1420 seq_puts(seq, ",notreelog"); 1421 if (btrfs_test_opt(info, NOLOGREPLAY)) 1422 seq_puts(seq, ",rescue=nologreplay"); 1423 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1424 seq_puts(seq, ",flushoncommit"); 1425 if (btrfs_test_opt(info, DISCARD_SYNC)) 1426 seq_puts(seq, ",discard"); 1427 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1428 seq_puts(seq, ",discard=async"); 1429 if (!(info->sb->s_flags & SB_POSIXACL)) 1430 seq_puts(seq, ",noacl"); 1431 if (btrfs_test_opt(info, SPACE_CACHE)) 1432 seq_puts(seq, ",space_cache"); 1433 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1434 seq_puts(seq, ",space_cache=v2"); 1435 else 1436 seq_puts(seq, ",nospace_cache"); 1437 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1438 seq_puts(seq, ",rescan_uuid_tree"); 1439 if (btrfs_test_opt(info, CLEAR_CACHE)) 1440 seq_puts(seq, ",clear_cache"); 1441 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1442 seq_puts(seq, ",user_subvol_rm_allowed"); 1443 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1444 seq_puts(seq, ",enospc_debug"); 1445 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1446 seq_puts(seq, ",autodefrag"); 1447 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1448 seq_puts(seq, ",inode_cache"); 1449 if (btrfs_test_opt(info, SKIP_BALANCE)) 1450 seq_puts(seq, ",skip_balance"); 1451 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1452 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1453 seq_puts(seq, ",check_int_data"); 1454 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1455 seq_puts(seq, ",check_int"); 1456 if (info->check_integrity_print_mask) 1457 seq_printf(seq, ",check_int_print_mask=%d", 1458 info->check_integrity_print_mask); 1459 #endif 1460 if (info->metadata_ratio) 1461 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1462 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1463 seq_puts(seq, ",fatal_errors=panic"); 1464 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1465 seq_printf(seq, ",commit=%u", info->commit_interval); 1466 #ifdef CONFIG_BTRFS_DEBUG 1467 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1468 seq_puts(seq, ",fragment=data"); 1469 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1470 seq_puts(seq, ",fragment=metadata"); 1471 #endif 1472 if (btrfs_test_opt(info, REF_VERIFY)) 1473 seq_puts(seq, ",ref_verify"); 1474 seq_printf(seq, ",subvolid=%llu", 1475 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1476 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1477 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1478 if (!IS_ERR(subvol_name)) { 1479 seq_puts(seq, ",subvol="); 1480 seq_escape(seq, subvol_name, " \t\n\\"); 1481 kfree(subvol_name); 1482 } 1483 return 0; 1484 } 1485 1486 static int btrfs_test_super(struct super_block *s, void *data) 1487 { 1488 struct btrfs_fs_info *p = data; 1489 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1490 1491 return fs_info->fs_devices == p->fs_devices; 1492 } 1493 1494 static int btrfs_set_super(struct super_block *s, void *data) 1495 { 1496 int err = set_anon_super(s, data); 1497 if (!err) 1498 s->s_fs_info = data; 1499 return err; 1500 } 1501 1502 /* 1503 * subvolumes are identified by ino 256 1504 */ 1505 static inline int is_subvolume_inode(struct inode *inode) 1506 { 1507 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1508 return 1; 1509 return 0; 1510 } 1511 1512 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1513 struct vfsmount *mnt) 1514 { 1515 struct dentry *root; 1516 int ret; 1517 1518 if (!subvol_name) { 1519 if (!subvol_objectid) { 1520 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1521 &subvol_objectid); 1522 if (ret) { 1523 root = ERR_PTR(ret); 1524 goto out; 1525 } 1526 } 1527 subvol_name = btrfs_get_subvol_name_from_objectid( 1528 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1529 if (IS_ERR(subvol_name)) { 1530 root = ERR_CAST(subvol_name); 1531 subvol_name = NULL; 1532 goto out; 1533 } 1534 1535 } 1536 1537 root = mount_subtree(mnt, subvol_name); 1538 /* mount_subtree() drops our reference on the vfsmount. */ 1539 mnt = NULL; 1540 1541 if (!IS_ERR(root)) { 1542 struct super_block *s = root->d_sb; 1543 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1544 struct inode *root_inode = d_inode(root); 1545 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1546 1547 ret = 0; 1548 if (!is_subvolume_inode(root_inode)) { 1549 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1550 subvol_name); 1551 ret = -EINVAL; 1552 } 1553 if (subvol_objectid && root_objectid != subvol_objectid) { 1554 /* 1555 * This will also catch a race condition where a 1556 * subvolume which was passed by ID is renamed and 1557 * another subvolume is renamed over the old location. 1558 */ 1559 btrfs_err(fs_info, 1560 "subvol '%s' does not match subvolid %llu", 1561 subvol_name, subvol_objectid); 1562 ret = -EINVAL; 1563 } 1564 if (ret) { 1565 dput(root); 1566 root = ERR_PTR(ret); 1567 deactivate_locked_super(s); 1568 } 1569 } 1570 1571 out: 1572 mntput(mnt); 1573 kfree(subvol_name); 1574 return root; 1575 } 1576 1577 /* 1578 * Find a superblock for the given device / mount point. 1579 * 1580 * Note: This is based on mount_bdev from fs/super.c with a few additions 1581 * for multiple device setup. Make sure to keep it in sync. 1582 */ 1583 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1584 int flags, const char *device_name, void *data) 1585 { 1586 struct block_device *bdev = NULL; 1587 struct super_block *s; 1588 struct btrfs_device *device = NULL; 1589 struct btrfs_fs_devices *fs_devices = NULL; 1590 struct btrfs_fs_info *fs_info = NULL; 1591 void *new_sec_opts = NULL; 1592 fmode_t mode = FMODE_READ; 1593 int error = 0; 1594 1595 if (!(flags & SB_RDONLY)) 1596 mode |= FMODE_WRITE; 1597 1598 if (data) { 1599 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1600 if (error) 1601 return ERR_PTR(error); 1602 } 1603 1604 /* 1605 * Setup a dummy root and fs_info for test/set super. This is because 1606 * we don't actually fill this stuff out until open_ctree, but we need 1607 * then open_ctree will properly initialize the file system specific 1608 * settings later. btrfs_init_fs_info initializes the static elements 1609 * of the fs_info (locks and such) to make cleanup easier if we find a 1610 * superblock with our given fs_devices later on at sget() time. 1611 */ 1612 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1613 if (!fs_info) { 1614 error = -ENOMEM; 1615 goto error_sec_opts; 1616 } 1617 btrfs_init_fs_info(fs_info); 1618 1619 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1620 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1621 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1622 error = -ENOMEM; 1623 goto error_fs_info; 1624 } 1625 1626 mutex_lock(&uuid_mutex); 1627 error = btrfs_parse_device_options(data, mode, fs_type); 1628 if (error) { 1629 mutex_unlock(&uuid_mutex); 1630 goto error_fs_info; 1631 } 1632 1633 device = btrfs_scan_one_device(device_name, mode, fs_type); 1634 if (IS_ERR(device)) { 1635 mutex_unlock(&uuid_mutex); 1636 error = PTR_ERR(device); 1637 goto error_fs_info; 1638 } 1639 1640 fs_devices = device->fs_devices; 1641 fs_info->fs_devices = fs_devices; 1642 1643 error = btrfs_open_devices(fs_devices, mode, fs_type); 1644 mutex_unlock(&uuid_mutex); 1645 if (error) 1646 goto error_fs_info; 1647 1648 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1649 error = -EACCES; 1650 goto error_close_devices; 1651 } 1652 1653 bdev = fs_devices->latest_bdev; 1654 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1655 fs_info); 1656 if (IS_ERR(s)) { 1657 error = PTR_ERR(s); 1658 goto error_close_devices; 1659 } 1660 1661 if (s->s_root) { 1662 btrfs_close_devices(fs_devices); 1663 btrfs_free_fs_info(fs_info); 1664 if ((flags ^ s->s_flags) & SB_RDONLY) 1665 error = -EBUSY; 1666 } else { 1667 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1668 btrfs_sb(s)->bdev_holder = fs_type; 1669 if (!strstr(crc32c_impl(), "generic")) 1670 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1671 error = btrfs_fill_super(s, fs_devices, data); 1672 } 1673 if (!error) 1674 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1675 security_free_mnt_opts(&new_sec_opts); 1676 if (error) { 1677 deactivate_locked_super(s); 1678 return ERR_PTR(error); 1679 } 1680 1681 return dget(s->s_root); 1682 1683 error_close_devices: 1684 btrfs_close_devices(fs_devices); 1685 error_fs_info: 1686 btrfs_free_fs_info(fs_info); 1687 error_sec_opts: 1688 security_free_mnt_opts(&new_sec_opts); 1689 return ERR_PTR(error); 1690 } 1691 1692 /* 1693 * Mount function which is called by VFS layer. 1694 * 1695 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1696 * which needs vfsmount* of device's root (/). This means device's root has to 1697 * be mounted internally in any case. 1698 * 1699 * Operation flow: 1700 * 1. Parse subvol id related options for later use in mount_subvol(). 1701 * 1702 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1703 * 1704 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1705 * first place. In order to avoid calling btrfs_mount() again, we use 1706 * different file_system_type which is not registered to VFS by 1707 * register_filesystem() (btrfs_root_fs_type). As a result, 1708 * btrfs_mount_root() is called. The return value will be used by 1709 * mount_subtree() in mount_subvol(). 1710 * 1711 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1712 * "btrfs subvolume set-default", mount_subvol() is called always. 1713 */ 1714 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1715 const char *device_name, void *data) 1716 { 1717 struct vfsmount *mnt_root; 1718 struct dentry *root; 1719 char *subvol_name = NULL; 1720 u64 subvol_objectid = 0; 1721 int error = 0; 1722 1723 error = btrfs_parse_subvol_options(data, &subvol_name, 1724 &subvol_objectid); 1725 if (error) { 1726 kfree(subvol_name); 1727 return ERR_PTR(error); 1728 } 1729 1730 /* mount device's root (/) */ 1731 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1732 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1733 if (flags & SB_RDONLY) { 1734 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1735 flags & ~SB_RDONLY, device_name, data); 1736 } else { 1737 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1738 flags | SB_RDONLY, device_name, data); 1739 if (IS_ERR(mnt_root)) { 1740 root = ERR_CAST(mnt_root); 1741 kfree(subvol_name); 1742 goto out; 1743 } 1744 1745 down_write(&mnt_root->mnt_sb->s_umount); 1746 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1747 up_write(&mnt_root->mnt_sb->s_umount); 1748 if (error < 0) { 1749 root = ERR_PTR(error); 1750 mntput(mnt_root); 1751 kfree(subvol_name); 1752 goto out; 1753 } 1754 } 1755 } 1756 if (IS_ERR(mnt_root)) { 1757 root = ERR_CAST(mnt_root); 1758 kfree(subvol_name); 1759 goto out; 1760 } 1761 1762 /* mount_subvol() will free subvol_name and mnt_root */ 1763 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1764 1765 out: 1766 return root; 1767 } 1768 1769 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1770 u32 new_pool_size, u32 old_pool_size) 1771 { 1772 if (new_pool_size == old_pool_size) 1773 return; 1774 1775 fs_info->thread_pool_size = new_pool_size; 1776 1777 btrfs_info(fs_info, "resize thread pool %d -> %d", 1778 old_pool_size, new_pool_size); 1779 1780 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1781 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1782 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1783 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1784 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1785 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1786 new_pool_size); 1787 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1788 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1789 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1790 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1791 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1792 new_pool_size); 1793 } 1794 1795 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1796 unsigned long old_opts, int flags) 1797 { 1798 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1799 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1800 (flags & SB_RDONLY))) { 1801 /* wait for any defraggers to finish */ 1802 wait_event(fs_info->transaction_wait, 1803 (atomic_read(&fs_info->defrag_running) == 0)); 1804 if (flags & SB_RDONLY) 1805 sync_filesystem(fs_info->sb); 1806 } 1807 } 1808 1809 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1810 unsigned long old_opts) 1811 { 1812 /* 1813 * We need to cleanup all defragable inodes if the autodefragment is 1814 * close or the filesystem is read only. 1815 */ 1816 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1817 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1818 btrfs_cleanup_defrag_inodes(fs_info); 1819 } 1820 1821 /* If we toggled discard async */ 1822 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1823 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1824 btrfs_discard_resume(fs_info); 1825 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1826 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1827 btrfs_discard_cleanup(fs_info); 1828 } 1829 1830 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1831 { 1832 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1833 struct btrfs_root *root = fs_info->tree_root; 1834 unsigned old_flags = sb->s_flags; 1835 unsigned long old_opts = fs_info->mount_opt; 1836 unsigned long old_compress_type = fs_info->compress_type; 1837 u64 old_max_inline = fs_info->max_inline; 1838 u32 old_thread_pool_size = fs_info->thread_pool_size; 1839 u32 old_metadata_ratio = fs_info->metadata_ratio; 1840 int ret; 1841 1842 sync_filesystem(sb); 1843 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1844 1845 if (data) { 1846 void *new_sec_opts = NULL; 1847 1848 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1849 if (!ret) 1850 ret = security_sb_remount(sb, new_sec_opts); 1851 security_free_mnt_opts(&new_sec_opts); 1852 if (ret) 1853 goto restore; 1854 } 1855 1856 ret = btrfs_parse_options(fs_info, data, *flags); 1857 if (ret) 1858 goto restore; 1859 1860 btrfs_remount_begin(fs_info, old_opts, *flags); 1861 btrfs_resize_thread_pool(fs_info, 1862 fs_info->thread_pool_size, old_thread_pool_size); 1863 1864 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1865 goto out; 1866 1867 if (*flags & SB_RDONLY) { 1868 /* 1869 * this also happens on 'umount -rf' or on shutdown, when 1870 * the filesystem is busy. 1871 */ 1872 cancel_work_sync(&fs_info->async_reclaim_work); 1873 1874 btrfs_discard_cleanup(fs_info); 1875 1876 /* wait for the uuid_scan task to finish */ 1877 down(&fs_info->uuid_tree_rescan_sem); 1878 /* avoid complains from lockdep et al. */ 1879 up(&fs_info->uuid_tree_rescan_sem); 1880 1881 sb->s_flags |= SB_RDONLY; 1882 1883 /* 1884 * Setting SB_RDONLY will put the cleaner thread to 1885 * sleep at the next loop if it's already active. 1886 * If it's already asleep, we'll leave unused block 1887 * groups on disk until we're mounted read-write again 1888 * unless we clean them up here. 1889 */ 1890 btrfs_delete_unused_bgs(fs_info); 1891 1892 btrfs_dev_replace_suspend_for_unmount(fs_info); 1893 btrfs_scrub_cancel(fs_info); 1894 btrfs_pause_balance(fs_info); 1895 1896 ret = btrfs_commit_super(fs_info); 1897 if (ret) 1898 goto restore; 1899 } else { 1900 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1901 btrfs_err(fs_info, 1902 "Remounting read-write after error is not allowed"); 1903 ret = -EINVAL; 1904 goto restore; 1905 } 1906 if (fs_info->fs_devices->rw_devices == 0) { 1907 ret = -EACCES; 1908 goto restore; 1909 } 1910 1911 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1912 btrfs_warn(fs_info, 1913 "too many missing devices, writable remount is not allowed"); 1914 ret = -EACCES; 1915 goto restore; 1916 } 1917 1918 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1919 btrfs_warn(fs_info, 1920 "mount required to replay tree-log, cannot remount read-write"); 1921 ret = -EINVAL; 1922 goto restore; 1923 } 1924 1925 ret = btrfs_cleanup_fs_roots(fs_info); 1926 if (ret) 1927 goto restore; 1928 1929 /* recover relocation */ 1930 mutex_lock(&fs_info->cleaner_mutex); 1931 ret = btrfs_recover_relocation(root); 1932 mutex_unlock(&fs_info->cleaner_mutex); 1933 if (ret) 1934 goto restore; 1935 1936 ret = btrfs_resume_balance_async(fs_info); 1937 if (ret) 1938 goto restore; 1939 1940 ret = btrfs_resume_dev_replace_async(fs_info); 1941 if (ret) { 1942 btrfs_warn(fs_info, "failed to resume dev_replace"); 1943 goto restore; 1944 } 1945 1946 btrfs_qgroup_rescan_resume(fs_info); 1947 1948 if (!fs_info->uuid_root) { 1949 btrfs_info(fs_info, "creating UUID tree"); 1950 ret = btrfs_create_uuid_tree(fs_info); 1951 if (ret) { 1952 btrfs_warn(fs_info, 1953 "failed to create the UUID tree %d", 1954 ret); 1955 goto restore; 1956 } 1957 } 1958 sb->s_flags &= ~SB_RDONLY; 1959 1960 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1961 } 1962 out: 1963 /* 1964 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 1965 * since the absence of the flag means it can be toggled off by remount. 1966 */ 1967 *flags |= SB_I_VERSION; 1968 1969 wake_up_process(fs_info->transaction_kthread); 1970 btrfs_remount_cleanup(fs_info, old_opts); 1971 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1972 1973 return 0; 1974 1975 restore: 1976 /* We've hit an error - don't reset SB_RDONLY */ 1977 if (sb_rdonly(sb)) 1978 old_flags |= SB_RDONLY; 1979 sb->s_flags = old_flags; 1980 fs_info->mount_opt = old_opts; 1981 fs_info->compress_type = old_compress_type; 1982 fs_info->max_inline = old_max_inline; 1983 btrfs_resize_thread_pool(fs_info, 1984 old_thread_pool_size, fs_info->thread_pool_size); 1985 fs_info->metadata_ratio = old_metadata_ratio; 1986 btrfs_remount_cleanup(fs_info, old_opts); 1987 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1988 1989 return ret; 1990 } 1991 1992 /* Used to sort the devices by max_avail(descending sort) */ 1993 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, 1994 const void *dev_info2) 1995 { 1996 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1997 ((struct btrfs_device_info *)dev_info2)->max_avail) 1998 return -1; 1999 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 2000 ((struct btrfs_device_info *)dev_info2)->max_avail) 2001 return 1; 2002 else 2003 return 0; 2004 } 2005 2006 /* 2007 * sort the devices by max_avail, in which max free extent size of each device 2008 * is stored.(Descending Sort) 2009 */ 2010 static inline void btrfs_descending_sort_devices( 2011 struct btrfs_device_info *devices, 2012 size_t nr_devices) 2013 { 2014 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2015 btrfs_cmp_device_free_bytes, NULL); 2016 } 2017 2018 /* 2019 * The helper to calc the free space on the devices that can be used to store 2020 * file data. 2021 */ 2022 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2023 u64 *free_bytes) 2024 { 2025 struct btrfs_device_info *devices_info; 2026 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2027 struct btrfs_device *device; 2028 u64 type; 2029 u64 avail_space; 2030 u64 min_stripe_size; 2031 int num_stripes = 1; 2032 int i = 0, nr_devices; 2033 const struct btrfs_raid_attr *rattr; 2034 2035 /* 2036 * We aren't under the device list lock, so this is racy-ish, but good 2037 * enough for our purposes. 2038 */ 2039 nr_devices = fs_info->fs_devices->open_devices; 2040 if (!nr_devices) { 2041 smp_mb(); 2042 nr_devices = fs_info->fs_devices->open_devices; 2043 ASSERT(nr_devices); 2044 if (!nr_devices) { 2045 *free_bytes = 0; 2046 return 0; 2047 } 2048 } 2049 2050 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2051 GFP_KERNEL); 2052 if (!devices_info) 2053 return -ENOMEM; 2054 2055 /* calc min stripe number for data space allocation */ 2056 type = btrfs_data_alloc_profile(fs_info); 2057 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2058 2059 if (type & BTRFS_BLOCK_GROUP_RAID0) 2060 num_stripes = nr_devices; 2061 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2062 num_stripes = 2; 2063 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2064 num_stripes = 3; 2065 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2066 num_stripes = 4; 2067 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2068 num_stripes = 4; 2069 2070 /* Adjust for more than 1 stripe per device */ 2071 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2072 2073 rcu_read_lock(); 2074 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2075 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2076 &device->dev_state) || 2077 !device->bdev || 2078 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2079 continue; 2080 2081 if (i >= nr_devices) 2082 break; 2083 2084 avail_space = device->total_bytes - device->bytes_used; 2085 2086 /* align with stripe_len */ 2087 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2088 2089 /* 2090 * In order to avoid overwriting the superblock on the drive, 2091 * btrfs starts at an offset of at least 1MB when doing chunk 2092 * allocation. 2093 * 2094 * This ensures we have at least min_stripe_size free space 2095 * after excluding 1MB. 2096 */ 2097 if (avail_space <= SZ_1M + min_stripe_size) 2098 continue; 2099 2100 avail_space -= SZ_1M; 2101 2102 devices_info[i].dev = device; 2103 devices_info[i].max_avail = avail_space; 2104 2105 i++; 2106 } 2107 rcu_read_unlock(); 2108 2109 nr_devices = i; 2110 2111 btrfs_descending_sort_devices(devices_info, nr_devices); 2112 2113 i = nr_devices - 1; 2114 avail_space = 0; 2115 while (nr_devices >= rattr->devs_min) { 2116 num_stripes = min(num_stripes, nr_devices); 2117 2118 if (devices_info[i].max_avail >= min_stripe_size) { 2119 int j; 2120 u64 alloc_size; 2121 2122 avail_space += devices_info[i].max_avail * num_stripes; 2123 alloc_size = devices_info[i].max_avail; 2124 for (j = i + 1 - num_stripes; j <= i; j++) 2125 devices_info[j].max_avail -= alloc_size; 2126 } 2127 i--; 2128 nr_devices--; 2129 } 2130 2131 kfree(devices_info); 2132 *free_bytes = avail_space; 2133 return 0; 2134 } 2135 2136 /* 2137 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2138 * 2139 * If there's a redundant raid level at DATA block groups, use the respective 2140 * multiplier to scale the sizes. 2141 * 2142 * Unused device space usage is based on simulating the chunk allocator 2143 * algorithm that respects the device sizes and order of allocations. This is 2144 * a close approximation of the actual use but there are other factors that may 2145 * change the result (like a new metadata chunk). 2146 * 2147 * If metadata is exhausted, f_bavail will be 0. 2148 */ 2149 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2150 { 2151 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2152 struct btrfs_super_block *disk_super = fs_info->super_copy; 2153 struct btrfs_space_info *found; 2154 u64 total_used = 0; 2155 u64 total_free_data = 0; 2156 u64 total_free_meta = 0; 2157 int bits = dentry->d_sb->s_blocksize_bits; 2158 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2159 unsigned factor = 1; 2160 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2161 int ret; 2162 u64 thresh = 0; 2163 int mixed = 0; 2164 2165 rcu_read_lock(); 2166 list_for_each_entry_rcu(found, &fs_info->space_info, list) { 2167 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2168 int i; 2169 2170 total_free_data += found->disk_total - found->disk_used; 2171 total_free_data -= 2172 btrfs_account_ro_block_groups_free_space(found); 2173 2174 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2175 if (!list_empty(&found->block_groups[i])) 2176 factor = btrfs_bg_type_to_factor( 2177 btrfs_raid_array[i].bg_flag); 2178 } 2179 } 2180 2181 /* 2182 * Metadata in mixed block goup profiles are accounted in data 2183 */ 2184 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2185 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2186 mixed = 1; 2187 else 2188 total_free_meta += found->disk_total - 2189 found->disk_used; 2190 } 2191 2192 total_used += found->disk_used; 2193 } 2194 2195 rcu_read_unlock(); 2196 2197 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2198 buf->f_blocks >>= bits; 2199 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2200 2201 /* Account global block reserve as used, it's in logical size already */ 2202 spin_lock(&block_rsv->lock); 2203 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2204 if (buf->f_bfree >= block_rsv->size >> bits) 2205 buf->f_bfree -= block_rsv->size >> bits; 2206 else 2207 buf->f_bfree = 0; 2208 spin_unlock(&block_rsv->lock); 2209 2210 buf->f_bavail = div_u64(total_free_data, factor); 2211 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2212 if (ret) 2213 return ret; 2214 buf->f_bavail += div_u64(total_free_data, factor); 2215 buf->f_bavail = buf->f_bavail >> bits; 2216 2217 /* 2218 * We calculate the remaining metadata space minus global reserve. If 2219 * this is (supposedly) smaller than zero, there's no space. But this 2220 * does not hold in practice, the exhausted state happens where's still 2221 * some positive delta. So we apply some guesswork and compare the 2222 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2223 * 2224 * We probably cannot calculate the exact threshold value because this 2225 * depends on the internal reservations requested by various 2226 * operations, so some operations that consume a few metadata will 2227 * succeed even if the Avail is zero. But this is better than the other 2228 * way around. 2229 */ 2230 thresh = SZ_4M; 2231 2232 /* 2233 * We only want to claim there's no available space if we can no longer 2234 * allocate chunks for our metadata profile and our global reserve will 2235 * not fit in the free metadata space. If we aren't ->full then we 2236 * still can allocate chunks and thus are fine using the currently 2237 * calculated f_bavail. 2238 */ 2239 if (!mixed && block_rsv->space_info->full && 2240 total_free_meta - thresh < block_rsv->size) 2241 buf->f_bavail = 0; 2242 2243 buf->f_type = BTRFS_SUPER_MAGIC; 2244 buf->f_bsize = dentry->d_sb->s_blocksize; 2245 buf->f_namelen = BTRFS_NAME_LEN; 2246 2247 /* We treat it as constant endianness (it doesn't matter _which_) 2248 because we want the fsid to come out the same whether mounted 2249 on a big-endian or little-endian host */ 2250 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2251 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2252 /* Mask in the root object ID too, to disambiguate subvols */ 2253 buf->f_fsid.val[0] ^= 2254 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2255 buf->f_fsid.val[1] ^= 2256 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2257 2258 return 0; 2259 } 2260 2261 static void btrfs_kill_super(struct super_block *sb) 2262 { 2263 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2264 kill_anon_super(sb); 2265 btrfs_free_fs_info(fs_info); 2266 } 2267 2268 static struct file_system_type btrfs_fs_type = { 2269 .owner = THIS_MODULE, 2270 .name = "btrfs", 2271 .mount = btrfs_mount, 2272 .kill_sb = btrfs_kill_super, 2273 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2274 }; 2275 2276 static struct file_system_type btrfs_root_fs_type = { 2277 .owner = THIS_MODULE, 2278 .name = "btrfs", 2279 .mount = btrfs_mount_root, 2280 .kill_sb = btrfs_kill_super, 2281 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2282 }; 2283 2284 MODULE_ALIAS_FS("btrfs"); 2285 2286 static int btrfs_control_open(struct inode *inode, struct file *file) 2287 { 2288 /* 2289 * The control file's private_data is used to hold the 2290 * transaction when it is started and is used to keep 2291 * track of whether a transaction is already in progress. 2292 */ 2293 file->private_data = NULL; 2294 return 0; 2295 } 2296 2297 /* 2298 * Used by /dev/btrfs-control for devices ioctls. 2299 */ 2300 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2301 unsigned long arg) 2302 { 2303 struct btrfs_ioctl_vol_args *vol; 2304 struct btrfs_device *device = NULL; 2305 int ret = -ENOTTY; 2306 2307 if (!capable(CAP_SYS_ADMIN)) 2308 return -EPERM; 2309 2310 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2311 if (IS_ERR(vol)) 2312 return PTR_ERR(vol); 2313 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2314 2315 switch (cmd) { 2316 case BTRFS_IOC_SCAN_DEV: 2317 mutex_lock(&uuid_mutex); 2318 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2319 &btrfs_root_fs_type); 2320 ret = PTR_ERR_OR_ZERO(device); 2321 mutex_unlock(&uuid_mutex); 2322 break; 2323 case BTRFS_IOC_FORGET_DEV: 2324 ret = btrfs_forget_devices(vol->name); 2325 break; 2326 case BTRFS_IOC_DEVICES_READY: 2327 mutex_lock(&uuid_mutex); 2328 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2329 &btrfs_root_fs_type); 2330 if (IS_ERR(device)) { 2331 mutex_unlock(&uuid_mutex); 2332 ret = PTR_ERR(device); 2333 break; 2334 } 2335 ret = !(device->fs_devices->num_devices == 2336 device->fs_devices->total_devices); 2337 mutex_unlock(&uuid_mutex); 2338 break; 2339 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2340 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2341 break; 2342 } 2343 2344 kfree(vol); 2345 return ret; 2346 } 2347 2348 static int btrfs_freeze(struct super_block *sb) 2349 { 2350 struct btrfs_trans_handle *trans; 2351 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2352 struct btrfs_root *root = fs_info->tree_root; 2353 2354 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2355 /* 2356 * We don't need a barrier here, we'll wait for any transaction that 2357 * could be in progress on other threads (and do delayed iputs that 2358 * we want to avoid on a frozen filesystem), or do the commit 2359 * ourselves. 2360 */ 2361 trans = btrfs_attach_transaction_barrier(root); 2362 if (IS_ERR(trans)) { 2363 /* no transaction, don't bother */ 2364 if (PTR_ERR(trans) == -ENOENT) 2365 return 0; 2366 return PTR_ERR(trans); 2367 } 2368 return btrfs_commit_transaction(trans); 2369 } 2370 2371 static int btrfs_unfreeze(struct super_block *sb) 2372 { 2373 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2374 2375 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2376 return 0; 2377 } 2378 2379 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2380 { 2381 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2382 struct btrfs_device *dev, *first_dev = NULL; 2383 2384 /* 2385 * Lightweight locking of the devices. We should not need 2386 * device_list_mutex here as we only read the device data and the list 2387 * is protected by RCU. Even if a device is deleted during the list 2388 * traversals, we'll get valid data, the freeing callback will wait at 2389 * least until the rcu_read_unlock. 2390 */ 2391 rcu_read_lock(); 2392 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2393 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2394 continue; 2395 if (!dev->name) 2396 continue; 2397 if (!first_dev || dev->devid < first_dev->devid) 2398 first_dev = dev; 2399 } 2400 2401 if (first_dev) 2402 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2403 else 2404 WARN_ON(1); 2405 rcu_read_unlock(); 2406 return 0; 2407 } 2408 2409 static const struct super_operations btrfs_super_ops = { 2410 .drop_inode = btrfs_drop_inode, 2411 .evict_inode = btrfs_evict_inode, 2412 .put_super = btrfs_put_super, 2413 .sync_fs = btrfs_sync_fs, 2414 .show_options = btrfs_show_options, 2415 .show_devname = btrfs_show_devname, 2416 .alloc_inode = btrfs_alloc_inode, 2417 .destroy_inode = btrfs_destroy_inode, 2418 .free_inode = btrfs_free_inode, 2419 .statfs = btrfs_statfs, 2420 .remount_fs = btrfs_remount, 2421 .freeze_fs = btrfs_freeze, 2422 .unfreeze_fs = btrfs_unfreeze, 2423 }; 2424 2425 static const struct file_operations btrfs_ctl_fops = { 2426 .open = btrfs_control_open, 2427 .unlocked_ioctl = btrfs_control_ioctl, 2428 .compat_ioctl = compat_ptr_ioctl, 2429 .owner = THIS_MODULE, 2430 .llseek = noop_llseek, 2431 }; 2432 2433 static struct miscdevice btrfs_misc = { 2434 .minor = BTRFS_MINOR, 2435 .name = "btrfs-control", 2436 .fops = &btrfs_ctl_fops 2437 }; 2438 2439 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2440 MODULE_ALIAS("devname:btrfs-control"); 2441 2442 static int __init btrfs_interface_init(void) 2443 { 2444 return misc_register(&btrfs_misc); 2445 } 2446 2447 static __cold void btrfs_interface_exit(void) 2448 { 2449 misc_deregister(&btrfs_misc); 2450 } 2451 2452 static void __init btrfs_print_mod_info(void) 2453 { 2454 static const char options[] = "" 2455 #ifdef CONFIG_BTRFS_DEBUG 2456 ", debug=on" 2457 #endif 2458 #ifdef CONFIG_BTRFS_ASSERT 2459 ", assert=on" 2460 #endif 2461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2462 ", integrity-checker=on" 2463 #endif 2464 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2465 ", ref-verify=on" 2466 #endif 2467 ; 2468 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2469 } 2470 2471 static int __init init_btrfs_fs(void) 2472 { 2473 int err; 2474 2475 btrfs_props_init(); 2476 2477 err = btrfs_init_sysfs(); 2478 if (err) 2479 return err; 2480 2481 btrfs_init_compress(); 2482 2483 err = btrfs_init_cachep(); 2484 if (err) 2485 goto free_compress; 2486 2487 err = extent_io_init(); 2488 if (err) 2489 goto free_cachep; 2490 2491 err = extent_state_cache_init(); 2492 if (err) 2493 goto free_extent_io; 2494 2495 err = extent_map_init(); 2496 if (err) 2497 goto free_extent_state_cache; 2498 2499 err = ordered_data_init(); 2500 if (err) 2501 goto free_extent_map; 2502 2503 err = btrfs_delayed_inode_init(); 2504 if (err) 2505 goto free_ordered_data; 2506 2507 err = btrfs_auto_defrag_init(); 2508 if (err) 2509 goto free_delayed_inode; 2510 2511 err = btrfs_delayed_ref_init(); 2512 if (err) 2513 goto free_auto_defrag; 2514 2515 err = btrfs_prelim_ref_init(); 2516 if (err) 2517 goto free_delayed_ref; 2518 2519 err = btrfs_end_io_wq_init(); 2520 if (err) 2521 goto free_prelim_ref; 2522 2523 err = btrfs_interface_init(); 2524 if (err) 2525 goto free_end_io_wq; 2526 2527 btrfs_init_lockdep(); 2528 2529 btrfs_print_mod_info(); 2530 2531 err = btrfs_run_sanity_tests(); 2532 if (err) 2533 goto unregister_ioctl; 2534 2535 err = register_filesystem(&btrfs_fs_type); 2536 if (err) 2537 goto unregister_ioctl; 2538 2539 return 0; 2540 2541 unregister_ioctl: 2542 btrfs_interface_exit(); 2543 free_end_io_wq: 2544 btrfs_end_io_wq_exit(); 2545 free_prelim_ref: 2546 btrfs_prelim_ref_exit(); 2547 free_delayed_ref: 2548 btrfs_delayed_ref_exit(); 2549 free_auto_defrag: 2550 btrfs_auto_defrag_exit(); 2551 free_delayed_inode: 2552 btrfs_delayed_inode_exit(); 2553 free_ordered_data: 2554 ordered_data_exit(); 2555 free_extent_map: 2556 extent_map_exit(); 2557 free_extent_state_cache: 2558 extent_state_cache_exit(); 2559 free_extent_io: 2560 extent_io_exit(); 2561 free_cachep: 2562 btrfs_destroy_cachep(); 2563 free_compress: 2564 btrfs_exit_compress(); 2565 btrfs_exit_sysfs(); 2566 2567 return err; 2568 } 2569 2570 static void __exit exit_btrfs_fs(void) 2571 { 2572 btrfs_destroy_cachep(); 2573 btrfs_delayed_ref_exit(); 2574 btrfs_auto_defrag_exit(); 2575 btrfs_delayed_inode_exit(); 2576 btrfs_prelim_ref_exit(); 2577 ordered_data_exit(); 2578 extent_map_exit(); 2579 extent_state_cache_exit(); 2580 extent_io_exit(); 2581 btrfs_interface_exit(); 2582 btrfs_end_io_wq_exit(); 2583 unregister_filesystem(&btrfs_fs_type); 2584 btrfs_exit_sysfs(); 2585 btrfs_cleanup_fs_uuids(); 2586 btrfs_exit_compress(); 2587 } 2588 2589 late_initcall(init_btrfs_fs); 2590 module_exit(exit_btrfs_fs) 2591 2592 MODULE_LICENSE("GPL"); 2593 MODULE_SOFTDEP("pre: crc32c"); 2594 MODULE_SOFTDEP("pre: xxhash64"); 2595 MODULE_SOFTDEP("pre: sha256"); 2596 MODULE_SOFTDEP("pre: blake2b-256"); 2597