1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include "delayed-inode.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "props.h" 36 #include "xattr.h" 37 #include "volumes.h" 38 #include "export.h" 39 #include "compression.h" 40 #include "rcu-string.h" 41 #include "dev-replace.h" 42 #include "free-space-cache.h" 43 #include "backref.h" 44 #include "space-info.h" 45 #include "sysfs.h" 46 #include "zoned.h" 47 #include "tests/btrfs-tests.h" 48 #include "block-group.h" 49 #include "discard.h" 50 #include "qgroup.h" 51 #include "raid56.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 #ifdef CONFIG_PRINTK 71 72 #define STATE_STRING_PREFACE ": state " 73 #define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT) 74 75 /* 76 * Characters to print to indicate error conditions or uncommon filesystem state. 77 * RO is not an error. 78 */ 79 static const char fs_state_chars[] = { 80 [BTRFS_FS_STATE_ERROR] = 'E', 81 [BTRFS_FS_STATE_REMOUNTING] = 'M', 82 [BTRFS_FS_STATE_RO] = 0, 83 [BTRFS_FS_STATE_TRANS_ABORTED] = 'A', 84 [BTRFS_FS_STATE_DEV_REPLACING] = 'R', 85 [BTRFS_FS_STATE_DUMMY_FS_INFO] = 0, 86 [BTRFS_FS_STATE_NO_CSUMS] = 'C', 87 [BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L', 88 }; 89 90 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf) 91 { 92 unsigned int bit; 93 bool states_printed = false; 94 unsigned long fs_state = READ_ONCE(info->fs_state); 95 char *curr = buf; 96 97 memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE)); 98 curr += sizeof(STATE_STRING_PREFACE) - 1; 99 100 for_each_set_bit(bit, &fs_state, sizeof(fs_state)) { 101 WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT); 102 if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) { 103 *curr++ = fs_state_chars[bit]; 104 states_printed = true; 105 } 106 } 107 108 /* If no states were printed, reset the buffer */ 109 if (!states_printed) 110 curr = buf; 111 112 *curr++ = 0; 113 } 114 #endif 115 116 /* 117 * Generally the error codes correspond to their respective errors, but there 118 * are a few special cases. 119 * 120 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 121 * instance will return EUCLEAN if any of the blocks are corrupted in 122 * a way that is problematic. We want to reserve EUCLEAN for these 123 * sort of corruptions. 124 * 125 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 126 * need to use EROFS for this case. We will have no idea of the 127 * original failure, that will have been reported at the time we tripped 128 * over the error. Each subsequent error that doesn't have any context 129 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 130 */ 131 const char * __attribute_const__ btrfs_decode_error(int errno) 132 { 133 char *errstr = "unknown"; 134 135 switch (errno) { 136 case -ENOENT: /* -2 */ 137 errstr = "No such entry"; 138 break; 139 case -EIO: /* -5 */ 140 errstr = "IO failure"; 141 break; 142 case -ENOMEM: /* -12*/ 143 errstr = "Out of memory"; 144 break; 145 case -EEXIST: /* -17 */ 146 errstr = "Object already exists"; 147 break; 148 case -ENOSPC: /* -28 */ 149 errstr = "No space left"; 150 break; 151 case -EROFS: /* -30 */ 152 errstr = "Readonly filesystem"; 153 break; 154 case -EOPNOTSUPP: /* -95 */ 155 errstr = "Operation not supported"; 156 break; 157 case -EUCLEAN: /* -117 */ 158 errstr = "Filesystem corrupted"; 159 break; 160 case -EDQUOT: /* -122 */ 161 errstr = "Quota exceeded"; 162 break; 163 } 164 165 return errstr; 166 } 167 168 /* 169 * __btrfs_handle_fs_error decodes expected errors from the caller and 170 * invokes the appropriate error response. 171 */ 172 __cold 173 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 174 unsigned int line, int errno, const char *fmt, ...) 175 { 176 struct super_block *sb = fs_info->sb; 177 #ifdef CONFIG_PRINTK 178 char statestr[STATE_STRING_BUF_LEN]; 179 const char *errstr; 180 #endif 181 182 /* 183 * Special case: if the error is EROFS, and we're already 184 * under SB_RDONLY, then it is safe here. 185 */ 186 if (errno == -EROFS && sb_rdonly(sb)) 187 return; 188 189 #ifdef CONFIG_PRINTK 190 errstr = btrfs_decode_error(errno); 191 btrfs_state_to_string(fs_info, statestr); 192 if (fmt) { 193 struct va_format vaf; 194 va_list args; 195 196 va_start(args, fmt); 197 vaf.fmt = fmt; 198 vaf.va = &args; 199 200 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n", 201 sb->s_id, statestr, function, line, errno, errstr, &vaf); 202 va_end(args); 203 } else { 204 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n", 205 sb->s_id, statestr, function, line, errno, errstr); 206 } 207 #endif 208 209 /* 210 * Today we only save the error info to memory. Long term we'll 211 * also send it down to the disk 212 */ 213 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 214 215 /* Don't go through full error handling during mount */ 216 if (!(sb->s_flags & SB_BORN)) 217 return; 218 219 if (sb_rdonly(sb)) 220 return; 221 222 btrfs_discard_stop(fs_info); 223 224 /* btrfs handle error by forcing the filesystem readonly */ 225 btrfs_set_sb_rdonly(sb); 226 btrfs_info(fs_info, "forced readonly"); 227 /* 228 * Note that a running device replace operation is not canceled here 229 * although there is no way to update the progress. It would add the 230 * risk of a deadlock, therefore the canceling is omitted. The only 231 * penalty is that some I/O remains active until the procedure 232 * completes. The next time when the filesystem is mounted writable 233 * again, the device replace operation continues. 234 */ 235 } 236 237 #ifdef CONFIG_PRINTK 238 static const char * const logtypes[] = { 239 "emergency", 240 "alert", 241 "critical", 242 "error", 243 "warning", 244 "notice", 245 "info", 246 "debug", 247 }; 248 249 250 /* 251 * Use one ratelimit state per log level so that a flood of less important 252 * messages doesn't cause more important ones to be dropped. 253 */ 254 static struct ratelimit_state printk_limits[] = { 255 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 256 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 257 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 258 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 259 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 260 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 261 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 262 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 263 }; 264 265 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 266 { 267 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 268 struct va_format vaf; 269 va_list args; 270 int kern_level; 271 const char *type = logtypes[4]; 272 struct ratelimit_state *ratelimit = &printk_limits[4]; 273 274 va_start(args, fmt); 275 276 while ((kern_level = printk_get_level(fmt)) != 0) { 277 size_t size = printk_skip_level(fmt) - fmt; 278 279 if (kern_level >= '0' && kern_level <= '7') { 280 memcpy(lvl, fmt, size); 281 lvl[size] = '\0'; 282 type = logtypes[kern_level - '0']; 283 ratelimit = &printk_limits[kern_level - '0']; 284 } 285 fmt += size; 286 } 287 288 vaf.fmt = fmt; 289 vaf.va = &args; 290 291 if (__ratelimit(ratelimit)) { 292 if (fs_info) { 293 char statestr[STATE_STRING_BUF_LEN]; 294 295 btrfs_state_to_string(fs_info, statestr); 296 _printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type, 297 fs_info->sb->s_id, statestr, &vaf); 298 } else { 299 _printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 300 } 301 } 302 303 va_end(args); 304 } 305 #endif 306 307 #if BITS_PER_LONG == 32 308 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) 309 { 310 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { 311 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); 312 btrfs_warn(fs_info, 313 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", 314 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 315 btrfs_warn(fs_info, 316 "please consider upgrading to 64bit kernel/hardware"); 317 } 318 } 319 320 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) 321 { 322 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { 323 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); 324 btrfs_err(fs_info, 325 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", 326 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 327 btrfs_err(fs_info, 328 "please consider upgrading to 64bit kernel/hardware"); 329 } 330 } 331 #endif 332 333 /* 334 * We only mark the transaction aborted and then set the file system read-only. 335 * This will prevent new transactions from starting or trying to join this 336 * one. 337 * 338 * This means that error recovery at the call site is limited to freeing 339 * any local memory allocations and passing the error code up without 340 * further cleanup. The transaction should complete as it normally would 341 * in the call path but will return -EIO. 342 * 343 * We'll complete the cleanup in btrfs_end_transaction and 344 * btrfs_commit_transaction. 345 */ 346 __cold 347 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 348 const char *function, 349 unsigned int line, int errno, bool first_hit) 350 { 351 struct btrfs_fs_info *fs_info = trans->fs_info; 352 353 WRITE_ONCE(trans->aborted, errno); 354 WRITE_ONCE(trans->transaction->aborted, errno); 355 if (first_hit && errno == -ENOSPC) 356 btrfs_dump_space_info_for_trans_abort(fs_info); 357 /* Wake up anybody who may be waiting on this transaction */ 358 wake_up(&fs_info->transaction_wait); 359 wake_up(&fs_info->transaction_blocked_wait); 360 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 361 } 362 /* 363 * __btrfs_panic decodes unexpected, fatal errors from the caller, 364 * issues an alert, and either panics or BUGs, depending on mount options. 365 */ 366 __cold 367 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 368 unsigned int line, int errno, const char *fmt, ...) 369 { 370 char *s_id = "<unknown>"; 371 const char *errstr; 372 struct va_format vaf = { .fmt = fmt }; 373 va_list args; 374 375 if (fs_info) 376 s_id = fs_info->sb->s_id; 377 378 va_start(args, fmt); 379 vaf.va = &args; 380 381 errstr = btrfs_decode_error(errno); 382 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 383 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 384 s_id, function, line, &vaf, errno, errstr); 385 386 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 387 function, line, &vaf, errno, errstr); 388 va_end(args); 389 /* Caller calls BUG() */ 390 } 391 392 static void btrfs_put_super(struct super_block *sb) 393 { 394 close_ctree(btrfs_sb(sb)); 395 } 396 397 enum { 398 Opt_acl, Opt_noacl, 399 Opt_clear_cache, 400 Opt_commit_interval, 401 Opt_compress, 402 Opt_compress_force, 403 Opt_compress_force_type, 404 Opt_compress_type, 405 Opt_degraded, 406 Opt_device, 407 Opt_fatal_errors, 408 Opt_flushoncommit, Opt_noflushoncommit, 409 Opt_max_inline, 410 Opt_barrier, Opt_nobarrier, 411 Opt_datacow, Opt_nodatacow, 412 Opt_datasum, Opt_nodatasum, 413 Opt_defrag, Opt_nodefrag, 414 Opt_discard, Opt_nodiscard, 415 Opt_discard_mode, 416 Opt_norecovery, 417 Opt_ratio, 418 Opt_rescan_uuid_tree, 419 Opt_skip_balance, 420 Opt_space_cache, Opt_no_space_cache, 421 Opt_space_cache_version, 422 Opt_ssd, Opt_nossd, 423 Opt_ssd_spread, Opt_nossd_spread, 424 Opt_subvol, 425 Opt_subvol_empty, 426 Opt_subvolid, 427 Opt_thread_pool, 428 Opt_treelog, Opt_notreelog, 429 Opt_user_subvol_rm_allowed, 430 431 /* Rescue options */ 432 Opt_rescue, 433 Opt_usebackuproot, 434 Opt_nologreplay, 435 Opt_ignorebadroots, 436 Opt_ignoredatacsums, 437 Opt_rescue_all, 438 439 /* Deprecated options */ 440 Opt_recovery, 441 Opt_inode_cache, Opt_noinode_cache, 442 443 /* Debugging options */ 444 Opt_check_integrity, 445 Opt_check_integrity_including_extent_data, 446 Opt_check_integrity_print_mask, 447 Opt_enospc_debug, Opt_noenospc_debug, 448 #ifdef CONFIG_BTRFS_DEBUG 449 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 450 #endif 451 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 452 Opt_ref_verify, 453 #endif 454 Opt_err, 455 }; 456 457 static const match_table_t tokens = { 458 {Opt_acl, "acl"}, 459 {Opt_noacl, "noacl"}, 460 {Opt_clear_cache, "clear_cache"}, 461 {Opt_commit_interval, "commit=%u"}, 462 {Opt_compress, "compress"}, 463 {Opt_compress_type, "compress=%s"}, 464 {Opt_compress_force, "compress-force"}, 465 {Opt_compress_force_type, "compress-force=%s"}, 466 {Opt_degraded, "degraded"}, 467 {Opt_device, "device=%s"}, 468 {Opt_fatal_errors, "fatal_errors=%s"}, 469 {Opt_flushoncommit, "flushoncommit"}, 470 {Opt_noflushoncommit, "noflushoncommit"}, 471 {Opt_inode_cache, "inode_cache"}, 472 {Opt_noinode_cache, "noinode_cache"}, 473 {Opt_max_inline, "max_inline=%s"}, 474 {Opt_barrier, "barrier"}, 475 {Opt_nobarrier, "nobarrier"}, 476 {Opt_datacow, "datacow"}, 477 {Opt_nodatacow, "nodatacow"}, 478 {Opt_datasum, "datasum"}, 479 {Opt_nodatasum, "nodatasum"}, 480 {Opt_defrag, "autodefrag"}, 481 {Opt_nodefrag, "noautodefrag"}, 482 {Opt_discard, "discard"}, 483 {Opt_discard_mode, "discard=%s"}, 484 {Opt_nodiscard, "nodiscard"}, 485 {Opt_norecovery, "norecovery"}, 486 {Opt_ratio, "metadata_ratio=%u"}, 487 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 488 {Opt_skip_balance, "skip_balance"}, 489 {Opt_space_cache, "space_cache"}, 490 {Opt_no_space_cache, "nospace_cache"}, 491 {Opt_space_cache_version, "space_cache=%s"}, 492 {Opt_ssd, "ssd"}, 493 {Opt_nossd, "nossd"}, 494 {Opt_ssd_spread, "ssd_spread"}, 495 {Opt_nossd_spread, "nossd_spread"}, 496 {Opt_subvol, "subvol=%s"}, 497 {Opt_subvol_empty, "subvol="}, 498 {Opt_subvolid, "subvolid=%s"}, 499 {Opt_thread_pool, "thread_pool=%u"}, 500 {Opt_treelog, "treelog"}, 501 {Opt_notreelog, "notreelog"}, 502 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 503 504 /* Rescue options */ 505 {Opt_rescue, "rescue=%s"}, 506 /* Deprecated, with alias rescue=nologreplay */ 507 {Opt_nologreplay, "nologreplay"}, 508 /* Deprecated, with alias rescue=usebackuproot */ 509 {Opt_usebackuproot, "usebackuproot"}, 510 511 /* Deprecated options */ 512 {Opt_recovery, "recovery"}, 513 514 /* Debugging options */ 515 {Opt_check_integrity, "check_int"}, 516 {Opt_check_integrity_including_extent_data, "check_int_data"}, 517 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 518 {Opt_enospc_debug, "enospc_debug"}, 519 {Opt_noenospc_debug, "noenospc_debug"}, 520 #ifdef CONFIG_BTRFS_DEBUG 521 {Opt_fragment_data, "fragment=data"}, 522 {Opt_fragment_metadata, "fragment=metadata"}, 523 {Opt_fragment_all, "fragment=all"}, 524 #endif 525 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 526 {Opt_ref_verify, "ref_verify"}, 527 #endif 528 {Opt_err, NULL}, 529 }; 530 531 static const match_table_t rescue_tokens = { 532 {Opt_usebackuproot, "usebackuproot"}, 533 {Opt_nologreplay, "nologreplay"}, 534 {Opt_ignorebadroots, "ignorebadroots"}, 535 {Opt_ignorebadroots, "ibadroots"}, 536 {Opt_ignoredatacsums, "ignoredatacsums"}, 537 {Opt_ignoredatacsums, "idatacsums"}, 538 {Opt_rescue_all, "all"}, 539 {Opt_err, NULL}, 540 }; 541 542 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 543 const char *opt_name) 544 { 545 if (fs_info->mount_opt & opt) { 546 btrfs_err(fs_info, "%s must be used with ro mount option", 547 opt_name); 548 return true; 549 } 550 return false; 551 } 552 553 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 554 { 555 char *opts; 556 char *orig; 557 char *p; 558 substring_t args[MAX_OPT_ARGS]; 559 int ret = 0; 560 561 opts = kstrdup(options, GFP_KERNEL); 562 if (!opts) 563 return -ENOMEM; 564 orig = opts; 565 566 while ((p = strsep(&opts, ":")) != NULL) { 567 int token; 568 569 if (!*p) 570 continue; 571 token = match_token(p, rescue_tokens, args); 572 switch (token){ 573 case Opt_usebackuproot: 574 btrfs_info(info, 575 "trying to use backup root at mount time"); 576 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 577 break; 578 case Opt_nologreplay: 579 btrfs_set_and_info(info, NOLOGREPLAY, 580 "disabling log replay at mount time"); 581 break; 582 case Opt_ignorebadroots: 583 btrfs_set_and_info(info, IGNOREBADROOTS, 584 "ignoring bad roots"); 585 break; 586 case Opt_ignoredatacsums: 587 btrfs_set_and_info(info, IGNOREDATACSUMS, 588 "ignoring data csums"); 589 break; 590 case Opt_rescue_all: 591 btrfs_info(info, "enabling all of the rescue options"); 592 btrfs_set_and_info(info, IGNOREDATACSUMS, 593 "ignoring data csums"); 594 btrfs_set_and_info(info, IGNOREBADROOTS, 595 "ignoring bad roots"); 596 btrfs_set_and_info(info, NOLOGREPLAY, 597 "disabling log replay at mount time"); 598 break; 599 case Opt_err: 600 btrfs_info(info, "unrecognized rescue option '%s'", p); 601 ret = -EINVAL; 602 goto out; 603 default: 604 break; 605 } 606 607 } 608 out: 609 kfree(orig); 610 return ret; 611 } 612 613 /* 614 * Regular mount options parser. Everything that is needed only when 615 * reading in a new superblock is parsed here. 616 * XXX JDM: This needs to be cleaned up for remount. 617 */ 618 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 619 unsigned long new_flags) 620 { 621 substring_t args[MAX_OPT_ARGS]; 622 char *p, *num; 623 int intarg; 624 int ret = 0; 625 char *compress_type; 626 bool compress_force = false; 627 enum btrfs_compression_type saved_compress_type; 628 int saved_compress_level; 629 bool saved_compress_force; 630 int no_compress = 0; 631 const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state); 632 633 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 634 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 635 else if (btrfs_free_space_cache_v1_active(info)) { 636 if (btrfs_is_zoned(info)) { 637 btrfs_info(info, 638 "zoned: clearing existing space cache"); 639 btrfs_set_super_cache_generation(info->super_copy, 0); 640 } else { 641 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 642 } 643 } 644 645 /* 646 * Even the options are empty, we still need to do extra check 647 * against new flags 648 */ 649 if (!options) 650 goto check; 651 652 while ((p = strsep(&options, ",")) != NULL) { 653 int token; 654 if (!*p) 655 continue; 656 657 token = match_token(p, tokens, args); 658 switch (token) { 659 case Opt_degraded: 660 btrfs_info(info, "allowing degraded mounts"); 661 btrfs_set_opt(info->mount_opt, DEGRADED); 662 break; 663 case Opt_subvol: 664 case Opt_subvol_empty: 665 case Opt_subvolid: 666 case Opt_device: 667 /* 668 * These are parsed by btrfs_parse_subvol_options or 669 * btrfs_parse_device_options and can be ignored here. 670 */ 671 break; 672 case Opt_nodatasum: 673 btrfs_set_and_info(info, NODATASUM, 674 "setting nodatasum"); 675 break; 676 case Opt_datasum: 677 if (btrfs_test_opt(info, NODATASUM)) { 678 if (btrfs_test_opt(info, NODATACOW)) 679 btrfs_info(info, 680 "setting datasum, datacow enabled"); 681 else 682 btrfs_info(info, "setting datasum"); 683 } 684 btrfs_clear_opt(info->mount_opt, NODATACOW); 685 btrfs_clear_opt(info->mount_opt, NODATASUM); 686 break; 687 case Opt_nodatacow: 688 if (!btrfs_test_opt(info, NODATACOW)) { 689 if (!btrfs_test_opt(info, COMPRESS) || 690 !btrfs_test_opt(info, FORCE_COMPRESS)) { 691 btrfs_info(info, 692 "setting nodatacow, compression disabled"); 693 } else { 694 btrfs_info(info, "setting nodatacow"); 695 } 696 } 697 btrfs_clear_opt(info->mount_opt, COMPRESS); 698 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 699 btrfs_set_opt(info->mount_opt, NODATACOW); 700 btrfs_set_opt(info->mount_opt, NODATASUM); 701 break; 702 case Opt_datacow: 703 btrfs_clear_and_info(info, NODATACOW, 704 "setting datacow"); 705 break; 706 case Opt_compress_force: 707 case Opt_compress_force_type: 708 compress_force = true; 709 fallthrough; 710 case Opt_compress: 711 case Opt_compress_type: 712 saved_compress_type = btrfs_test_opt(info, 713 COMPRESS) ? 714 info->compress_type : BTRFS_COMPRESS_NONE; 715 saved_compress_force = 716 btrfs_test_opt(info, FORCE_COMPRESS); 717 saved_compress_level = info->compress_level; 718 if (token == Opt_compress || 719 token == Opt_compress_force || 720 strncmp(args[0].from, "zlib", 4) == 0) { 721 compress_type = "zlib"; 722 723 info->compress_type = BTRFS_COMPRESS_ZLIB; 724 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 725 /* 726 * args[0] contains uninitialized data since 727 * for these tokens we don't expect any 728 * parameter. 729 */ 730 if (token != Opt_compress && 731 token != Opt_compress_force) 732 info->compress_level = 733 btrfs_compress_str2level( 734 BTRFS_COMPRESS_ZLIB, 735 args[0].from + 4); 736 btrfs_set_opt(info->mount_opt, COMPRESS); 737 btrfs_clear_opt(info->mount_opt, NODATACOW); 738 btrfs_clear_opt(info->mount_opt, NODATASUM); 739 no_compress = 0; 740 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 741 compress_type = "lzo"; 742 info->compress_type = BTRFS_COMPRESS_LZO; 743 info->compress_level = 0; 744 btrfs_set_opt(info->mount_opt, COMPRESS); 745 btrfs_clear_opt(info->mount_opt, NODATACOW); 746 btrfs_clear_opt(info->mount_opt, NODATASUM); 747 btrfs_set_fs_incompat(info, COMPRESS_LZO); 748 no_compress = 0; 749 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 750 compress_type = "zstd"; 751 info->compress_type = BTRFS_COMPRESS_ZSTD; 752 info->compress_level = 753 btrfs_compress_str2level( 754 BTRFS_COMPRESS_ZSTD, 755 args[0].from + 4); 756 btrfs_set_opt(info->mount_opt, COMPRESS); 757 btrfs_clear_opt(info->mount_opt, NODATACOW); 758 btrfs_clear_opt(info->mount_opt, NODATASUM); 759 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 760 no_compress = 0; 761 } else if (strncmp(args[0].from, "no", 2) == 0) { 762 compress_type = "no"; 763 info->compress_level = 0; 764 info->compress_type = 0; 765 btrfs_clear_opt(info->mount_opt, COMPRESS); 766 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 767 compress_force = false; 768 no_compress++; 769 } else { 770 btrfs_err(info, "unrecognized compression value %s", 771 args[0].from); 772 ret = -EINVAL; 773 goto out; 774 } 775 776 if (compress_force) { 777 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 778 } else { 779 /* 780 * If we remount from compress-force=xxx to 781 * compress=xxx, we need clear FORCE_COMPRESS 782 * flag, otherwise, there is no way for users 783 * to disable forcible compression separately. 784 */ 785 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 786 } 787 if (no_compress == 1) { 788 btrfs_info(info, "use no compression"); 789 } else if ((info->compress_type != saved_compress_type) || 790 (compress_force != saved_compress_force) || 791 (info->compress_level != saved_compress_level)) { 792 btrfs_info(info, "%s %s compression, level %d", 793 (compress_force) ? "force" : "use", 794 compress_type, info->compress_level); 795 } 796 compress_force = false; 797 break; 798 case Opt_ssd: 799 btrfs_set_and_info(info, SSD, 800 "enabling ssd optimizations"); 801 btrfs_clear_opt(info->mount_opt, NOSSD); 802 break; 803 case Opt_ssd_spread: 804 btrfs_set_and_info(info, SSD, 805 "enabling ssd optimizations"); 806 btrfs_set_and_info(info, SSD_SPREAD, 807 "using spread ssd allocation scheme"); 808 btrfs_clear_opt(info->mount_opt, NOSSD); 809 break; 810 case Opt_nossd: 811 btrfs_set_opt(info->mount_opt, NOSSD); 812 btrfs_clear_and_info(info, SSD, 813 "not using ssd optimizations"); 814 fallthrough; 815 case Opt_nossd_spread: 816 btrfs_clear_and_info(info, SSD_SPREAD, 817 "not using spread ssd allocation scheme"); 818 break; 819 case Opt_barrier: 820 btrfs_clear_and_info(info, NOBARRIER, 821 "turning on barriers"); 822 break; 823 case Opt_nobarrier: 824 btrfs_set_and_info(info, NOBARRIER, 825 "turning off barriers"); 826 break; 827 case Opt_thread_pool: 828 ret = match_int(&args[0], &intarg); 829 if (ret) { 830 btrfs_err(info, "unrecognized thread_pool value %s", 831 args[0].from); 832 goto out; 833 } else if (intarg == 0) { 834 btrfs_err(info, "invalid value 0 for thread_pool"); 835 ret = -EINVAL; 836 goto out; 837 } 838 info->thread_pool_size = intarg; 839 break; 840 case Opt_max_inline: 841 num = match_strdup(&args[0]); 842 if (num) { 843 info->max_inline = memparse(num, NULL); 844 kfree(num); 845 846 if (info->max_inline) { 847 info->max_inline = min_t(u64, 848 info->max_inline, 849 info->sectorsize); 850 } 851 btrfs_info(info, "max_inline at %llu", 852 info->max_inline); 853 } else { 854 ret = -ENOMEM; 855 goto out; 856 } 857 break; 858 case Opt_acl: 859 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 860 info->sb->s_flags |= SB_POSIXACL; 861 break; 862 #else 863 btrfs_err(info, "support for ACL not compiled in!"); 864 ret = -EINVAL; 865 goto out; 866 #endif 867 case Opt_noacl: 868 info->sb->s_flags &= ~SB_POSIXACL; 869 break; 870 case Opt_notreelog: 871 btrfs_set_and_info(info, NOTREELOG, 872 "disabling tree log"); 873 break; 874 case Opt_treelog: 875 btrfs_clear_and_info(info, NOTREELOG, 876 "enabling tree log"); 877 break; 878 case Opt_norecovery: 879 case Opt_nologreplay: 880 btrfs_warn(info, 881 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 882 btrfs_set_and_info(info, NOLOGREPLAY, 883 "disabling log replay at mount time"); 884 break; 885 case Opt_flushoncommit: 886 btrfs_set_and_info(info, FLUSHONCOMMIT, 887 "turning on flush-on-commit"); 888 break; 889 case Opt_noflushoncommit: 890 btrfs_clear_and_info(info, FLUSHONCOMMIT, 891 "turning off flush-on-commit"); 892 break; 893 case Opt_ratio: 894 ret = match_int(&args[0], &intarg); 895 if (ret) { 896 btrfs_err(info, "unrecognized metadata_ratio value %s", 897 args[0].from); 898 goto out; 899 } 900 info->metadata_ratio = intarg; 901 btrfs_info(info, "metadata ratio %u", 902 info->metadata_ratio); 903 break; 904 case Opt_discard: 905 case Opt_discard_mode: 906 if (token == Opt_discard || 907 strcmp(args[0].from, "sync") == 0) { 908 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 909 btrfs_set_and_info(info, DISCARD_SYNC, 910 "turning on sync discard"); 911 } else if (strcmp(args[0].from, "async") == 0) { 912 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 913 btrfs_set_and_info(info, DISCARD_ASYNC, 914 "turning on async discard"); 915 } else { 916 btrfs_err(info, "unrecognized discard mode value %s", 917 args[0].from); 918 ret = -EINVAL; 919 goto out; 920 } 921 break; 922 case Opt_nodiscard: 923 btrfs_clear_and_info(info, DISCARD_SYNC, 924 "turning off discard"); 925 btrfs_clear_and_info(info, DISCARD_ASYNC, 926 "turning off async discard"); 927 break; 928 case Opt_space_cache: 929 case Opt_space_cache_version: 930 /* 931 * We already set FREE_SPACE_TREE above because we have 932 * compat_ro(FREE_SPACE_TREE) set, and we aren't going 933 * to allow v1 to be set for extent tree v2, simply 934 * ignore this setting if we're extent tree v2. 935 */ 936 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 937 break; 938 if (token == Opt_space_cache || 939 strcmp(args[0].from, "v1") == 0) { 940 btrfs_clear_opt(info->mount_opt, 941 FREE_SPACE_TREE); 942 btrfs_set_and_info(info, SPACE_CACHE, 943 "enabling disk space caching"); 944 } else if (strcmp(args[0].from, "v2") == 0) { 945 btrfs_clear_opt(info->mount_opt, 946 SPACE_CACHE); 947 btrfs_set_and_info(info, FREE_SPACE_TREE, 948 "enabling free space tree"); 949 } else { 950 btrfs_err(info, "unrecognized space_cache value %s", 951 args[0].from); 952 ret = -EINVAL; 953 goto out; 954 } 955 break; 956 case Opt_rescan_uuid_tree: 957 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 958 break; 959 case Opt_no_space_cache: 960 /* 961 * We cannot operate without the free space tree with 962 * extent tree v2, ignore this option. 963 */ 964 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 965 break; 966 if (btrfs_test_opt(info, SPACE_CACHE)) { 967 btrfs_clear_and_info(info, SPACE_CACHE, 968 "disabling disk space caching"); 969 } 970 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 971 btrfs_clear_and_info(info, FREE_SPACE_TREE, 972 "disabling free space tree"); 973 } 974 break; 975 case Opt_inode_cache: 976 case Opt_noinode_cache: 977 btrfs_warn(info, 978 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 979 break; 980 case Opt_clear_cache: 981 /* 982 * We cannot clear the free space tree with extent tree 983 * v2, ignore this option. 984 */ 985 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 986 break; 987 btrfs_set_and_info(info, CLEAR_CACHE, 988 "force clearing of disk cache"); 989 break; 990 case Opt_user_subvol_rm_allowed: 991 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 992 break; 993 case Opt_enospc_debug: 994 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 995 break; 996 case Opt_noenospc_debug: 997 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 998 break; 999 case Opt_defrag: 1000 btrfs_set_and_info(info, AUTO_DEFRAG, 1001 "enabling auto defrag"); 1002 break; 1003 case Opt_nodefrag: 1004 btrfs_clear_and_info(info, AUTO_DEFRAG, 1005 "disabling auto defrag"); 1006 break; 1007 case Opt_recovery: 1008 case Opt_usebackuproot: 1009 btrfs_warn(info, 1010 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 1011 token == Opt_recovery ? "recovery" : 1012 "usebackuproot"); 1013 btrfs_info(info, 1014 "trying to use backup root at mount time"); 1015 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 1016 break; 1017 case Opt_skip_balance: 1018 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 1019 break; 1020 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1021 case Opt_check_integrity_including_extent_data: 1022 btrfs_info(info, 1023 "enabling check integrity including extent data"); 1024 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 1025 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 1026 break; 1027 case Opt_check_integrity: 1028 btrfs_info(info, "enabling check integrity"); 1029 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 1030 break; 1031 case Opt_check_integrity_print_mask: 1032 ret = match_int(&args[0], &intarg); 1033 if (ret) { 1034 btrfs_err(info, 1035 "unrecognized check_integrity_print_mask value %s", 1036 args[0].from); 1037 goto out; 1038 } 1039 info->check_integrity_print_mask = intarg; 1040 btrfs_info(info, "check_integrity_print_mask 0x%x", 1041 info->check_integrity_print_mask); 1042 break; 1043 #else 1044 case Opt_check_integrity_including_extent_data: 1045 case Opt_check_integrity: 1046 case Opt_check_integrity_print_mask: 1047 btrfs_err(info, 1048 "support for check_integrity* not compiled in!"); 1049 ret = -EINVAL; 1050 goto out; 1051 #endif 1052 case Opt_fatal_errors: 1053 if (strcmp(args[0].from, "panic") == 0) { 1054 btrfs_set_opt(info->mount_opt, 1055 PANIC_ON_FATAL_ERROR); 1056 } else if (strcmp(args[0].from, "bug") == 0) { 1057 btrfs_clear_opt(info->mount_opt, 1058 PANIC_ON_FATAL_ERROR); 1059 } else { 1060 btrfs_err(info, "unrecognized fatal_errors value %s", 1061 args[0].from); 1062 ret = -EINVAL; 1063 goto out; 1064 } 1065 break; 1066 case Opt_commit_interval: 1067 intarg = 0; 1068 ret = match_int(&args[0], &intarg); 1069 if (ret) { 1070 btrfs_err(info, "unrecognized commit_interval value %s", 1071 args[0].from); 1072 ret = -EINVAL; 1073 goto out; 1074 } 1075 if (intarg == 0) { 1076 btrfs_info(info, 1077 "using default commit interval %us", 1078 BTRFS_DEFAULT_COMMIT_INTERVAL); 1079 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 1080 } else if (intarg > 300) { 1081 btrfs_warn(info, "excessive commit interval %d", 1082 intarg); 1083 } 1084 info->commit_interval = intarg; 1085 break; 1086 case Opt_rescue: 1087 ret = parse_rescue_options(info, args[0].from); 1088 if (ret < 0) { 1089 btrfs_err(info, "unrecognized rescue value %s", 1090 args[0].from); 1091 goto out; 1092 } 1093 break; 1094 #ifdef CONFIG_BTRFS_DEBUG 1095 case Opt_fragment_all: 1096 btrfs_info(info, "fragmenting all space"); 1097 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1098 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 1099 break; 1100 case Opt_fragment_metadata: 1101 btrfs_info(info, "fragmenting metadata"); 1102 btrfs_set_opt(info->mount_opt, 1103 FRAGMENT_METADATA); 1104 break; 1105 case Opt_fragment_data: 1106 btrfs_info(info, "fragmenting data"); 1107 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1108 break; 1109 #endif 1110 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1111 case Opt_ref_verify: 1112 btrfs_info(info, "doing ref verification"); 1113 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1114 break; 1115 #endif 1116 case Opt_err: 1117 btrfs_err(info, "unrecognized mount option '%s'", p); 1118 ret = -EINVAL; 1119 goto out; 1120 default: 1121 break; 1122 } 1123 } 1124 check: 1125 /* We're read-only, don't have to check. */ 1126 if (new_flags & SB_RDONLY) 1127 goto out; 1128 1129 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1130 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1131 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1132 ret = -EINVAL; 1133 out: 1134 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1135 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1136 !btrfs_test_opt(info, CLEAR_CACHE)) { 1137 btrfs_err(info, "cannot disable free space tree"); 1138 ret = -EINVAL; 1139 1140 } 1141 if (!ret) 1142 ret = btrfs_check_mountopts_zoned(info); 1143 if (!ret && !remounting) { 1144 if (btrfs_test_opt(info, SPACE_CACHE)) 1145 btrfs_info(info, "disk space caching is enabled"); 1146 if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1147 btrfs_info(info, "using free space tree"); 1148 } 1149 return ret; 1150 } 1151 1152 /* 1153 * Parse mount options that are required early in the mount process. 1154 * 1155 * All other options will be parsed on much later in the mount process and 1156 * only when we need to allocate a new super block. 1157 */ 1158 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1159 void *holder) 1160 { 1161 substring_t args[MAX_OPT_ARGS]; 1162 char *device_name, *opts, *orig, *p; 1163 struct btrfs_device *device = NULL; 1164 int error = 0; 1165 1166 lockdep_assert_held(&uuid_mutex); 1167 1168 if (!options) 1169 return 0; 1170 1171 /* 1172 * strsep changes the string, duplicate it because btrfs_parse_options 1173 * gets called later 1174 */ 1175 opts = kstrdup(options, GFP_KERNEL); 1176 if (!opts) 1177 return -ENOMEM; 1178 orig = opts; 1179 1180 while ((p = strsep(&opts, ",")) != NULL) { 1181 int token; 1182 1183 if (!*p) 1184 continue; 1185 1186 token = match_token(p, tokens, args); 1187 if (token == Opt_device) { 1188 device_name = match_strdup(&args[0]); 1189 if (!device_name) { 1190 error = -ENOMEM; 1191 goto out; 1192 } 1193 device = btrfs_scan_one_device(device_name, flags, 1194 holder); 1195 kfree(device_name); 1196 if (IS_ERR(device)) { 1197 error = PTR_ERR(device); 1198 goto out; 1199 } 1200 } 1201 } 1202 1203 out: 1204 kfree(orig); 1205 return error; 1206 } 1207 1208 /* 1209 * Parse mount options that are related to subvolume id 1210 * 1211 * The value is later passed to mount_subvol() 1212 */ 1213 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1214 u64 *subvol_objectid) 1215 { 1216 substring_t args[MAX_OPT_ARGS]; 1217 char *opts, *orig, *p; 1218 int error = 0; 1219 u64 subvolid; 1220 1221 if (!options) 1222 return 0; 1223 1224 /* 1225 * strsep changes the string, duplicate it because 1226 * btrfs_parse_device_options gets called later 1227 */ 1228 opts = kstrdup(options, GFP_KERNEL); 1229 if (!opts) 1230 return -ENOMEM; 1231 orig = opts; 1232 1233 while ((p = strsep(&opts, ",")) != NULL) { 1234 int token; 1235 if (!*p) 1236 continue; 1237 1238 token = match_token(p, tokens, args); 1239 switch (token) { 1240 case Opt_subvol: 1241 kfree(*subvol_name); 1242 *subvol_name = match_strdup(&args[0]); 1243 if (!*subvol_name) { 1244 error = -ENOMEM; 1245 goto out; 1246 } 1247 break; 1248 case Opt_subvolid: 1249 error = match_u64(&args[0], &subvolid); 1250 if (error) 1251 goto out; 1252 1253 /* we want the original fs_tree */ 1254 if (subvolid == 0) 1255 subvolid = BTRFS_FS_TREE_OBJECTID; 1256 1257 *subvol_objectid = subvolid; 1258 break; 1259 default: 1260 break; 1261 } 1262 } 1263 1264 out: 1265 kfree(orig); 1266 return error; 1267 } 1268 1269 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1270 u64 subvol_objectid) 1271 { 1272 struct btrfs_root *root = fs_info->tree_root; 1273 struct btrfs_root *fs_root = NULL; 1274 struct btrfs_root_ref *root_ref; 1275 struct btrfs_inode_ref *inode_ref; 1276 struct btrfs_key key; 1277 struct btrfs_path *path = NULL; 1278 char *name = NULL, *ptr; 1279 u64 dirid; 1280 int len; 1281 int ret; 1282 1283 path = btrfs_alloc_path(); 1284 if (!path) { 1285 ret = -ENOMEM; 1286 goto err; 1287 } 1288 1289 name = kmalloc(PATH_MAX, GFP_KERNEL); 1290 if (!name) { 1291 ret = -ENOMEM; 1292 goto err; 1293 } 1294 ptr = name + PATH_MAX - 1; 1295 ptr[0] = '\0'; 1296 1297 /* 1298 * Walk up the subvolume trees in the tree of tree roots by root 1299 * backrefs until we hit the top-level subvolume. 1300 */ 1301 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1302 key.objectid = subvol_objectid; 1303 key.type = BTRFS_ROOT_BACKREF_KEY; 1304 key.offset = (u64)-1; 1305 1306 ret = btrfs_search_backwards(root, &key, path); 1307 if (ret < 0) { 1308 goto err; 1309 } else if (ret > 0) { 1310 ret = -ENOENT; 1311 goto err; 1312 } 1313 1314 subvol_objectid = key.offset; 1315 1316 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1317 struct btrfs_root_ref); 1318 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1319 ptr -= len + 1; 1320 if (ptr < name) { 1321 ret = -ENAMETOOLONG; 1322 goto err; 1323 } 1324 read_extent_buffer(path->nodes[0], ptr + 1, 1325 (unsigned long)(root_ref + 1), len); 1326 ptr[0] = '/'; 1327 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1328 btrfs_release_path(path); 1329 1330 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1331 if (IS_ERR(fs_root)) { 1332 ret = PTR_ERR(fs_root); 1333 fs_root = NULL; 1334 goto err; 1335 } 1336 1337 /* 1338 * Walk up the filesystem tree by inode refs until we hit the 1339 * root directory. 1340 */ 1341 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1342 key.objectid = dirid; 1343 key.type = BTRFS_INODE_REF_KEY; 1344 key.offset = (u64)-1; 1345 1346 ret = btrfs_search_backwards(fs_root, &key, path); 1347 if (ret < 0) { 1348 goto err; 1349 } else if (ret > 0) { 1350 ret = -ENOENT; 1351 goto err; 1352 } 1353 1354 dirid = key.offset; 1355 1356 inode_ref = btrfs_item_ptr(path->nodes[0], 1357 path->slots[0], 1358 struct btrfs_inode_ref); 1359 len = btrfs_inode_ref_name_len(path->nodes[0], 1360 inode_ref); 1361 ptr -= len + 1; 1362 if (ptr < name) { 1363 ret = -ENAMETOOLONG; 1364 goto err; 1365 } 1366 read_extent_buffer(path->nodes[0], ptr + 1, 1367 (unsigned long)(inode_ref + 1), len); 1368 ptr[0] = '/'; 1369 btrfs_release_path(path); 1370 } 1371 btrfs_put_root(fs_root); 1372 fs_root = NULL; 1373 } 1374 1375 btrfs_free_path(path); 1376 if (ptr == name + PATH_MAX - 1) { 1377 name[0] = '/'; 1378 name[1] = '\0'; 1379 } else { 1380 memmove(name, ptr, name + PATH_MAX - ptr); 1381 } 1382 return name; 1383 1384 err: 1385 btrfs_put_root(fs_root); 1386 btrfs_free_path(path); 1387 kfree(name); 1388 return ERR_PTR(ret); 1389 } 1390 1391 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1392 { 1393 struct btrfs_root *root = fs_info->tree_root; 1394 struct btrfs_dir_item *di; 1395 struct btrfs_path *path; 1396 struct btrfs_key location; 1397 u64 dir_id; 1398 1399 path = btrfs_alloc_path(); 1400 if (!path) 1401 return -ENOMEM; 1402 1403 /* 1404 * Find the "default" dir item which points to the root item that we 1405 * will mount by default if we haven't been given a specific subvolume 1406 * to mount. 1407 */ 1408 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1409 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1410 if (IS_ERR(di)) { 1411 btrfs_free_path(path); 1412 return PTR_ERR(di); 1413 } 1414 if (!di) { 1415 /* 1416 * Ok the default dir item isn't there. This is weird since 1417 * it's always been there, but don't freak out, just try and 1418 * mount the top-level subvolume. 1419 */ 1420 btrfs_free_path(path); 1421 *objectid = BTRFS_FS_TREE_OBJECTID; 1422 return 0; 1423 } 1424 1425 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1426 btrfs_free_path(path); 1427 *objectid = location.objectid; 1428 return 0; 1429 } 1430 1431 static int btrfs_fill_super(struct super_block *sb, 1432 struct btrfs_fs_devices *fs_devices, 1433 void *data) 1434 { 1435 struct inode *inode; 1436 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1437 int err; 1438 1439 sb->s_maxbytes = MAX_LFS_FILESIZE; 1440 sb->s_magic = BTRFS_SUPER_MAGIC; 1441 sb->s_op = &btrfs_super_ops; 1442 sb->s_d_op = &btrfs_dentry_operations; 1443 sb->s_export_op = &btrfs_export_ops; 1444 #ifdef CONFIG_FS_VERITY 1445 sb->s_vop = &btrfs_verityops; 1446 #endif 1447 sb->s_xattr = btrfs_xattr_handlers; 1448 sb->s_time_gran = 1; 1449 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1450 sb->s_flags |= SB_POSIXACL; 1451 #endif 1452 sb->s_flags |= SB_I_VERSION; 1453 sb->s_iflags |= SB_I_CGROUPWB; 1454 1455 err = super_setup_bdi(sb); 1456 if (err) { 1457 btrfs_err(fs_info, "super_setup_bdi failed"); 1458 return err; 1459 } 1460 1461 err = open_ctree(sb, fs_devices, (char *)data); 1462 if (err) { 1463 btrfs_err(fs_info, "open_ctree failed"); 1464 return err; 1465 } 1466 1467 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1468 if (IS_ERR(inode)) { 1469 err = PTR_ERR(inode); 1470 goto fail_close; 1471 } 1472 1473 sb->s_root = d_make_root(inode); 1474 if (!sb->s_root) { 1475 err = -ENOMEM; 1476 goto fail_close; 1477 } 1478 1479 sb->s_flags |= SB_ACTIVE; 1480 return 0; 1481 1482 fail_close: 1483 close_ctree(fs_info); 1484 return err; 1485 } 1486 1487 int btrfs_sync_fs(struct super_block *sb, int wait) 1488 { 1489 struct btrfs_trans_handle *trans; 1490 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1491 struct btrfs_root *root = fs_info->tree_root; 1492 1493 trace_btrfs_sync_fs(fs_info, wait); 1494 1495 if (!wait) { 1496 filemap_flush(fs_info->btree_inode->i_mapping); 1497 return 0; 1498 } 1499 1500 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1501 1502 trans = btrfs_attach_transaction_barrier(root); 1503 if (IS_ERR(trans)) { 1504 /* no transaction, don't bother */ 1505 if (PTR_ERR(trans) == -ENOENT) { 1506 /* 1507 * Exit unless we have some pending changes 1508 * that need to go through commit 1509 */ 1510 if (fs_info->pending_changes == 0) 1511 return 0; 1512 /* 1513 * A non-blocking test if the fs is frozen. We must not 1514 * start a new transaction here otherwise a deadlock 1515 * happens. The pending operations are delayed to the 1516 * next commit after thawing. 1517 */ 1518 if (sb_start_write_trylock(sb)) 1519 sb_end_write(sb); 1520 else 1521 return 0; 1522 trans = btrfs_start_transaction(root, 0); 1523 } 1524 if (IS_ERR(trans)) 1525 return PTR_ERR(trans); 1526 } 1527 return btrfs_commit_transaction(trans); 1528 } 1529 1530 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1531 { 1532 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1533 *printed = true; 1534 } 1535 1536 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1537 { 1538 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1539 const char *compress_type; 1540 const char *subvol_name; 1541 bool printed = false; 1542 1543 if (btrfs_test_opt(info, DEGRADED)) 1544 seq_puts(seq, ",degraded"); 1545 if (btrfs_test_opt(info, NODATASUM)) 1546 seq_puts(seq, ",nodatasum"); 1547 if (btrfs_test_opt(info, NODATACOW)) 1548 seq_puts(seq, ",nodatacow"); 1549 if (btrfs_test_opt(info, NOBARRIER)) 1550 seq_puts(seq, ",nobarrier"); 1551 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1552 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1553 if (info->thread_pool_size != min_t(unsigned long, 1554 num_online_cpus() + 2, 8)) 1555 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1556 if (btrfs_test_opt(info, COMPRESS)) { 1557 compress_type = btrfs_compress_type2str(info->compress_type); 1558 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1559 seq_printf(seq, ",compress-force=%s", compress_type); 1560 else 1561 seq_printf(seq, ",compress=%s", compress_type); 1562 if (info->compress_level) 1563 seq_printf(seq, ":%d", info->compress_level); 1564 } 1565 if (btrfs_test_opt(info, NOSSD)) 1566 seq_puts(seq, ",nossd"); 1567 if (btrfs_test_opt(info, SSD_SPREAD)) 1568 seq_puts(seq, ",ssd_spread"); 1569 else if (btrfs_test_opt(info, SSD)) 1570 seq_puts(seq, ",ssd"); 1571 if (btrfs_test_opt(info, NOTREELOG)) 1572 seq_puts(seq, ",notreelog"); 1573 if (btrfs_test_opt(info, NOLOGREPLAY)) 1574 print_rescue_option(seq, "nologreplay", &printed); 1575 if (btrfs_test_opt(info, USEBACKUPROOT)) 1576 print_rescue_option(seq, "usebackuproot", &printed); 1577 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1578 print_rescue_option(seq, "ignorebadroots", &printed); 1579 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1580 print_rescue_option(seq, "ignoredatacsums", &printed); 1581 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1582 seq_puts(seq, ",flushoncommit"); 1583 if (btrfs_test_opt(info, DISCARD_SYNC)) 1584 seq_puts(seq, ",discard"); 1585 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1586 seq_puts(seq, ",discard=async"); 1587 if (!(info->sb->s_flags & SB_POSIXACL)) 1588 seq_puts(seq, ",noacl"); 1589 if (btrfs_free_space_cache_v1_active(info)) 1590 seq_puts(seq, ",space_cache"); 1591 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1592 seq_puts(seq, ",space_cache=v2"); 1593 else 1594 seq_puts(seq, ",nospace_cache"); 1595 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1596 seq_puts(seq, ",rescan_uuid_tree"); 1597 if (btrfs_test_opt(info, CLEAR_CACHE)) 1598 seq_puts(seq, ",clear_cache"); 1599 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1600 seq_puts(seq, ",user_subvol_rm_allowed"); 1601 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1602 seq_puts(seq, ",enospc_debug"); 1603 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1604 seq_puts(seq, ",autodefrag"); 1605 if (btrfs_test_opt(info, SKIP_BALANCE)) 1606 seq_puts(seq, ",skip_balance"); 1607 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1608 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1609 seq_puts(seq, ",check_int_data"); 1610 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1611 seq_puts(seq, ",check_int"); 1612 if (info->check_integrity_print_mask) 1613 seq_printf(seq, ",check_int_print_mask=%d", 1614 info->check_integrity_print_mask); 1615 #endif 1616 if (info->metadata_ratio) 1617 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1618 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1619 seq_puts(seq, ",fatal_errors=panic"); 1620 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1621 seq_printf(seq, ",commit=%u", info->commit_interval); 1622 #ifdef CONFIG_BTRFS_DEBUG 1623 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1624 seq_puts(seq, ",fragment=data"); 1625 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1626 seq_puts(seq, ",fragment=metadata"); 1627 #endif 1628 if (btrfs_test_opt(info, REF_VERIFY)) 1629 seq_puts(seq, ",ref_verify"); 1630 seq_printf(seq, ",subvolid=%llu", 1631 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1632 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1633 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1634 if (!IS_ERR(subvol_name)) { 1635 seq_puts(seq, ",subvol="); 1636 seq_escape(seq, subvol_name, " \t\n\\"); 1637 kfree(subvol_name); 1638 } 1639 return 0; 1640 } 1641 1642 static int btrfs_test_super(struct super_block *s, void *data) 1643 { 1644 struct btrfs_fs_info *p = data; 1645 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1646 1647 return fs_info->fs_devices == p->fs_devices; 1648 } 1649 1650 static int btrfs_set_super(struct super_block *s, void *data) 1651 { 1652 int err = set_anon_super(s, data); 1653 if (!err) 1654 s->s_fs_info = data; 1655 return err; 1656 } 1657 1658 /* 1659 * subvolumes are identified by ino 256 1660 */ 1661 static inline int is_subvolume_inode(struct inode *inode) 1662 { 1663 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1664 return 1; 1665 return 0; 1666 } 1667 1668 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1669 struct vfsmount *mnt) 1670 { 1671 struct dentry *root; 1672 int ret; 1673 1674 if (!subvol_name) { 1675 if (!subvol_objectid) { 1676 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1677 &subvol_objectid); 1678 if (ret) { 1679 root = ERR_PTR(ret); 1680 goto out; 1681 } 1682 } 1683 subvol_name = btrfs_get_subvol_name_from_objectid( 1684 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1685 if (IS_ERR(subvol_name)) { 1686 root = ERR_CAST(subvol_name); 1687 subvol_name = NULL; 1688 goto out; 1689 } 1690 1691 } 1692 1693 root = mount_subtree(mnt, subvol_name); 1694 /* mount_subtree() drops our reference on the vfsmount. */ 1695 mnt = NULL; 1696 1697 if (!IS_ERR(root)) { 1698 struct super_block *s = root->d_sb; 1699 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1700 struct inode *root_inode = d_inode(root); 1701 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1702 1703 ret = 0; 1704 if (!is_subvolume_inode(root_inode)) { 1705 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1706 subvol_name); 1707 ret = -EINVAL; 1708 } 1709 if (subvol_objectid && root_objectid != subvol_objectid) { 1710 /* 1711 * This will also catch a race condition where a 1712 * subvolume which was passed by ID is renamed and 1713 * another subvolume is renamed over the old location. 1714 */ 1715 btrfs_err(fs_info, 1716 "subvol '%s' does not match subvolid %llu", 1717 subvol_name, subvol_objectid); 1718 ret = -EINVAL; 1719 } 1720 if (ret) { 1721 dput(root); 1722 root = ERR_PTR(ret); 1723 deactivate_locked_super(s); 1724 } 1725 } 1726 1727 out: 1728 mntput(mnt); 1729 kfree(subvol_name); 1730 return root; 1731 } 1732 1733 /* 1734 * Find a superblock for the given device / mount point. 1735 * 1736 * Note: This is based on mount_bdev from fs/super.c with a few additions 1737 * for multiple device setup. Make sure to keep it in sync. 1738 */ 1739 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1740 int flags, const char *device_name, void *data) 1741 { 1742 struct block_device *bdev = NULL; 1743 struct super_block *s; 1744 struct btrfs_device *device = NULL; 1745 struct btrfs_fs_devices *fs_devices = NULL; 1746 struct btrfs_fs_info *fs_info = NULL; 1747 void *new_sec_opts = NULL; 1748 fmode_t mode = FMODE_READ; 1749 int error = 0; 1750 1751 if (!(flags & SB_RDONLY)) 1752 mode |= FMODE_WRITE; 1753 1754 if (data) { 1755 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1756 if (error) 1757 return ERR_PTR(error); 1758 } 1759 1760 /* 1761 * Setup a dummy root and fs_info for test/set super. This is because 1762 * we don't actually fill this stuff out until open_ctree, but we need 1763 * then open_ctree will properly initialize the file system specific 1764 * settings later. btrfs_init_fs_info initializes the static elements 1765 * of the fs_info (locks and such) to make cleanup easier if we find a 1766 * superblock with our given fs_devices later on at sget() time. 1767 */ 1768 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1769 if (!fs_info) { 1770 error = -ENOMEM; 1771 goto error_sec_opts; 1772 } 1773 btrfs_init_fs_info(fs_info); 1774 1775 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1776 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1777 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1778 error = -ENOMEM; 1779 goto error_fs_info; 1780 } 1781 1782 mutex_lock(&uuid_mutex); 1783 error = btrfs_parse_device_options(data, mode, fs_type); 1784 if (error) { 1785 mutex_unlock(&uuid_mutex); 1786 goto error_fs_info; 1787 } 1788 1789 device = btrfs_scan_one_device(device_name, mode, fs_type); 1790 if (IS_ERR(device)) { 1791 mutex_unlock(&uuid_mutex); 1792 error = PTR_ERR(device); 1793 goto error_fs_info; 1794 } 1795 1796 fs_devices = device->fs_devices; 1797 fs_info->fs_devices = fs_devices; 1798 1799 error = btrfs_open_devices(fs_devices, mode, fs_type); 1800 mutex_unlock(&uuid_mutex); 1801 if (error) 1802 goto error_fs_info; 1803 1804 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1805 error = -EACCES; 1806 goto error_close_devices; 1807 } 1808 1809 bdev = fs_devices->latest_dev->bdev; 1810 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1811 fs_info); 1812 if (IS_ERR(s)) { 1813 error = PTR_ERR(s); 1814 goto error_close_devices; 1815 } 1816 1817 if (s->s_root) { 1818 btrfs_close_devices(fs_devices); 1819 btrfs_free_fs_info(fs_info); 1820 if ((flags ^ s->s_flags) & SB_RDONLY) 1821 error = -EBUSY; 1822 } else { 1823 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1824 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name, 1825 s->s_id); 1826 btrfs_sb(s)->bdev_holder = fs_type; 1827 if (!strstr(crc32c_impl(), "generic")) 1828 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1829 error = btrfs_fill_super(s, fs_devices, data); 1830 } 1831 if (!error) 1832 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1833 security_free_mnt_opts(&new_sec_opts); 1834 if (error) { 1835 deactivate_locked_super(s); 1836 return ERR_PTR(error); 1837 } 1838 1839 return dget(s->s_root); 1840 1841 error_close_devices: 1842 btrfs_close_devices(fs_devices); 1843 error_fs_info: 1844 btrfs_free_fs_info(fs_info); 1845 error_sec_opts: 1846 security_free_mnt_opts(&new_sec_opts); 1847 return ERR_PTR(error); 1848 } 1849 1850 /* 1851 * Mount function which is called by VFS layer. 1852 * 1853 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1854 * which needs vfsmount* of device's root (/). This means device's root has to 1855 * be mounted internally in any case. 1856 * 1857 * Operation flow: 1858 * 1. Parse subvol id related options for later use in mount_subvol(). 1859 * 1860 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1861 * 1862 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1863 * first place. In order to avoid calling btrfs_mount() again, we use 1864 * different file_system_type which is not registered to VFS by 1865 * register_filesystem() (btrfs_root_fs_type). As a result, 1866 * btrfs_mount_root() is called. The return value will be used by 1867 * mount_subtree() in mount_subvol(). 1868 * 1869 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1870 * "btrfs subvolume set-default", mount_subvol() is called always. 1871 */ 1872 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1873 const char *device_name, void *data) 1874 { 1875 struct vfsmount *mnt_root; 1876 struct dentry *root; 1877 char *subvol_name = NULL; 1878 u64 subvol_objectid = 0; 1879 int error = 0; 1880 1881 error = btrfs_parse_subvol_options(data, &subvol_name, 1882 &subvol_objectid); 1883 if (error) { 1884 kfree(subvol_name); 1885 return ERR_PTR(error); 1886 } 1887 1888 /* mount device's root (/) */ 1889 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1890 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1891 if (flags & SB_RDONLY) { 1892 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1893 flags & ~SB_RDONLY, device_name, data); 1894 } else { 1895 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1896 flags | SB_RDONLY, device_name, data); 1897 if (IS_ERR(mnt_root)) { 1898 root = ERR_CAST(mnt_root); 1899 kfree(subvol_name); 1900 goto out; 1901 } 1902 1903 down_write(&mnt_root->mnt_sb->s_umount); 1904 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1905 up_write(&mnt_root->mnt_sb->s_umount); 1906 if (error < 0) { 1907 root = ERR_PTR(error); 1908 mntput(mnt_root); 1909 kfree(subvol_name); 1910 goto out; 1911 } 1912 } 1913 } 1914 if (IS_ERR(mnt_root)) { 1915 root = ERR_CAST(mnt_root); 1916 kfree(subvol_name); 1917 goto out; 1918 } 1919 1920 /* mount_subvol() will free subvol_name and mnt_root */ 1921 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1922 1923 out: 1924 return root; 1925 } 1926 1927 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1928 u32 new_pool_size, u32 old_pool_size) 1929 { 1930 if (new_pool_size == old_pool_size) 1931 return; 1932 1933 fs_info->thread_pool_size = new_pool_size; 1934 1935 btrfs_info(fs_info, "resize thread pool %d -> %d", 1936 old_pool_size, new_pool_size); 1937 1938 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1939 btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size); 1940 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1941 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1942 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1943 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1944 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1945 } 1946 1947 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1948 unsigned long old_opts, int flags) 1949 { 1950 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1951 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1952 (flags & SB_RDONLY))) { 1953 /* wait for any defraggers to finish */ 1954 wait_event(fs_info->transaction_wait, 1955 (atomic_read(&fs_info->defrag_running) == 0)); 1956 if (flags & SB_RDONLY) 1957 sync_filesystem(fs_info->sb); 1958 } 1959 } 1960 1961 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1962 unsigned long old_opts) 1963 { 1964 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1965 1966 /* 1967 * We need to cleanup all defragable inodes if the autodefragment is 1968 * close or the filesystem is read only. 1969 */ 1970 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1971 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1972 btrfs_cleanup_defrag_inodes(fs_info); 1973 } 1974 1975 /* If we toggled discard async */ 1976 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1977 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1978 btrfs_discard_resume(fs_info); 1979 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1980 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1981 btrfs_discard_cleanup(fs_info); 1982 1983 /* If we toggled space cache */ 1984 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1985 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1986 } 1987 1988 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1989 { 1990 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1991 unsigned old_flags = sb->s_flags; 1992 unsigned long old_opts = fs_info->mount_opt; 1993 unsigned long old_compress_type = fs_info->compress_type; 1994 u64 old_max_inline = fs_info->max_inline; 1995 u32 old_thread_pool_size = fs_info->thread_pool_size; 1996 u32 old_metadata_ratio = fs_info->metadata_ratio; 1997 int ret; 1998 1999 sync_filesystem(sb); 2000 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2001 2002 if (data) { 2003 void *new_sec_opts = NULL; 2004 2005 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 2006 if (!ret) 2007 ret = security_sb_remount(sb, new_sec_opts); 2008 security_free_mnt_opts(&new_sec_opts); 2009 if (ret) 2010 goto restore; 2011 } 2012 2013 ret = btrfs_parse_options(fs_info, data, *flags); 2014 if (ret) 2015 goto restore; 2016 2017 ret = btrfs_check_features(fs_info, sb); 2018 if (ret < 0) 2019 goto restore; 2020 2021 btrfs_remount_begin(fs_info, old_opts, *flags); 2022 btrfs_resize_thread_pool(fs_info, 2023 fs_info->thread_pool_size, old_thread_pool_size); 2024 2025 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 2026 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2027 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 2028 btrfs_warn(fs_info, 2029 "remount supports changing free space tree only from ro to rw"); 2030 /* Make sure free space cache options match the state on disk */ 2031 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2032 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 2033 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 2034 } 2035 if (btrfs_free_space_cache_v1_active(fs_info)) { 2036 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 2037 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 2038 } 2039 } 2040 2041 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 2042 goto out; 2043 2044 if (*flags & SB_RDONLY) { 2045 /* 2046 * this also happens on 'umount -rf' or on shutdown, when 2047 * the filesystem is busy. 2048 */ 2049 cancel_work_sync(&fs_info->async_reclaim_work); 2050 cancel_work_sync(&fs_info->async_data_reclaim_work); 2051 2052 btrfs_discard_cleanup(fs_info); 2053 2054 /* wait for the uuid_scan task to finish */ 2055 down(&fs_info->uuid_tree_rescan_sem); 2056 /* avoid complains from lockdep et al. */ 2057 up(&fs_info->uuid_tree_rescan_sem); 2058 2059 btrfs_set_sb_rdonly(sb); 2060 2061 /* 2062 * Setting SB_RDONLY will put the cleaner thread to 2063 * sleep at the next loop if it's already active. 2064 * If it's already asleep, we'll leave unused block 2065 * groups on disk until we're mounted read-write again 2066 * unless we clean them up here. 2067 */ 2068 btrfs_delete_unused_bgs(fs_info); 2069 2070 /* 2071 * The cleaner task could be already running before we set the 2072 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 2073 * We must make sure that after we finish the remount, i.e. after 2074 * we call btrfs_commit_super(), the cleaner can no longer start 2075 * a transaction - either because it was dropping a dead root, 2076 * running delayed iputs or deleting an unused block group (the 2077 * cleaner picked a block group from the list of unused block 2078 * groups before we were able to in the previous call to 2079 * btrfs_delete_unused_bgs()). 2080 */ 2081 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 2082 TASK_UNINTERRUPTIBLE); 2083 2084 /* 2085 * We've set the superblock to RO mode, so we might have made 2086 * the cleaner task sleep without running all pending delayed 2087 * iputs. Go through all the delayed iputs here, so that if an 2088 * unmount happens without remounting RW we don't end up at 2089 * finishing close_ctree() with a non-empty list of delayed 2090 * iputs. 2091 */ 2092 btrfs_run_delayed_iputs(fs_info); 2093 2094 btrfs_dev_replace_suspend_for_unmount(fs_info); 2095 btrfs_scrub_cancel(fs_info); 2096 btrfs_pause_balance(fs_info); 2097 2098 /* 2099 * Pause the qgroup rescan worker if it is running. We don't want 2100 * it to be still running after we are in RO mode, as after that, 2101 * by the time we unmount, it might have left a transaction open, 2102 * so we would leak the transaction and/or crash. 2103 */ 2104 btrfs_qgroup_wait_for_completion(fs_info, false); 2105 2106 ret = btrfs_commit_super(fs_info); 2107 if (ret) 2108 goto restore; 2109 } else { 2110 if (BTRFS_FS_ERROR(fs_info)) { 2111 btrfs_err(fs_info, 2112 "Remounting read-write after error is not allowed"); 2113 ret = -EINVAL; 2114 goto restore; 2115 } 2116 if (fs_info->fs_devices->rw_devices == 0) { 2117 ret = -EACCES; 2118 goto restore; 2119 } 2120 2121 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2122 btrfs_warn(fs_info, 2123 "too many missing devices, writable remount is not allowed"); 2124 ret = -EACCES; 2125 goto restore; 2126 } 2127 2128 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2129 btrfs_warn(fs_info, 2130 "mount required to replay tree-log, cannot remount read-write"); 2131 ret = -EINVAL; 2132 goto restore; 2133 } 2134 2135 /* 2136 * NOTE: when remounting with a change that does writes, don't 2137 * put it anywhere above this point, as we are not sure to be 2138 * safe to write until we pass the above checks. 2139 */ 2140 ret = btrfs_start_pre_rw_mount(fs_info); 2141 if (ret) 2142 goto restore; 2143 2144 btrfs_clear_sb_rdonly(sb); 2145 2146 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2147 } 2148 out: 2149 /* 2150 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2151 * since the absence of the flag means it can be toggled off by remount. 2152 */ 2153 *flags |= SB_I_VERSION; 2154 2155 wake_up_process(fs_info->transaction_kthread); 2156 btrfs_remount_cleanup(fs_info, old_opts); 2157 btrfs_clear_oneshot_options(fs_info); 2158 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2159 2160 return 0; 2161 2162 restore: 2163 /* We've hit an error - don't reset SB_RDONLY */ 2164 if (sb_rdonly(sb)) 2165 old_flags |= SB_RDONLY; 2166 if (!(old_flags & SB_RDONLY)) 2167 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2168 sb->s_flags = old_flags; 2169 fs_info->mount_opt = old_opts; 2170 fs_info->compress_type = old_compress_type; 2171 fs_info->max_inline = old_max_inline; 2172 btrfs_resize_thread_pool(fs_info, 2173 old_thread_pool_size, fs_info->thread_pool_size); 2174 fs_info->metadata_ratio = old_metadata_ratio; 2175 btrfs_remount_cleanup(fs_info, old_opts); 2176 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2177 2178 return ret; 2179 } 2180 2181 /* Used to sort the devices by max_avail(descending sort) */ 2182 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 2183 { 2184 const struct btrfs_device_info *dev_info1 = a; 2185 const struct btrfs_device_info *dev_info2 = b; 2186 2187 if (dev_info1->max_avail > dev_info2->max_avail) 2188 return -1; 2189 else if (dev_info1->max_avail < dev_info2->max_avail) 2190 return 1; 2191 return 0; 2192 } 2193 2194 /* 2195 * sort the devices by max_avail, in which max free extent size of each device 2196 * is stored.(Descending Sort) 2197 */ 2198 static inline void btrfs_descending_sort_devices( 2199 struct btrfs_device_info *devices, 2200 size_t nr_devices) 2201 { 2202 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2203 btrfs_cmp_device_free_bytes, NULL); 2204 } 2205 2206 /* 2207 * The helper to calc the free space on the devices that can be used to store 2208 * file data. 2209 */ 2210 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2211 u64 *free_bytes) 2212 { 2213 struct btrfs_device_info *devices_info; 2214 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2215 struct btrfs_device *device; 2216 u64 type; 2217 u64 avail_space; 2218 u64 min_stripe_size; 2219 int num_stripes = 1; 2220 int i = 0, nr_devices; 2221 const struct btrfs_raid_attr *rattr; 2222 2223 /* 2224 * We aren't under the device list lock, so this is racy-ish, but good 2225 * enough for our purposes. 2226 */ 2227 nr_devices = fs_info->fs_devices->open_devices; 2228 if (!nr_devices) { 2229 smp_mb(); 2230 nr_devices = fs_info->fs_devices->open_devices; 2231 ASSERT(nr_devices); 2232 if (!nr_devices) { 2233 *free_bytes = 0; 2234 return 0; 2235 } 2236 } 2237 2238 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2239 GFP_KERNEL); 2240 if (!devices_info) 2241 return -ENOMEM; 2242 2243 /* calc min stripe number for data space allocation */ 2244 type = btrfs_data_alloc_profile(fs_info); 2245 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2246 2247 if (type & BTRFS_BLOCK_GROUP_RAID0) 2248 num_stripes = nr_devices; 2249 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 2250 num_stripes = rattr->ncopies; 2251 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2252 num_stripes = 4; 2253 2254 /* Adjust for more than 1 stripe per device */ 2255 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2256 2257 rcu_read_lock(); 2258 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2259 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2260 &device->dev_state) || 2261 !device->bdev || 2262 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2263 continue; 2264 2265 if (i >= nr_devices) 2266 break; 2267 2268 avail_space = device->total_bytes - device->bytes_used; 2269 2270 /* align with stripe_len */ 2271 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2272 2273 /* 2274 * Ensure we have at least min_stripe_size on top of the 2275 * reserved space on the device. 2276 */ 2277 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 2278 continue; 2279 2280 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 2281 2282 devices_info[i].dev = device; 2283 devices_info[i].max_avail = avail_space; 2284 2285 i++; 2286 } 2287 rcu_read_unlock(); 2288 2289 nr_devices = i; 2290 2291 btrfs_descending_sort_devices(devices_info, nr_devices); 2292 2293 i = nr_devices - 1; 2294 avail_space = 0; 2295 while (nr_devices >= rattr->devs_min) { 2296 num_stripes = min(num_stripes, nr_devices); 2297 2298 if (devices_info[i].max_avail >= min_stripe_size) { 2299 int j; 2300 u64 alloc_size; 2301 2302 avail_space += devices_info[i].max_avail * num_stripes; 2303 alloc_size = devices_info[i].max_avail; 2304 for (j = i + 1 - num_stripes; j <= i; j++) 2305 devices_info[j].max_avail -= alloc_size; 2306 } 2307 i--; 2308 nr_devices--; 2309 } 2310 2311 kfree(devices_info); 2312 *free_bytes = avail_space; 2313 return 0; 2314 } 2315 2316 /* 2317 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2318 * 2319 * If there's a redundant raid level at DATA block groups, use the respective 2320 * multiplier to scale the sizes. 2321 * 2322 * Unused device space usage is based on simulating the chunk allocator 2323 * algorithm that respects the device sizes and order of allocations. This is 2324 * a close approximation of the actual use but there are other factors that may 2325 * change the result (like a new metadata chunk). 2326 * 2327 * If metadata is exhausted, f_bavail will be 0. 2328 */ 2329 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2330 { 2331 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2332 struct btrfs_super_block *disk_super = fs_info->super_copy; 2333 struct btrfs_space_info *found; 2334 u64 total_used = 0; 2335 u64 total_free_data = 0; 2336 u64 total_free_meta = 0; 2337 u32 bits = fs_info->sectorsize_bits; 2338 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2339 unsigned factor = 1; 2340 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2341 int ret; 2342 u64 thresh = 0; 2343 int mixed = 0; 2344 2345 list_for_each_entry(found, &fs_info->space_info, list) { 2346 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2347 int i; 2348 2349 total_free_data += found->disk_total - found->disk_used; 2350 total_free_data -= 2351 btrfs_account_ro_block_groups_free_space(found); 2352 2353 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2354 if (!list_empty(&found->block_groups[i])) 2355 factor = btrfs_bg_type_to_factor( 2356 btrfs_raid_array[i].bg_flag); 2357 } 2358 } 2359 2360 /* 2361 * Metadata in mixed block goup profiles are accounted in data 2362 */ 2363 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2364 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2365 mixed = 1; 2366 else 2367 total_free_meta += found->disk_total - 2368 found->disk_used; 2369 } 2370 2371 total_used += found->disk_used; 2372 } 2373 2374 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2375 buf->f_blocks >>= bits; 2376 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2377 2378 /* Account global block reserve as used, it's in logical size already */ 2379 spin_lock(&block_rsv->lock); 2380 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2381 if (buf->f_bfree >= block_rsv->size >> bits) 2382 buf->f_bfree -= block_rsv->size >> bits; 2383 else 2384 buf->f_bfree = 0; 2385 spin_unlock(&block_rsv->lock); 2386 2387 buf->f_bavail = div_u64(total_free_data, factor); 2388 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2389 if (ret) 2390 return ret; 2391 buf->f_bavail += div_u64(total_free_data, factor); 2392 buf->f_bavail = buf->f_bavail >> bits; 2393 2394 /* 2395 * We calculate the remaining metadata space minus global reserve. If 2396 * this is (supposedly) smaller than zero, there's no space. But this 2397 * does not hold in practice, the exhausted state happens where's still 2398 * some positive delta. So we apply some guesswork and compare the 2399 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2400 * 2401 * We probably cannot calculate the exact threshold value because this 2402 * depends on the internal reservations requested by various 2403 * operations, so some operations that consume a few metadata will 2404 * succeed even if the Avail is zero. But this is better than the other 2405 * way around. 2406 */ 2407 thresh = SZ_4M; 2408 2409 /* 2410 * We only want to claim there's no available space if we can no longer 2411 * allocate chunks for our metadata profile and our global reserve will 2412 * not fit in the free metadata space. If we aren't ->full then we 2413 * still can allocate chunks and thus are fine using the currently 2414 * calculated f_bavail. 2415 */ 2416 if (!mixed && block_rsv->space_info->full && 2417 total_free_meta - thresh < block_rsv->size) 2418 buf->f_bavail = 0; 2419 2420 buf->f_type = BTRFS_SUPER_MAGIC; 2421 buf->f_bsize = dentry->d_sb->s_blocksize; 2422 buf->f_namelen = BTRFS_NAME_LEN; 2423 2424 /* We treat it as constant endianness (it doesn't matter _which_) 2425 because we want the fsid to come out the same whether mounted 2426 on a big-endian or little-endian host */ 2427 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2428 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2429 /* Mask in the root object ID too, to disambiguate subvols */ 2430 buf->f_fsid.val[0] ^= 2431 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2432 buf->f_fsid.val[1] ^= 2433 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2434 2435 return 0; 2436 } 2437 2438 static void btrfs_kill_super(struct super_block *sb) 2439 { 2440 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2441 kill_anon_super(sb); 2442 btrfs_free_fs_info(fs_info); 2443 } 2444 2445 static struct file_system_type btrfs_fs_type = { 2446 .owner = THIS_MODULE, 2447 .name = "btrfs", 2448 .mount = btrfs_mount, 2449 .kill_sb = btrfs_kill_super, 2450 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2451 }; 2452 2453 static struct file_system_type btrfs_root_fs_type = { 2454 .owner = THIS_MODULE, 2455 .name = "btrfs", 2456 .mount = btrfs_mount_root, 2457 .kill_sb = btrfs_kill_super, 2458 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2459 }; 2460 2461 MODULE_ALIAS_FS("btrfs"); 2462 2463 static int btrfs_control_open(struct inode *inode, struct file *file) 2464 { 2465 /* 2466 * The control file's private_data is used to hold the 2467 * transaction when it is started and is used to keep 2468 * track of whether a transaction is already in progress. 2469 */ 2470 file->private_data = NULL; 2471 return 0; 2472 } 2473 2474 /* 2475 * Used by /dev/btrfs-control for devices ioctls. 2476 */ 2477 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2478 unsigned long arg) 2479 { 2480 struct btrfs_ioctl_vol_args *vol; 2481 struct btrfs_device *device = NULL; 2482 dev_t devt = 0; 2483 int ret = -ENOTTY; 2484 2485 if (!capable(CAP_SYS_ADMIN)) 2486 return -EPERM; 2487 2488 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2489 if (IS_ERR(vol)) 2490 return PTR_ERR(vol); 2491 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2492 2493 switch (cmd) { 2494 case BTRFS_IOC_SCAN_DEV: 2495 mutex_lock(&uuid_mutex); 2496 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2497 &btrfs_root_fs_type); 2498 ret = PTR_ERR_OR_ZERO(device); 2499 mutex_unlock(&uuid_mutex); 2500 break; 2501 case BTRFS_IOC_FORGET_DEV: 2502 if (vol->name[0] != 0) { 2503 ret = lookup_bdev(vol->name, &devt); 2504 if (ret) 2505 break; 2506 } 2507 ret = btrfs_forget_devices(devt); 2508 break; 2509 case BTRFS_IOC_DEVICES_READY: 2510 mutex_lock(&uuid_mutex); 2511 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2512 &btrfs_root_fs_type); 2513 if (IS_ERR(device)) { 2514 mutex_unlock(&uuid_mutex); 2515 ret = PTR_ERR(device); 2516 break; 2517 } 2518 ret = !(device->fs_devices->num_devices == 2519 device->fs_devices->total_devices); 2520 mutex_unlock(&uuid_mutex); 2521 break; 2522 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2523 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2524 break; 2525 } 2526 2527 kfree(vol); 2528 return ret; 2529 } 2530 2531 static int btrfs_freeze(struct super_block *sb) 2532 { 2533 struct btrfs_trans_handle *trans; 2534 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2535 struct btrfs_root *root = fs_info->tree_root; 2536 2537 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2538 /* 2539 * We don't need a barrier here, we'll wait for any transaction that 2540 * could be in progress on other threads (and do delayed iputs that 2541 * we want to avoid on a frozen filesystem), or do the commit 2542 * ourselves. 2543 */ 2544 trans = btrfs_attach_transaction_barrier(root); 2545 if (IS_ERR(trans)) { 2546 /* no transaction, don't bother */ 2547 if (PTR_ERR(trans) == -ENOENT) 2548 return 0; 2549 return PTR_ERR(trans); 2550 } 2551 return btrfs_commit_transaction(trans); 2552 } 2553 2554 static int check_dev_super(struct btrfs_device *dev) 2555 { 2556 struct btrfs_fs_info *fs_info = dev->fs_info; 2557 struct btrfs_super_block *sb; 2558 int ret = 0; 2559 2560 /* This should be called with fs still frozen. */ 2561 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2562 2563 /* Missing dev, no need to check. */ 2564 if (!dev->bdev) 2565 return 0; 2566 2567 /* Only need to check the primary super block. */ 2568 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2569 if (IS_ERR(sb)) 2570 return PTR_ERR(sb); 2571 2572 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2573 ret = btrfs_validate_super(fs_info, sb, 0); 2574 if (ret < 0) 2575 goto out; 2576 2577 if (btrfs_super_generation(sb) != fs_info->last_trans_committed) { 2578 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2579 btrfs_super_generation(sb), 2580 fs_info->last_trans_committed); 2581 ret = -EUCLEAN; 2582 goto out; 2583 } 2584 out: 2585 btrfs_release_disk_super(sb); 2586 return ret; 2587 } 2588 2589 static int btrfs_unfreeze(struct super_block *sb) 2590 { 2591 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2592 struct btrfs_device *device; 2593 int ret = 0; 2594 2595 /* 2596 * Make sure the fs is not changed by accident (like hibernation then 2597 * modified by other OS). 2598 * If we found anything wrong, we mark the fs error immediately. 2599 * 2600 * And since the fs is frozen, no one can modify the fs yet, thus 2601 * we don't need to hold device_list_mutex. 2602 */ 2603 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2604 ret = check_dev_super(device); 2605 if (ret < 0) { 2606 btrfs_handle_fs_error(fs_info, ret, 2607 "super block on devid %llu got modified unexpectedly", 2608 device->devid); 2609 break; 2610 } 2611 } 2612 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2613 2614 /* 2615 * We still return 0, to allow VFS layer to unfreeze the fs even the 2616 * above checks failed. Since the fs is either fine or read-only, we're 2617 * safe to continue, without causing further damage. 2618 */ 2619 return 0; 2620 } 2621 2622 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2623 { 2624 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2625 2626 /* 2627 * There should be always a valid pointer in latest_dev, it may be stale 2628 * for a short moment in case it's being deleted but still valid until 2629 * the end of RCU grace period. 2630 */ 2631 rcu_read_lock(); 2632 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\"); 2633 rcu_read_unlock(); 2634 2635 return 0; 2636 } 2637 2638 static const struct super_operations btrfs_super_ops = { 2639 .drop_inode = btrfs_drop_inode, 2640 .evict_inode = btrfs_evict_inode, 2641 .put_super = btrfs_put_super, 2642 .sync_fs = btrfs_sync_fs, 2643 .show_options = btrfs_show_options, 2644 .show_devname = btrfs_show_devname, 2645 .alloc_inode = btrfs_alloc_inode, 2646 .destroy_inode = btrfs_destroy_inode, 2647 .free_inode = btrfs_free_inode, 2648 .statfs = btrfs_statfs, 2649 .remount_fs = btrfs_remount, 2650 .freeze_fs = btrfs_freeze, 2651 .unfreeze_fs = btrfs_unfreeze, 2652 }; 2653 2654 static const struct file_operations btrfs_ctl_fops = { 2655 .open = btrfs_control_open, 2656 .unlocked_ioctl = btrfs_control_ioctl, 2657 .compat_ioctl = compat_ptr_ioctl, 2658 .owner = THIS_MODULE, 2659 .llseek = noop_llseek, 2660 }; 2661 2662 static struct miscdevice btrfs_misc = { 2663 .minor = BTRFS_MINOR, 2664 .name = "btrfs-control", 2665 .fops = &btrfs_ctl_fops 2666 }; 2667 2668 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2669 MODULE_ALIAS("devname:btrfs-control"); 2670 2671 static int __init btrfs_interface_init(void) 2672 { 2673 return misc_register(&btrfs_misc); 2674 } 2675 2676 static __cold void btrfs_interface_exit(void) 2677 { 2678 misc_deregister(&btrfs_misc); 2679 } 2680 2681 static void __init btrfs_print_mod_info(void) 2682 { 2683 static const char options[] = "" 2684 #ifdef CONFIG_BTRFS_DEBUG 2685 ", debug=on" 2686 #endif 2687 #ifdef CONFIG_BTRFS_ASSERT 2688 ", assert=on" 2689 #endif 2690 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2691 ", integrity-checker=on" 2692 #endif 2693 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2694 ", ref-verify=on" 2695 #endif 2696 #ifdef CONFIG_BLK_DEV_ZONED 2697 ", zoned=yes" 2698 #else 2699 ", zoned=no" 2700 #endif 2701 #ifdef CONFIG_FS_VERITY 2702 ", fsverity=yes" 2703 #else 2704 ", fsverity=no" 2705 #endif 2706 ; 2707 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2708 } 2709 2710 static int __init init_btrfs_fs(void) 2711 { 2712 int err; 2713 2714 btrfs_props_init(); 2715 2716 err = btrfs_init_sysfs(); 2717 if (err) 2718 return err; 2719 2720 btrfs_init_compress(); 2721 2722 err = btrfs_init_cachep(); 2723 if (err) 2724 goto free_compress; 2725 2726 err = extent_state_init_cachep(); 2727 if (err) 2728 goto free_cachep; 2729 2730 err = extent_buffer_init_cachep(); 2731 if (err) 2732 goto free_extent_cachep; 2733 2734 err = btrfs_bioset_init(); 2735 if (err) 2736 goto free_eb_cachep; 2737 2738 err = extent_map_init(); 2739 if (err) 2740 goto free_bioset; 2741 2742 err = ordered_data_init(); 2743 if (err) 2744 goto free_extent_map; 2745 2746 err = btrfs_delayed_inode_init(); 2747 if (err) 2748 goto free_ordered_data; 2749 2750 err = btrfs_auto_defrag_init(); 2751 if (err) 2752 goto free_delayed_inode; 2753 2754 err = btrfs_delayed_ref_init(); 2755 if (err) 2756 goto free_auto_defrag; 2757 2758 err = btrfs_prelim_ref_init(); 2759 if (err) 2760 goto free_delayed_ref; 2761 2762 err = btrfs_interface_init(); 2763 if (err) 2764 goto free_prelim_ref; 2765 2766 btrfs_print_mod_info(); 2767 2768 err = btrfs_run_sanity_tests(); 2769 if (err) 2770 goto unregister_ioctl; 2771 2772 err = register_filesystem(&btrfs_fs_type); 2773 if (err) 2774 goto unregister_ioctl; 2775 2776 return 0; 2777 2778 unregister_ioctl: 2779 btrfs_interface_exit(); 2780 free_prelim_ref: 2781 btrfs_prelim_ref_exit(); 2782 free_delayed_ref: 2783 btrfs_delayed_ref_exit(); 2784 free_auto_defrag: 2785 btrfs_auto_defrag_exit(); 2786 free_delayed_inode: 2787 btrfs_delayed_inode_exit(); 2788 free_ordered_data: 2789 ordered_data_exit(); 2790 free_extent_map: 2791 extent_map_exit(); 2792 free_bioset: 2793 btrfs_bioset_exit(); 2794 free_eb_cachep: 2795 extent_buffer_free_cachep(); 2796 free_extent_cachep: 2797 extent_state_free_cachep(); 2798 free_cachep: 2799 btrfs_destroy_cachep(); 2800 free_compress: 2801 btrfs_exit_compress(); 2802 btrfs_exit_sysfs(); 2803 2804 return err; 2805 } 2806 2807 static void __exit exit_btrfs_fs(void) 2808 { 2809 btrfs_destroy_cachep(); 2810 btrfs_delayed_ref_exit(); 2811 btrfs_auto_defrag_exit(); 2812 btrfs_delayed_inode_exit(); 2813 btrfs_prelim_ref_exit(); 2814 ordered_data_exit(); 2815 extent_map_exit(); 2816 btrfs_bioset_exit(); 2817 extent_state_free_cachep(); 2818 extent_buffer_free_cachep(); 2819 btrfs_interface_exit(); 2820 unregister_filesystem(&btrfs_fs_type); 2821 btrfs_exit_sysfs(); 2822 btrfs_cleanup_fs_uuids(); 2823 btrfs_exit_compress(); 2824 } 2825 2826 late_initcall(init_btrfs_fs); 2827 module_exit(exit_btrfs_fs) 2828 2829 MODULE_LICENSE("GPL"); 2830 MODULE_SOFTDEP("pre: crc32c"); 2831 MODULE_SOFTDEP("pre: xxhash64"); 2832 MODULE_SOFTDEP("pre: sha256"); 2833 MODULE_SOFTDEP("pre: blake2b-256"); 2834