1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/cleancache.h> 27 #include <linux/ratelimit.h> 28 #include <linux/crc32c.h> 29 #include <linux/btrfs.h> 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "zoned.h" 48 #include "tests/btrfs-tests.h" 49 #include "block-group.h" 50 #include "discard.h" 51 #include "qgroup.h" 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/btrfs.h> 54 55 static const struct super_operations btrfs_super_ops; 56 57 /* 58 * Types for mounting the default subvolume and a subvolume explicitly 59 * requested by subvol=/path. That way the callchain is straightforward and we 60 * don't have to play tricks with the mount options and recursive calls to 61 * btrfs_mount. 62 * 63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 64 */ 65 static struct file_system_type btrfs_fs_type; 66 static struct file_system_type btrfs_root_fs_type; 67 68 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 69 70 /* 71 * Generally the error codes correspond to their respective errors, but there 72 * are a few special cases. 73 * 74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 75 * instance will return EUCLEAN if any of the blocks are corrupted in 76 * a way that is problematic. We want to reserve EUCLEAN for these 77 * sort of corruptions. 78 * 79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 80 * need to use EROFS for this case. We will have no idea of the 81 * original failure, that will have been reported at the time we tripped 82 * over the error. Each subsequent error that doesn't have any context 83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 84 */ 85 const char * __attribute_const__ btrfs_decode_error(int errno) 86 { 87 char *errstr = "unknown"; 88 89 switch (errno) { 90 case -ENOENT: /* -2 */ 91 errstr = "No such entry"; 92 break; 93 case -EIO: /* -5 */ 94 errstr = "IO failure"; 95 break; 96 case -ENOMEM: /* -12*/ 97 errstr = "Out of memory"; 98 break; 99 case -EEXIST: /* -17 */ 100 errstr = "Object already exists"; 101 break; 102 case -ENOSPC: /* -28 */ 103 errstr = "No space left"; 104 break; 105 case -EROFS: /* -30 */ 106 errstr = "Readonly filesystem"; 107 break; 108 case -EOPNOTSUPP: /* -95 */ 109 errstr = "Operation not supported"; 110 break; 111 case -EUCLEAN: /* -117 */ 112 errstr = "Filesystem corrupted"; 113 break; 114 case -EDQUOT: /* -122 */ 115 errstr = "Quota exceeded"; 116 break; 117 } 118 119 return errstr; 120 } 121 122 /* 123 * __btrfs_handle_fs_error decodes expected errors from the caller and 124 * invokes the appropriate error response. 125 */ 126 __cold 127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 128 unsigned int line, int errno, const char *fmt, ...) 129 { 130 struct super_block *sb = fs_info->sb; 131 #ifdef CONFIG_PRINTK 132 const char *errstr; 133 #endif 134 135 /* 136 * Special case: if the error is EROFS, and we're already 137 * under SB_RDONLY, then it is safe here. 138 */ 139 if (errno == -EROFS && sb_rdonly(sb)) 140 return; 141 142 #ifdef CONFIG_PRINTK 143 errstr = btrfs_decode_error(errno); 144 if (fmt) { 145 struct va_format vaf; 146 va_list args; 147 148 va_start(args, fmt); 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 153 sb->s_id, function, line, errno, errstr, &vaf); 154 va_end(args); 155 } else { 156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 157 sb->s_id, function, line, errno, errstr); 158 } 159 #endif 160 161 /* 162 * Today we only save the error info to memory. Long term we'll 163 * also send it down to the disk 164 */ 165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 166 167 /* Don't go through full error handling during mount */ 168 if (!(sb->s_flags & SB_BORN)) 169 return; 170 171 if (sb_rdonly(sb)) 172 return; 173 174 btrfs_discard_stop(fs_info); 175 176 /* btrfs handle error by forcing the filesystem readonly */ 177 btrfs_set_sb_rdonly(sb); 178 btrfs_info(fs_info, "forced readonly"); 179 /* 180 * Note that a running device replace operation is not canceled here 181 * although there is no way to update the progress. It would add the 182 * risk of a deadlock, therefore the canceling is omitted. The only 183 * penalty is that some I/O remains active until the procedure 184 * completes. The next time when the filesystem is mounted writable 185 * again, the device replace operation continues. 186 */ 187 } 188 189 #ifdef CONFIG_PRINTK 190 static const char * const logtypes[] = { 191 "emergency", 192 "alert", 193 "critical", 194 "error", 195 "warning", 196 "notice", 197 "info", 198 "debug", 199 }; 200 201 202 /* 203 * Use one ratelimit state per log level so that a flood of less important 204 * messages doesn't cause more important ones to be dropped. 205 */ 206 static struct ratelimit_state printk_limits[] = { 207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 215 }; 216 217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 218 { 219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 220 struct va_format vaf; 221 va_list args; 222 int kern_level; 223 const char *type = logtypes[4]; 224 struct ratelimit_state *ratelimit = &printk_limits[4]; 225 226 va_start(args, fmt); 227 228 while ((kern_level = printk_get_level(fmt)) != 0) { 229 size_t size = printk_skip_level(fmt) - fmt; 230 231 if (kern_level >= '0' && kern_level <= '7') { 232 memcpy(lvl, fmt, size); 233 lvl[size] = '\0'; 234 type = logtypes[kern_level - '0']; 235 ratelimit = &printk_limits[kern_level - '0']; 236 } 237 fmt += size; 238 } 239 240 vaf.fmt = fmt; 241 vaf.va = &args; 242 243 if (__ratelimit(ratelimit)) { 244 if (fs_info) 245 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, 246 fs_info->sb->s_id, &vaf); 247 else 248 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 249 } 250 251 va_end(args); 252 } 253 #endif 254 255 #if BITS_PER_LONG == 32 256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) 257 { 258 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { 259 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); 260 btrfs_warn(fs_info, 261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", 262 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 263 btrfs_warn(fs_info, 264 "please consider upgrading to 64bit kernel/hardware"); 265 } 266 } 267 268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) 269 { 270 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { 271 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); 272 btrfs_err(fs_info, 273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", 274 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 275 btrfs_err(fs_info, 276 "please consider upgrading to 64bit kernel/hardware"); 277 } 278 } 279 #endif 280 281 /* 282 * We only mark the transaction aborted and then set the file system read-only. 283 * This will prevent new transactions from starting or trying to join this 284 * one. 285 * 286 * This means that error recovery at the call site is limited to freeing 287 * any local memory allocations and passing the error code up without 288 * further cleanup. The transaction should complete as it normally would 289 * in the call path but will return -EIO. 290 * 291 * We'll complete the cleanup in btrfs_end_transaction and 292 * btrfs_commit_transaction. 293 */ 294 __cold 295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 296 const char *function, 297 unsigned int line, int errno) 298 { 299 struct btrfs_fs_info *fs_info = trans->fs_info; 300 301 WRITE_ONCE(trans->aborted, errno); 302 WRITE_ONCE(trans->transaction->aborted, errno); 303 /* Wake up anybody who may be waiting on this transaction */ 304 wake_up(&fs_info->transaction_wait); 305 wake_up(&fs_info->transaction_blocked_wait); 306 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 307 } 308 /* 309 * __btrfs_panic decodes unexpected, fatal errors from the caller, 310 * issues an alert, and either panics or BUGs, depending on mount options. 311 */ 312 __cold 313 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 314 unsigned int line, int errno, const char *fmt, ...) 315 { 316 char *s_id = "<unknown>"; 317 const char *errstr; 318 struct va_format vaf = { .fmt = fmt }; 319 va_list args; 320 321 if (fs_info) 322 s_id = fs_info->sb->s_id; 323 324 va_start(args, fmt); 325 vaf.va = &args; 326 327 errstr = btrfs_decode_error(errno); 328 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 329 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 330 s_id, function, line, &vaf, errno, errstr); 331 332 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 333 function, line, &vaf, errno, errstr); 334 va_end(args); 335 /* Caller calls BUG() */ 336 } 337 338 static void btrfs_put_super(struct super_block *sb) 339 { 340 close_ctree(btrfs_sb(sb)); 341 } 342 343 enum { 344 Opt_acl, Opt_noacl, 345 Opt_clear_cache, 346 Opt_commit_interval, 347 Opt_compress, 348 Opt_compress_force, 349 Opt_compress_force_type, 350 Opt_compress_type, 351 Opt_degraded, 352 Opt_device, 353 Opt_fatal_errors, 354 Opt_flushoncommit, Opt_noflushoncommit, 355 Opt_max_inline, 356 Opt_barrier, Opt_nobarrier, 357 Opt_datacow, Opt_nodatacow, 358 Opt_datasum, Opt_nodatasum, 359 Opt_defrag, Opt_nodefrag, 360 Opt_discard, Opt_nodiscard, 361 Opt_discard_mode, 362 Opt_norecovery, 363 Opt_ratio, 364 Opt_rescan_uuid_tree, 365 Opt_skip_balance, 366 Opt_space_cache, Opt_no_space_cache, 367 Opt_space_cache_version, 368 Opt_ssd, Opt_nossd, 369 Opt_ssd_spread, Opt_nossd_spread, 370 Opt_subvol, 371 Opt_subvol_empty, 372 Opt_subvolid, 373 Opt_thread_pool, 374 Opt_treelog, Opt_notreelog, 375 Opt_user_subvol_rm_allowed, 376 377 /* Rescue options */ 378 Opt_rescue, 379 Opt_usebackuproot, 380 Opt_nologreplay, 381 Opt_ignorebadroots, 382 Opt_ignoredatacsums, 383 Opt_rescue_all, 384 385 /* Deprecated options */ 386 Opt_recovery, 387 Opt_inode_cache, Opt_noinode_cache, 388 389 /* Debugging options */ 390 Opt_check_integrity, 391 Opt_check_integrity_including_extent_data, 392 Opt_check_integrity_print_mask, 393 Opt_enospc_debug, Opt_noenospc_debug, 394 #ifdef CONFIG_BTRFS_DEBUG 395 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 396 #endif 397 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 398 Opt_ref_verify, 399 #endif 400 Opt_err, 401 }; 402 403 static const match_table_t tokens = { 404 {Opt_acl, "acl"}, 405 {Opt_noacl, "noacl"}, 406 {Opt_clear_cache, "clear_cache"}, 407 {Opt_commit_interval, "commit=%u"}, 408 {Opt_compress, "compress"}, 409 {Opt_compress_type, "compress=%s"}, 410 {Opt_compress_force, "compress-force"}, 411 {Opt_compress_force_type, "compress-force=%s"}, 412 {Opt_degraded, "degraded"}, 413 {Opt_device, "device=%s"}, 414 {Opt_fatal_errors, "fatal_errors=%s"}, 415 {Opt_flushoncommit, "flushoncommit"}, 416 {Opt_noflushoncommit, "noflushoncommit"}, 417 {Opt_inode_cache, "inode_cache"}, 418 {Opt_noinode_cache, "noinode_cache"}, 419 {Opt_max_inline, "max_inline=%s"}, 420 {Opt_barrier, "barrier"}, 421 {Opt_nobarrier, "nobarrier"}, 422 {Opt_datacow, "datacow"}, 423 {Opt_nodatacow, "nodatacow"}, 424 {Opt_datasum, "datasum"}, 425 {Opt_nodatasum, "nodatasum"}, 426 {Opt_defrag, "autodefrag"}, 427 {Opt_nodefrag, "noautodefrag"}, 428 {Opt_discard, "discard"}, 429 {Opt_discard_mode, "discard=%s"}, 430 {Opt_nodiscard, "nodiscard"}, 431 {Opt_norecovery, "norecovery"}, 432 {Opt_ratio, "metadata_ratio=%u"}, 433 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 434 {Opt_skip_balance, "skip_balance"}, 435 {Opt_space_cache, "space_cache"}, 436 {Opt_no_space_cache, "nospace_cache"}, 437 {Opt_space_cache_version, "space_cache=%s"}, 438 {Opt_ssd, "ssd"}, 439 {Opt_nossd, "nossd"}, 440 {Opt_ssd_spread, "ssd_spread"}, 441 {Opt_nossd_spread, "nossd_spread"}, 442 {Opt_subvol, "subvol=%s"}, 443 {Opt_subvol_empty, "subvol="}, 444 {Opt_subvolid, "subvolid=%s"}, 445 {Opt_thread_pool, "thread_pool=%u"}, 446 {Opt_treelog, "treelog"}, 447 {Opt_notreelog, "notreelog"}, 448 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 449 450 /* Rescue options */ 451 {Opt_rescue, "rescue=%s"}, 452 /* Deprecated, with alias rescue=nologreplay */ 453 {Opt_nologreplay, "nologreplay"}, 454 /* Deprecated, with alias rescue=usebackuproot */ 455 {Opt_usebackuproot, "usebackuproot"}, 456 457 /* Deprecated options */ 458 {Opt_recovery, "recovery"}, 459 460 /* Debugging options */ 461 {Opt_check_integrity, "check_int"}, 462 {Opt_check_integrity_including_extent_data, "check_int_data"}, 463 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 464 {Opt_enospc_debug, "enospc_debug"}, 465 {Opt_noenospc_debug, "noenospc_debug"}, 466 #ifdef CONFIG_BTRFS_DEBUG 467 {Opt_fragment_data, "fragment=data"}, 468 {Opt_fragment_metadata, "fragment=metadata"}, 469 {Opt_fragment_all, "fragment=all"}, 470 #endif 471 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 472 {Opt_ref_verify, "ref_verify"}, 473 #endif 474 {Opt_err, NULL}, 475 }; 476 477 static const match_table_t rescue_tokens = { 478 {Opt_usebackuproot, "usebackuproot"}, 479 {Opt_nologreplay, "nologreplay"}, 480 {Opt_ignorebadroots, "ignorebadroots"}, 481 {Opt_ignorebadroots, "ibadroots"}, 482 {Opt_ignoredatacsums, "ignoredatacsums"}, 483 {Opt_ignoredatacsums, "idatacsums"}, 484 {Opt_rescue_all, "all"}, 485 {Opt_err, NULL}, 486 }; 487 488 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 489 const char *opt_name) 490 { 491 if (fs_info->mount_opt & opt) { 492 btrfs_err(fs_info, "%s must be used with ro mount option", 493 opt_name); 494 return true; 495 } 496 return false; 497 } 498 499 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 500 { 501 char *opts; 502 char *orig; 503 char *p; 504 substring_t args[MAX_OPT_ARGS]; 505 int ret = 0; 506 507 opts = kstrdup(options, GFP_KERNEL); 508 if (!opts) 509 return -ENOMEM; 510 orig = opts; 511 512 while ((p = strsep(&opts, ":")) != NULL) { 513 int token; 514 515 if (!*p) 516 continue; 517 token = match_token(p, rescue_tokens, args); 518 switch (token){ 519 case Opt_usebackuproot: 520 btrfs_info(info, 521 "trying to use backup root at mount time"); 522 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 523 break; 524 case Opt_nologreplay: 525 btrfs_set_and_info(info, NOLOGREPLAY, 526 "disabling log replay at mount time"); 527 break; 528 case Opt_ignorebadroots: 529 btrfs_set_and_info(info, IGNOREBADROOTS, 530 "ignoring bad roots"); 531 break; 532 case Opt_ignoredatacsums: 533 btrfs_set_and_info(info, IGNOREDATACSUMS, 534 "ignoring data csums"); 535 break; 536 case Opt_rescue_all: 537 btrfs_info(info, "enabling all of the rescue options"); 538 btrfs_set_and_info(info, IGNOREDATACSUMS, 539 "ignoring data csums"); 540 btrfs_set_and_info(info, IGNOREBADROOTS, 541 "ignoring bad roots"); 542 btrfs_set_and_info(info, NOLOGREPLAY, 543 "disabling log replay at mount time"); 544 break; 545 case Opt_err: 546 btrfs_info(info, "unrecognized rescue option '%s'", p); 547 ret = -EINVAL; 548 goto out; 549 default: 550 break; 551 } 552 553 } 554 out: 555 kfree(orig); 556 return ret; 557 } 558 559 /* 560 * Regular mount options parser. Everything that is needed only when 561 * reading in a new superblock is parsed here. 562 * XXX JDM: This needs to be cleaned up for remount. 563 */ 564 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 565 unsigned long new_flags) 566 { 567 substring_t args[MAX_OPT_ARGS]; 568 char *p, *num; 569 int intarg; 570 int ret = 0; 571 char *compress_type; 572 bool compress_force = false; 573 enum btrfs_compression_type saved_compress_type; 574 int saved_compress_level; 575 bool saved_compress_force; 576 int no_compress = 0; 577 578 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 579 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 580 else if (btrfs_free_space_cache_v1_active(info)) { 581 if (btrfs_is_zoned(info)) { 582 btrfs_info(info, 583 "zoned: clearing existing space cache"); 584 btrfs_set_super_cache_generation(info->super_copy, 0); 585 } else { 586 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 587 } 588 } 589 590 /* 591 * Even the options are empty, we still need to do extra check 592 * against new flags 593 */ 594 if (!options) 595 goto check; 596 597 while ((p = strsep(&options, ",")) != NULL) { 598 int token; 599 if (!*p) 600 continue; 601 602 token = match_token(p, tokens, args); 603 switch (token) { 604 case Opt_degraded: 605 btrfs_info(info, "allowing degraded mounts"); 606 btrfs_set_opt(info->mount_opt, DEGRADED); 607 break; 608 case Opt_subvol: 609 case Opt_subvol_empty: 610 case Opt_subvolid: 611 case Opt_device: 612 /* 613 * These are parsed by btrfs_parse_subvol_options or 614 * btrfs_parse_device_options and can be ignored here. 615 */ 616 break; 617 case Opt_nodatasum: 618 btrfs_set_and_info(info, NODATASUM, 619 "setting nodatasum"); 620 break; 621 case Opt_datasum: 622 if (btrfs_test_opt(info, NODATASUM)) { 623 if (btrfs_test_opt(info, NODATACOW)) 624 btrfs_info(info, 625 "setting datasum, datacow enabled"); 626 else 627 btrfs_info(info, "setting datasum"); 628 } 629 btrfs_clear_opt(info->mount_opt, NODATACOW); 630 btrfs_clear_opt(info->mount_opt, NODATASUM); 631 break; 632 case Opt_nodatacow: 633 if (!btrfs_test_opt(info, NODATACOW)) { 634 if (!btrfs_test_opt(info, COMPRESS) || 635 !btrfs_test_opt(info, FORCE_COMPRESS)) { 636 btrfs_info(info, 637 "setting nodatacow, compression disabled"); 638 } else { 639 btrfs_info(info, "setting nodatacow"); 640 } 641 } 642 btrfs_clear_opt(info->mount_opt, COMPRESS); 643 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 644 btrfs_set_opt(info->mount_opt, NODATACOW); 645 btrfs_set_opt(info->mount_opt, NODATASUM); 646 break; 647 case Opt_datacow: 648 btrfs_clear_and_info(info, NODATACOW, 649 "setting datacow"); 650 break; 651 case Opt_compress_force: 652 case Opt_compress_force_type: 653 compress_force = true; 654 fallthrough; 655 case Opt_compress: 656 case Opt_compress_type: 657 saved_compress_type = btrfs_test_opt(info, 658 COMPRESS) ? 659 info->compress_type : BTRFS_COMPRESS_NONE; 660 saved_compress_force = 661 btrfs_test_opt(info, FORCE_COMPRESS); 662 saved_compress_level = info->compress_level; 663 if (token == Opt_compress || 664 token == Opt_compress_force || 665 strncmp(args[0].from, "zlib", 4) == 0) { 666 compress_type = "zlib"; 667 668 info->compress_type = BTRFS_COMPRESS_ZLIB; 669 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 670 /* 671 * args[0] contains uninitialized data since 672 * for these tokens we don't expect any 673 * parameter. 674 */ 675 if (token != Opt_compress && 676 token != Opt_compress_force) 677 info->compress_level = 678 btrfs_compress_str2level( 679 BTRFS_COMPRESS_ZLIB, 680 args[0].from + 4); 681 btrfs_set_opt(info->mount_opt, COMPRESS); 682 btrfs_clear_opt(info->mount_opt, NODATACOW); 683 btrfs_clear_opt(info->mount_opt, NODATASUM); 684 no_compress = 0; 685 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 686 compress_type = "lzo"; 687 info->compress_type = BTRFS_COMPRESS_LZO; 688 info->compress_level = 0; 689 btrfs_set_opt(info->mount_opt, COMPRESS); 690 btrfs_clear_opt(info->mount_opt, NODATACOW); 691 btrfs_clear_opt(info->mount_opt, NODATASUM); 692 btrfs_set_fs_incompat(info, COMPRESS_LZO); 693 no_compress = 0; 694 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 695 compress_type = "zstd"; 696 info->compress_type = BTRFS_COMPRESS_ZSTD; 697 info->compress_level = 698 btrfs_compress_str2level( 699 BTRFS_COMPRESS_ZSTD, 700 args[0].from + 4); 701 btrfs_set_opt(info->mount_opt, COMPRESS); 702 btrfs_clear_opt(info->mount_opt, NODATACOW); 703 btrfs_clear_opt(info->mount_opt, NODATASUM); 704 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 705 no_compress = 0; 706 } else if (strncmp(args[0].from, "no", 2) == 0) { 707 compress_type = "no"; 708 info->compress_level = 0; 709 info->compress_type = 0; 710 btrfs_clear_opt(info->mount_opt, COMPRESS); 711 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 712 compress_force = false; 713 no_compress++; 714 } else { 715 ret = -EINVAL; 716 goto out; 717 } 718 719 if (compress_force) { 720 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 721 } else { 722 /* 723 * If we remount from compress-force=xxx to 724 * compress=xxx, we need clear FORCE_COMPRESS 725 * flag, otherwise, there is no way for users 726 * to disable forcible compression separately. 727 */ 728 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 729 } 730 if (no_compress == 1) { 731 btrfs_info(info, "use no compression"); 732 } else if ((info->compress_type != saved_compress_type) || 733 (compress_force != saved_compress_force) || 734 (info->compress_level != saved_compress_level)) { 735 btrfs_info(info, "%s %s compression, level %d", 736 (compress_force) ? "force" : "use", 737 compress_type, info->compress_level); 738 } 739 compress_force = false; 740 break; 741 case Opt_ssd: 742 btrfs_set_and_info(info, SSD, 743 "enabling ssd optimizations"); 744 btrfs_clear_opt(info->mount_opt, NOSSD); 745 break; 746 case Opt_ssd_spread: 747 btrfs_set_and_info(info, SSD, 748 "enabling ssd optimizations"); 749 btrfs_set_and_info(info, SSD_SPREAD, 750 "using spread ssd allocation scheme"); 751 btrfs_clear_opt(info->mount_opt, NOSSD); 752 break; 753 case Opt_nossd: 754 btrfs_set_opt(info->mount_opt, NOSSD); 755 btrfs_clear_and_info(info, SSD, 756 "not using ssd optimizations"); 757 fallthrough; 758 case Opt_nossd_spread: 759 btrfs_clear_and_info(info, SSD_SPREAD, 760 "not using spread ssd allocation scheme"); 761 break; 762 case Opt_barrier: 763 btrfs_clear_and_info(info, NOBARRIER, 764 "turning on barriers"); 765 break; 766 case Opt_nobarrier: 767 btrfs_set_and_info(info, NOBARRIER, 768 "turning off barriers"); 769 break; 770 case Opt_thread_pool: 771 ret = match_int(&args[0], &intarg); 772 if (ret) { 773 goto out; 774 } else if (intarg == 0) { 775 ret = -EINVAL; 776 goto out; 777 } 778 info->thread_pool_size = intarg; 779 break; 780 case Opt_max_inline: 781 num = match_strdup(&args[0]); 782 if (num) { 783 info->max_inline = memparse(num, NULL); 784 kfree(num); 785 786 if (info->max_inline) { 787 info->max_inline = min_t(u64, 788 info->max_inline, 789 info->sectorsize); 790 } 791 btrfs_info(info, "max_inline at %llu", 792 info->max_inline); 793 } else { 794 ret = -ENOMEM; 795 goto out; 796 } 797 break; 798 case Opt_acl: 799 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 800 info->sb->s_flags |= SB_POSIXACL; 801 break; 802 #else 803 btrfs_err(info, "support for ACL not compiled in!"); 804 ret = -EINVAL; 805 goto out; 806 #endif 807 case Opt_noacl: 808 info->sb->s_flags &= ~SB_POSIXACL; 809 break; 810 case Opt_notreelog: 811 btrfs_set_and_info(info, NOTREELOG, 812 "disabling tree log"); 813 break; 814 case Opt_treelog: 815 btrfs_clear_and_info(info, NOTREELOG, 816 "enabling tree log"); 817 break; 818 case Opt_norecovery: 819 case Opt_nologreplay: 820 btrfs_warn(info, 821 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 822 btrfs_set_and_info(info, NOLOGREPLAY, 823 "disabling log replay at mount time"); 824 break; 825 case Opt_flushoncommit: 826 btrfs_set_and_info(info, FLUSHONCOMMIT, 827 "turning on flush-on-commit"); 828 break; 829 case Opt_noflushoncommit: 830 btrfs_clear_and_info(info, FLUSHONCOMMIT, 831 "turning off flush-on-commit"); 832 break; 833 case Opt_ratio: 834 ret = match_int(&args[0], &intarg); 835 if (ret) 836 goto out; 837 info->metadata_ratio = intarg; 838 btrfs_info(info, "metadata ratio %u", 839 info->metadata_ratio); 840 break; 841 case Opt_discard: 842 case Opt_discard_mode: 843 if (token == Opt_discard || 844 strcmp(args[0].from, "sync") == 0) { 845 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 846 btrfs_set_and_info(info, DISCARD_SYNC, 847 "turning on sync discard"); 848 } else if (strcmp(args[0].from, "async") == 0) { 849 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 850 btrfs_set_and_info(info, DISCARD_ASYNC, 851 "turning on async discard"); 852 } else { 853 ret = -EINVAL; 854 goto out; 855 } 856 break; 857 case Opt_nodiscard: 858 btrfs_clear_and_info(info, DISCARD_SYNC, 859 "turning off discard"); 860 btrfs_clear_and_info(info, DISCARD_ASYNC, 861 "turning off async discard"); 862 break; 863 case Opt_space_cache: 864 case Opt_space_cache_version: 865 if (token == Opt_space_cache || 866 strcmp(args[0].from, "v1") == 0) { 867 btrfs_clear_opt(info->mount_opt, 868 FREE_SPACE_TREE); 869 btrfs_set_and_info(info, SPACE_CACHE, 870 "enabling disk space caching"); 871 } else if (strcmp(args[0].from, "v2") == 0) { 872 btrfs_clear_opt(info->mount_opt, 873 SPACE_CACHE); 874 btrfs_set_and_info(info, FREE_SPACE_TREE, 875 "enabling free space tree"); 876 } else { 877 ret = -EINVAL; 878 goto out; 879 } 880 break; 881 case Opt_rescan_uuid_tree: 882 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 883 break; 884 case Opt_no_space_cache: 885 if (btrfs_test_opt(info, SPACE_CACHE)) { 886 btrfs_clear_and_info(info, SPACE_CACHE, 887 "disabling disk space caching"); 888 } 889 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 890 btrfs_clear_and_info(info, FREE_SPACE_TREE, 891 "disabling free space tree"); 892 } 893 break; 894 case Opt_inode_cache: 895 case Opt_noinode_cache: 896 btrfs_warn(info, 897 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 898 break; 899 case Opt_clear_cache: 900 btrfs_set_and_info(info, CLEAR_CACHE, 901 "force clearing of disk cache"); 902 break; 903 case Opt_user_subvol_rm_allowed: 904 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 905 break; 906 case Opt_enospc_debug: 907 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 908 break; 909 case Opt_noenospc_debug: 910 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 911 break; 912 case Opt_defrag: 913 btrfs_set_and_info(info, AUTO_DEFRAG, 914 "enabling auto defrag"); 915 break; 916 case Opt_nodefrag: 917 btrfs_clear_and_info(info, AUTO_DEFRAG, 918 "disabling auto defrag"); 919 break; 920 case Opt_recovery: 921 case Opt_usebackuproot: 922 btrfs_warn(info, 923 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 924 token == Opt_recovery ? "recovery" : 925 "usebackuproot"); 926 btrfs_info(info, 927 "trying to use backup root at mount time"); 928 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 929 break; 930 case Opt_skip_balance: 931 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 932 break; 933 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 934 case Opt_check_integrity_including_extent_data: 935 btrfs_info(info, 936 "enabling check integrity including extent data"); 937 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 938 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 939 break; 940 case Opt_check_integrity: 941 btrfs_info(info, "enabling check integrity"); 942 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 943 break; 944 case Opt_check_integrity_print_mask: 945 ret = match_int(&args[0], &intarg); 946 if (ret) 947 goto out; 948 info->check_integrity_print_mask = intarg; 949 btrfs_info(info, "check_integrity_print_mask 0x%x", 950 info->check_integrity_print_mask); 951 break; 952 #else 953 case Opt_check_integrity_including_extent_data: 954 case Opt_check_integrity: 955 case Opt_check_integrity_print_mask: 956 btrfs_err(info, 957 "support for check_integrity* not compiled in!"); 958 ret = -EINVAL; 959 goto out; 960 #endif 961 case Opt_fatal_errors: 962 if (strcmp(args[0].from, "panic") == 0) 963 btrfs_set_opt(info->mount_opt, 964 PANIC_ON_FATAL_ERROR); 965 else if (strcmp(args[0].from, "bug") == 0) 966 btrfs_clear_opt(info->mount_opt, 967 PANIC_ON_FATAL_ERROR); 968 else { 969 ret = -EINVAL; 970 goto out; 971 } 972 break; 973 case Opt_commit_interval: 974 intarg = 0; 975 ret = match_int(&args[0], &intarg); 976 if (ret) 977 goto out; 978 if (intarg == 0) { 979 btrfs_info(info, 980 "using default commit interval %us", 981 BTRFS_DEFAULT_COMMIT_INTERVAL); 982 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 983 } else if (intarg > 300) { 984 btrfs_warn(info, "excessive commit interval %d", 985 intarg); 986 } 987 info->commit_interval = intarg; 988 break; 989 case Opt_rescue: 990 ret = parse_rescue_options(info, args[0].from); 991 if (ret < 0) 992 goto out; 993 break; 994 #ifdef CONFIG_BTRFS_DEBUG 995 case Opt_fragment_all: 996 btrfs_info(info, "fragmenting all space"); 997 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 998 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 999 break; 1000 case Opt_fragment_metadata: 1001 btrfs_info(info, "fragmenting metadata"); 1002 btrfs_set_opt(info->mount_opt, 1003 FRAGMENT_METADATA); 1004 break; 1005 case Opt_fragment_data: 1006 btrfs_info(info, "fragmenting data"); 1007 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1008 break; 1009 #endif 1010 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1011 case Opt_ref_verify: 1012 btrfs_info(info, "doing ref verification"); 1013 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1014 break; 1015 #endif 1016 case Opt_err: 1017 btrfs_err(info, "unrecognized mount option '%s'", p); 1018 ret = -EINVAL; 1019 goto out; 1020 default: 1021 break; 1022 } 1023 } 1024 check: 1025 /* We're read-only, don't have to check. */ 1026 if (new_flags & SB_RDONLY) 1027 goto out; 1028 1029 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1030 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1031 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1032 ret = -EINVAL; 1033 out: 1034 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1035 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1036 !btrfs_test_opt(info, CLEAR_CACHE)) { 1037 btrfs_err(info, "cannot disable free space tree"); 1038 ret = -EINVAL; 1039 1040 } 1041 if (!ret) 1042 ret = btrfs_check_mountopts_zoned(info); 1043 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1044 btrfs_info(info, "disk space caching is enabled"); 1045 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1046 btrfs_info(info, "using free space tree"); 1047 return ret; 1048 } 1049 1050 /* 1051 * Parse mount options that are required early in the mount process. 1052 * 1053 * All other options will be parsed on much later in the mount process and 1054 * only when we need to allocate a new super block. 1055 */ 1056 static int btrfs_parse_device_options(const char *options, fmode_t flags, 1057 void *holder) 1058 { 1059 substring_t args[MAX_OPT_ARGS]; 1060 char *device_name, *opts, *orig, *p; 1061 struct btrfs_device *device = NULL; 1062 int error = 0; 1063 1064 lockdep_assert_held(&uuid_mutex); 1065 1066 if (!options) 1067 return 0; 1068 1069 /* 1070 * strsep changes the string, duplicate it because btrfs_parse_options 1071 * gets called later 1072 */ 1073 opts = kstrdup(options, GFP_KERNEL); 1074 if (!opts) 1075 return -ENOMEM; 1076 orig = opts; 1077 1078 while ((p = strsep(&opts, ",")) != NULL) { 1079 int token; 1080 1081 if (!*p) 1082 continue; 1083 1084 token = match_token(p, tokens, args); 1085 if (token == Opt_device) { 1086 device_name = match_strdup(&args[0]); 1087 if (!device_name) { 1088 error = -ENOMEM; 1089 goto out; 1090 } 1091 device = btrfs_scan_one_device(device_name, flags, 1092 holder); 1093 kfree(device_name); 1094 if (IS_ERR(device)) { 1095 error = PTR_ERR(device); 1096 goto out; 1097 } 1098 } 1099 } 1100 1101 out: 1102 kfree(orig); 1103 return error; 1104 } 1105 1106 /* 1107 * Parse mount options that are related to subvolume id 1108 * 1109 * The value is later passed to mount_subvol() 1110 */ 1111 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1112 u64 *subvol_objectid) 1113 { 1114 substring_t args[MAX_OPT_ARGS]; 1115 char *opts, *orig, *p; 1116 int error = 0; 1117 u64 subvolid; 1118 1119 if (!options) 1120 return 0; 1121 1122 /* 1123 * strsep changes the string, duplicate it because 1124 * btrfs_parse_device_options gets called later 1125 */ 1126 opts = kstrdup(options, GFP_KERNEL); 1127 if (!opts) 1128 return -ENOMEM; 1129 orig = opts; 1130 1131 while ((p = strsep(&opts, ",")) != NULL) { 1132 int token; 1133 if (!*p) 1134 continue; 1135 1136 token = match_token(p, tokens, args); 1137 switch (token) { 1138 case Opt_subvol: 1139 kfree(*subvol_name); 1140 *subvol_name = match_strdup(&args[0]); 1141 if (!*subvol_name) { 1142 error = -ENOMEM; 1143 goto out; 1144 } 1145 break; 1146 case Opt_subvolid: 1147 error = match_u64(&args[0], &subvolid); 1148 if (error) 1149 goto out; 1150 1151 /* we want the original fs_tree */ 1152 if (subvolid == 0) 1153 subvolid = BTRFS_FS_TREE_OBJECTID; 1154 1155 *subvol_objectid = subvolid; 1156 break; 1157 default: 1158 break; 1159 } 1160 } 1161 1162 out: 1163 kfree(orig); 1164 return error; 1165 } 1166 1167 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1168 u64 subvol_objectid) 1169 { 1170 struct btrfs_root *root = fs_info->tree_root; 1171 struct btrfs_root *fs_root = NULL; 1172 struct btrfs_root_ref *root_ref; 1173 struct btrfs_inode_ref *inode_ref; 1174 struct btrfs_key key; 1175 struct btrfs_path *path = NULL; 1176 char *name = NULL, *ptr; 1177 u64 dirid; 1178 int len; 1179 int ret; 1180 1181 path = btrfs_alloc_path(); 1182 if (!path) { 1183 ret = -ENOMEM; 1184 goto err; 1185 } 1186 1187 name = kmalloc(PATH_MAX, GFP_KERNEL); 1188 if (!name) { 1189 ret = -ENOMEM; 1190 goto err; 1191 } 1192 ptr = name + PATH_MAX - 1; 1193 ptr[0] = '\0'; 1194 1195 /* 1196 * Walk up the subvolume trees in the tree of tree roots by root 1197 * backrefs until we hit the top-level subvolume. 1198 */ 1199 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1200 key.objectid = subvol_objectid; 1201 key.type = BTRFS_ROOT_BACKREF_KEY; 1202 key.offset = (u64)-1; 1203 1204 ret = btrfs_search_backwards(root, &key, path); 1205 if (ret < 0) { 1206 goto err; 1207 } else if (ret > 0) { 1208 ret = -ENOENT; 1209 goto err; 1210 } 1211 1212 subvol_objectid = key.offset; 1213 1214 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1215 struct btrfs_root_ref); 1216 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1217 ptr -= len + 1; 1218 if (ptr < name) { 1219 ret = -ENAMETOOLONG; 1220 goto err; 1221 } 1222 read_extent_buffer(path->nodes[0], ptr + 1, 1223 (unsigned long)(root_ref + 1), len); 1224 ptr[0] = '/'; 1225 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1226 btrfs_release_path(path); 1227 1228 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1229 if (IS_ERR(fs_root)) { 1230 ret = PTR_ERR(fs_root); 1231 fs_root = NULL; 1232 goto err; 1233 } 1234 1235 /* 1236 * Walk up the filesystem tree by inode refs until we hit the 1237 * root directory. 1238 */ 1239 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1240 key.objectid = dirid; 1241 key.type = BTRFS_INODE_REF_KEY; 1242 key.offset = (u64)-1; 1243 1244 ret = btrfs_search_backwards(fs_root, &key, path); 1245 if (ret < 0) { 1246 goto err; 1247 } else if (ret > 0) { 1248 ret = -ENOENT; 1249 goto err; 1250 } 1251 1252 dirid = key.offset; 1253 1254 inode_ref = btrfs_item_ptr(path->nodes[0], 1255 path->slots[0], 1256 struct btrfs_inode_ref); 1257 len = btrfs_inode_ref_name_len(path->nodes[0], 1258 inode_ref); 1259 ptr -= len + 1; 1260 if (ptr < name) { 1261 ret = -ENAMETOOLONG; 1262 goto err; 1263 } 1264 read_extent_buffer(path->nodes[0], ptr + 1, 1265 (unsigned long)(inode_ref + 1), len); 1266 ptr[0] = '/'; 1267 btrfs_release_path(path); 1268 } 1269 btrfs_put_root(fs_root); 1270 fs_root = NULL; 1271 } 1272 1273 btrfs_free_path(path); 1274 if (ptr == name + PATH_MAX - 1) { 1275 name[0] = '/'; 1276 name[1] = '\0'; 1277 } else { 1278 memmove(name, ptr, name + PATH_MAX - ptr); 1279 } 1280 return name; 1281 1282 err: 1283 btrfs_put_root(fs_root); 1284 btrfs_free_path(path); 1285 kfree(name); 1286 return ERR_PTR(ret); 1287 } 1288 1289 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1290 { 1291 struct btrfs_root *root = fs_info->tree_root; 1292 struct btrfs_dir_item *di; 1293 struct btrfs_path *path; 1294 struct btrfs_key location; 1295 u64 dir_id; 1296 1297 path = btrfs_alloc_path(); 1298 if (!path) 1299 return -ENOMEM; 1300 1301 /* 1302 * Find the "default" dir item which points to the root item that we 1303 * will mount by default if we haven't been given a specific subvolume 1304 * to mount. 1305 */ 1306 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1307 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1308 if (IS_ERR(di)) { 1309 btrfs_free_path(path); 1310 return PTR_ERR(di); 1311 } 1312 if (!di) { 1313 /* 1314 * Ok the default dir item isn't there. This is weird since 1315 * it's always been there, but don't freak out, just try and 1316 * mount the top-level subvolume. 1317 */ 1318 btrfs_free_path(path); 1319 *objectid = BTRFS_FS_TREE_OBJECTID; 1320 return 0; 1321 } 1322 1323 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1324 btrfs_free_path(path); 1325 *objectid = location.objectid; 1326 return 0; 1327 } 1328 1329 static int btrfs_fill_super(struct super_block *sb, 1330 struct btrfs_fs_devices *fs_devices, 1331 void *data) 1332 { 1333 struct inode *inode; 1334 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1335 int err; 1336 1337 sb->s_maxbytes = MAX_LFS_FILESIZE; 1338 sb->s_magic = BTRFS_SUPER_MAGIC; 1339 sb->s_op = &btrfs_super_ops; 1340 sb->s_d_op = &btrfs_dentry_operations; 1341 sb->s_export_op = &btrfs_export_ops; 1342 #ifdef CONFIG_FS_VERITY 1343 sb->s_vop = &btrfs_verityops; 1344 #endif 1345 sb->s_xattr = btrfs_xattr_handlers; 1346 sb->s_time_gran = 1; 1347 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1348 sb->s_flags |= SB_POSIXACL; 1349 #endif 1350 sb->s_flags |= SB_I_VERSION; 1351 sb->s_iflags |= SB_I_CGROUPWB; 1352 1353 err = super_setup_bdi(sb); 1354 if (err) { 1355 btrfs_err(fs_info, "super_setup_bdi failed"); 1356 return err; 1357 } 1358 1359 err = open_ctree(sb, fs_devices, (char *)data); 1360 if (err) { 1361 btrfs_err(fs_info, "open_ctree failed"); 1362 return err; 1363 } 1364 1365 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1366 if (IS_ERR(inode)) { 1367 err = PTR_ERR(inode); 1368 goto fail_close; 1369 } 1370 1371 sb->s_root = d_make_root(inode); 1372 if (!sb->s_root) { 1373 err = -ENOMEM; 1374 goto fail_close; 1375 } 1376 1377 cleancache_init_fs(sb); 1378 sb->s_flags |= SB_ACTIVE; 1379 return 0; 1380 1381 fail_close: 1382 close_ctree(fs_info); 1383 return err; 1384 } 1385 1386 int btrfs_sync_fs(struct super_block *sb, int wait) 1387 { 1388 struct btrfs_trans_handle *trans; 1389 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1390 struct btrfs_root *root = fs_info->tree_root; 1391 1392 trace_btrfs_sync_fs(fs_info, wait); 1393 1394 if (!wait) { 1395 filemap_flush(fs_info->btree_inode->i_mapping); 1396 return 0; 1397 } 1398 1399 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1400 1401 trans = btrfs_attach_transaction_barrier(root); 1402 if (IS_ERR(trans)) { 1403 /* no transaction, don't bother */ 1404 if (PTR_ERR(trans) == -ENOENT) { 1405 /* 1406 * Exit unless we have some pending changes 1407 * that need to go through commit 1408 */ 1409 if (fs_info->pending_changes == 0) 1410 return 0; 1411 /* 1412 * A non-blocking test if the fs is frozen. We must not 1413 * start a new transaction here otherwise a deadlock 1414 * happens. The pending operations are delayed to the 1415 * next commit after thawing. 1416 */ 1417 if (sb_start_write_trylock(sb)) 1418 sb_end_write(sb); 1419 else 1420 return 0; 1421 trans = btrfs_start_transaction(root, 0); 1422 } 1423 if (IS_ERR(trans)) 1424 return PTR_ERR(trans); 1425 } 1426 return btrfs_commit_transaction(trans); 1427 } 1428 1429 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1430 { 1431 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1432 *printed = true; 1433 } 1434 1435 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1436 { 1437 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1438 const char *compress_type; 1439 const char *subvol_name; 1440 bool printed = false; 1441 1442 if (btrfs_test_opt(info, DEGRADED)) 1443 seq_puts(seq, ",degraded"); 1444 if (btrfs_test_opt(info, NODATASUM)) 1445 seq_puts(seq, ",nodatasum"); 1446 if (btrfs_test_opt(info, NODATACOW)) 1447 seq_puts(seq, ",nodatacow"); 1448 if (btrfs_test_opt(info, NOBARRIER)) 1449 seq_puts(seq, ",nobarrier"); 1450 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1451 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1452 if (info->thread_pool_size != min_t(unsigned long, 1453 num_online_cpus() + 2, 8)) 1454 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1455 if (btrfs_test_opt(info, COMPRESS)) { 1456 compress_type = btrfs_compress_type2str(info->compress_type); 1457 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1458 seq_printf(seq, ",compress-force=%s", compress_type); 1459 else 1460 seq_printf(seq, ",compress=%s", compress_type); 1461 if (info->compress_level) 1462 seq_printf(seq, ":%d", info->compress_level); 1463 } 1464 if (btrfs_test_opt(info, NOSSD)) 1465 seq_puts(seq, ",nossd"); 1466 if (btrfs_test_opt(info, SSD_SPREAD)) 1467 seq_puts(seq, ",ssd_spread"); 1468 else if (btrfs_test_opt(info, SSD)) 1469 seq_puts(seq, ",ssd"); 1470 if (btrfs_test_opt(info, NOTREELOG)) 1471 seq_puts(seq, ",notreelog"); 1472 if (btrfs_test_opt(info, NOLOGREPLAY)) 1473 print_rescue_option(seq, "nologreplay", &printed); 1474 if (btrfs_test_opt(info, USEBACKUPROOT)) 1475 print_rescue_option(seq, "usebackuproot", &printed); 1476 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1477 print_rescue_option(seq, "ignorebadroots", &printed); 1478 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1479 print_rescue_option(seq, "ignoredatacsums", &printed); 1480 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1481 seq_puts(seq, ",flushoncommit"); 1482 if (btrfs_test_opt(info, DISCARD_SYNC)) 1483 seq_puts(seq, ",discard"); 1484 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1485 seq_puts(seq, ",discard=async"); 1486 if (!(info->sb->s_flags & SB_POSIXACL)) 1487 seq_puts(seq, ",noacl"); 1488 if (btrfs_free_space_cache_v1_active(info)) 1489 seq_puts(seq, ",space_cache"); 1490 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1491 seq_puts(seq, ",space_cache=v2"); 1492 else 1493 seq_puts(seq, ",nospace_cache"); 1494 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1495 seq_puts(seq, ",rescan_uuid_tree"); 1496 if (btrfs_test_opt(info, CLEAR_CACHE)) 1497 seq_puts(seq, ",clear_cache"); 1498 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1499 seq_puts(seq, ",user_subvol_rm_allowed"); 1500 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1501 seq_puts(seq, ",enospc_debug"); 1502 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1503 seq_puts(seq, ",autodefrag"); 1504 if (btrfs_test_opt(info, SKIP_BALANCE)) 1505 seq_puts(seq, ",skip_balance"); 1506 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1507 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1508 seq_puts(seq, ",check_int_data"); 1509 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1510 seq_puts(seq, ",check_int"); 1511 if (info->check_integrity_print_mask) 1512 seq_printf(seq, ",check_int_print_mask=%d", 1513 info->check_integrity_print_mask); 1514 #endif 1515 if (info->metadata_ratio) 1516 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1517 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1518 seq_puts(seq, ",fatal_errors=panic"); 1519 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1520 seq_printf(seq, ",commit=%u", info->commit_interval); 1521 #ifdef CONFIG_BTRFS_DEBUG 1522 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1523 seq_puts(seq, ",fragment=data"); 1524 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1525 seq_puts(seq, ",fragment=metadata"); 1526 #endif 1527 if (btrfs_test_opt(info, REF_VERIFY)) 1528 seq_puts(seq, ",ref_verify"); 1529 seq_printf(seq, ",subvolid=%llu", 1530 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1531 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1532 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1533 if (!IS_ERR(subvol_name)) { 1534 seq_puts(seq, ",subvol="); 1535 seq_escape(seq, subvol_name, " \t\n\\"); 1536 kfree(subvol_name); 1537 } 1538 return 0; 1539 } 1540 1541 static int btrfs_test_super(struct super_block *s, void *data) 1542 { 1543 struct btrfs_fs_info *p = data; 1544 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1545 1546 return fs_info->fs_devices == p->fs_devices; 1547 } 1548 1549 static int btrfs_set_super(struct super_block *s, void *data) 1550 { 1551 int err = set_anon_super(s, data); 1552 if (!err) 1553 s->s_fs_info = data; 1554 return err; 1555 } 1556 1557 /* 1558 * subvolumes are identified by ino 256 1559 */ 1560 static inline int is_subvolume_inode(struct inode *inode) 1561 { 1562 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1563 return 1; 1564 return 0; 1565 } 1566 1567 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1568 struct vfsmount *mnt) 1569 { 1570 struct dentry *root; 1571 int ret; 1572 1573 if (!subvol_name) { 1574 if (!subvol_objectid) { 1575 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1576 &subvol_objectid); 1577 if (ret) { 1578 root = ERR_PTR(ret); 1579 goto out; 1580 } 1581 } 1582 subvol_name = btrfs_get_subvol_name_from_objectid( 1583 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1584 if (IS_ERR(subvol_name)) { 1585 root = ERR_CAST(subvol_name); 1586 subvol_name = NULL; 1587 goto out; 1588 } 1589 1590 } 1591 1592 root = mount_subtree(mnt, subvol_name); 1593 /* mount_subtree() drops our reference on the vfsmount. */ 1594 mnt = NULL; 1595 1596 if (!IS_ERR(root)) { 1597 struct super_block *s = root->d_sb; 1598 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1599 struct inode *root_inode = d_inode(root); 1600 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1601 1602 ret = 0; 1603 if (!is_subvolume_inode(root_inode)) { 1604 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1605 subvol_name); 1606 ret = -EINVAL; 1607 } 1608 if (subvol_objectid && root_objectid != subvol_objectid) { 1609 /* 1610 * This will also catch a race condition where a 1611 * subvolume which was passed by ID is renamed and 1612 * another subvolume is renamed over the old location. 1613 */ 1614 btrfs_err(fs_info, 1615 "subvol '%s' does not match subvolid %llu", 1616 subvol_name, subvol_objectid); 1617 ret = -EINVAL; 1618 } 1619 if (ret) { 1620 dput(root); 1621 root = ERR_PTR(ret); 1622 deactivate_locked_super(s); 1623 } 1624 } 1625 1626 out: 1627 mntput(mnt); 1628 kfree(subvol_name); 1629 return root; 1630 } 1631 1632 /* 1633 * Find a superblock for the given device / mount point. 1634 * 1635 * Note: This is based on mount_bdev from fs/super.c with a few additions 1636 * for multiple device setup. Make sure to keep it in sync. 1637 */ 1638 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1639 int flags, const char *device_name, void *data) 1640 { 1641 struct block_device *bdev = NULL; 1642 struct super_block *s; 1643 struct btrfs_device *device = NULL; 1644 struct btrfs_fs_devices *fs_devices = NULL; 1645 struct btrfs_fs_info *fs_info = NULL; 1646 void *new_sec_opts = NULL; 1647 fmode_t mode = FMODE_READ; 1648 int error = 0; 1649 1650 if (!(flags & SB_RDONLY)) 1651 mode |= FMODE_WRITE; 1652 1653 if (data) { 1654 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1655 if (error) 1656 return ERR_PTR(error); 1657 } 1658 1659 /* 1660 * Setup a dummy root and fs_info for test/set super. This is because 1661 * we don't actually fill this stuff out until open_ctree, but we need 1662 * then open_ctree will properly initialize the file system specific 1663 * settings later. btrfs_init_fs_info initializes the static elements 1664 * of the fs_info (locks and such) to make cleanup easier if we find a 1665 * superblock with our given fs_devices later on at sget() time. 1666 */ 1667 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1668 if (!fs_info) { 1669 error = -ENOMEM; 1670 goto error_sec_opts; 1671 } 1672 btrfs_init_fs_info(fs_info); 1673 1674 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1675 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1676 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1677 error = -ENOMEM; 1678 goto error_fs_info; 1679 } 1680 1681 mutex_lock(&uuid_mutex); 1682 error = btrfs_parse_device_options(data, mode, fs_type); 1683 if (error) { 1684 mutex_unlock(&uuid_mutex); 1685 goto error_fs_info; 1686 } 1687 1688 device = btrfs_scan_one_device(device_name, mode, fs_type); 1689 if (IS_ERR(device)) { 1690 mutex_unlock(&uuid_mutex); 1691 error = PTR_ERR(device); 1692 goto error_fs_info; 1693 } 1694 1695 fs_devices = device->fs_devices; 1696 fs_info->fs_devices = fs_devices; 1697 1698 error = btrfs_open_devices(fs_devices, mode, fs_type); 1699 mutex_unlock(&uuid_mutex); 1700 if (error) 1701 goto error_fs_info; 1702 1703 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1704 error = -EACCES; 1705 goto error_close_devices; 1706 } 1707 1708 bdev = fs_devices->latest_bdev; 1709 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1710 fs_info); 1711 if (IS_ERR(s)) { 1712 error = PTR_ERR(s); 1713 goto error_close_devices; 1714 } 1715 1716 if (s->s_root) { 1717 btrfs_close_devices(fs_devices); 1718 btrfs_free_fs_info(fs_info); 1719 if ((flags ^ s->s_flags) & SB_RDONLY) 1720 error = -EBUSY; 1721 } else { 1722 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1723 btrfs_sb(s)->bdev_holder = fs_type; 1724 if (!strstr(crc32c_impl(), "generic")) 1725 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1726 error = btrfs_fill_super(s, fs_devices, data); 1727 } 1728 if (!error) 1729 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1730 security_free_mnt_opts(&new_sec_opts); 1731 if (error) { 1732 deactivate_locked_super(s); 1733 return ERR_PTR(error); 1734 } 1735 1736 return dget(s->s_root); 1737 1738 error_close_devices: 1739 btrfs_close_devices(fs_devices); 1740 error_fs_info: 1741 btrfs_free_fs_info(fs_info); 1742 error_sec_opts: 1743 security_free_mnt_opts(&new_sec_opts); 1744 return ERR_PTR(error); 1745 } 1746 1747 /* 1748 * Mount function which is called by VFS layer. 1749 * 1750 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1751 * which needs vfsmount* of device's root (/). This means device's root has to 1752 * be mounted internally in any case. 1753 * 1754 * Operation flow: 1755 * 1. Parse subvol id related options for later use in mount_subvol(). 1756 * 1757 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1758 * 1759 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1760 * first place. In order to avoid calling btrfs_mount() again, we use 1761 * different file_system_type which is not registered to VFS by 1762 * register_filesystem() (btrfs_root_fs_type). As a result, 1763 * btrfs_mount_root() is called. The return value will be used by 1764 * mount_subtree() in mount_subvol(). 1765 * 1766 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1767 * "btrfs subvolume set-default", mount_subvol() is called always. 1768 */ 1769 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1770 const char *device_name, void *data) 1771 { 1772 struct vfsmount *mnt_root; 1773 struct dentry *root; 1774 char *subvol_name = NULL; 1775 u64 subvol_objectid = 0; 1776 int error = 0; 1777 1778 error = btrfs_parse_subvol_options(data, &subvol_name, 1779 &subvol_objectid); 1780 if (error) { 1781 kfree(subvol_name); 1782 return ERR_PTR(error); 1783 } 1784 1785 /* mount device's root (/) */ 1786 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1787 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1788 if (flags & SB_RDONLY) { 1789 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1790 flags & ~SB_RDONLY, device_name, data); 1791 } else { 1792 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1793 flags | SB_RDONLY, device_name, data); 1794 if (IS_ERR(mnt_root)) { 1795 root = ERR_CAST(mnt_root); 1796 kfree(subvol_name); 1797 goto out; 1798 } 1799 1800 down_write(&mnt_root->mnt_sb->s_umount); 1801 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1802 up_write(&mnt_root->mnt_sb->s_umount); 1803 if (error < 0) { 1804 root = ERR_PTR(error); 1805 mntput(mnt_root); 1806 kfree(subvol_name); 1807 goto out; 1808 } 1809 } 1810 } 1811 if (IS_ERR(mnt_root)) { 1812 root = ERR_CAST(mnt_root); 1813 kfree(subvol_name); 1814 goto out; 1815 } 1816 1817 /* mount_subvol() will free subvol_name and mnt_root */ 1818 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1819 1820 out: 1821 return root; 1822 } 1823 1824 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1825 u32 new_pool_size, u32 old_pool_size) 1826 { 1827 if (new_pool_size == old_pool_size) 1828 return; 1829 1830 fs_info->thread_pool_size = new_pool_size; 1831 1832 btrfs_info(fs_info, "resize thread pool %d -> %d", 1833 old_pool_size, new_pool_size); 1834 1835 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1836 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1837 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1838 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1839 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1840 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1841 new_pool_size); 1842 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1843 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1844 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1845 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1846 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1847 new_pool_size); 1848 } 1849 1850 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1851 unsigned long old_opts, int flags) 1852 { 1853 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1854 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1855 (flags & SB_RDONLY))) { 1856 /* wait for any defraggers to finish */ 1857 wait_event(fs_info->transaction_wait, 1858 (atomic_read(&fs_info->defrag_running) == 0)); 1859 if (flags & SB_RDONLY) 1860 sync_filesystem(fs_info->sb); 1861 } 1862 } 1863 1864 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1865 unsigned long old_opts) 1866 { 1867 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1868 1869 /* 1870 * We need to cleanup all defragable inodes if the autodefragment is 1871 * close or the filesystem is read only. 1872 */ 1873 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1874 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1875 btrfs_cleanup_defrag_inodes(fs_info); 1876 } 1877 1878 /* If we toggled discard async */ 1879 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1880 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1881 btrfs_discard_resume(fs_info); 1882 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1883 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1884 btrfs_discard_cleanup(fs_info); 1885 1886 /* If we toggled space cache */ 1887 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1888 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1889 } 1890 1891 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1892 { 1893 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1894 unsigned old_flags = sb->s_flags; 1895 unsigned long old_opts = fs_info->mount_opt; 1896 unsigned long old_compress_type = fs_info->compress_type; 1897 u64 old_max_inline = fs_info->max_inline; 1898 u32 old_thread_pool_size = fs_info->thread_pool_size; 1899 u32 old_metadata_ratio = fs_info->metadata_ratio; 1900 int ret; 1901 1902 sync_filesystem(sb); 1903 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1904 1905 if (data) { 1906 void *new_sec_opts = NULL; 1907 1908 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1909 if (!ret) 1910 ret = security_sb_remount(sb, new_sec_opts); 1911 security_free_mnt_opts(&new_sec_opts); 1912 if (ret) 1913 goto restore; 1914 } 1915 1916 ret = btrfs_parse_options(fs_info, data, *flags); 1917 if (ret) 1918 goto restore; 1919 1920 btrfs_remount_begin(fs_info, old_opts, *flags); 1921 btrfs_resize_thread_pool(fs_info, 1922 fs_info->thread_pool_size, old_thread_pool_size); 1923 1924 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1925 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1926 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 1927 btrfs_warn(fs_info, 1928 "remount supports changing free space tree only from ro to rw"); 1929 /* Make sure free space cache options match the state on disk */ 1930 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1931 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1932 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1933 } 1934 if (btrfs_free_space_cache_v1_active(fs_info)) { 1935 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1936 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1937 } 1938 } 1939 1940 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1941 goto out; 1942 1943 if (*flags & SB_RDONLY) { 1944 /* 1945 * this also happens on 'umount -rf' or on shutdown, when 1946 * the filesystem is busy. 1947 */ 1948 cancel_work_sync(&fs_info->async_reclaim_work); 1949 cancel_work_sync(&fs_info->async_data_reclaim_work); 1950 1951 btrfs_discard_cleanup(fs_info); 1952 1953 /* wait for the uuid_scan task to finish */ 1954 down(&fs_info->uuid_tree_rescan_sem); 1955 /* avoid complains from lockdep et al. */ 1956 up(&fs_info->uuid_tree_rescan_sem); 1957 1958 btrfs_set_sb_rdonly(sb); 1959 1960 /* 1961 * Setting SB_RDONLY will put the cleaner thread to 1962 * sleep at the next loop if it's already active. 1963 * If it's already asleep, we'll leave unused block 1964 * groups on disk until we're mounted read-write again 1965 * unless we clean them up here. 1966 */ 1967 btrfs_delete_unused_bgs(fs_info); 1968 1969 /* 1970 * The cleaner task could be already running before we set the 1971 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 1972 * We must make sure that after we finish the remount, i.e. after 1973 * we call btrfs_commit_super(), the cleaner can no longer start 1974 * a transaction - either because it was dropping a dead root, 1975 * running delayed iputs or deleting an unused block group (the 1976 * cleaner picked a block group from the list of unused block 1977 * groups before we were able to in the previous call to 1978 * btrfs_delete_unused_bgs()). 1979 */ 1980 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 1981 TASK_UNINTERRUPTIBLE); 1982 1983 /* 1984 * We've set the superblock to RO mode, so we might have made 1985 * the cleaner task sleep without running all pending delayed 1986 * iputs. Go through all the delayed iputs here, so that if an 1987 * unmount happens without remounting RW we don't end up at 1988 * finishing close_ctree() with a non-empty list of delayed 1989 * iputs. 1990 */ 1991 btrfs_run_delayed_iputs(fs_info); 1992 1993 btrfs_dev_replace_suspend_for_unmount(fs_info); 1994 btrfs_scrub_cancel(fs_info); 1995 btrfs_pause_balance(fs_info); 1996 1997 /* 1998 * Pause the qgroup rescan worker if it is running. We don't want 1999 * it to be still running after we are in RO mode, as after that, 2000 * by the time we unmount, it might have left a transaction open, 2001 * so we would leak the transaction and/or crash. 2002 */ 2003 btrfs_qgroup_wait_for_completion(fs_info, false); 2004 2005 ret = btrfs_commit_super(fs_info); 2006 if (ret) 2007 goto restore; 2008 } else { 2009 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2010 btrfs_err(fs_info, 2011 "Remounting read-write after error is not allowed"); 2012 ret = -EINVAL; 2013 goto restore; 2014 } 2015 if (fs_info->fs_devices->rw_devices == 0) { 2016 ret = -EACCES; 2017 goto restore; 2018 } 2019 2020 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2021 btrfs_warn(fs_info, 2022 "too many missing devices, writable remount is not allowed"); 2023 ret = -EACCES; 2024 goto restore; 2025 } 2026 2027 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2028 btrfs_warn(fs_info, 2029 "mount required to replay tree-log, cannot remount read-write"); 2030 ret = -EINVAL; 2031 goto restore; 2032 } 2033 2034 /* 2035 * NOTE: when remounting with a change that does writes, don't 2036 * put it anywhere above this point, as we are not sure to be 2037 * safe to write until we pass the above checks. 2038 */ 2039 ret = btrfs_start_pre_rw_mount(fs_info); 2040 if (ret) 2041 goto restore; 2042 2043 btrfs_clear_sb_rdonly(sb); 2044 2045 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2046 } 2047 out: 2048 /* 2049 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2050 * since the absence of the flag means it can be toggled off by remount. 2051 */ 2052 *flags |= SB_I_VERSION; 2053 2054 wake_up_process(fs_info->transaction_kthread); 2055 btrfs_remount_cleanup(fs_info, old_opts); 2056 btrfs_clear_oneshot_options(fs_info); 2057 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2058 2059 return 0; 2060 2061 restore: 2062 /* We've hit an error - don't reset SB_RDONLY */ 2063 if (sb_rdonly(sb)) 2064 old_flags |= SB_RDONLY; 2065 if (!(old_flags & SB_RDONLY)) 2066 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2067 sb->s_flags = old_flags; 2068 fs_info->mount_opt = old_opts; 2069 fs_info->compress_type = old_compress_type; 2070 fs_info->max_inline = old_max_inline; 2071 btrfs_resize_thread_pool(fs_info, 2072 old_thread_pool_size, fs_info->thread_pool_size); 2073 fs_info->metadata_ratio = old_metadata_ratio; 2074 btrfs_remount_cleanup(fs_info, old_opts); 2075 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2076 2077 return ret; 2078 } 2079 2080 /* Used to sort the devices by max_avail(descending sort) */ 2081 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 2082 { 2083 const struct btrfs_device_info *dev_info1 = a; 2084 const struct btrfs_device_info *dev_info2 = b; 2085 2086 if (dev_info1->max_avail > dev_info2->max_avail) 2087 return -1; 2088 else if (dev_info1->max_avail < dev_info2->max_avail) 2089 return 1; 2090 return 0; 2091 } 2092 2093 /* 2094 * sort the devices by max_avail, in which max free extent size of each device 2095 * is stored.(Descending Sort) 2096 */ 2097 static inline void btrfs_descending_sort_devices( 2098 struct btrfs_device_info *devices, 2099 size_t nr_devices) 2100 { 2101 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2102 btrfs_cmp_device_free_bytes, NULL); 2103 } 2104 2105 /* 2106 * The helper to calc the free space on the devices that can be used to store 2107 * file data. 2108 */ 2109 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2110 u64 *free_bytes) 2111 { 2112 struct btrfs_device_info *devices_info; 2113 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2114 struct btrfs_device *device; 2115 u64 type; 2116 u64 avail_space; 2117 u64 min_stripe_size; 2118 int num_stripes = 1; 2119 int i = 0, nr_devices; 2120 const struct btrfs_raid_attr *rattr; 2121 2122 /* 2123 * We aren't under the device list lock, so this is racy-ish, but good 2124 * enough for our purposes. 2125 */ 2126 nr_devices = fs_info->fs_devices->open_devices; 2127 if (!nr_devices) { 2128 smp_mb(); 2129 nr_devices = fs_info->fs_devices->open_devices; 2130 ASSERT(nr_devices); 2131 if (!nr_devices) { 2132 *free_bytes = 0; 2133 return 0; 2134 } 2135 } 2136 2137 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2138 GFP_KERNEL); 2139 if (!devices_info) 2140 return -ENOMEM; 2141 2142 /* calc min stripe number for data space allocation */ 2143 type = btrfs_data_alloc_profile(fs_info); 2144 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2145 2146 if (type & BTRFS_BLOCK_GROUP_RAID0) 2147 num_stripes = nr_devices; 2148 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2149 num_stripes = 2; 2150 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2151 num_stripes = 3; 2152 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2153 num_stripes = 4; 2154 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2155 num_stripes = 4; 2156 2157 /* Adjust for more than 1 stripe per device */ 2158 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2159 2160 rcu_read_lock(); 2161 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2162 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2163 &device->dev_state) || 2164 !device->bdev || 2165 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2166 continue; 2167 2168 if (i >= nr_devices) 2169 break; 2170 2171 avail_space = device->total_bytes - device->bytes_used; 2172 2173 /* align with stripe_len */ 2174 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2175 2176 /* 2177 * In order to avoid overwriting the superblock on the drive, 2178 * btrfs starts at an offset of at least 1MB when doing chunk 2179 * allocation. 2180 * 2181 * This ensures we have at least min_stripe_size free space 2182 * after excluding 1MB. 2183 */ 2184 if (avail_space <= SZ_1M + min_stripe_size) 2185 continue; 2186 2187 avail_space -= SZ_1M; 2188 2189 devices_info[i].dev = device; 2190 devices_info[i].max_avail = avail_space; 2191 2192 i++; 2193 } 2194 rcu_read_unlock(); 2195 2196 nr_devices = i; 2197 2198 btrfs_descending_sort_devices(devices_info, nr_devices); 2199 2200 i = nr_devices - 1; 2201 avail_space = 0; 2202 while (nr_devices >= rattr->devs_min) { 2203 num_stripes = min(num_stripes, nr_devices); 2204 2205 if (devices_info[i].max_avail >= min_stripe_size) { 2206 int j; 2207 u64 alloc_size; 2208 2209 avail_space += devices_info[i].max_avail * num_stripes; 2210 alloc_size = devices_info[i].max_avail; 2211 for (j = i + 1 - num_stripes; j <= i; j++) 2212 devices_info[j].max_avail -= alloc_size; 2213 } 2214 i--; 2215 nr_devices--; 2216 } 2217 2218 kfree(devices_info); 2219 *free_bytes = avail_space; 2220 return 0; 2221 } 2222 2223 /* 2224 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2225 * 2226 * If there's a redundant raid level at DATA block groups, use the respective 2227 * multiplier to scale the sizes. 2228 * 2229 * Unused device space usage is based on simulating the chunk allocator 2230 * algorithm that respects the device sizes and order of allocations. This is 2231 * a close approximation of the actual use but there are other factors that may 2232 * change the result (like a new metadata chunk). 2233 * 2234 * If metadata is exhausted, f_bavail will be 0. 2235 */ 2236 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2237 { 2238 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2239 struct btrfs_super_block *disk_super = fs_info->super_copy; 2240 struct btrfs_space_info *found; 2241 u64 total_used = 0; 2242 u64 total_free_data = 0; 2243 u64 total_free_meta = 0; 2244 u32 bits = fs_info->sectorsize_bits; 2245 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2246 unsigned factor = 1; 2247 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2248 int ret; 2249 u64 thresh = 0; 2250 int mixed = 0; 2251 2252 list_for_each_entry(found, &fs_info->space_info, list) { 2253 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2254 int i; 2255 2256 total_free_data += found->disk_total - found->disk_used; 2257 total_free_data -= 2258 btrfs_account_ro_block_groups_free_space(found); 2259 2260 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2261 if (!list_empty(&found->block_groups[i])) 2262 factor = btrfs_bg_type_to_factor( 2263 btrfs_raid_array[i].bg_flag); 2264 } 2265 } 2266 2267 /* 2268 * Metadata in mixed block goup profiles are accounted in data 2269 */ 2270 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2271 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2272 mixed = 1; 2273 else 2274 total_free_meta += found->disk_total - 2275 found->disk_used; 2276 } 2277 2278 total_used += found->disk_used; 2279 } 2280 2281 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2282 buf->f_blocks >>= bits; 2283 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2284 2285 /* Account global block reserve as used, it's in logical size already */ 2286 spin_lock(&block_rsv->lock); 2287 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2288 if (buf->f_bfree >= block_rsv->size >> bits) 2289 buf->f_bfree -= block_rsv->size >> bits; 2290 else 2291 buf->f_bfree = 0; 2292 spin_unlock(&block_rsv->lock); 2293 2294 buf->f_bavail = div_u64(total_free_data, factor); 2295 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2296 if (ret) 2297 return ret; 2298 buf->f_bavail += div_u64(total_free_data, factor); 2299 buf->f_bavail = buf->f_bavail >> bits; 2300 2301 /* 2302 * We calculate the remaining metadata space minus global reserve. If 2303 * this is (supposedly) smaller than zero, there's no space. But this 2304 * does not hold in practice, the exhausted state happens where's still 2305 * some positive delta. So we apply some guesswork and compare the 2306 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2307 * 2308 * We probably cannot calculate the exact threshold value because this 2309 * depends on the internal reservations requested by various 2310 * operations, so some operations that consume a few metadata will 2311 * succeed even if the Avail is zero. But this is better than the other 2312 * way around. 2313 */ 2314 thresh = SZ_4M; 2315 2316 /* 2317 * We only want to claim there's no available space if we can no longer 2318 * allocate chunks for our metadata profile and our global reserve will 2319 * not fit in the free metadata space. If we aren't ->full then we 2320 * still can allocate chunks and thus are fine using the currently 2321 * calculated f_bavail. 2322 */ 2323 if (!mixed && block_rsv->space_info->full && 2324 total_free_meta - thresh < block_rsv->size) 2325 buf->f_bavail = 0; 2326 2327 buf->f_type = BTRFS_SUPER_MAGIC; 2328 buf->f_bsize = dentry->d_sb->s_blocksize; 2329 buf->f_namelen = BTRFS_NAME_LEN; 2330 2331 /* We treat it as constant endianness (it doesn't matter _which_) 2332 because we want the fsid to come out the same whether mounted 2333 on a big-endian or little-endian host */ 2334 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2335 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2336 /* Mask in the root object ID too, to disambiguate subvols */ 2337 buf->f_fsid.val[0] ^= 2338 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2339 buf->f_fsid.val[1] ^= 2340 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2341 2342 return 0; 2343 } 2344 2345 static void btrfs_kill_super(struct super_block *sb) 2346 { 2347 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2348 kill_anon_super(sb); 2349 btrfs_free_fs_info(fs_info); 2350 } 2351 2352 static struct file_system_type btrfs_fs_type = { 2353 .owner = THIS_MODULE, 2354 .name = "btrfs", 2355 .mount = btrfs_mount, 2356 .kill_sb = btrfs_kill_super, 2357 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2358 }; 2359 2360 static struct file_system_type btrfs_root_fs_type = { 2361 .owner = THIS_MODULE, 2362 .name = "btrfs", 2363 .mount = btrfs_mount_root, 2364 .kill_sb = btrfs_kill_super, 2365 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2366 }; 2367 2368 MODULE_ALIAS_FS("btrfs"); 2369 2370 static int btrfs_control_open(struct inode *inode, struct file *file) 2371 { 2372 /* 2373 * The control file's private_data is used to hold the 2374 * transaction when it is started and is used to keep 2375 * track of whether a transaction is already in progress. 2376 */ 2377 file->private_data = NULL; 2378 return 0; 2379 } 2380 2381 /* 2382 * Used by /dev/btrfs-control for devices ioctls. 2383 */ 2384 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2385 unsigned long arg) 2386 { 2387 struct btrfs_ioctl_vol_args *vol; 2388 struct btrfs_device *device = NULL; 2389 int ret = -ENOTTY; 2390 2391 if (!capable(CAP_SYS_ADMIN)) 2392 return -EPERM; 2393 2394 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2395 if (IS_ERR(vol)) 2396 return PTR_ERR(vol); 2397 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2398 2399 switch (cmd) { 2400 case BTRFS_IOC_SCAN_DEV: 2401 mutex_lock(&uuid_mutex); 2402 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2403 &btrfs_root_fs_type); 2404 ret = PTR_ERR_OR_ZERO(device); 2405 mutex_unlock(&uuid_mutex); 2406 break; 2407 case BTRFS_IOC_FORGET_DEV: 2408 ret = btrfs_forget_devices(vol->name); 2409 break; 2410 case BTRFS_IOC_DEVICES_READY: 2411 mutex_lock(&uuid_mutex); 2412 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2413 &btrfs_root_fs_type); 2414 if (IS_ERR(device)) { 2415 mutex_unlock(&uuid_mutex); 2416 ret = PTR_ERR(device); 2417 break; 2418 } 2419 ret = !(device->fs_devices->num_devices == 2420 device->fs_devices->total_devices); 2421 mutex_unlock(&uuid_mutex); 2422 break; 2423 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2424 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2425 break; 2426 } 2427 2428 kfree(vol); 2429 return ret; 2430 } 2431 2432 static int btrfs_freeze(struct super_block *sb) 2433 { 2434 struct btrfs_trans_handle *trans; 2435 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2436 struct btrfs_root *root = fs_info->tree_root; 2437 2438 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2439 /* 2440 * We don't need a barrier here, we'll wait for any transaction that 2441 * could be in progress on other threads (and do delayed iputs that 2442 * we want to avoid on a frozen filesystem), or do the commit 2443 * ourselves. 2444 */ 2445 trans = btrfs_attach_transaction_barrier(root); 2446 if (IS_ERR(trans)) { 2447 /* no transaction, don't bother */ 2448 if (PTR_ERR(trans) == -ENOENT) 2449 return 0; 2450 return PTR_ERR(trans); 2451 } 2452 return btrfs_commit_transaction(trans); 2453 } 2454 2455 static int btrfs_unfreeze(struct super_block *sb) 2456 { 2457 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2458 2459 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2460 return 0; 2461 } 2462 2463 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2464 { 2465 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2466 struct btrfs_device *dev, *first_dev = NULL; 2467 2468 /* 2469 * Lightweight locking of the devices. We should not need 2470 * device_list_mutex here as we only read the device data and the list 2471 * is protected by RCU. Even if a device is deleted during the list 2472 * traversals, we'll get valid data, the freeing callback will wait at 2473 * least until the rcu_read_unlock. 2474 */ 2475 rcu_read_lock(); 2476 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) { 2477 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 2478 continue; 2479 if (!dev->name) 2480 continue; 2481 if (!first_dev || dev->devid < first_dev->devid) 2482 first_dev = dev; 2483 } 2484 2485 if (first_dev) 2486 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); 2487 else 2488 WARN_ON(1); 2489 rcu_read_unlock(); 2490 return 0; 2491 } 2492 2493 static const struct super_operations btrfs_super_ops = { 2494 .drop_inode = btrfs_drop_inode, 2495 .evict_inode = btrfs_evict_inode, 2496 .put_super = btrfs_put_super, 2497 .sync_fs = btrfs_sync_fs, 2498 .show_options = btrfs_show_options, 2499 .show_devname = btrfs_show_devname, 2500 .alloc_inode = btrfs_alloc_inode, 2501 .destroy_inode = btrfs_destroy_inode, 2502 .free_inode = btrfs_free_inode, 2503 .statfs = btrfs_statfs, 2504 .remount_fs = btrfs_remount, 2505 .freeze_fs = btrfs_freeze, 2506 .unfreeze_fs = btrfs_unfreeze, 2507 }; 2508 2509 static const struct file_operations btrfs_ctl_fops = { 2510 .open = btrfs_control_open, 2511 .unlocked_ioctl = btrfs_control_ioctl, 2512 .compat_ioctl = compat_ptr_ioctl, 2513 .owner = THIS_MODULE, 2514 .llseek = noop_llseek, 2515 }; 2516 2517 static struct miscdevice btrfs_misc = { 2518 .minor = BTRFS_MINOR, 2519 .name = "btrfs-control", 2520 .fops = &btrfs_ctl_fops 2521 }; 2522 2523 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2524 MODULE_ALIAS("devname:btrfs-control"); 2525 2526 static int __init btrfs_interface_init(void) 2527 { 2528 return misc_register(&btrfs_misc); 2529 } 2530 2531 static __cold void btrfs_interface_exit(void) 2532 { 2533 misc_deregister(&btrfs_misc); 2534 } 2535 2536 static void __init btrfs_print_mod_info(void) 2537 { 2538 static const char options[] = "" 2539 #ifdef CONFIG_BTRFS_DEBUG 2540 ", debug=on" 2541 #endif 2542 #ifdef CONFIG_BTRFS_ASSERT 2543 ", assert=on" 2544 #endif 2545 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2546 ", integrity-checker=on" 2547 #endif 2548 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2549 ", ref-verify=on" 2550 #endif 2551 #ifdef CONFIG_BLK_DEV_ZONED 2552 ", zoned=yes" 2553 #else 2554 ", zoned=no" 2555 #endif 2556 #ifdef CONFIG_FS_VERITY 2557 ", fsverity=yes" 2558 #else 2559 ", fsverity=no" 2560 #endif 2561 ; 2562 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2563 } 2564 2565 static int __init init_btrfs_fs(void) 2566 { 2567 int err; 2568 2569 btrfs_props_init(); 2570 2571 err = btrfs_init_sysfs(); 2572 if (err) 2573 return err; 2574 2575 btrfs_init_compress(); 2576 2577 err = btrfs_init_cachep(); 2578 if (err) 2579 goto free_compress; 2580 2581 err = extent_io_init(); 2582 if (err) 2583 goto free_cachep; 2584 2585 err = extent_state_cache_init(); 2586 if (err) 2587 goto free_extent_io; 2588 2589 err = extent_map_init(); 2590 if (err) 2591 goto free_extent_state_cache; 2592 2593 err = ordered_data_init(); 2594 if (err) 2595 goto free_extent_map; 2596 2597 err = btrfs_delayed_inode_init(); 2598 if (err) 2599 goto free_ordered_data; 2600 2601 err = btrfs_auto_defrag_init(); 2602 if (err) 2603 goto free_delayed_inode; 2604 2605 err = btrfs_delayed_ref_init(); 2606 if (err) 2607 goto free_auto_defrag; 2608 2609 err = btrfs_prelim_ref_init(); 2610 if (err) 2611 goto free_delayed_ref; 2612 2613 err = btrfs_end_io_wq_init(); 2614 if (err) 2615 goto free_prelim_ref; 2616 2617 err = btrfs_interface_init(); 2618 if (err) 2619 goto free_end_io_wq; 2620 2621 btrfs_print_mod_info(); 2622 2623 err = btrfs_run_sanity_tests(); 2624 if (err) 2625 goto unregister_ioctl; 2626 2627 err = register_filesystem(&btrfs_fs_type); 2628 if (err) 2629 goto unregister_ioctl; 2630 2631 return 0; 2632 2633 unregister_ioctl: 2634 btrfs_interface_exit(); 2635 free_end_io_wq: 2636 btrfs_end_io_wq_exit(); 2637 free_prelim_ref: 2638 btrfs_prelim_ref_exit(); 2639 free_delayed_ref: 2640 btrfs_delayed_ref_exit(); 2641 free_auto_defrag: 2642 btrfs_auto_defrag_exit(); 2643 free_delayed_inode: 2644 btrfs_delayed_inode_exit(); 2645 free_ordered_data: 2646 ordered_data_exit(); 2647 free_extent_map: 2648 extent_map_exit(); 2649 free_extent_state_cache: 2650 extent_state_cache_exit(); 2651 free_extent_io: 2652 extent_io_exit(); 2653 free_cachep: 2654 btrfs_destroy_cachep(); 2655 free_compress: 2656 btrfs_exit_compress(); 2657 btrfs_exit_sysfs(); 2658 2659 return err; 2660 } 2661 2662 static void __exit exit_btrfs_fs(void) 2663 { 2664 btrfs_destroy_cachep(); 2665 btrfs_delayed_ref_exit(); 2666 btrfs_auto_defrag_exit(); 2667 btrfs_delayed_inode_exit(); 2668 btrfs_prelim_ref_exit(); 2669 ordered_data_exit(); 2670 extent_map_exit(); 2671 extent_state_cache_exit(); 2672 extent_io_exit(); 2673 btrfs_interface_exit(); 2674 btrfs_end_io_wq_exit(); 2675 unregister_filesystem(&btrfs_fs_type); 2676 btrfs_exit_sysfs(); 2677 btrfs_cleanup_fs_uuids(); 2678 btrfs_exit_compress(); 2679 } 2680 2681 late_initcall(init_btrfs_fs); 2682 module_exit(exit_btrfs_fs) 2683 2684 MODULE_LICENSE("GPL"); 2685 MODULE_SOFTDEP("pre: crc32c"); 2686 MODULE_SOFTDEP("pre: xxhash64"); 2687 MODULE_SOFTDEP("pre: sha256"); 2688 MODULE_SOFTDEP("pre: blake2b-256"); 2689