xref: /linux/fs/btrfs/super.c (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 /*
71  * Generally the error codes correspond to their respective errors, but there
72  * are a few special cases.
73  *
74  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75  *          instance will return EUCLEAN if any of the blocks are corrupted in
76  *          a way that is problematic.  We want to reserve EUCLEAN for these
77  *          sort of corruptions.
78  *
79  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80  *        need to use EROFS for this case.  We will have no idea of the
81  *        original failure, that will have been reported at the time we tripped
82  *        over the error.  Each subsequent error that doesn't have any context
83  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84  */
85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 	char *errstr = "unknown";
88 
89 	switch (errno) {
90 	case -ENOENT:		/* -2 */
91 		errstr = "No such entry";
92 		break;
93 	case -EIO:		/* -5 */
94 		errstr = "IO failure";
95 		break;
96 	case -ENOMEM:		/* -12*/
97 		errstr = "Out of memory";
98 		break;
99 	case -EEXIST:		/* -17 */
100 		errstr = "Object already exists";
101 		break;
102 	case -ENOSPC:		/* -28 */
103 		errstr = "No space left";
104 		break;
105 	case -EROFS:		/* -30 */
106 		errstr = "Readonly filesystem";
107 		break;
108 	case -EOPNOTSUPP:	/* -95 */
109 		errstr = "Operation not supported";
110 		break;
111 	case -EUCLEAN:		/* -117 */
112 		errstr = "Filesystem corrupted";
113 		break;
114 	case -EDQUOT:		/* -122 */
115 		errstr = "Quota exceeded";
116 		break;
117 	}
118 
119 	return errstr;
120 }
121 
122 /*
123  * __btrfs_handle_fs_error decodes expected errors from the caller and
124  * invokes the appropriate error response.
125  */
126 __cold
127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 		       unsigned int line, int errno, const char *fmt, ...)
129 {
130 	struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 	const char *errstr;
133 #endif
134 
135 	/*
136 	 * Special case: if the error is EROFS, and we're already
137 	 * under SB_RDONLY, then it is safe here.
138 	 */
139 	if (errno == -EROFS && sb_rdonly(sb))
140   		return;
141 
142 #ifdef CONFIG_PRINTK
143 	errstr = btrfs_decode_error(errno);
144 	if (fmt) {
145 		struct va_format vaf;
146 		va_list args;
147 
148 		va_start(args, fmt);
149 		vaf.fmt = fmt;
150 		vaf.va = &args;
151 
152 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 			sb->s_id, function, line, errno, errstr, &vaf);
154 		va_end(args);
155 	} else {
156 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 			sb->s_id, function, line, errno, errstr);
158 	}
159 #endif
160 
161 	/*
162 	 * Today we only save the error info to memory.  Long term we'll
163 	 * also send it down to the disk
164 	 */
165 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166 
167 	/* Don't go through full error handling during mount */
168 	if (!(sb->s_flags & SB_BORN))
169 		return;
170 
171 	if (sb_rdonly(sb))
172 		return;
173 
174 	btrfs_discard_stop(fs_info);
175 
176 	/* btrfs handle error by forcing the filesystem readonly */
177 	btrfs_set_sb_rdonly(sb);
178 	btrfs_info(fs_info, "forced readonly");
179 	/*
180 	 * Note that a running device replace operation is not canceled here
181 	 * although there is no way to update the progress. It would add the
182 	 * risk of a deadlock, therefore the canceling is omitted. The only
183 	 * penalty is that some I/O remains active until the procedure
184 	 * completes. The next time when the filesystem is mounted writable
185 	 * again, the device replace operation continues.
186 	 */
187 }
188 
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 	"emergency",
192 	"alert",
193 	"critical",
194 	"error",
195 	"warning",
196 	"notice",
197 	"info",
198 	"debug",
199 };
200 
201 
202 /*
203  * Use one ratelimit state per log level so that a flood of less important
204  * messages doesn't cause more important ones to be dropped.
205  */
206 static struct ratelimit_state printk_limits[] = {
207 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216 
217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 	struct va_format vaf;
221 	va_list args;
222 	int kern_level;
223 	const char *type = logtypes[4];
224 	struct ratelimit_state *ratelimit = &printk_limits[4];
225 
226 	va_start(args, fmt);
227 
228 	while ((kern_level = printk_get_level(fmt)) != 0) {
229 		size_t size = printk_skip_level(fmt) - fmt;
230 
231 		if (kern_level >= '0' && kern_level <= '7') {
232 			memcpy(lvl, fmt,  size);
233 			lvl[size] = '\0';
234 			type = logtypes[kern_level - '0'];
235 			ratelimit = &printk_limits[kern_level - '0'];
236 		}
237 		fmt += size;
238 	}
239 
240 	vaf.fmt = fmt;
241 	vaf.va = &args;
242 
243 	if (__ratelimit(ratelimit)) {
244 		if (fs_info)
245 			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
246 				fs_info->sb->s_id, &vaf);
247 		else
248 			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
249 	}
250 
251 	va_end(args);
252 }
253 #endif
254 
255 #if BITS_PER_LONG == 32
256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
257 {
258 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
259 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
260 		btrfs_warn(fs_info,
261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
262 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
263 		btrfs_warn(fs_info,
264 			   "please consider upgrading to 64bit kernel/hardware");
265 	}
266 }
267 
268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
269 {
270 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
271 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
272 		btrfs_err(fs_info,
273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
274 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
275 		btrfs_err(fs_info,
276 			   "please consider upgrading to 64bit kernel/hardware");
277 	}
278 }
279 #endif
280 
281 /*
282  * We only mark the transaction aborted and then set the file system read-only.
283  * This will prevent new transactions from starting or trying to join this
284  * one.
285  *
286  * This means that error recovery at the call site is limited to freeing
287  * any local memory allocations and passing the error code up without
288  * further cleanup. The transaction should complete as it normally would
289  * in the call path but will return -EIO.
290  *
291  * We'll complete the cleanup in btrfs_end_transaction and
292  * btrfs_commit_transaction.
293  */
294 __cold
295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
296 			       const char *function,
297 			       unsigned int line, int errno)
298 {
299 	struct btrfs_fs_info *fs_info = trans->fs_info;
300 
301 	WRITE_ONCE(trans->aborted, errno);
302 	/* Nothing used. The other threads that have joined this
303 	 * transaction may be able to continue. */
304 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
305 		const char *errstr;
306 
307 		errstr = btrfs_decode_error(errno);
308 		btrfs_warn(fs_info,
309 		           "%s:%d: Aborting unused transaction(%s).",
310 		           function, line, errstr);
311 		return;
312 	}
313 	WRITE_ONCE(trans->transaction->aborted, errno);
314 	/* Wake up anybody who may be waiting on this transaction */
315 	wake_up(&fs_info->transaction_wait);
316 	wake_up(&fs_info->transaction_blocked_wait);
317 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
318 }
319 /*
320  * __btrfs_panic decodes unexpected, fatal errors from the caller,
321  * issues an alert, and either panics or BUGs, depending on mount options.
322  */
323 __cold
324 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
325 		   unsigned int line, int errno, const char *fmt, ...)
326 {
327 	char *s_id = "<unknown>";
328 	const char *errstr;
329 	struct va_format vaf = { .fmt = fmt };
330 	va_list args;
331 
332 	if (fs_info)
333 		s_id = fs_info->sb->s_id;
334 
335 	va_start(args, fmt);
336 	vaf.va = &args;
337 
338 	errstr = btrfs_decode_error(errno);
339 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
340 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
341 			s_id, function, line, &vaf, errno, errstr);
342 
343 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
344 		   function, line, &vaf, errno, errstr);
345 	va_end(args);
346 	/* Caller calls BUG() */
347 }
348 
349 static void btrfs_put_super(struct super_block *sb)
350 {
351 	close_ctree(btrfs_sb(sb));
352 }
353 
354 enum {
355 	Opt_acl, Opt_noacl,
356 	Opt_clear_cache,
357 	Opt_commit_interval,
358 	Opt_compress,
359 	Opt_compress_force,
360 	Opt_compress_force_type,
361 	Opt_compress_type,
362 	Opt_degraded,
363 	Opt_device,
364 	Opt_fatal_errors,
365 	Opt_flushoncommit, Opt_noflushoncommit,
366 	Opt_max_inline,
367 	Opt_barrier, Opt_nobarrier,
368 	Opt_datacow, Opt_nodatacow,
369 	Opt_datasum, Opt_nodatasum,
370 	Opt_defrag, Opt_nodefrag,
371 	Opt_discard, Opt_nodiscard,
372 	Opt_discard_mode,
373 	Opt_norecovery,
374 	Opt_ratio,
375 	Opt_rescan_uuid_tree,
376 	Opt_skip_balance,
377 	Opt_space_cache, Opt_no_space_cache,
378 	Opt_space_cache_version,
379 	Opt_ssd, Opt_nossd,
380 	Opt_ssd_spread, Opt_nossd_spread,
381 	Opt_subvol,
382 	Opt_subvol_empty,
383 	Opt_subvolid,
384 	Opt_thread_pool,
385 	Opt_treelog, Opt_notreelog,
386 	Opt_user_subvol_rm_allowed,
387 
388 	/* Rescue options */
389 	Opt_rescue,
390 	Opt_usebackuproot,
391 	Opt_nologreplay,
392 	Opt_ignorebadroots,
393 	Opt_ignoredatacsums,
394 	Opt_rescue_all,
395 
396 	/* Deprecated options */
397 	Opt_recovery,
398 	Opt_inode_cache, Opt_noinode_cache,
399 
400 	/* Debugging options */
401 	Opt_check_integrity,
402 	Opt_check_integrity_including_extent_data,
403 	Opt_check_integrity_print_mask,
404 	Opt_enospc_debug, Opt_noenospc_debug,
405 #ifdef CONFIG_BTRFS_DEBUG
406 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
407 #endif
408 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
409 	Opt_ref_verify,
410 #endif
411 	Opt_err,
412 };
413 
414 static const match_table_t tokens = {
415 	{Opt_acl, "acl"},
416 	{Opt_noacl, "noacl"},
417 	{Opt_clear_cache, "clear_cache"},
418 	{Opt_commit_interval, "commit=%u"},
419 	{Opt_compress, "compress"},
420 	{Opt_compress_type, "compress=%s"},
421 	{Opt_compress_force, "compress-force"},
422 	{Opt_compress_force_type, "compress-force=%s"},
423 	{Opt_degraded, "degraded"},
424 	{Opt_device, "device=%s"},
425 	{Opt_fatal_errors, "fatal_errors=%s"},
426 	{Opt_flushoncommit, "flushoncommit"},
427 	{Opt_noflushoncommit, "noflushoncommit"},
428 	{Opt_inode_cache, "inode_cache"},
429 	{Opt_noinode_cache, "noinode_cache"},
430 	{Opt_max_inline, "max_inline=%s"},
431 	{Opt_barrier, "barrier"},
432 	{Opt_nobarrier, "nobarrier"},
433 	{Opt_datacow, "datacow"},
434 	{Opt_nodatacow, "nodatacow"},
435 	{Opt_datasum, "datasum"},
436 	{Opt_nodatasum, "nodatasum"},
437 	{Opt_defrag, "autodefrag"},
438 	{Opt_nodefrag, "noautodefrag"},
439 	{Opt_discard, "discard"},
440 	{Opt_discard_mode, "discard=%s"},
441 	{Opt_nodiscard, "nodiscard"},
442 	{Opt_norecovery, "norecovery"},
443 	{Opt_ratio, "metadata_ratio=%u"},
444 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
445 	{Opt_skip_balance, "skip_balance"},
446 	{Opt_space_cache, "space_cache"},
447 	{Opt_no_space_cache, "nospace_cache"},
448 	{Opt_space_cache_version, "space_cache=%s"},
449 	{Opt_ssd, "ssd"},
450 	{Opt_nossd, "nossd"},
451 	{Opt_ssd_spread, "ssd_spread"},
452 	{Opt_nossd_spread, "nossd_spread"},
453 	{Opt_subvol, "subvol=%s"},
454 	{Opt_subvol_empty, "subvol="},
455 	{Opt_subvolid, "subvolid=%s"},
456 	{Opt_thread_pool, "thread_pool=%u"},
457 	{Opt_treelog, "treelog"},
458 	{Opt_notreelog, "notreelog"},
459 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
460 
461 	/* Rescue options */
462 	{Opt_rescue, "rescue=%s"},
463 	/* Deprecated, with alias rescue=nologreplay */
464 	{Opt_nologreplay, "nologreplay"},
465 	/* Deprecated, with alias rescue=usebackuproot */
466 	{Opt_usebackuproot, "usebackuproot"},
467 
468 	/* Deprecated options */
469 	{Opt_recovery, "recovery"},
470 
471 	/* Debugging options */
472 	{Opt_check_integrity, "check_int"},
473 	{Opt_check_integrity_including_extent_data, "check_int_data"},
474 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
475 	{Opt_enospc_debug, "enospc_debug"},
476 	{Opt_noenospc_debug, "noenospc_debug"},
477 #ifdef CONFIG_BTRFS_DEBUG
478 	{Opt_fragment_data, "fragment=data"},
479 	{Opt_fragment_metadata, "fragment=metadata"},
480 	{Opt_fragment_all, "fragment=all"},
481 #endif
482 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
483 	{Opt_ref_verify, "ref_verify"},
484 #endif
485 	{Opt_err, NULL},
486 };
487 
488 static const match_table_t rescue_tokens = {
489 	{Opt_usebackuproot, "usebackuproot"},
490 	{Opt_nologreplay, "nologreplay"},
491 	{Opt_ignorebadroots, "ignorebadroots"},
492 	{Opt_ignorebadroots, "ibadroots"},
493 	{Opt_ignoredatacsums, "ignoredatacsums"},
494 	{Opt_ignoredatacsums, "idatacsums"},
495 	{Opt_rescue_all, "all"},
496 	{Opt_err, NULL},
497 };
498 
499 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
500 			    const char *opt_name)
501 {
502 	if (fs_info->mount_opt & opt) {
503 		btrfs_err(fs_info, "%s must be used with ro mount option",
504 			  opt_name);
505 		return true;
506 	}
507 	return false;
508 }
509 
510 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
511 {
512 	char *opts;
513 	char *orig;
514 	char *p;
515 	substring_t args[MAX_OPT_ARGS];
516 	int ret = 0;
517 
518 	opts = kstrdup(options, GFP_KERNEL);
519 	if (!opts)
520 		return -ENOMEM;
521 	orig = opts;
522 
523 	while ((p = strsep(&opts, ":")) != NULL) {
524 		int token;
525 
526 		if (!*p)
527 			continue;
528 		token = match_token(p, rescue_tokens, args);
529 		switch (token){
530 		case Opt_usebackuproot:
531 			btrfs_info(info,
532 				   "trying to use backup root at mount time");
533 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
534 			break;
535 		case Opt_nologreplay:
536 			btrfs_set_and_info(info, NOLOGREPLAY,
537 					   "disabling log replay at mount time");
538 			break;
539 		case Opt_ignorebadroots:
540 			btrfs_set_and_info(info, IGNOREBADROOTS,
541 					   "ignoring bad roots");
542 			break;
543 		case Opt_ignoredatacsums:
544 			btrfs_set_and_info(info, IGNOREDATACSUMS,
545 					   "ignoring data csums");
546 			break;
547 		case Opt_rescue_all:
548 			btrfs_info(info, "enabling all of the rescue options");
549 			btrfs_set_and_info(info, IGNOREDATACSUMS,
550 					   "ignoring data csums");
551 			btrfs_set_and_info(info, IGNOREBADROOTS,
552 					   "ignoring bad roots");
553 			btrfs_set_and_info(info, NOLOGREPLAY,
554 					   "disabling log replay at mount time");
555 			break;
556 		case Opt_err:
557 			btrfs_info(info, "unrecognized rescue option '%s'", p);
558 			ret = -EINVAL;
559 			goto out;
560 		default:
561 			break;
562 		}
563 
564 	}
565 out:
566 	kfree(orig);
567 	return ret;
568 }
569 
570 /*
571  * Regular mount options parser.  Everything that is needed only when
572  * reading in a new superblock is parsed here.
573  * XXX JDM: This needs to be cleaned up for remount.
574  */
575 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
576 			unsigned long new_flags)
577 {
578 	substring_t args[MAX_OPT_ARGS];
579 	char *p, *num;
580 	int intarg;
581 	int ret = 0;
582 	char *compress_type;
583 	bool compress_force = false;
584 	enum btrfs_compression_type saved_compress_type;
585 	int saved_compress_level;
586 	bool saved_compress_force;
587 	int no_compress = 0;
588 
589 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
590 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
591 	else if (btrfs_free_space_cache_v1_active(info)) {
592 		if (btrfs_is_zoned(info)) {
593 			btrfs_info(info,
594 			"zoned: clearing existing space cache");
595 			btrfs_set_super_cache_generation(info->super_copy, 0);
596 		} else {
597 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
598 		}
599 	}
600 
601 	/*
602 	 * Even the options are empty, we still need to do extra check
603 	 * against new flags
604 	 */
605 	if (!options)
606 		goto check;
607 
608 	while ((p = strsep(&options, ",")) != NULL) {
609 		int token;
610 		if (!*p)
611 			continue;
612 
613 		token = match_token(p, tokens, args);
614 		switch (token) {
615 		case Opt_degraded:
616 			btrfs_info(info, "allowing degraded mounts");
617 			btrfs_set_opt(info->mount_opt, DEGRADED);
618 			break;
619 		case Opt_subvol:
620 		case Opt_subvol_empty:
621 		case Opt_subvolid:
622 		case Opt_device:
623 			/*
624 			 * These are parsed by btrfs_parse_subvol_options or
625 			 * btrfs_parse_device_options and can be ignored here.
626 			 */
627 			break;
628 		case Opt_nodatasum:
629 			btrfs_set_and_info(info, NODATASUM,
630 					   "setting nodatasum");
631 			break;
632 		case Opt_datasum:
633 			if (btrfs_test_opt(info, NODATASUM)) {
634 				if (btrfs_test_opt(info, NODATACOW))
635 					btrfs_info(info,
636 						   "setting datasum, datacow enabled");
637 				else
638 					btrfs_info(info, "setting datasum");
639 			}
640 			btrfs_clear_opt(info->mount_opt, NODATACOW);
641 			btrfs_clear_opt(info->mount_opt, NODATASUM);
642 			break;
643 		case Opt_nodatacow:
644 			if (!btrfs_test_opt(info, NODATACOW)) {
645 				if (!btrfs_test_opt(info, COMPRESS) ||
646 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
647 					btrfs_info(info,
648 						   "setting nodatacow, compression disabled");
649 				} else {
650 					btrfs_info(info, "setting nodatacow");
651 				}
652 			}
653 			btrfs_clear_opt(info->mount_opt, COMPRESS);
654 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
655 			btrfs_set_opt(info->mount_opt, NODATACOW);
656 			btrfs_set_opt(info->mount_opt, NODATASUM);
657 			break;
658 		case Opt_datacow:
659 			btrfs_clear_and_info(info, NODATACOW,
660 					     "setting datacow");
661 			break;
662 		case Opt_compress_force:
663 		case Opt_compress_force_type:
664 			compress_force = true;
665 			fallthrough;
666 		case Opt_compress:
667 		case Opt_compress_type:
668 			saved_compress_type = btrfs_test_opt(info,
669 							     COMPRESS) ?
670 				info->compress_type : BTRFS_COMPRESS_NONE;
671 			saved_compress_force =
672 				btrfs_test_opt(info, FORCE_COMPRESS);
673 			saved_compress_level = info->compress_level;
674 			if (token == Opt_compress ||
675 			    token == Opt_compress_force ||
676 			    strncmp(args[0].from, "zlib", 4) == 0) {
677 				compress_type = "zlib";
678 
679 				info->compress_type = BTRFS_COMPRESS_ZLIB;
680 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
681 				/*
682 				 * args[0] contains uninitialized data since
683 				 * for these tokens we don't expect any
684 				 * parameter.
685 				 */
686 				if (token != Opt_compress &&
687 				    token != Opt_compress_force)
688 					info->compress_level =
689 					  btrfs_compress_str2level(
690 							BTRFS_COMPRESS_ZLIB,
691 							args[0].from + 4);
692 				btrfs_set_opt(info->mount_opt, COMPRESS);
693 				btrfs_clear_opt(info->mount_opt, NODATACOW);
694 				btrfs_clear_opt(info->mount_opt, NODATASUM);
695 				no_compress = 0;
696 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
697 				compress_type = "lzo";
698 				info->compress_type = BTRFS_COMPRESS_LZO;
699 				info->compress_level = 0;
700 				btrfs_set_opt(info->mount_opt, COMPRESS);
701 				btrfs_clear_opt(info->mount_opt, NODATACOW);
702 				btrfs_clear_opt(info->mount_opt, NODATASUM);
703 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
704 				no_compress = 0;
705 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
706 				compress_type = "zstd";
707 				info->compress_type = BTRFS_COMPRESS_ZSTD;
708 				info->compress_level =
709 					btrfs_compress_str2level(
710 							 BTRFS_COMPRESS_ZSTD,
711 							 args[0].from + 4);
712 				btrfs_set_opt(info->mount_opt, COMPRESS);
713 				btrfs_clear_opt(info->mount_opt, NODATACOW);
714 				btrfs_clear_opt(info->mount_opt, NODATASUM);
715 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
716 				no_compress = 0;
717 			} else if (strncmp(args[0].from, "no", 2) == 0) {
718 				compress_type = "no";
719 				info->compress_level = 0;
720 				info->compress_type = 0;
721 				btrfs_clear_opt(info->mount_opt, COMPRESS);
722 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
723 				compress_force = false;
724 				no_compress++;
725 			} else {
726 				ret = -EINVAL;
727 				goto out;
728 			}
729 
730 			if (compress_force) {
731 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
732 			} else {
733 				/*
734 				 * If we remount from compress-force=xxx to
735 				 * compress=xxx, we need clear FORCE_COMPRESS
736 				 * flag, otherwise, there is no way for users
737 				 * to disable forcible compression separately.
738 				 */
739 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
740 			}
741 			if (no_compress == 1) {
742 				btrfs_info(info, "use no compression");
743 			} else if ((info->compress_type != saved_compress_type) ||
744 				   (compress_force != saved_compress_force) ||
745 				   (info->compress_level != saved_compress_level)) {
746 				btrfs_info(info, "%s %s compression, level %d",
747 					   (compress_force) ? "force" : "use",
748 					   compress_type, info->compress_level);
749 			}
750 			compress_force = false;
751 			break;
752 		case Opt_ssd:
753 			btrfs_set_and_info(info, SSD,
754 					   "enabling ssd optimizations");
755 			btrfs_clear_opt(info->mount_opt, NOSSD);
756 			break;
757 		case Opt_ssd_spread:
758 			btrfs_set_and_info(info, SSD,
759 					   "enabling ssd optimizations");
760 			btrfs_set_and_info(info, SSD_SPREAD,
761 					   "using spread ssd allocation scheme");
762 			btrfs_clear_opt(info->mount_opt, NOSSD);
763 			break;
764 		case Opt_nossd:
765 			btrfs_set_opt(info->mount_opt, NOSSD);
766 			btrfs_clear_and_info(info, SSD,
767 					     "not using ssd optimizations");
768 			fallthrough;
769 		case Opt_nossd_spread:
770 			btrfs_clear_and_info(info, SSD_SPREAD,
771 					     "not using spread ssd allocation scheme");
772 			break;
773 		case Opt_barrier:
774 			btrfs_clear_and_info(info, NOBARRIER,
775 					     "turning on barriers");
776 			break;
777 		case Opt_nobarrier:
778 			btrfs_set_and_info(info, NOBARRIER,
779 					   "turning off barriers");
780 			break;
781 		case Opt_thread_pool:
782 			ret = match_int(&args[0], &intarg);
783 			if (ret) {
784 				goto out;
785 			} else if (intarg == 0) {
786 				ret = -EINVAL;
787 				goto out;
788 			}
789 			info->thread_pool_size = intarg;
790 			break;
791 		case Opt_max_inline:
792 			num = match_strdup(&args[0]);
793 			if (num) {
794 				info->max_inline = memparse(num, NULL);
795 				kfree(num);
796 
797 				if (info->max_inline) {
798 					info->max_inline = min_t(u64,
799 						info->max_inline,
800 						info->sectorsize);
801 				}
802 				btrfs_info(info, "max_inline at %llu",
803 					   info->max_inline);
804 			} else {
805 				ret = -ENOMEM;
806 				goto out;
807 			}
808 			break;
809 		case Opt_acl:
810 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
811 			info->sb->s_flags |= SB_POSIXACL;
812 			break;
813 #else
814 			btrfs_err(info, "support for ACL not compiled in!");
815 			ret = -EINVAL;
816 			goto out;
817 #endif
818 		case Opt_noacl:
819 			info->sb->s_flags &= ~SB_POSIXACL;
820 			break;
821 		case Opt_notreelog:
822 			btrfs_set_and_info(info, NOTREELOG,
823 					   "disabling tree log");
824 			break;
825 		case Opt_treelog:
826 			btrfs_clear_and_info(info, NOTREELOG,
827 					     "enabling tree log");
828 			break;
829 		case Opt_norecovery:
830 		case Opt_nologreplay:
831 			btrfs_warn(info,
832 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
833 			btrfs_set_and_info(info, NOLOGREPLAY,
834 					   "disabling log replay at mount time");
835 			break;
836 		case Opt_flushoncommit:
837 			btrfs_set_and_info(info, FLUSHONCOMMIT,
838 					   "turning on flush-on-commit");
839 			break;
840 		case Opt_noflushoncommit:
841 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
842 					     "turning off flush-on-commit");
843 			break;
844 		case Opt_ratio:
845 			ret = match_int(&args[0], &intarg);
846 			if (ret)
847 				goto out;
848 			info->metadata_ratio = intarg;
849 			btrfs_info(info, "metadata ratio %u",
850 				   info->metadata_ratio);
851 			break;
852 		case Opt_discard:
853 		case Opt_discard_mode:
854 			if (token == Opt_discard ||
855 			    strcmp(args[0].from, "sync") == 0) {
856 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
857 				btrfs_set_and_info(info, DISCARD_SYNC,
858 						   "turning on sync discard");
859 			} else if (strcmp(args[0].from, "async") == 0) {
860 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
861 				btrfs_set_and_info(info, DISCARD_ASYNC,
862 						   "turning on async discard");
863 			} else {
864 				ret = -EINVAL;
865 				goto out;
866 			}
867 			break;
868 		case Opt_nodiscard:
869 			btrfs_clear_and_info(info, DISCARD_SYNC,
870 					     "turning off discard");
871 			btrfs_clear_and_info(info, DISCARD_ASYNC,
872 					     "turning off async discard");
873 			break;
874 		case Opt_space_cache:
875 		case Opt_space_cache_version:
876 			if (token == Opt_space_cache ||
877 			    strcmp(args[0].from, "v1") == 0) {
878 				btrfs_clear_opt(info->mount_opt,
879 						FREE_SPACE_TREE);
880 				btrfs_set_and_info(info, SPACE_CACHE,
881 					   "enabling disk space caching");
882 			} else if (strcmp(args[0].from, "v2") == 0) {
883 				btrfs_clear_opt(info->mount_opt,
884 						SPACE_CACHE);
885 				btrfs_set_and_info(info, FREE_SPACE_TREE,
886 						   "enabling free space tree");
887 			} else {
888 				ret = -EINVAL;
889 				goto out;
890 			}
891 			break;
892 		case Opt_rescan_uuid_tree:
893 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
894 			break;
895 		case Opt_no_space_cache:
896 			if (btrfs_test_opt(info, SPACE_CACHE)) {
897 				btrfs_clear_and_info(info, SPACE_CACHE,
898 					     "disabling disk space caching");
899 			}
900 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
901 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
902 					     "disabling free space tree");
903 			}
904 			break;
905 		case Opt_inode_cache:
906 		case Opt_noinode_cache:
907 			btrfs_warn(info,
908 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
909 			break;
910 		case Opt_clear_cache:
911 			btrfs_set_and_info(info, CLEAR_CACHE,
912 					   "force clearing of disk cache");
913 			break;
914 		case Opt_user_subvol_rm_allowed:
915 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
916 			break;
917 		case Opt_enospc_debug:
918 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
919 			break;
920 		case Opt_noenospc_debug:
921 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
922 			break;
923 		case Opt_defrag:
924 			btrfs_set_and_info(info, AUTO_DEFRAG,
925 					   "enabling auto defrag");
926 			break;
927 		case Opt_nodefrag:
928 			btrfs_clear_and_info(info, AUTO_DEFRAG,
929 					     "disabling auto defrag");
930 			break;
931 		case Opt_recovery:
932 		case Opt_usebackuproot:
933 			btrfs_warn(info,
934 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
935 				   token == Opt_recovery ? "recovery" :
936 				   "usebackuproot");
937 			btrfs_info(info,
938 				   "trying to use backup root at mount time");
939 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
940 			break;
941 		case Opt_skip_balance:
942 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
943 			break;
944 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
945 		case Opt_check_integrity_including_extent_data:
946 			btrfs_info(info,
947 				   "enabling check integrity including extent data");
948 			btrfs_set_opt(info->mount_opt,
949 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
950 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
951 			break;
952 		case Opt_check_integrity:
953 			btrfs_info(info, "enabling check integrity");
954 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
955 			break;
956 		case Opt_check_integrity_print_mask:
957 			ret = match_int(&args[0], &intarg);
958 			if (ret)
959 				goto out;
960 			info->check_integrity_print_mask = intarg;
961 			btrfs_info(info, "check_integrity_print_mask 0x%x",
962 				   info->check_integrity_print_mask);
963 			break;
964 #else
965 		case Opt_check_integrity_including_extent_data:
966 		case Opt_check_integrity:
967 		case Opt_check_integrity_print_mask:
968 			btrfs_err(info,
969 				  "support for check_integrity* not compiled in!");
970 			ret = -EINVAL;
971 			goto out;
972 #endif
973 		case Opt_fatal_errors:
974 			if (strcmp(args[0].from, "panic") == 0)
975 				btrfs_set_opt(info->mount_opt,
976 					      PANIC_ON_FATAL_ERROR);
977 			else if (strcmp(args[0].from, "bug") == 0)
978 				btrfs_clear_opt(info->mount_opt,
979 					      PANIC_ON_FATAL_ERROR);
980 			else {
981 				ret = -EINVAL;
982 				goto out;
983 			}
984 			break;
985 		case Opt_commit_interval:
986 			intarg = 0;
987 			ret = match_int(&args[0], &intarg);
988 			if (ret)
989 				goto out;
990 			if (intarg == 0) {
991 				btrfs_info(info,
992 					   "using default commit interval %us",
993 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
994 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
995 			} else if (intarg > 300) {
996 				btrfs_warn(info, "excessive commit interval %d",
997 					   intarg);
998 			}
999 			info->commit_interval = intarg;
1000 			break;
1001 		case Opt_rescue:
1002 			ret = parse_rescue_options(info, args[0].from);
1003 			if (ret < 0)
1004 				goto out;
1005 			break;
1006 #ifdef CONFIG_BTRFS_DEBUG
1007 		case Opt_fragment_all:
1008 			btrfs_info(info, "fragmenting all space");
1009 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1010 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1011 			break;
1012 		case Opt_fragment_metadata:
1013 			btrfs_info(info, "fragmenting metadata");
1014 			btrfs_set_opt(info->mount_opt,
1015 				      FRAGMENT_METADATA);
1016 			break;
1017 		case Opt_fragment_data:
1018 			btrfs_info(info, "fragmenting data");
1019 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1020 			break;
1021 #endif
1022 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1023 		case Opt_ref_verify:
1024 			btrfs_info(info, "doing ref verification");
1025 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1026 			break;
1027 #endif
1028 		case Opt_err:
1029 			btrfs_err(info, "unrecognized mount option '%s'", p);
1030 			ret = -EINVAL;
1031 			goto out;
1032 		default:
1033 			break;
1034 		}
1035 	}
1036 check:
1037 	/* We're read-only, don't have to check. */
1038 	if (new_flags & SB_RDONLY)
1039 		goto out;
1040 
1041 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1042 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1043 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1044 		ret = -EINVAL;
1045 out:
1046 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1047 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1048 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1049 		btrfs_err(info, "cannot disable free space tree");
1050 		ret = -EINVAL;
1051 
1052 	}
1053 	if (!ret)
1054 		ret = btrfs_check_mountopts_zoned(info);
1055 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1056 		btrfs_info(info, "disk space caching is enabled");
1057 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1058 		btrfs_info(info, "using free space tree");
1059 	return ret;
1060 }
1061 
1062 /*
1063  * Parse mount options that are required early in the mount process.
1064  *
1065  * All other options will be parsed on much later in the mount process and
1066  * only when we need to allocate a new super block.
1067  */
1068 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1069 				      void *holder)
1070 {
1071 	substring_t args[MAX_OPT_ARGS];
1072 	char *device_name, *opts, *orig, *p;
1073 	struct btrfs_device *device = NULL;
1074 	int error = 0;
1075 
1076 	lockdep_assert_held(&uuid_mutex);
1077 
1078 	if (!options)
1079 		return 0;
1080 
1081 	/*
1082 	 * strsep changes the string, duplicate it because btrfs_parse_options
1083 	 * gets called later
1084 	 */
1085 	opts = kstrdup(options, GFP_KERNEL);
1086 	if (!opts)
1087 		return -ENOMEM;
1088 	orig = opts;
1089 
1090 	while ((p = strsep(&opts, ",")) != NULL) {
1091 		int token;
1092 
1093 		if (!*p)
1094 			continue;
1095 
1096 		token = match_token(p, tokens, args);
1097 		if (token == Opt_device) {
1098 			device_name = match_strdup(&args[0]);
1099 			if (!device_name) {
1100 				error = -ENOMEM;
1101 				goto out;
1102 			}
1103 			device = btrfs_scan_one_device(device_name, flags,
1104 					holder);
1105 			kfree(device_name);
1106 			if (IS_ERR(device)) {
1107 				error = PTR_ERR(device);
1108 				goto out;
1109 			}
1110 		}
1111 	}
1112 
1113 out:
1114 	kfree(orig);
1115 	return error;
1116 }
1117 
1118 /*
1119  * Parse mount options that are related to subvolume id
1120  *
1121  * The value is later passed to mount_subvol()
1122  */
1123 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1124 		u64 *subvol_objectid)
1125 {
1126 	substring_t args[MAX_OPT_ARGS];
1127 	char *opts, *orig, *p;
1128 	int error = 0;
1129 	u64 subvolid;
1130 
1131 	if (!options)
1132 		return 0;
1133 
1134 	/*
1135 	 * strsep changes the string, duplicate it because
1136 	 * btrfs_parse_device_options gets called later
1137 	 */
1138 	opts = kstrdup(options, GFP_KERNEL);
1139 	if (!opts)
1140 		return -ENOMEM;
1141 	orig = opts;
1142 
1143 	while ((p = strsep(&opts, ",")) != NULL) {
1144 		int token;
1145 		if (!*p)
1146 			continue;
1147 
1148 		token = match_token(p, tokens, args);
1149 		switch (token) {
1150 		case Opt_subvol:
1151 			kfree(*subvol_name);
1152 			*subvol_name = match_strdup(&args[0]);
1153 			if (!*subvol_name) {
1154 				error = -ENOMEM;
1155 				goto out;
1156 			}
1157 			break;
1158 		case Opt_subvolid:
1159 			error = match_u64(&args[0], &subvolid);
1160 			if (error)
1161 				goto out;
1162 
1163 			/* we want the original fs_tree */
1164 			if (subvolid == 0)
1165 				subvolid = BTRFS_FS_TREE_OBJECTID;
1166 
1167 			*subvol_objectid = subvolid;
1168 			break;
1169 		default:
1170 			break;
1171 		}
1172 	}
1173 
1174 out:
1175 	kfree(orig);
1176 	return error;
1177 }
1178 
1179 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1180 					  u64 subvol_objectid)
1181 {
1182 	struct btrfs_root *root = fs_info->tree_root;
1183 	struct btrfs_root *fs_root = NULL;
1184 	struct btrfs_root_ref *root_ref;
1185 	struct btrfs_inode_ref *inode_ref;
1186 	struct btrfs_key key;
1187 	struct btrfs_path *path = NULL;
1188 	char *name = NULL, *ptr;
1189 	u64 dirid;
1190 	int len;
1191 	int ret;
1192 
1193 	path = btrfs_alloc_path();
1194 	if (!path) {
1195 		ret = -ENOMEM;
1196 		goto err;
1197 	}
1198 
1199 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1200 	if (!name) {
1201 		ret = -ENOMEM;
1202 		goto err;
1203 	}
1204 	ptr = name + PATH_MAX - 1;
1205 	ptr[0] = '\0';
1206 
1207 	/*
1208 	 * Walk up the subvolume trees in the tree of tree roots by root
1209 	 * backrefs until we hit the top-level subvolume.
1210 	 */
1211 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1212 		key.objectid = subvol_objectid;
1213 		key.type = BTRFS_ROOT_BACKREF_KEY;
1214 		key.offset = (u64)-1;
1215 
1216 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1217 		if (ret < 0) {
1218 			goto err;
1219 		} else if (ret > 0) {
1220 			ret = btrfs_previous_item(root, path, subvol_objectid,
1221 						  BTRFS_ROOT_BACKREF_KEY);
1222 			if (ret < 0) {
1223 				goto err;
1224 			} else if (ret > 0) {
1225 				ret = -ENOENT;
1226 				goto err;
1227 			}
1228 		}
1229 
1230 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1231 		subvol_objectid = key.offset;
1232 
1233 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1234 					  struct btrfs_root_ref);
1235 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1236 		ptr -= len + 1;
1237 		if (ptr < name) {
1238 			ret = -ENAMETOOLONG;
1239 			goto err;
1240 		}
1241 		read_extent_buffer(path->nodes[0], ptr + 1,
1242 				   (unsigned long)(root_ref + 1), len);
1243 		ptr[0] = '/';
1244 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1245 		btrfs_release_path(path);
1246 
1247 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1248 		if (IS_ERR(fs_root)) {
1249 			ret = PTR_ERR(fs_root);
1250 			fs_root = NULL;
1251 			goto err;
1252 		}
1253 
1254 		/*
1255 		 * Walk up the filesystem tree by inode refs until we hit the
1256 		 * root directory.
1257 		 */
1258 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1259 			key.objectid = dirid;
1260 			key.type = BTRFS_INODE_REF_KEY;
1261 			key.offset = (u64)-1;
1262 
1263 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1264 			if (ret < 0) {
1265 				goto err;
1266 			} else if (ret > 0) {
1267 				ret = btrfs_previous_item(fs_root, path, dirid,
1268 							  BTRFS_INODE_REF_KEY);
1269 				if (ret < 0) {
1270 					goto err;
1271 				} else if (ret > 0) {
1272 					ret = -ENOENT;
1273 					goto err;
1274 				}
1275 			}
1276 
1277 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1278 			dirid = key.offset;
1279 
1280 			inode_ref = btrfs_item_ptr(path->nodes[0],
1281 						   path->slots[0],
1282 						   struct btrfs_inode_ref);
1283 			len = btrfs_inode_ref_name_len(path->nodes[0],
1284 						       inode_ref);
1285 			ptr -= len + 1;
1286 			if (ptr < name) {
1287 				ret = -ENAMETOOLONG;
1288 				goto err;
1289 			}
1290 			read_extent_buffer(path->nodes[0], ptr + 1,
1291 					   (unsigned long)(inode_ref + 1), len);
1292 			ptr[0] = '/';
1293 			btrfs_release_path(path);
1294 		}
1295 		btrfs_put_root(fs_root);
1296 		fs_root = NULL;
1297 	}
1298 
1299 	btrfs_free_path(path);
1300 	if (ptr == name + PATH_MAX - 1) {
1301 		name[0] = '/';
1302 		name[1] = '\0';
1303 	} else {
1304 		memmove(name, ptr, name + PATH_MAX - ptr);
1305 	}
1306 	return name;
1307 
1308 err:
1309 	btrfs_put_root(fs_root);
1310 	btrfs_free_path(path);
1311 	kfree(name);
1312 	return ERR_PTR(ret);
1313 }
1314 
1315 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1316 {
1317 	struct btrfs_root *root = fs_info->tree_root;
1318 	struct btrfs_dir_item *di;
1319 	struct btrfs_path *path;
1320 	struct btrfs_key location;
1321 	u64 dir_id;
1322 
1323 	path = btrfs_alloc_path();
1324 	if (!path)
1325 		return -ENOMEM;
1326 
1327 	/*
1328 	 * Find the "default" dir item which points to the root item that we
1329 	 * will mount by default if we haven't been given a specific subvolume
1330 	 * to mount.
1331 	 */
1332 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1333 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1334 	if (IS_ERR(di)) {
1335 		btrfs_free_path(path);
1336 		return PTR_ERR(di);
1337 	}
1338 	if (!di) {
1339 		/*
1340 		 * Ok the default dir item isn't there.  This is weird since
1341 		 * it's always been there, but don't freak out, just try and
1342 		 * mount the top-level subvolume.
1343 		 */
1344 		btrfs_free_path(path);
1345 		*objectid = BTRFS_FS_TREE_OBJECTID;
1346 		return 0;
1347 	}
1348 
1349 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1350 	btrfs_free_path(path);
1351 	*objectid = location.objectid;
1352 	return 0;
1353 }
1354 
1355 static int btrfs_fill_super(struct super_block *sb,
1356 			    struct btrfs_fs_devices *fs_devices,
1357 			    void *data)
1358 {
1359 	struct inode *inode;
1360 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1361 	int err;
1362 
1363 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1364 	sb->s_magic = BTRFS_SUPER_MAGIC;
1365 	sb->s_op = &btrfs_super_ops;
1366 	sb->s_d_op = &btrfs_dentry_operations;
1367 	sb->s_export_op = &btrfs_export_ops;
1368 	sb->s_xattr = btrfs_xattr_handlers;
1369 	sb->s_time_gran = 1;
1370 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1371 	sb->s_flags |= SB_POSIXACL;
1372 #endif
1373 	sb->s_flags |= SB_I_VERSION;
1374 	sb->s_iflags |= SB_I_CGROUPWB;
1375 
1376 	err = super_setup_bdi(sb);
1377 	if (err) {
1378 		btrfs_err(fs_info, "super_setup_bdi failed");
1379 		return err;
1380 	}
1381 
1382 	err = open_ctree(sb, fs_devices, (char *)data);
1383 	if (err) {
1384 		btrfs_err(fs_info, "open_ctree failed");
1385 		return err;
1386 	}
1387 
1388 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1389 	if (IS_ERR(inode)) {
1390 		err = PTR_ERR(inode);
1391 		goto fail_close;
1392 	}
1393 
1394 	sb->s_root = d_make_root(inode);
1395 	if (!sb->s_root) {
1396 		err = -ENOMEM;
1397 		goto fail_close;
1398 	}
1399 
1400 	cleancache_init_fs(sb);
1401 	sb->s_flags |= SB_ACTIVE;
1402 	return 0;
1403 
1404 fail_close:
1405 	close_ctree(fs_info);
1406 	return err;
1407 }
1408 
1409 int btrfs_sync_fs(struct super_block *sb, int wait)
1410 {
1411 	struct btrfs_trans_handle *trans;
1412 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1413 	struct btrfs_root *root = fs_info->tree_root;
1414 
1415 	trace_btrfs_sync_fs(fs_info, wait);
1416 
1417 	if (!wait) {
1418 		filemap_flush(fs_info->btree_inode->i_mapping);
1419 		return 0;
1420 	}
1421 
1422 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1423 
1424 	trans = btrfs_attach_transaction_barrier(root);
1425 	if (IS_ERR(trans)) {
1426 		/* no transaction, don't bother */
1427 		if (PTR_ERR(trans) == -ENOENT) {
1428 			/*
1429 			 * Exit unless we have some pending changes
1430 			 * that need to go through commit
1431 			 */
1432 			if (fs_info->pending_changes == 0)
1433 				return 0;
1434 			/*
1435 			 * A non-blocking test if the fs is frozen. We must not
1436 			 * start a new transaction here otherwise a deadlock
1437 			 * happens. The pending operations are delayed to the
1438 			 * next commit after thawing.
1439 			 */
1440 			if (sb_start_write_trylock(sb))
1441 				sb_end_write(sb);
1442 			else
1443 				return 0;
1444 			trans = btrfs_start_transaction(root, 0);
1445 		}
1446 		if (IS_ERR(trans))
1447 			return PTR_ERR(trans);
1448 	}
1449 	return btrfs_commit_transaction(trans);
1450 }
1451 
1452 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1453 {
1454 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1455 	*printed = true;
1456 }
1457 
1458 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1459 {
1460 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1461 	const char *compress_type;
1462 	const char *subvol_name;
1463 	bool printed = false;
1464 
1465 	if (btrfs_test_opt(info, DEGRADED))
1466 		seq_puts(seq, ",degraded");
1467 	if (btrfs_test_opt(info, NODATASUM))
1468 		seq_puts(seq, ",nodatasum");
1469 	if (btrfs_test_opt(info, NODATACOW))
1470 		seq_puts(seq, ",nodatacow");
1471 	if (btrfs_test_opt(info, NOBARRIER))
1472 		seq_puts(seq, ",nobarrier");
1473 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1474 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1475 	if (info->thread_pool_size !=  min_t(unsigned long,
1476 					     num_online_cpus() + 2, 8))
1477 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1478 	if (btrfs_test_opt(info, COMPRESS)) {
1479 		compress_type = btrfs_compress_type2str(info->compress_type);
1480 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1481 			seq_printf(seq, ",compress-force=%s", compress_type);
1482 		else
1483 			seq_printf(seq, ",compress=%s", compress_type);
1484 		if (info->compress_level)
1485 			seq_printf(seq, ":%d", info->compress_level);
1486 	}
1487 	if (btrfs_test_opt(info, NOSSD))
1488 		seq_puts(seq, ",nossd");
1489 	if (btrfs_test_opt(info, SSD_SPREAD))
1490 		seq_puts(seq, ",ssd_spread");
1491 	else if (btrfs_test_opt(info, SSD))
1492 		seq_puts(seq, ",ssd");
1493 	if (btrfs_test_opt(info, NOTREELOG))
1494 		seq_puts(seq, ",notreelog");
1495 	if (btrfs_test_opt(info, NOLOGREPLAY))
1496 		print_rescue_option(seq, "nologreplay", &printed);
1497 	if (btrfs_test_opt(info, USEBACKUPROOT))
1498 		print_rescue_option(seq, "usebackuproot", &printed);
1499 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1500 		print_rescue_option(seq, "ignorebadroots", &printed);
1501 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1502 		print_rescue_option(seq, "ignoredatacsums", &printed);
1503 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1504 		seq_puts(seq, ",flushoncommit");
1505 	if (btrfs_test_opt(info, DISCARD_SYNC))
1506 		seq_puts(seq, ",discard");
1507 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1508 		seq_puts(seq, ",discard=async");
1509 	if (!(info->sb->s_flags & SB_POSIXACL))
1510 		seq_puts(seq, ",noacl");
1511 	if (btrfs_free_space_cache_v1_active(info))
1512 		seq_puts(seq, ",space_cache");
1513 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1514 		seq_puts(seq, ",space_cache=v2");
1515 	else
1516 		seq_puts(seq, ",nospace_cache");
1517 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1518 		seq_puts(seq, ",rescan_uuid_tree");
1519 	if (btrfs_test_opt(info, CLEAR_CACHE))
1520 		seq_puts(seq, ",clear_cache");
1521 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1522 		seq_puts(seq, ",user_subvol_rm_allowed");
1523 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1524 		seq_puts(seq, ",enospc_debug");
1525 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1526 		seq_puts(seq, ",autodefrag");
1527 	if (btrfs_test_opt(info, SKIP_BALANCE))
1528 		seq_puts(seq, ",skip_balance");
1529 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1530 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1531 		seq_puts(seq, ",check_int_data");
1532 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1533 		seq_puts(seq, ",check_int");
1534 	if (info->check_integrity_print_mask)
1535 		seq_printf(seq, ",check_int_print_mask=%d",
1536 				info->check_integrity_print_mask);
1537 #endif
1538 	if (info->metadata_ratio)
1539 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1540 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1541 		seq_puts(seq, ",fatal_errors=panic");
1542 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1543 		seq_printf(seq, ",commit=%u", info->commit_interval);
1544 #ifdef CONFIG_BTRFS_DEBUG
1545 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1546 		seq_puts(seq, ",fragment=data");
1547 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1548 		seq_puts(seq, ",fragment=metadata");
1549 #endif
1550 	if (btrfs_test_opt(info, REF_VERIFY))
1551 		seq_puts(seq, ",ref_verify");
1552 	seq_printf(seq, ",subvolid=%llu",
1553 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1554 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1555 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1556 	if (!IS_ERR(subvol_name)) {
1557 		seq_puts(seq, ",subvol=");
1558 		seq_escape(seq, subvol_name, " \t\n\\");
1559 		kfree(subvol_name);
1560 	}
1561 	return 0;
1562 }
1563 
1564 static int btrfs_test_super(struct super_block *s, void *data)
1565 {
1566 	struct btrfs_fs_info *p = data;
1567 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1568 
1569 	return fs_info->fs_devices == p->fs_devices;
1570 }
1571 
1572 static int btrfs_set_super(struct super_block *s, void *data)
1573 {
1574 	int err = set_anon_super(s, data);
1575 	if (!err)
1576 		s->s_fs_info = data;
1577 	return err;
1578 }
1579 
1580 /*
1581  * subvolumes are identified by ino 256
1582  */
1583 static inline int is_subvolume_inode(struct inode *inode)
1584 {
1585 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1586 		return 1;
1587 	return 0;
1588 }
1589 
1590 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1591 				   struct vfsmount *mnt)
1592 {
1593 	struct dentry *root;
1594 	int ret;
1595 
1596 	if (!subvol_name) {
1597 		if (!subvol_objectid) {
1598 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1599 							  &subvol_objectid);
1600 			if (ret) {
1601 				root = ERR_PTR(ret);
1602 				goto out;
1603 			}
1604 		}
1605 		subvol_name = btrfs_get_subvol_name_from_objectid(
1606 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1607 		if (IS_ERR(subvol_name)) {
1608 			root = ERR_CAST(subvol_name);
1609 			subvol_name = NULL;
1610 			goto out;
1611 		}
1612 
1613 	}
1614 
1615 	root = mount_subtree(mnt, subvol_name);
1616 	/* mount_subtree() drops our reference on the vfsmount. */
1617 	mnt = NULL;
1618 
1619 	if (!IS_ERR(root)) {
1620 		struct super_block *s = root->d_sb;
1621 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1622 		struct inode *root_inode = d_inode(root);
1623 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1624 
1625 		ret = 0;
1626 		if (!is_subvolume_inode(root_inode)) {
1627 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1628 			       subvol_name);
1629 			ret = -EINVAL;
1630 		}
1631 		if (subvol_objectid && root_objectid != subvol_objectid) {
1632 			/*
1633 			 * This will also catch a race condition where a
1634 			 * subvolume which was passed by ID is renamed and
1635 			 * another subvolume is renamed over the old location.
1636 			 */
1637 			btrfs_err(fs_info,
1638 				  "subvol '%s' does not match subvolid %llu",
1639 				  subvol_name, subvol_objectid);
1640 			ret = -EINVAL;
1641 		}
1642 		if (ret) {
1643 			dput(root);
1644 			root = ERR_PTR(ret);
1645 			deactivate_locked_super(s);
1646 		}
1647 	}
1648 
1649 out:
1650 	mntput(mnt);
1651 	kfree(subvol_name);
1652 	return root;
1653 }
1654 
1655 /*
1656  * Find a superblock for the given device / mount point.
1657  *
1658  * Note: This is based on mount_bdev from fs/super.c with a few additions
1659  *       for multiple device setup.  Make sure to keep it in sync.
1660  */
1661 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1662 		int flags, const char *device_name, void *data)
1663 {
1664 	struct block_device *bdev = NULL;
1665 	struct super_block *s;
1666 	struct btrfs_device *device = NULL;
1667 	struct btrfs_fs_devices *fs_devices = NULL;
1668 	struct btrfs_fs_info *fs_info = NULL;
1669 	void *new_sec_opts = NULL;
1670 	fmode_t mode = FMODE_READ;
1671 	int error = 0;
1672 
1673 	if (!(flags & SB_RDONLY))
1674 		mode |= FMODE_WRITE;
1675 
1676 	if (data) {
1677 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1678 		if (error)
1679 			return ERR_PTR(error);
1680 	}
1681 
1682 	/*
1683 	 * Setup a dummy root and fs_info for test/set super.  This is because
1684 	 * we don't actually fill this stuff out until open_ctree, but we need
1685 	 * then open_ctree will properly initialize the file system specific
1686 	 * settings later.  btrfs_init_fs_info initializes the static elements
1687 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1688 	 * superblock with our given fs_devices later on at sget() time.
1689 	 */
1690 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1691 	if (!fs_info) {
1692 		error = -ENOMEM;
1693 		goto error_sec_opts;
1694 	}
1695 	btrfs_init_fs_info(fs_info);
1696 
1697 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1698 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1699 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1700 		error = -ENOMEM;
1701 		goto error_fs_info;
1702 	}
1703 
1704 	mutex_lock(&uuid_mutex);
1705 	error = btrfs_parse_device_options(data, mode, fs_type);
1706 	if (error) {
1707 		mutex_unlock(&uuid_mutex);
1708 		goto error_fs_info;
1709 	}
1710 
1711 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1712 	if (IS_ERR(device)) {
1713 		mutex_unlock(&uuid_mutex);
1714 		error = PTR_ERR(device);
1715 		goto error_fs_info;
1716 	}
1717 
1718 	fs_devices = device->fs_devices;
1719 	fs_info->fs_devices = fs_devices;
1720 
1721 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1722 	mutex_unlock(&uuid_mutex);
1723 	if (error)
1724 		goto error_fs_info;
1725 
1726 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1727 		error = -EACCES;
1728 		goto error_close_devices;
1729 	}
1730 
1731 	bdev = fs_devices->latest_bdev;
1732 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1733 		 fs_info);
1734 	if (IS_ERR(s)) {
1735 		error = PTR_ERR(s);
1736 		goto error_close_devices;
1737 	}
1738 
1739 	if (s->s_root) {
1740 		btrfs_close_devices(fs_devices);
1741 		btrfs_free_fs_info(fs_info);
1742 		if ((flags ^ s->s_flags) & SB_RDONLY)
1743 			error = -EBUSY;
1744 	} else {
1745 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1746 		btrfs_sb(s)->bdev_holder = fs_type;
1747 		if (!strstr(crc32c_impl(), "generic"))
1748 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1749 		error = btrfs_fill_super(s, fs_devices, data);
1750 	}
1751 	if (!error)
1752 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1753 	security_free_mnt_opts(&new_sec_opts);
1754 	if (error) {
1755 		deactivate_locked_super(s);
1756 		return ERR_PTR(error);
1757 	}
1758 
1759 	return dget(s->s_root);
1760 
1761 error_close_devices:
1762 	btrfs_close_devices(fs_devices);
1763 error_fs_info:
1764 	btrfs_free_fs_info(fs_info);
1765 error_sec_opts:
1766 	security_free_mnt_opts(&new_sec_opts);
1767 	return ERR_PTR(error);
1768 }
1769 
1770 /*
1771  * Mount function which is called by VFS layer.
1772  *
1773  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1774  * which needs vfsmount* of device's root (/).  This means device's root has to
1775  * be mounted internally in any case.
1776  *
1777  * Operation flow:
1778  *   1. Parse subvol id related options for later use in mount_subvol().
1779  *
1780  *   2. Mount device's root (/) by calling vfs_kern_mount().
1781  *
1782  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1783  *      first place. In order to avoid calling btrfs_mount() again, we use
1784  *      different file_system_type which is not registered to VFS by
1785  *      register_filesystem() (btrfs_root_fs_type). As a result,
1786  *      btrfs_mount_root() is called. The return value will be used by
1787  *      mount_subtree() in mount_subvol().
1788  *
1789  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1790  *      "btrfs subvolume set-default", mount_subvol() is called always.
1791  */
1792 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1793 		const char *device_name, void *data)
1794 {
1795 	struct vfsmount *mnt_root;
1796 	struct dentry *root;
1797 	char *subvol_name = NULL;
1798 	u64 subvol_objectid = 0;
1799 	int error = 0;
1800 
1801 	error = btrfs_parse_subvol_options(data, &subvol_name,
1802 					&subvol_objectid);
1803 	if (error) {
1804 		kfree(subvol_name);
1805 		return ERR_PTR(error);
1806 	}
1807 
1808 	/* mount device's root (/) */
1809 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1810 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1811 		if (flags & SB_RDONLY) {
1812 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1813 				flags & ~SB_RDONLY, device_name, data);
1814 		} else {
1815 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1816 				flags | SB_RDONLY, device_name, data);
1817 			if (IS_ERR(mnt_root)) {
1818 				root = ERR_CAST(mnt_root);
1819 				kfree(subvol_name);
1820 				goto out;
1821 			}
1822 
1823 			down_write(&mnt_root->mnt_sb->s_umount);
1824 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1825 			up_write(&mnt_root->mnt_sb->s_umount);
1826 			if (error < 0) {
1827 				root = ERR_PTR(error);
1828 				mntput(mnt_root);
1829 				kfree(subvol_name);
1830 				goto out;
1831 			}
1832 		}
1833 	}
1834 	if (IS_ERR(mnt_root)) {
1835 		root = ERR_CAST(mnt_root);
1836 		kfree(subvol_name);
1837 		goto out;
1838 	}
1839 
1840 	/* mount_subvol() will free subvol_name and mnt_root */
1841 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1842 
1843 out:
1844 	return root;
1845 }
1846 
1847 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1848 				     u32 new_pool_size, u32 old_pool_size)
1849 {
1850 	if (new_pool_size == old_pool_size)
1851 		return;
1852 
1853 	fs_info->thread_pool_size = new_pool_size;
1854 
1855 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1856 	       old_pool_size, new_pool_size);
1857 
1858 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1859 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1860 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1861 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1862 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1863 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1864 				new_pool_size);
1865 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1866 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1867 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1868 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1869 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1870 				new_pool_size);
1871 }
1872 
1873 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1874 				       unsigned long old_opts, int flags)
1875 {
1876 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1877 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1878 	     (flags & SB_RDONLY))) {
1879 		/* wait for any defraggers to finish */
1880 		wait_event(fs_info->transaction_wait,
1881 			   (atomic_read(&fs_info->defrag_running) == 0));
1882 		if (flags & SB_RDONLY)
1883 			sync_filesystem(fs_info->sb);
1884 	}
1885 }
1886 
1887 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1888 					 unsigned long old_opts)
1889 {
1890 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1891 
1892 	/*
1893 	 * We need to cleanup all defragable inodes if the autodefragment is
1894 	 * close or the filesystem is read only.
1895 	 */
1896 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1897 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1898 		btrfs_cleanup_defrag_inodes(fs_info);
1899 	}
1900 
1901 	/* If we toggled discard async */
1902 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1903 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1904 		btrfs_discard_resume(fs_info);
1905 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1906 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1907 		btrfs_discard_cleanup(fs_info);
1908 
1909 	/* If we toggled space cache */
1910 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1911 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1912 }
1913 
1914 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1915 {
1916 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1917 	unsigned old_flags = sb->s_flags;
1918 	unsigned long old_opts = fs_info->mount_opt;
1919 	unsigned long old_compress_type = fs_info->compress_type;
1920 	u64 old_max_inline = fs_info->max_inline;
1921 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1922 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1923 	int ret;
1924 
1925 	sync_filesystem(sb);
1926 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1927 
1928 	if (data) {
1929 		void *new_sec_opts = NULL;
1930 
1931 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1932 		if (!ret)
1933 			ret = security_sb_remount(sb, new_sec_opts);
1934 		security_free_mnt_opts(&new_sec_opts);
1935 		if (ret)
1936 			goto restore;
1937 	}
1938 
1939 	ret = btrfs_parse_options(fs_info, data, *flags);
1940 	if (ret)
1941 		goto restore;
1942 
1943 	btrfs_remount_begin(fs_info, old_opts, *flags);
1944 	btrfs_resize_thread_pool(fs_info,
1945 		fs_info->thread_pool_size, old_thread_pool_size);
1946 
1947 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1948 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1949 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1950 		btrfs_warn(fs_info,
1951 		"remount supports changing free space tree only from ro to rw");
1952 		/* Make sure free space cache options match the state on disk */
1953 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1954 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1955 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1956 		}
1957 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1958 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1959 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1960 		}
1961 	}
1962 
1963 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1964 		goto out;
1965 
1966 	if (*flags & SB_RDONLY) {
1967 		/*
1968 		 * this also happens on 'umount -rf' or on shutdown, when
1969 		 * the filesystem is busy.
1970 		 */
1971 		cancel_work_sync(&fs_info->async_reclaim_work);
1972 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1973 
1974 		btrfs_discard_cleanup(fs_info);
1975 
1976 		/* wait for the uuid_scan task to finish */
1977 		down(&fs_info->uuid_tree_rescan_sem);
1978 		/* avoid complains from lockdep et al. */
1979 		up(&fs_info->uuid_tree_rescan_sem);
1980 
1981 		btrfs_set_sb_rdonly(sb);
1982 
1983 		/*
1984 		 * Setting SB_RDONLY will put the cleaner thread to
1985 		 * sleep at the next loop if it's already active.
1986 		 * If it's already asleep, we'll leave unused block
1987 		 * groups on disk until we're mounted read-write again
1988 		 * unless we clean them up here.
1989 		 */
1990 		btrfs_delete_unused_bgs(fs_info);
1991 
1992 		/*
1993 		 * The cleaner task could be already running before we set the
1994 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1995 		 * We must make sure that after we finish the remount, i.e. after
1996 		 * we call btrfs_commit_super(), the cleaner can no longer start
1997 		 * a transaction - either because it was dropping a dead root,
1998 		 * running delayed iputs or deleting an unused block group (the
1999 		 * cleaner picked a block group from the list of unused block
2000 		 * groups before we were able to in the previous call to
2001 		 * btrfs_delete_unused_bgs()).
2002 		 */
2003 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2004 			    TASK_UNINTERRUPTIBLE);
2005 
2006 		/*
2007 		 * We've set the superblock to RO mode, so we might have made
2008 		 * the cleaner task sleep without running all pending delayed
2009 		 * iputs. Go through all the delayed iputs here, so that if an
2010 		 * unmount happens without remounting RW we don't end up at
2011 		 * finishing close_ctree() with a non-empty list of delayed
2012 		 * iputs.
2013 		 */
2014 		btrfs_run_delayed_iputs(fs_info);
2015 
2016 		btrfs_dev_replace_suspend_for_unmount(fs_info);
2017 		btrfs_scrub_cancel(fs_info);
2018 		btrfs_pause_balance(fs_info);
2019 
2020 		/*
2021 		 * Pause the qgroup rescan worker if it is running. We don't want
2022 		 * it to be still running after we are in RO mode, as after that,
2023 		 * by the time we unmount, it might have left a transaction open,
2024 		 * so we would leak the transaction and/or crash.
2025 		 */
2026 		btrfs_qgroup_wait_for_completion(fs_info, false);
2027 
2028 		ret = btrfs_commit_super(fs_info);
2029 		if (ret)
2030 			goto restore;
2031 	} else {
2032 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2033 			btrfs_err(fs_info,
2034 				"Remounting read-write after error is not allowed");
2035 			ret = -EINVAL;
2036 			goto restore;
2037 		}
2038 		if (fs_info->fs_devices->rw_devices == 0) {
2039 			ret = -EACCES;
2040 			goto restore;
2041 		}
2042 
2043 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2044 			btrfs_warn(fs_info,
2045 		"too many missing devices, writable remount is not allowed");
2046 			ret = -EACCES;
2047 			goto restore;
2048 		}
2049 
2050 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2051 			btrfs_warn(fs_info,
2052 		"mount required to replay tree-log, cannot remount read-write");
2053 			ret = -EINVAL;
2054 			goto restore;
2055 		}
2056 		if (fs_info->sectorsize < PAGE_SIZE) {
2057 			btrfs_warn(fs_info,
2058 	"read-write mount is not yet allowed for sectorsize %u page size %lu",
2059 				   fs_info->sectorsize, PAGE_SIZE);
2060 			ret = -EINVAL;
2061 			goto restore;
2062 		}
2063 
2064 		/*
2065 		 * NOTE: when remounting with a change that does writes, don't
2066 		 * put it anywhere above this point, as we are not sure to be
2067 		 * safe to write until we pass the above checks.
2068 		 */
2069 		ret = btrfs_start_pre_rw_mount(fs_info);
2070 		if (ret)
2071 			goto restore;
2072 
2073 		btrfs_clear_sb_rdonly(sb);
2074 
2075 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2076 	}
2077 out:
2078 	/*
2079 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2080 	 * since the absence of the flag means it can be toggled off by remount.
2081 	 */
2082 	*flags |= SB_I_VERSION;
2083 
2084 	wake_up_process(fs_info->transaction_kthread);
2085 	btrfs_remount_cleanup(fs_info, old_opts);
2086 	btrfs_clear_oneshot_options(fs_info);
2087 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2088 
2089 	return 0;
2090 
2091 restore:
2092 	/* We've hit an error - don't reset SB_RDONLY */
2093 	if (sb_rdonly(sb))
2094 		old_flags |= SB_RDONLY;
2095 	if (!(old_flags & SB_RDONLY))
2096 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2097 	sb->s_flags = old_flags;
2098 	fs_info->mount_opt = old_opts;
2099 	fs_info->compress_type = old_compress_type;
2100 	fs_info->max_inline = old_max_inline;
2101 	btrfs_resize_thread_pool(fs_info,
2102 		old_thread_pool_size, fs_info->thread_pool_size);
2103 	fs_info->metadata_ratio = old_metadata_ratio;
2104 	btrfs_remount_cleanup(fs_info, old_opts);
2105 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2106 
2107 	return ret;
2108 }
2109 
2110 /* Used to sort the devices by max_avail(descending sort) */
2111 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2112 				       const void *dev_info2)
2113 {
2114 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
2115 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2116 		return -1;
2117 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2118 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2119 		return 1;
2120 	else
2121 	return 0;
2122 }
2123 
2124 /*
2125  * sort the devices by max_avail, in which max free extent size of each device
2126  * is stored.(Descending Sort)
2127  */
2128 static inline void btrfs_descending_sort_devices(
2129 					struct btrfs_device_info *devices,
2130 					size_t nr_devices)
2131 {
2132 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2133 	     btrfs_cmp_device_free_bytes, NULL);
2134 }
2135 
2136 /*
2137  * The helper to calc the free space on the devices that can be used to store
2138  * file data.
2139  */
2140 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2141 					      u64 *free_bytes)
2142 {
2143 	struct btrfs_device_info *devices_info;
2144 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2145 	struct btrfs_device *device;
2146 	u64 type;
2147 	u64 avail_space;
2148 	u64 min_stripe_size;
2149 	int num_stripes = 1;
2150 	int i = 0, nr_devices;
2151 	const struct btrfs_raid_attr *rattr;
2152 
2153 	/*
2154 	 * We aren't under the device list lock, so this is racy-ish, but good
2155 	 * enough for our purposes.
2156 	 */
2157 	nr_devices = fs_info->fs_devices->open_devices;
2158 	if (!nr_devices) {
2159 		smp_mb();
2160 		nr_devices = fs_info->fs_devices->open_devices;
2161 		ASSERT(nr_devices);
2162 		if (!nr_devices) {
2163 			*free_bytes = 0;
2164 			return 0;
2165 		}
2166 	}
2167 
2168 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2169 			       GFP_KERNEL);
2170 	if (!devices_info)
2171 		return -ENOMEM;
2172 
2173 	/* calc min stripe number for data space allocation */
2174 	type = btrfs_data_alloc_profile(fs_info);
2175 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2176 
2177 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2178 		num_stripes = nr_devices;
2179 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2180 		num_stripes = 2;
2181 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2182 		num_stripes = 3;
2183 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2184 		num_stripes = 4;
2185 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2186 		num_stripes = 4;
2187 
2188 	/* Adjust for more than 1 stripe per device */
2189 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2190 
2191 	rcu_read_lock();
2192 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2193 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2194 						&device->dev_state) ||
2195 		    !device->bdev ||
2196 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2197 			continue;
2198 
2199 		if (i >= nr_devices)
2200 			break;
2201 
2202 		avail_space = device->total_bytes - device->bytes_used;
2203 
2204 		/* align with stripe_len */
2205 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2206 
2207 		/*
2208 		 * In order to avoid overwriting the superblock on the drive,
2209 		 * btrfs starts at an offset of at least 1MB when doing chunk
2210 		 * allocation.
2211 		 *
2212 		 * This ensures we have at least min_stripe_size free space
2213 		 * after excluding 1MB.
2214 		 */
2215 		if (avail_space <= SZ_1M + min_stripe_size)
2216 			continue;
2217 
2218 		avail_space -= SZ_1M;
2219 
2220 		devices_info[i].dev = device;
2221 		devices_info[i].max_avail = avail_space;
2222 
2223 		i++;
2224 	}
2225 	rcu_read_unlock();
2226 
2227 	nr_devices = i;
2228 
2229 	btrfs_descending_sort_devices(devices_info, nr_devices);
2230 
2231 	i = nr_devices - 1;
2232 	avail_space = 0;
2233 	while (nr_devices >= rattr->devs_min) {
2234 		num_stripes = min(num_stripes, nr_devices);
2235 
2236 		if (devices_info[i].max_avail >= min_stripe_size) {
2237 			int j;
2238 			u64 alloc_size;
2239 
2240 			avail_space += devices_info[i].max_avail * num_stripes;
2241 			alloc_size = devices_info[i].max_avail;
2242 			for (j = i + 1 - num_stripes; j <= i; j++)
2243 				devices_info[j].max_avail -= alloc_size;
2244 		}
2245 		i--;
2246 		nr_devices--;
2247 	}
2248 
2249 	kfree(devices_info);
2250 	*free_bytes = avail_space;
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2256  *
2257  * If there's a redundant raid level at DATA block groups, use the respective
2258  * multiplier to scale the sizes.
2259  *
2260  * Unused device space usage is based on simulating the chunk allocator
2261  * algorithm that respects the device sizes and order of allocations.  This is
2262  * a close approximation of the actual use but there are other factors that may
2263  * change the result (like a new metadata chunk).
2264  *
2265  * If metadata is exhausted, f_bavail will be 0.
2266  */
2267 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2268 {
2269 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2270 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2271 	struct btrfs_space_info *found;
2272 	u64 total_used = 0;
2273 	u64 total_free_data = 0;
2274 	u64 total_free_meta = 0;
2275 	u32 bits = fs_info->sectorsize_bits;
2276 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2277 	unsigned factor = 1;
2278 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2279 	int ret;
2280 	u64 thresh = 0;
2281 	int mixed = 0;
2282 
2283 	list_for_each_entry(found, &fs_info->space_info, list) {
2284 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2285 			int i;
2286 
2287 			total_free_data += found->disk_total - found->disk_used;
2288 			total_free_data -=
2289 				btrfs_account_ro_block_groups_free_space(found);
2290 
2291 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2292 				if (!list_empty(&found->block_groups[i]))
2293 					factor = btrfs_bg_type_to_factor(
2294 						btrfs_raid_array[i].bg_flag);
2295 			}
2296 		}
2297 
2298 		/*
2299 		 * Metadata in mixed block goup profiles are accounted in data
2300 		 */
2301 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2302 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2303 				mixed = 1;
2304 			else
2305 				total_free_meta += found->disk_total -
2306 					found->disk_used;
2307 		}
2308 
2309 		total_used += found->disk_used;
2310 	}
2311 
2312 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2313 	buf->f_blocks >>= bits;
2314 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2315 
2316 	/* Account global block reserve as used, it's in logical size already */
2317 	spin_lock(&block_rsv->lock);
2318 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2319 	if (buf->f_bfree >= block_rsv->size >> bits)
2320 		buf->f_bfree -= block_rsv->size >> bits;
2321 	else
2322 		buf->f_bfree = 0;
2323 	spin_unlock(&block_rsv->lock);
2324 
2325 	buf->f_bavail = div_u64(total_free_data, factor);
2326 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2327 	if (ret)
2328 		return ret;
2329 	buf->f_bavail += div_u64(total_free_data, factor);
2330 	buf->f_bavail = buf->f_bavail >> bits;
2331 
2332 	/*
2333 	 * We calculate the remaining metadata space minus global reserve. If
2334 	 * this is (supposedly) smaller than zero, there's no space. But this
2335 	 * does not hold in practice, the exhausted state happens where's still
2336 	 * some positive delta. So we apply some guesswork and compare the
2337 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2338 	 *
2339 	 * We probably cannot calculate the exact threshold value because this
2340 	 * depends on the internal reservations requested by various
2341 	 * operations, so some operations that consume a few metadata will
2342 	 * succeed even if the Avail is zero. But this is better than the other
2343 	 * way around.
2344 	 */
2345 	thresh = SZ_4M;
2346 
2347 	/*
2348 	 * We only want to claim there's no available space if we can no longer
2349 	 * allocate chunks for our metadata profile and our global reserve will
2350 	 * not fit in the free metadata space.  If we aren't ->full then we
2351 	 * still can allocate chunks and thus are fine using the currently
2352 	 * calculated f_bavail.
2353 	 */
2354 	if (!mixed && block_rsv->space_info->full &&
2355 	    total_free_meta - thresh < block_rsv->size)
2356 		buf->f_bavail = 0;
2357 
2358 	buf->f_type = BTRFS_SUPER_MAGIC;
2359 	buf->f_bsize = dentry->d_sb->s_blocksize;
2360 	buf->f_namelen = BTRFS_NAME_LEN;
2361 
2362 	/* We treat it as constant endianness (it doesn't matter _which_)
2363 	   because we want the fsid to come out the same whether mounted
2364 	   on a big-endian or little-endian host */
2365 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2366 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2367 	/* Mask in the root object ID too, to disambiguate subvols */
2368 	buf->f_fsid.val[0] ^=
2369 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2370 	buf->f_fsid.val[1] ^=
2371 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2372 
2373 	return 0;
2374 }
2375 
2376 static void btrfs_kill_super(struct super_block *sb)
2377 {
2378 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2379 	kill_anon_super(sb);
2380 	btrfs_free_fs_info(fs_info);
2381 }
2382 
2383 static struct file_system_type btrfs_fs_type = {
2384 	.owner		= THIS_MODULE,
2385 	.name		= "btrfs",
2386 	.mount		= btrfs_mount,
2387 	.kill_sb	= btrfs_kill_super,
2388 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2389 };
2390 
2391 static struct file_system_type btrfs_root_fs_type = {
2392 	.owner		= THIS_MODULE,
2393 	.name		= "btrfs",
2394 	.mount		= btrfs_mount_root,
2395 	.kill_sb	= btrfs_kill_super,
2396 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2397 };
2398 
2399 MODULE_ALIAS_FS("btrfs");
2400 
2401 static int btrfs_control_open(struct inode *inode, struct file *file)
2402 {
2403 	/*
2404 	 * The control file's private_data is used to hold the
2405 	 * transaction when it is started and is used to keep
2406 	 * track of whether a transaction is already in progress.
2407 	 */
2408 	file->private_data = NULL;
2409 	return 0;
2410 }
2411 
2412 /*
2413  * Used by /dev/btrfs-control for devices ioctls.
2414  */
2415 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2416 				unsigned long arg)
2417 {
2418 	struct btrfs_ioctl_vol_args *vol;
2419 	struct btrfs_device *device = NULL;
2420 	int ret = -ENOTTY;
2421 
2422 	if (!capable(CAP_SYS_ADMIN))
2423 		return -EPERM;
2424 
2425 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2426 	if (IS_ERR(vol))
2427 		return PTR_ERR(vol);
2428 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2429 
2430 	switch (cmd) {
2431 	case BTRFS_IOC_SCAN_DEV:
2432 		mutex_lock(&uuid_mutex);
2433 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2434 					       &btrfs_root_fs_type);
2435 		ret = PTR_ERR_OR_ZERO(device);
2436 		mutex_unlock(&uuid_mutex);
2437 		break;
2438 	case BTRFS_IOC_FORGET_DEV:
2439 		ret = btrfs_forget_devices(vol->name);
2440 		break;
2441 	case BTRFS_IOC_DEVICES_READY:
2442 		mutex_lock(&uuid_mutex);
2443 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2444 					       &btrfs_root_fs_type);
2445 		if (IS_ERR(device)) {
2446 			mutex_unlock(&uuid_mutex);
2447 			ret = PTR_ERR(device);
2448 			break;
2449 		}
2450 		ret = !(device->fs_devices->num_devices ==
2451 			device->fs_devices->total_devices);
2452 		mutex_unlock(&uuid_mutex);
2453 		break;
2454 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2455 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2456 		break;
2457 	}
2458 
2459 	kfree(vol);
2460 	return ret;
2461 }
2462 
2463 static int btrfs_freeze(struct super_block *sb)
2464 {
2465 	struct btrfs_trans_handle *trans;
2466 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2467 	struct btrfs_root *root = fs_info->tree_root;
2468 
2469 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2470 	/*
2471 	 * We don't need a barrier here, we'll wait for any transaction that
2472 	 * could be in progress on other threads (and do delayed iputs that
2473 	 * we want to avoid on a frozen filesystem), or do the commit
2474 	 * ourselves.
2475 	 */
2476 	trans = btrfs_attach_transaction_barrier(root);
2477 	if (IS_ERR(trans)) {
2478 		/* no transaction, don't bother */
2479 		if (PTR_ERR(trans) == -ENOENT)
2480 			return 0;
2481 		return PTR_ERR(trans);
2482 	}
2483 	return btrfs_commit_transaction(trans);
2484 }
2485 
2486 static int btrfs_unfreeze(struct super_block *sb)
2487 {
2488 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2489 
2490 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2491 	return 0;
2492 }
2493 
2494 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2495 {
2496 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2497 	struct btrfs_device *dev, *first_dev = NULL;
2498 
2499 	/*
2500 	 * Lightweight locking of the devices. We should not need
2501 	 * device_list_mutex here as we only read the device data and the list
2502 	 * is protected by RCU.  Even if a device is deleted during the list
2503 	 * traversals, we'll get valid data, the freeing callback will wait at
2504 	 * least until the rcu_read_unlock.
2505 	 */
2506 	rcu_read_lock();
2507 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2508 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2509 			continue;
2510 		if (!dev->name)
2511 			continue;
2512 		if (!first_dev || dev->devid < first_dev->devid)
2513 			first_dev = dev;
2514 	}
2515 
2516 	if (first_dev)
2517 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2518 	else
2519 		WARN_ON(1);
2520 	rcu_read_unlock();
2521 	return 0;
2522 }
2523 
2524 static const struct super_operations btrfs_super_ops = {
2525 	.drop_inode	= btrfs_drop_inode,
2526 	.evict_inode	= btrfs_evict_inode,
2527 	.put_super	= btrfs_put_super,
2528 	.sync_fs	= btrfs_sync_fs,
2529 	.show_options	= btrfs_show_options,
2530 	.show_devname	= btrfs_show_devname,
2531 	.alloc_inode	= btrfs_alloc_inode,
2532 	.destroy_inode	= btrfs_destroy_inode,
2533 	.free_inode	= btrfs_free_inode,
2534 	.statfs		= btrfs_statfs,
2535 	.remount_fs	= btrfs_remount,
2536 	.freeze_fs	= btrfs_freeze,
2537 	.unfreeze_fs	= btrfs_unfreeze,
2538 };
2539 
2540 static const struct file_operations btrfs_ctl_fops = {
2541 	.open = btrfs_control_open,
2542 	.unlocked_ioctl	 = btrfs_control_ioctl,
2543 	.compat_ioctl = compat_ptr_ioctl,
2544 	.owner	 = THIS_MODULE,
2545 	.llseek = noop_llseek,
2546 };
2547 
2548 static struct miscdevice btrfs_misc = {
2549 	.minor		= BTRFS_MINOR,
2550 	.name		= "btrfs-control",
2551 	.fops		= &btrfs_ctl_fops
2552 };
2553 
2554 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2555 MODULE_ALIAS("devname:btrfs-control");
2556 
2557 static int __init btrfs_interface_init(void)
2558 {
2559 	return misc_register(&btrfs_misc);
2560 }
2561 
2562 static __cold void btrfs_interface_exit(void)
2563 {
2564 	misc_deregister(&btrfs_misc);
2565 }
2566 
2567 static void __init btrfs_print_mod_info(void)
2568 {
2569 	static const char options[] = ""
2570 #ifdef CONFIG_BTRFS_DEBUG
2571 			", debug=on"
2572 #endif
2573 #ifdef CONFIG_BTRFS_ASSERT
2574 			", assert=on"
2575 #endif
2576 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2577 			", integrity-checker=on"
2578 #endif
2579 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2580 			", ref-verify=on"
2581 #endif
2582 #ifdef CONFIG_BLK_DEV_ZONED
2583 			", zoned=yes"
2584 #else
2585 			", zoned=no"
2586 #endif
2587 			;
2588 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2589 }
2590 
2591 static int __init init_btrfs_fs(void)
2592 {
2593 	int err;
2594 
2595 	btrfs_props_init();
2596 
2597 	err = btrfs_init_sysfs();
2598 	if (err)
2599 		return err;
2600 
2601 	btrfs_init_compress();
2602 
2603 	err = btrfs_init_cachep();
2604 	if (err)
2605 		goto free_compress;
2606 
2607 	err = extent_io_init();
2608 	if (err)
2609 		goto free_cachep;
2610 
2611 	err = extent_state_cache_init();
2612 	if (err)
2613 		goto free_extent_io;
2614 
2615 	err = extent_map_init();
2616 	if (err)
2617 		goto free_extent_state_cache;
2618 
2619 	err = ordered_data_init();
2620 	if (err)
2621 		goto free_extent_map;
2622 
2623 	err = btrfs_delayed_inode_init();
2624 	if (err)
2625 		goto free_ordered_data;
2626 
2627 	err = btrfs_auto_defrag_init();
2628 	if (err)
2629 		goto free_delayed_inode;
2630 
2631 	err = btrfs_delayed_ref_init();
2632 	if (err)
2633 		goto free_auto_defrag;
2634 
2635 	err = btrfs_prelim_ref_init();
2636 	if (err)
2637 		goto free_delayed_ref;
2638 
2639 	err = btrfs_end_io_wq_init();
2640 	if (err)
2641 		goto free_prelim_ref;
2642 
2643 	err = btrfs_interface_init();
2644 	if (err)
2645 		goto free_end_io_wq;
2646 
2647 	btrfs_print_mod_info();
2648 
2649 	err = btrfs_run_sanity_tests();
2650 	if (err)
2651 		goto unregister_ioctl;
2652 
2653 	err = register_filesystem(&btrfs_fs_type);
2654 	if (err)
2655 		goto unregister_ioctl;
2656 
2657 	return 0;
2658 
2659 unregister_ioctl:
2660 	btrfs_interface_exit();
2661 free_end_io_wq:
2662 	btrfs_end_io_wq_exit();
2663 free_prelim_ref:
2664 	btrfs_prelim_ref_exit();
2665 free_delayed_ref:
2666 	btrfs_delayed_ref_exit();
2667 free_auto_defrag:
2668 	btrfs_auto_defrag_exit();
2669 free_delayed_inode:
2670 	btrfs_delayed_inode_exit();
2671 free_ordered_data:
2672 	ordered_data_exit();
2673 free_extent_map:
2674 	extent_map_exit();
2675 free_extent_state_cache:
2676 	extent_state_cache_exit();
2677 free_extent_io:
2678 	extent_io_exit();
2679 free_cachep:
2680 	btrfs_destroy_cachep();
2681 free_compress:
2682 	btrfs_exit_compress();
2683 	btrfs_exit_sysfs();
2684 
2685 	return err;
2686 }
2687 
2688 static void __exit exit_btrfs_fs(void)
2689 {
2690 	btrfs_destroy_cachep();
2691 	btrfs_delayed_ref_exit();
2692 	btrfs_auto_defrag_exit();
2693 	btrfs_delayed_inode_exit();
2694 	btrfs_prelim_ref_exit();
2695 	ordered_data_exit();
2696 	extent_map_exit();
2697 	extent_state_cache_exit();
2698 	extent_io_exit();
2699 	btrfs_interface_exit();
2700 	btrfs_end_io_wq_exit();
2701 	unregister_filesystem(&btrfs_fs_type);
2702 	btrfs_exit_sysfs();
2703 	btrfs_cleanup_fs_uuids();
2704 	btrfs_exit_compress();
2705 }
2706 
2707 late_initcall(init_btrfs_fs);
2708 module_exit(exit_btrfs_fs)
2709 
2710 MODULE_LICENSE("GPL");
2711 MODULE_SOFTDEP("pre: crc32c");
2712 MODULE_SOFTDEP("pre: xxhash64");
2713 MODULE_SOFTDEP("pre: sha256");
2714 MODULE_SOFTDEP("pre: blake2b-256");
2715