1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "props.h" 39 #include "xattr.h" 40 #include "bio.h" 41 #include "export.h" 42 #include "compression.h" 43 #include "rcu-string.h" 44 #include "dev-replace.h" 45 #include "free-space-cache.h" 46 #include "backref.h" 47 #include "space-info.h" 48 #include "sysfs.h" 49 #include "zoned.h" 50 #include "tests/btrfs-tests.h" 51 #include "block-group.h" 52 #include "discard.h" 53 #include "qgroup.h" 54 #include "raid56.h" 55 #include "fs.h" 56 #include "accessors.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "ioctl.h" 60 #include "scrub.h" 61 #include "verity.h" 62 #include "super.h" 63 #include "extent-tree.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static void btrfs_put_super(struct super_block *sb) 71 { 72 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 73 74 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 75 close_ctree(fs_info); 76 } 77 78 /* Store the mount options related information. */ 79 struct btrfs_fs_context { 80 char *subvol_name; 81 u64 subvol_objectid; 82 u64 max_inline; 83 u32 commit_interval; 84 u32 metadata_ratio; 85 u32 thread_pool_size; 86 unsigned long mount_opt; 87 unsigned long compress_type:4; 88 unsigned int compress_level; 89 refcount_t refs; 90 }; 91 92 enum { 93 Opt_acl, 94 Opt_clear_cache, 95 Opt_commit_interval, 96 Opt_compress, 97 Opt_compress_force, 98 Opt_compress_force_type, 99 Opt_compress_type, 100 Opt_degraded, 101 Opt_device, 102 Opt_fatal_errors, 103 Opt_flushoncommit, 104 Opt_max_inline, 105 Opt_barrier, 106 Opt_datacow, 107 Opt_datasum, 108 Opt_defrag, 109 Opt_discard, 110 Opt_discard_mode, 111 Opt_ratio, 112 Opt_rescan_uuid_tree, 113 Opt_skip_balance, 114 Opt_space_cache, 115 Opt_space_cache_version, 116 Opt_ssd, 117 Opt_ssd_spread, 118 Opt_subvol, 119 Opt_subvol_empty, 120 Opt_subvolid, 121 Opt_thread_pool, 122 Opt_treelog, 123 Opt_user_subvol_rm_allowed, 124 125 /* Rescue options */ 126 Opt_rescue, 127 Opt_usebackuproot, 128 Opt_nologreplay, 129 Opt_ignorebadroots, 130 Opt_ignoredatacsums, 131 Opt_rescue_all, 132 133 /* Debugging options */ 134 Opt_enospc_debug, 135 #ifdef CONFIG_BTRFS_DEBUG 136 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 137 #endif 138 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 139 Opt_ref_verify, 140 #endif 141 Opt_err, 142 }; 143 144 enum { 145 Opt_fatal_errors_panic, 146 Opt_fatal_errors_bug, 147 }; 148 149 static const struct constant_table btrfs_parameter_fatal_errors[] = { 150 { "panic", Opt_fatal_errors_panic }, 151 { "bug", Opt_fatal_errors_bug }, 152 {} 153 }; 154 155 enum { 156 Opt_discard_sync, 157 Opt_discard_async, 158 }; 159 160 static const struct constant_table btrfs_parameter_discard[] = { 161 { "sync", Opt_discard_sync }, 162 { "async", Opt_discard_async }, 163 {} 164 }; 165 166 enum { 167 Opt_space_cache_v1, 168 Opt_space_cache_v2, 169 }; 170 171 static const struct constant_table btrfs_parameter_space_cache[] = { 172 { "v1", Opt_space_cache_v1 }, 173 { "v2", Opt_space_cache_v2 }, 174 {} 175 }; 176 177 enum { 178 Opt_rescue_usebackuproot, 179 Opt_rescue_nologreplay, 180 Opt_rescue_ignorebadroots, 181 Opt_rescue_ignoredatacsums, 182 Opt_rescue_parameter_all, 183 }; 184 185 static const struct constant_table btrfs_parameter_rescue[] = { 186 { "usebackuproot", Opt_rescue_usebackuproot }, 187 { "nologreplay", Opt_rescue_nologreplay }, 188 { "ignorebadroots", Opt_rescue_ignorebadroots }, 189 { "ibadroots", Opt_rescue_ignorebadroots }, 190 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 191 { "idatacsums", Opt_rescue_ignoredatacsums }, 192 { "all", Opt_rescue_parameter_all }, 193 {} 194 }; 195 196 #ifdef CONFIG_BTRFS_DEBUG 197 enum { 198 Opt_fragment_parameter_data, 199 Opt_fragment_parameter_metadata, 200 Opt_fragment_parameter_all, 201 }; 202 203 static const struct constant_table btrfs_parameter_fragment[] = { 204 { "data", Opt_fragment_parameter_data }, 205 { "metadata", Opt_fragment_parameter_metadata }, 206 { "all", Opt_fragment_parameter_all }, 207 {} 208 }; 209 #endif 210 211 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 212 fsparam_flag_no("acl", Opt_acl), 213 fsparam_flag_no("autodefrag", Opt_defrag), 214 fsparam_flag_no("barrier", Opt_barrier), 215 fsparam_flag("clear_cache", Opt_clear_cache), 216 fsparam_u32("commit", Opt_commit_interval), 217 fsparam_flag("compress", Opt_compress), 218 fsparam_string("compress", Opt_compress_type), 219 fsparam_flag("compress-force", Opt_compress_force), 220 fsparam_string("compress-force", Opt_compress_force_type), 221 fsparam_flag_no("datacow", Opt_datacow), 222 fsparam_flag_no("datasum", Opt_datasum), 223 fsparam_flag("degraded", Opt_degraded), 224 fsparam_string("device", Opt_device), 225 fsparam_flag_no("discard", Opt_discard), 226 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 227 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 228 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 229 fsparam_string("max_inline", Opt_max_inline), 230 fsparam_u32("metadata_ratio", Opt_ratio), 231 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 232 fsparam_flag("skip_balance", Opt_skip_balance), 233 fsparam_flag_no("space_cache", Opt_space_cache), 234 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 235 fsparam_flag_no("ssd", Opt_ssd), 236 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 237 fsparam_string("subvol", Opt_subvol), 238 fsparam_flag("subvol=", Opt_subvol_empty), 239 fsparam_u64("subvolid", Opt_subvolid), 240 fsparam_u32("thread_pool", Opt_thread_pool), 241 fsparam_flag_no("treelog", Opt_treelog), 242 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 243 244 /* Rescue options. */ 245 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 246 /* Deprecated, with alias rescue=nologreplay */ 247 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL), 248 /* Deprecated, with alias rescue=usebackuproot */ 249 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 250 251 /* Debugging options. */ 252 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 253 #ifdef CONFIG_BTRFS_DEBUG 254 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 255 #endif 256 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 257 fsparam_flag("ref_verify", Opt_ref_verify), 258 #endif 259 {} 260 }; 261 262 /* No support for restricting writes to btrfs devices yet... */ 263 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 264 { 265 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 266 } 267 268 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 269 { 270 struct btrfs_fs_context *ctx = fc->fs_private; 271 struct fs_parse_result result; 272 int opt; 273 274 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 275 if (opt < 0) 276 return opt; 277 278 switch (opt) { 279 case Opt_degraded: 280 btrfs_set_opt(ctx->mount_opt, DEGRADED); 281 break; 282 case Opt_subvol_empty: 283 /* 284 * This exists because we used to allow it on accident, so we're 285 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 286 * empty subvol= again"). 287 */ 288 break; 289 case Opt_subvol: 290 kfree(ctx->subvol_name); 291 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 292 if (!ctx->subvol_name) 293 return -ENOMEM; 294 break; 295 case Opt_subvolid: 296 ctx->subvol_objectid = result.uint_64; 297 298 /* subvolid=0 means give me the original fs_tree. */ 299 if (!ctx->subvol_objectid) 300 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 301 break; 302 case Opt_device: { 303 struct btrfs_device *device; 304 blk_mode_t mode = btrfs_open_mode(fc); 305 306 mutex_lock(&uuid_mutex); 307 device = btrfs_scan_one_device(param->string, mode, false); 308 mutex_unlock(&uuid_mutex); 309 if (IS_ERR(device)) 310 return PTR_ERR(device); 311 break; 312 } 313 case Opt_datasum: 314 if (result.negated) { 315 btrfs_set_opt(ctx->mount_opt, NODATASUM); 316 } else { 317 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 318 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 319 } 320 break; 321 case Opt_datacow: 322 if (result.negated) { 323 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 324 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 325 btrfs_set_opt(ctx->mount_opt, NODATACOW); 326 btrfs_set_opt(ctx->mount_opt, NODATASUM); 327 } else { 328 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 329 } 330 break; 331 case Opt_compress_force: 332 case Opt_compress_force_type: 333 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 334 fallthrough; 335 case Opt_compress: 336 case Opt_compress_type: 337 if (opt == Opt_compress || opt == Opt_compress_force) { 338 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 339 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 340 btrfs_set_opt(ctx->mount_opt, COMPRESS); 341 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 342 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 343 } else if (strncmp(param->string, "zlib", 4) == 0) { 344 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 345 ctx->compress_level = 346 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 347 param->string + 4); 348 btrfs_set_opt(ctx->mount_opt, COMPRESS); 349 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 350 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 351 } else if (strncmp(param->string, "lzo", 3) == 0) { 352 ctx->compress_type = BTRFS_COMPRESS_LZO; 353 ctx->compress_level = 0; 354 btrfs_set_opt(ctx->mount_opt, COMPRESS); 355 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 356 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 357 } else if (strncmp(param->string, "zstd", 4) == 0) { 358 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 359 ctx->compress_level = 360 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 361 param->string + 4); 362 btrfs_set_opt(ctx->mount_opt, COMPRESS); 363 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 364 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 365 } else if (strncmp(param->string, "no", 2) == 0) { 366 ctx->compress_level = 0; 367 ctx->compress_type = 0; 368 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 369 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 370 } else { 371 btrfs_err(NULL, "unrecognized compression value %s", 372 param->string); 373 return -EINVAL; 374 } 375 break; 376 case Opt_ssd: 377 if (result.negated) { 378 btrfs_set_opt(ctx->mount_opt, NOSSD); 379 btrfs_clear_opt(ctx->mount_opt, SSD); 380 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 381 } else { 382 btrfs_set_opt(ctx->mount_opt, SSD); 383 btrfs_clear_opt(ctx->mount_opt, NOSSD); 384 } 385 break; 386 case Opt_ssd_spread: 387 if (result.negated) { 388 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 389 } else { 390 btrfs_set_opt(ctx->mount_opt, SSD); 391 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 392 btrfs_clear_opt(ctx->mount_opt, NOSSD); 393 } 394 break; 395 case Opt_barrier: 396 if (result.negated) 397 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 398 else 399 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 400 break; 401 case Opt_thread_pool: 402 if (result.uint_32 == 0) { 403 btrfs_err(NULL, "invalid value 0 for thread_pool"); 404 return -EINVAL; 405 } 406 ctx->thread_pool_size = result.uint_32; 407 break; 408 case Opt_max_inline: 409 ctx->max_inline = memparse(param->string, NULL); 410 break; 411 case Opt_acl: 412 if (result.negated) { 413 fc->sb_flags &= ~SB_POSIXACL; 414 } else { 415 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 416 fc->sb_flags |= SB_POSIXACL; 417 #else 418 btrfs_err(NULL, "support for ACL not compiled in"); 419 return -EINVAL; 420 #endif 421 } 422 /* 423 * VFS limits the ability to toggle ACL on and off via remount, 424 * despite every file system allowing this. This seems to be 425 * an oversight since we all do, but it'll fail if we're 426 * remounting. So don't set the mask here, we'll check it in 427 * btrfs_reconfigure and do the toggling ourselves. 428 */ 429 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 430 fc->sb_flags_mask |= SB_POSIXACL; 431 break; 432 case Opt_treelog: 433 if (result.negated) 434 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 435 else 436 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 437 break; 438 case Opt_nologreplay: 439 btrfs_warn(NULL, 440 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 441 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 442 break; 443 case Opt_flushoncommit: 444 if (result.negated) 445 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 446 else 447 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 448 break; 449 case Opt_ratio: 450 ctx->metadata_ratio = result.uint_32; 451 break; 452 case Opt_discard: 453 if (result.negated) { 454 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 455 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 456 btrfs_set_opt(ctx->mount_opt, NODISCARD); 457 } else { 458 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 459 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 460 } 461 break; 462 case Opt_discard_mode: 463 switch (result.uint_32) { 464 case Opt_discard_sync: 465 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 466 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 467 break; 468 case Opt_discard_async: 469 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 470 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 471 break; 472 default: 473 btrfs_err(NULL, "unrecognized discard mode value %s", 474 param->key); 475 return -EINVAL; 476 } 477 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 478 break; 479 case Opt_space_cache: 480 if (result.negated) { 481 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 482 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 483 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 484 } else { 485 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 486 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 487 } 488 break; 489 case Opt_space_cache_version: 490 switch (result.uint_32) { 491 case Opt_space_cache_v1: 492 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 493 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 494 break; 495 case Opt_space_cache_v2: 496 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 497 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 498 break; 499 default: 500 btrfs_err(NULL, "unrecognized space_cache value %s", 501 param->key); 502 return -EINVAL; 503 } 504 break; 505 case Opt_rescan_uuid_tree: 506 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 507 break; 508 case Opt_clear_cache: 509 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 510 break; 511 case Opt_user_subvol_rm_allowed: 512 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 513 break; 514 case Opt_enospc_debug: 515 if (result.negated) 516 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 517 else 518 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 519 break; 520 case Opt_defrag: 521 if (result.negated) 522 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 523 else 524 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 525 break; 526 case Opt_usebackuproot: 527 btrfs_warn(NULL, 528 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 529 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 530 531 /* If we're loading the backup roots we can't trust the space cache. */ 532 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 533 break; 534 case Opt_skip_balance: 535 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 536 break; 537 case Opt_fatal_errors: 538 switch (result.uint_32) { 539 case Opt_fatal_errors_panic: 540 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 541 break; 542 case Opt_fatal_errors_bug: 543 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 544 break; 545 default: 546 btrfs_err(NULL, "unrecognized fatal_errors value %s", 547 param->key); 548 return -EINVAL; 549 } 550 break; 551 case Opt_commit_interval: 552 ctx->commit_interval = result.uint_32; 553 if (ctx->commit_interval == 0) 554 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 555 break; 556 case Opt_rescue: 557 switch (result.uint_32) { 558 case Opt_rescue_usebackuproot: 559 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 560 break; 561 case Opt_rescue_nologreplay: 562 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 563 break; 564 case Opt_rescue_ignorebadroots: 565 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 566 break; 567 case Opt_rescue_ignoredatacsums: 568 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 569 break; 570 case Opt_rescue_parameter_all: 571 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 572 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 573 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 574 break; 575 default: 576 btrfs_info(NULL, "unrecognized rescue option '%s'", 577 param->key); 578 return -EINVAL; 579 } 580 break; 581 #ifdef CONFIG_BTRFS_DEBUG 582 case Opt_fragment: 583 switch (result.uint_32) { 584 case Opt_fragment_parameter_all: 585 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 586 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 587 break; 588 case Opt_fragment_parameter_metadata: 589 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 590 break; 591 case Opt_fragment_parameter_data: 592 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 593 break; 594 default: 595 btrfs_info(NULL, "unrecognized fragment option '%s'", 596 param->key); 597 return -EINVAL; 598 } 599 break; 600 #endif 601 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 602 case Opt_ref_verify: 603 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 604 break; 605 #endif 606 default: 607 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 608 return -EINVAL; 609 } 610 611 return 0; 612 } 613 614 /* 615 * Some options only have meaning at mount time and shouldn't persist across 616 * remounts, or be displayed. Clear these at the end of mount and remount code 617 * paths. 618 */ 619 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 620 { 621 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 622 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 623 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 624 } 625 626 static bool check_ro_option(struct btrfs_fs_info *fs_info, 627 unsigned long mount_opt, unsigned long opt, 628 const char *opt_name) 629 { 630 if (mount_opt & opt) { 631 btrfs_err(fs_info, "%s must be used with ro mount option", 632 opt_name); 633 return true; 634 } 635 return false; 636 } 637 638 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt, 639 unsigned long flags) 640 { 641 bool ret = true; 642 643 if (!(flags & SB_RDONLY) && 644 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 645 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 646 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))) 647 ret = false; 648 649 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 650 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 651 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 652 btrfs_err(info, "cannot disable free-space-tree"); 653 ret = false; 654 } 655 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 656 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 657 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 658 ret = false; 659 } 660 661 if (btrfs_check_mountopts_zoned(info, mount_opt)) 662 ret = false; 663 664 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 665 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) 666 btrfs_info(info, "disk space caching is enabled"); 667 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 668 btrfs_info(info, "using free-space-tree"); 669 } 670 671 return ret; 672 } 673 674 /* 675 * This is subtle, we only call this during open_ctree(). We need to pre-load 676 * the mount options with the on-disk settings. Before the new mount API took 677 * effect we would do this on mount and remount. With the new mount API we'll 678 * only do this on the initial mount. 679 * 680 * This isn't a change in behavior, because we're using the current state of the 681 * file system to set the current mount options. If you mounted with special 682 * options to disable these features and then remounted we wouldn't revert the 683 * settings, because mounting without these features cleared the on-disk 684 * settings, so this being called on re-mount is not needed. 685 */ 686 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 687 { 688 if (fs_info->sectorsize < PAGE_SIZE) { 689 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 690 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 691 btrfs_info(fs_info, 692 "forcing free space tree for sector size %u with page size %lu", 693 fs_info->sectorsize, PAGE_SIZE); 694 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 695 } 696 } 697 698 /* 699 * At this point our mount options are populated, so we only mess with 700 * these settings if we don't have any settings already. 701 */ 702 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 703 return; 704 705 if (btrfs_is_zoned(fs_info) && 706 btrfs_free_space_cache_v1_active(fs_info)) { 707 btrfs_info(fs_info, "zoned: clearing existing space cache"); 708 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 709 return; 710 } 711 712 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 713 return; 714 715 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 716 return; 717 718 /* 719 * At this point we don't have explicit options set by the user, set 720 * them ourselves based on the state of the file system. 721 */ 722 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 723 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 724 else if (btrfs_free_space_cache_v1_active(fs_info)) 725 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 726 } 727 728 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 729 { 730 if (!btrfs_test_opt(fs_info, NOSSD) && 731 !fs_info->fs_devices->rotating) 732 btrfs_set_opt(fs_info->mount_opt, SSD); 733 734 /* 735 * For devices supporting discard turn on discard=async automatically, 736 * unless it's already set or disabled. This could be turned off by 737 * nodiscard for the same mount. 738 * 739 * The zoned mode piggy backs on the discard functionality for 740 * resetting a zone. There is no reason to delay the zone reset as it is 741 * fast enough. So, do not enable async discard for zoned mode. 742 */ 743 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 744 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 745 btrfs_test_opt(fs_info, NODISCARD)) && 746 fs_info->fs_devices->discardable && 747 !btrfs_is_zoned(fs_info)) 748 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 749 } 750 751 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 752 u64 subvol_objectid) 753 { 754 struct btrfs_root *root = fs_info->tree_root; 755 struct btrfs_root *fs_root = NULL; 756 struct btrfs_root_ref *root_ref; 757 struct btrfs_inode_ref *inode_ref; 758 struct btrfs_key key; 759 struct btrfs_path *path = NULL; 760 char *name = NULL, *ptr; 761 u64 dirid; 762 int len; 763 int ret; 764 765 path = btrfs_alloc_path(); 766 if (!path) { 767 ret = -ENOMEM; 768 goto err; 769 } 770 771 name = kmalloc(PATH_MAX, GFP_KERNEL); 772 if (!name) { 773 ret = -ENOMEM; 774 goto err; 775 } 776 ptr = name + PATH_MAX - 1; 777 ptr[0] = '\0'; 778 779 /* 780 * Walk up the subvolume trees in the tree of tree roots by root 781 * backrefs until we hit the top-level subvolume. 782 */ 783 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 784 key.objectid = subvol_objectid; 785 key.type = BTRFS_ROOT_BACKREF_KEY; 786 key.offset = (u64)-1; 787 788 ret = btrfs_search_backwards(root, &key, path); 789 if (ret < 0) { 790 goto err; 791 } else if (ret > 0) { 792 ret = -ENOENT; 793 goto err; 794 } 795 796 subvol_objectid = key.offset; 797 798 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 799 struct btrfs_root_ref); 800 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 801 ptr -= len + 1; 802 if (ptr < name) { 803 ret = -ENAMETOOLONG; 804 goto err; 805 } 806 read_extent_buffer(path->nodes[0], ptr + 1, 807 (unsigned long)(root_ref + 1), len); 808 ptr[0] = '/'; 809 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 810 btrfs_release_path(path); 811 812 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 813 if (IS_ERR(fs_root)) { 814 ret = PTR_ERR(fs_root); 815 fs_root = NULL; 816 goto err; 817 } 818 819 /* 820 * Walk up the filesystem tree by inode refs until we hit the 821 * root directory. 822 */ 823 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 824 key.objectid = dirid; 825 key.type = BTRFS_INODE_REF_KEY; 826 key.offset = (u64)-1; 827 828 ret = btrfs_search_backwards(fs_root, &key, path); 829 if (ret < 0) { 830 goto err; 831 } else if (ret > 0) { 832 ret = -ENOENT; 833 goto err; 834 } 835 836 dirid = key.offset; 837 838 inode_ref = btrfs_item_ptr(path->nodes[0], 839 path->slots[0], 840 struct btrfs_inode_ref); 841 len = btrfs_inode_ref_name_len(path->nodes[0], 842 inode_ref); 843 ptr -= len + 1; 844 if (ptr < name) { 845 ret = -ENAMETOOLONG; 846 goto err; 847 } 848 read_extent_buffer(path->nodes[0], ptr + 1, 849 (unsigned long)(inode_ref + 1), len); 850 ptr[0] = '/'; 851 btrfs_release_path(path); 852 } 853 btrfs_put_root(fs_root); 854 fs_root = NULL; 855 } 856 857 btrfs_free_path(path); 858 if (ptr == name + PATH_MAX - 1) { 859 name[0] = '/'; 860 name[1] = '\0'; 861 } else { 862 memmove(name, ptr, name + PATH_MAX - ptr); 863 } 864 return name; 865 866 err: 867 btrfs_put_root(fs_root); 868 btrfs_free_path(path); 869 kfree(name); 870 return ERR_PTR(ret); 871 } 872 873 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 874 { 875 struct btrfs_root *root = fs_info->tree_root; 876 struct btrfs_dir_item *di; 877 struct btrfs_path *path; 878 struct btrfs_key location; 879 struct fscrypt_str name = FSTR_INIT("default", 7); 880 u64 dir_id; 881 882 path = btrfs_alloc_path(); 883 if (!path) 884 return -ENOMEM; 885 886 /* 887 * Find the "default" dir item which points to the root item that we 888 * will mount by default if we haven't been given a specific subvolume 889 * to mount. 890 */ 891 dir_id = btrfs_super_root_dir(fs_info->super_copy); 892 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 893 if (IS_ERR(di)) { 894 btrfs_free_path(path); 895 return PTR_ERR(di); 896 } 897 if (!di) { 898 /* 899 * Ok the default dir item isn't there. This is weird since 900 * it's always been there, but don't freak out, just try and 901 * mount the top-level subvolume. 902 */ 903 btrfs_free_path(path); 904 *objectid = BTRFS_FS_TREE_OBJECTID; 905 return 0; 906 } 907 908 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 909 btrfs_free_path(path); 910 *objectid = location.objectid; 911 return 0; 912 } 913 914 static int btrfs_fill_super(struct super_block *sb, 915 struct btrfs_fs_devices *fs_devices, 916 void *data) 917 { 918 struct inode *inode; 919 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 920 int err; 921 922 sb->s_maxbytes = MAX_LFS_FILESIZE; 923 sb->s_magic = BTRFS_SUPER_MAGIC; 924 sb->s_op = &btrfs_super_ops; 925 sb->s_d_op = &btrfs_dentry_operations; 926 sb->s_export_op = &btrfs_export_ops; 927 #ifdef CONFIG_FS_VERITY 928 sb->s_vop = &btrfs_verityops; 929 #endif 930 sb->s_xattr = btrfs_xattr_handlers; 931 sb->s_time_gran = 1; 932 sb->s_iflags |= SB_I_CGROUPWB; 933 934 err = super_setup_bdi(sb); 935 if (err) { 936 btrfs_err(fs_info, "super_setup_bdi failed"); 937 return err; 938 } 939 940 err = open_ctree(sb, fs_devices, (char *)data); 941 if (err) { 942 btrfs_err(fs_info, "open_ctree failed"); 943 return err; 944 } 945 946 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 947 if (IS_ERR(inode)) { 948 err = PTR_ERR(inode); 949 btrfs_handle_fs_error(fs_info, err, NULL); 950 goto fail_close; 951 } 952 953 sb->s_root = d_make_root(inode); 954 if (!sb->s_root) { 955 err = -ENOMEM; 956 goto fail_close; 957 } 958 959 sb->s_flags |= SB_ACTIVE; 960 return 0; 961 962 fail_close: 963 close_ctree(fs_info); 964 return err; 965 } 966 967 int btrfs_sync_fs(struct super_block *sb, int wait) 968 { 969 struct btrfs_trans_handle *trans; 970 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 971 struct btrfs_root *root = fs_info->tree_root; 972 973 trace_btrfs_sync_fs(fs_info, wait); 974 975 if (!wait) { 976 filemap_flush(fs_info->btree_inode->i_mapping); 977 return 0; 978 } 979 980 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 981 982 trans = btrfs_attach_transaction_barrier(root); 983 if (IS_ERR(trans)) { 984 /* no transaction, don't bother */ 985 if (PTR_ERR(trans) == -ENOENT) { 986 /* 987 * Exit unless we have some pending changes 988 * that need to go through commit 989 */ 990 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 991 &fs_info->flags)) 992 return 0; 993 /* 994 * A non-blocking test if the fs is frozen. We must not 995 * start a new transaction here otherwise a deadlock 996 * happens. The pending operations are delayed to the 997 * next commit after thawing. 998 */ 999 if (sb_start_write_trylock(sb)) 1000 sb_end_write(sb); 1001 else 1002 return 0; 1003 trans = btrfs_start_transaction(root, 0); 1004 } 1005 if (IS_ERR(trans)) 1006 return PTR_ERR(trans); 1007 } 1008 return btrfs_commit_transaction(trans); 1009 } 1010 1011 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1012 { 1013 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1014 *printed = true; 1015 } 1016 1017 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1018 { 1019 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1020 const char *compress_type; 1021 const char *subvol_name; 1022 bool printed = false; 1023 1024 if (btrfs_test_opt(info, DEGRADED)) 1025 seq_puts(seq, ",degraded"); 1026 if (btrfs_test_opt(info, NODATASUM)) 1027 seq_puts(seq, ",nodatasum"); 1028 if (btrfs_test_opt(info, NODATACOW)) 1029 seq_puts(seq, ",nodatacow"); 1030 if (btrfs_test_opt(info, NOBARRIER)) 1031 seq_puts(seq, ",nobarrier"); 1032 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1033 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1034 if (info->thread_pool_size != min_t(unsigned long, 1035 num_online_cpus() + 2, 8)) 1036 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1037 if (btrfs_test_opt(info, COMPRESS)) { 1038 compress_type = btrfs_compress_type2str(info->compress_type); 1039 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1040 seq_printf(seq, ",compress-force=%s", compress_type); 1041 else 1042 seq_printf(seq, ",compress=%s", compress_type); 1043 if (info->compress_level) 1044 seq_printf(seq, ":%d", info->compress_level); 1045 } 1046 if (btrfs_test_opt(info, NOSSD)) 1047 seq_puts(seq, ",nossd"); 1048 if (btrfs_test_opt(info, SSD_SPREAD)) 1049 seq_puts(seq, ",ssd_spread"); 1050 else if (btrfs_test_opt(info, SSD)) 1051 seq_puts(seq, ",ssd"); 1052 if (btrfs_test_opt(info, NOTREELOG)) 1053 seq_puts(seq, ",notreelog"); 1054 if (btrfs_test_opt(info, NOLOGREPLAY)) 1055 print_rescue_option(seq, "nologreplay", &printed); 1056 if (btrfs_test_opt(info, USEBACKUPROOT)) 1057 print_rescue_option(seq, "usebackuproot", &printed); 1058 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1059 print_rescue_option(seq, "ignorebadroots", &printed); 1060 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1061 print_rescue_option(seq, "ignoredatacsums", &printed); 1062 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1063 seq_puts(seq, ",flushoncommit"); 1064 if (btrfs_test_opt(info, DISCARD_SYNC)) 1065 seq_puts(seq, ",discard"); 1066 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1067 seq_puts(seq, ",discard=async"); 1068 if (!(info->sb->s_flags & SB_POSIXACL)) 1069 seq_puts(seq, ",noacl"); 1070 if (btrfs_free_space_cache_v1_active(info)) 1071 seq_puts(seq, ",space_cache"); 1072 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1073 seq_puts(seq, ",space_cache=v2"); 1074 else 1075 seq_puts(seq, ",nospace_cache"); 1076 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1077 seq_puts(seq, ",rescan_uuid_tree"); 1078 if (btrfs_test_opt(info, CLEAR_CACHE)) 1079 seq_puts(seq, ",clear_cache"); 1080 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1081 seq_puts(seq, ",user_subvol_rm_allowed"); 1082 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1083 seq_puts(seq, ",enospc_debug"); 1084 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1085 seq_puts(seq, ",autodefrag"); 1086 if (btrfs_test_opt(info, SKIP_BALANCE)) 1087 seq_puts(seq, ",skip_balance"); 1088 if (info->metadata_ratio) 1089 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1090 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1091 seq_puts(seq, ",fatal_errors=panic"); 1092 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1093 seq_printf(seq, ",commit=%u", info->commit_interval); 1094 #ifdef CONFIG_BTRFS_DEBUG 1095 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1096 seq_puts(seq, ",fragment=data"); 1097 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1098 seq_puts(seq, ",fragment=metadata"); 1099 #endif 1100 if (btrfs_test_opt(info, REF_VERIFY)) 1101 seq_puts(seq, ",ref_verify"); 1102 seq_printf(seq, ",subvolid=%llu", 1103 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1104 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1105 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1106 if (!IS_ERR(subvol_name)) { 1107 seq_puts(seq, ",subvol="); 1108 seq_escape(seq, subvol_name, " \t\n\\"); 1109 kfree(subvol_name); 1110 } 1111 return 0; 1112 } 1113 1114 /* 1115 * subvolumes are identified by ino 256 1116 */ 1117 static inline int is_subvolume_inode(struct inode *inode) 1118 { 1119 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1120 return 1; 1121 return 0; 1122 } 1123 1124 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1125 struct vfsmount *mnt) 1126 { 1127 struct dentry *root; 1128 int ret; 1129 1130 if (!subvol_name) { 1131 if (!subvol_objectid) { 1132 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1133 &subvol_objectid); 1134 if (ret) { 1135 root = ERR_PTR(ret); 1136 goto out; 1137 } 1138 } 1139 subvol_name = btrfs_get_subvol_name_from_objectid( 1140 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1141 if (IS_ERR(subvol_name)) { 1142 root = ERR_CAST(subvol_name); 1143 subvol_name = NULL; 1144 goto out; 1145 } 1146 1147 } 1148 1149 root = mount_subtree(mnt, subvol_name); 1150 /* mount_subtree() drops our reference on the vfsmount. */ 1151 mnt = NULL; 1152 1153 if (!IS_ERR(root)) { 1154 struct super_block *s = root->d_sb; 1155 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1156 struct inode *root_inode = d_inode(root); 1157 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1158 1159 ret = 0; 1160 if (!is_subvolume_inode(root_inode)) { 1161 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1162 subvol_name); 1163 ret = -EINVAL; 1164 } 1165 if (subvol_objectid && root_objectid != subvol_objectid) { 1166 /* 1167 * This will also catch a race condition where a 1168 * subvolume which was passed by ID is renamed and 1169 * another subvolume is renamed over the old location. 1170 */ 1171 btrfs_err(fs_info, 1172 "subvol '%s' does not match subvolid %llu", 1173 subvol_name, subvol_objectid); 1174 ret = -EINVAL; 1175 } 1176 if (ret) { 1177 dput(root); 1178 root = ERR_PTR(ret); 1179 deactivate_locked_super(s); 1180 } 1181 } 1182 1183 out: 1184 mntput(mnt); 1185 kfree(subvol_name); 1186 return root; 1187 } 1188 1189 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1190 u32 new_pool_size, u32 old_pool_size) 1191 { 1192 if (new_pool_size == old_pool_size) 1193 return; 1194 1195 fs_info->thread_pool_size = new_pool_size; 1196 1197 btrfs_info(fs_info, "resize thread pool %d -> %d", 1198 old_pool_size, new_pool_size); 1199 1200 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1201 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1202 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1203 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1204 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1205 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1206 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1207 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1208 } 1209 1210 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1211 unsigned long old_opts, int flags) 1212 { 1213 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1214 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1215 (flags & SB_RDONLY))) { 1216 /* wait for any defraggers to finish */ 1217 wait_event(fs_info->transaction_wait, 1218 (atomic_read(&fs_info->defrag_running) == 0)); 1219 if (flags & SB_RDONLY) 1220 sync_filesystem(fs_info->sb); 1221 } 1222 } 1223 1224 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1225 unsigned long old_opts) 1226 { 1227 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1228 1229 /* 1230 * We need to cleanup all defragable inodes if the autodefragment is 1231 * close or the filesystem is read only. 1232 */ 1233 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1234 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1235 btrfs_cleanup_defrag_inodes(fs_info); 1236 } 1237 1238 /* If we toggled discard async */ 1239 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1240 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1241 btrfs_discard_resume(fs_info); 1242 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1243 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1244 btrfs_discard_cleanup(fs_info); 1245 1246 /* If we toggled space cache */ 1247 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1248 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1249 } 1250 1251 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1252 { 1253 int ret; 1254 1255 if (BTRFS_FS_ERROR(fs_info)) { 1256 btrfs_err(fs_info, 1257 "remounting read-write after error is not allowed"); 1258 return -EINVAL; 1259 } 1260 1261 if (fs_info->fs_devices->rw_devices == 0) 1262 return -EACCES; 1263 1264 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1265 btrfs_warn(fs_info, 1266 "too many missing devices, writable remount is not allowed"); 1267 return -EACCES; 1268 } 1269 1270 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1271 btrfs_warn(fs_info, 1272 "mount required to replay tree-log, cannot remount read-write"); 1273 return -EINVAL; 1274 } 1275 1276 /* 1277 * NOTE: when remounting with a change that does writes, don't put it 1278 * anywhere above this point, as we are not sure to be safe to write 1279 * until we pass the above checks. 1280 */ 1281 ret = btrfs_start_pre_rw_mount(fs_info); 1282 if (ret) 1283 return ret; 1284 1285 btrfs_clear_sb_rdonly(fs_info->sb); 1286 1287 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1288 1289 /* 1290 * If we've gone from readonly -> read-write, we need to get our 1291 * sync/async discard lists in the right state. 1292 */ 1293 btrfs_discard_resume(fs_info); 1294 1295 return 0; 1296 } 1297 1298 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1299 { 1300 /* 1301 * This also happens on 'umount -rf' or on shutdown, when the 1302 * filesystem is busy. 1303 */ 1304 cancel_work_sync(&fs_info->async_reclaim_work); 1305 cancel_work_sync(&fs_info->async_data_reclaim_work); 1306 1307 btrfs_discard_cleanup(fs_info); 1308 1309 /* Wait for the uuid_scan task to finish */ 1310 down(&fs_info->uuid_tree_rescan_sem); 1311 /* Avoid complains from lockdep et al. */ 1312 up(&fs_info->uuid_tree_rescan_sem); 1313 1314 btrfs_set_sb_rdonly(fs_info->sb); 1315 1316 /* 1317 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1318 * loop if it's already active. If it's already asleep, we'll leave 1319 * unused block groups on disk until we're mounted read-write again 1320 * unless we clean them up here. 1321 */ 1322 btrfs_delete_unused_bgs(fs_info); 1323 1324 /* 1325 * The cleaner task could be already running before we set the flag 1326 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1327 * sure that after we finish the remount, i.e. after we call 1328 * btrfs_commit_super(), the cleaner can no longer start a transaction 1329 * - either because it was dropping a dead root, running delayed iputs 1330 * or deleting an unused block group (the cleaner picked a block 1331 * group from the list of unused block groups before we were able to 1332 * in the previous call to btrfs_delete_unused_bgs()). 1333 */ 1334 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1335 1336 /* 1337 * We've set the superblock to RO mode, so we might have made the 1338 * cleaner task sleep without running all pending delayed iputs. Go 1339 * through all the delayed iputs here, so that if an unmount happens 1340 * without remounting RW we don't end up at finishing close_ctree() 1341 * with a non-empty list of delayed iputs. 1342 */ 1343 btrfs_run_delayed_iputs(fs_info); 1344 1345 btrfs_dev_replace_suspend_for_unmount(fs_info); 1346 btrfs_scrub_cancel(fs_info); 1347 btrfs_pause_balance(fs_info); 1348 1349 /* 1350 * Pause the qgroup rescan worker if it is running. We don't want it to 1351 * be still running after we are in RO mode, as after that, by the time 1352 * we unmount, it might have left a transaction open, so we would leak 1353 * the transaction and/or crash. 1354 */ 1355 btrfs_qgroup_wait_for_completion(fs_info, false); 1356 1357 return btrfs_commit_super(fs_info); 1358 } 1359 1360 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1361 { 1362 fs_info->max_inline = ctx->max_inline; 1363 fs_info->commit_interval = ctx->commit_interval; 1364 fs_info->metadata_ratio = ctx->metadata_ratio; 1365 fs_info->thread_pool_size = ctx->thread_pool_size; 1366 fs_info->mount_opt = ctx->mount_opt; 1367 fs_info->compress_type = ctx->compress_type; 1368 fs_info->compress_level = ctx->compress_level; 1369 } 1370 1371 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1372 { 1373 ctx->max_inline = fs_info->max_inline; 1374 ctx->commit_interval = fs_info->commit_interval; 1375 ctx->metadata_ratio = fs_info->metadata_ratio; 1376 ctx->thread_pool_size = fs_info->thread_pool_size; 1377 ctx->mount_opt = fs_info->mount_opt; 1378 ctx->compress_type = fs_info->compress_type; 1379 ctx->compress_level = fs_info->compress_level; 1380 } 1381 1382 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1383 do { \ 1384 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1385 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1386 btrfs_info(fs_info, fmt, ##args); \ 1387 } while (0) 1388 1389 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1390 do { \ 1391 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1392 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1393 btrfs_info(fs_info, fmt, ##args); \ 1394 } while (0) 1395 1396 static void btrfs_emit_options(struct btrfs_fs_info *info, 1397 struct btrfs_fs_context *old) 1398 { 1399 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1400 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1401 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1402 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1403 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1404 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1405 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1406 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1407 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1408 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1409 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1410 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1411 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1412 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1413 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1414 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1415 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1416 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1417 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1418 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1419 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1420 1421 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1422 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1423 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1424 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1425 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1426 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1427 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1428 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1429 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1430 1431 /* Did the compression settings change? */ 1432 if (btrfs_test_opt(info, COMPRESS) && 1433 (!old || 1434 old->compress_type != info->compress_type || 1435 old->compress_level != info->compress_level || 1436 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1437 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1438 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1439 1440 btrfs_info(info, "%s %s compression, level %d", 1441 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1442 compress_type, info->compress_level); 1443 } 1444 1445 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1446 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1447 } 1448 1449 static int btrfs_reconfigure(struct fs_context *fc) 1450 { 1451 struct super_block *sb = fc->root->d_sb; 1452 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1453 struct btrfs_fs_context *ctx = fc->fs_private; 1454 struct btrfs_fs_context old_ctx; 1455 int ret = 0; 1456 bool mount_reconfigure = (fc->s_fs_info != NULL); 1457 1458 btrfs_info_to_ctx(fs_info, &old_ctx); 1459 1460 /* 1461 * This is our "bind mount" trick, we don't want to allow the user to do 1462 * anything other than mount a different ro/rw and a different subvol, 1463 * all of the mount options should be maintained. 1464 */ 1465 if (mount_reconfigure) 1466 ctx->mount_opt = old_ctx.mount_opt; 1467 1468 sync_filesystem(sb); 1469 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1470 1471 if (!mount_reconfigure && 1472 !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1473 return -EINVAL; 1474 1475 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1476 if (ret < 0) 1477 return ret; 1478 1479 btrfs_ctx_to_info(fs_info, ctx); 1480 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1481 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1482 old_ctx.thread_pool_size); 1483 1484 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1485 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1486 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1487 btrfs_warn(fs_info, 1488 "remount supports changing free space tree only from RO to RW"); 1489 /* Make sure free space cache options match the state on disk. */ 1490 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1491 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1492 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1493 } 1494 if (btrfs_free_space_cache_v1_active(fs_info)) { 1495 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1496 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1497 } 1498 } 1499 1500 ret = 0; 1501 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1502 ret = btrfs_remount_ro(fs_info); 1503 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1504 ret = btrfs_remount_rw(fs_info); 1505 if (ret) 1506 goto restore; 1507 1508 /* 1509 * If we set the mask during the parameter parsing VFS would reject the 1510 * remount. Here we can set the mask and the value will be updated 1511 * appropriately. 1512 */ 1513 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1514 fc->sb_flags_mask |= SB_POSIXACL; 1515 1516 btrfs_emit_options(fs_info, &old_ctx); 1517 wake_up_process(fs_info->transaction_kthread); 1518 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1519 btrfs_clear_oneshot_options(fs_info); 1520 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1521 1522 return 0; 1523 restore: 1524 btrfs_ctx_to_info(fs_info, &old_ctx); 1525 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1526 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1527 return ret; 1528 } 1529 1530 /* Used to sort the devices by max_avail(descending sort) */ 1531 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1532 { 1533 const struct btrfs_device_info *dev_info1 = a; 1534 const struct btrfs_device_info *dev_info2 = b; 1535 1536 if (dev_info1->max_avail > dev_info2->max_avail) 1537 return -1; 1538 else if (dev_info1->max_avail < dev_info2->max_avail) 1539 return 1; 1540 return 0; 1541 } 1542 1543 /* 1544 * sort the devices by max_avail, in which max free extent size of each device 1545 * is stored.(Descending Sort) 1546 */ 1547 static inline void btrfs_descending_sort_devices( 1548 struct btrfs_device_info *devices, 1549 size_t nr_devices) 1550 { 1551 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1552 btrfs_cmp_device_free_bytes, NULL); 1553 } 1554 1555 /* 1556 * The helper to calc the free space on the devices that can be used to store 1557 * file data. 1558 */ 1559 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1560 u64 *free_bytes) 1561 { 1562 struct btrfs_device_info *devices_info; 1563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1564 struct btrfs_device *device; 1565 u64 type; 1566 u64 avail_space; 1567 u64 min_stripe_size; 1568 int num_stripes = 1; 1569 int i = 0, nr_devices; 1570 const struct btrfs_raid_attr *rattr; 1571 1572 /* 1573 * We aren't under the device list lock, so this is racy-ish, but good 1574 * enough for our purposes. 1575 */ 1576 nr_devices = fs_info->fs_devices->open_devices; 1577 if (!nr_devices) { 1578 smp_mb(); 1579 nr_devices = fs_info->fs_devices->open_devices; 1580 ASSERT(nr_devices); 1581 if (!nr_devices) { 1582 *free_bytes = 0; 1583 return 0; 1584 } 1585 } 1586 1587 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1588 GFP_KERNEL); 1589 if (!devices_info) 1590 return -ENOMEM; 1591 1592 /* calc min stripe number for data space allocation */ 1593 type = btrfs_data_alloc_profile(fs_info); 1594 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1595 1596 if (type & BTRFS_BLOCK_GROUP_RAID0) 1597 num_stripes = nr_devices; 1598 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1599 num_stripes = rattr->ncopies; 1600 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1601 num_stripes = 4; 1602 1603 /* Adjust for more than 1 stripe per device */ 1604 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1605 1606 rcu_read_lock(); 1607 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1608 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1609 &device->dev_state) || 1610 !device->bdev || 1611 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1612 continue; 1613 1614 if (i >= nr_devices) 1615 break; 1616 1617 avail_space = device->total_bytes - device->bytes_used; 1618 1619 /* align with stripe_len */ 1620 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1621 1622 /* 1623 * Ensure we have at least min_stripe_size on top of the 1624 * reserved space on the device. 1625 */ 1626 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1627 continue; 1628 1629 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1630 1631 devices_info[i].dev = device; 1632 devices_info[i].max_avail = avail_space; 1633 1634 i++; 1635 } 1636 rcu_read_unlock(); 1637 1638 nr_devices = i; 1639 1640 btrfs_descending_sort_devices(devices_info, nr_devices); 1641 1642 i = nr_devices - 1; 1643 avail_space = 0; 1644 while (nr_devices >= rattr->devs_min) { 1645 num_stripes = min(num_stripes, nr_devices); 1646 1647 if (devices_info[i].max_avail >= min_stripe_size) { 1648 int j; 1649 u64 alloc_size; 1650 1651 avail_space += devices_info[i].max_avail * num_stripes; 1652 alloc_size = devices_info[i].max_avail; 1653 for (j = i + 1 - num_stripes; j <= i; j++) 1654 devices_info[j].max_avail -= alloc_size; 1655 } 1656 i--; 1657 nr_devices--; 1658 } 1659 1660 kfree(devices_info); 1661 *free_bytes = avail_space; 1662 return 0; 1663 } 1664 1665 /* 1666 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1667 * 1668 * If there's a redundant raid level at DATA block groups, use the respective 1669 * multiplier to scale the sizes. 1670 * 1671 * Unused device space usage is based on simulating the chunk allocator 1672 * algorithm that respects the device sizes and order of allocations. This is 1673 * a close approximation of the actual use but there are other factors that may 1674 * change the result (like a new metadata chunk). 1675 * 1676 * If metadata is exhausted, f_bavail will be 0. 1677 */ 1678 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1679 { 1680 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1681 struct btrfs_super_block *disk_super = fs_info->super_copy; 1682 struct btrfs_space_info *found; 1683 u64 total_used = 0; 1684 u64 total_free_data = 0; 1685 u64 total_free_meta = 0; 1686 u32 bits = fs_info->sectorsize_bits; 1687 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1688 unsigned factor = 1; 1689 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1690 int ret; 1691 u64 thresh = 0; 1692 int mixed = 0; 1693 1694 list_for_each_entry(found, &fs_info->space_info, list) { 1695 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1696 int i; 1697 1698 total_free_data += found->disk_total - found->disk_used; 1699 total_free_data -= 1700 btrfs_account_ro_block_groups_free_space(found); 1701 1702 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1703 if (!list_empty(&found->block_groups[i])) 1704 factor = btrfs_bg_type_to_factor( 1705 btrfs_raid_array[i].bg_flag); 1706 } 1707 } 1708 1709 /* 1710 * Metadata in mixed block group profiles are accounted in data 1711 */ 1712 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1713 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1714 mixed = 1; 1715 else 1716 total_free_meta += found->disk_total - 1717 found->disk_used; 1718 } 1719 1720 total_used += found->disk_used; 1721 } 1722 1723 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1724 buf->f_blocks >>= bits; 1725 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1726 1727 /* Account global block reserve as used, it's in logical size already */ 1728 spin_lock(&block_rsv->lock); 1729 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1730 if (buf->f_bfree >= block_rsv->size >> bits) 1731 buf->f_bfree -= block_rsv->size >> bits; 1732 else 1733 buf->f_bfree = 0; 1734 spin_unlock(&block_rsv->lock); 1735 1736 buf->f_bavail = div_u64(total_free_data, factor); 1737 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1738 if (ret) 1739 return ret; 1740 buf->f_bavail += div_u64(total_free_data, factor); 1741 buf->f_bavail = buf->f_bavail >> bits; 1742 1743 /* 1744 * We calculate the remaining metadata space minus global reserve. If 1745 * this is (supposedly) smaller than zero, there's no space. But this 1746 * does not hold in practice, the exhausted state happens where's still 1747 * some positive delta. So we apply some guesswork and compare the 1748 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1749 * 1750 * We probably cannot calculate the exact threshold value because this 1751 * depends on the internal reservations requested by various 1752 * operations, so some operations that consume a few metadata will 1753 * succeed even if the Avail is zero. But this is better than the other 1754 * way around. 1755 */ 1756 thresh = SZ_4M; 1757 1758 /* 1759 * We only want to claim there's no available space if we can no longer 1760 * allocate chunks for our metadata profile and our global reserve will 1761 * not fit in the free metadata space. If we aren't ->full then we 1762 * still can allocate chunks and thus are fine using the currently 1763 * calculated f_bavail. 1764 */ 1765 if (!mixed && block_rsv->space_info->full && 1766 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1767 buf->f_bavail = 0; 1768 1769 buf->f_type = BTRFS_SUPER_MAGIC; 1770 buf->f_bsize = dentry->d_sb->s_blocksize; 1771 buf->f_namelen = BTRFS_NAME_LEN; 1772 1773 /* We treat it as constant endianness (it doesn't matter _which_) 1774 because we want the fsid to come out the same whether mounted 1775 on a big-endian or little-endian host */ 1776 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1777 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1778 /* Mask in the root object ID too, to disambiguate subvols */ 1779 buf->f_fsid.val[0] ^= 1780 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 1781 buf->f_fsid.val[1] ^= 1782 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 1783 1784 return 0; 1785 } 1786 1787 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1788 { 1789 struct btrfs_fs_info *p = fc->s_fs_info; 1790 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1791 1792 return fs_info->fs_devices == p->fs_devices; 1793 } 1794 1795 static int btrfs_get_tree_super(struct fs_context *fc) 1796 { 1797 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1798 struct btrfs_fs_context *ctx = fc->fs_private; 1799 struct btrfs_fs_devices *fs_devices = NULL; 1800 struct block_device *bdev; 1801 struct btrfs_device *device; 1802 struct super_block *sb; 1803 blk_mode_t mode = btrfs_open_mode(fc); 1804 int ret; 1805 1806 btrfs_ctx_to_info(fs_info, ctx); 1807 mutex_lock(&uuid_mutex); 1808 1809 /* 1810 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1811 * either a valid device or an error. 1812 */ 1813 device = btrfs_scan_one_device(fc->source, mode, true); 1814 ASSERT(device != NULL); 1815 if (IS_ERR(device)) { 1816 mutex_unlock(&uuid_mutex); 1817 return PTR_ERR(device); 1818 } 1819 1820 fs_devices = device->fs_devices; 1821 fs_info->fs_devices = fs_devices; 1822 1823 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1824 mutex_unlock(&uuid_mutex); 1825 if (ret) 1826 return ret; 1827 1828 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1829 ret = -EACCES; 1830 goto error; 1831 } 1832 1833 bdev = fs_devices->latest_dev->bdev; 1834 1835 /* 1836 * From now on the error handling is not straightforward. 1837 * 1838 * If successful, this will transfer the fs_info into the super block, 1839 * and fc->s_fs_info will be NULL. However if there's an existing 1840 * super, we'll still have fc->s_fs_info populated. If we error 1841 * completely out it'll be cleaned up when we drop the fs_context, 1842 * otherwise it's tied to the lifetime of the super_block. 1843 */ 1844 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1845 if (IS_ERR(sb)) { 1846 ret = PTR_ERR(sb); 1847 goto error; 1848 } 1849 1850 set_device_specific_options(fs_info); 1851 1852 if (sb->s_root) { 1853 btrfs_close_devices(fs_devices); 1854 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY) 1855 ret = -EBUSY; 1856 } else { 1857 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1858 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1859 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1860 ret = btrfs_fill_super(sb, fs_devices, NULL); 1861 } 1862 1863 if (ret) { 1864 deactivate_locked_super(sb); 1865 return ret; 1866 } 1867 1868 btrfs_clear_oneshot_options(fs_info); 1869 1870 fc->root = dget(sb->s_root); 1871 return 0; 1872 1873 error: 1874 btrfs_close_devices(fs_devices); 1875 return ret; 1876 } 1877 1878 /* 1879 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1880 * with different ro/rw options") the following works: 1881 * 1882 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1883 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1884 * 1885 * which looks nice and innocent but is actually pretty intricate and deserves 1886 * a long comment. 1887 * 1888 * On another filesystem a subvolume mount is close to something like: 1889 * 1890 * (iii) # create rw superblock + initial mount 1891 * mount -t xfs /dev/sdb /opt/ 1892 * 1893 * # create ro bind mount 1894 * mount --bind -o ro /opt/foo /mnt/foo 1895 * 1896 * # unmount initial mount 1897 * umount /opt 1898 * 1899 * Of course, there's some special subvolume sauce and there's the fact that the 1900 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1901 * it's very close and will help us understand the issue. 1902 * 1903 * The old mount API didn't cleanly distinguish between a mount being made ro 1904 * and a superblock being made ro. The only way to change the ro state of 1905 * either object was by passing ms_rdonly. If a new mount was created via 1906 * mount(2) such as: 1907 * 1908 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1909 * 1910 * the MS_RDONLY flag being specified had two effects: 1911 * 1912 * (1) MNT_READONLY was raised -> the resulting mount got 1913 * @mnt->mnt_flags |= MNT_READONLY raised. 1914 * 1915 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1916 * made the superblock ro. Note, how SB_RDONLY has the same value as 1917 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1918 * 1919 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1920 * subtree mounted ro. 1921 * 1922 * But consider the effect on the old mount API on btrfs subvolume mounting 1923 * which combines the distinct step in (iii) into a single step. 1924 * 1925 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1926 * is issued the superblock is ro and thus even if the mount created for (ii) is 1927 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1928 * to rw for (ii) which it did using an internal remount call. 1929 * 1930 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1931 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1932 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1933 * passed by mount(8) to mount(2). 1934 * 1935 * Enter the new mount API. The new mount API disambiguates making a mount ro 1936 * and making a superblock ro. 1937 * 1938 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1939 * fsmount() or mount_setattr() this is a pure VFS level change for a 1940 * specific mount or mount tree that is never seen by the filesystem itself. 1941 * 1942 * (4) To turn a superblock ro the "ro" flag must be used with 1943 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1944 * in fc->sb_flags. 1945 * 1946 * This disambiguation has rather positive consequences. Mounting a subvolume 1947 * ro will not also turn the superblock ro. Only the mount for the subvolume 1948 * will become ro. 1949 * 1950 * So, if the superblock creation request comes from the new mount API the 1951 * caller must have explicitly done: 1952 * 1953 * fsconfig(FSCONFIG_SET_FLAG, "ro") 1954 * fsmount/mount_setattr(MOUNT_ATTR_RDONLY) 1955 * 1956 * IOW, at some point the caller must have explicitly turned the whole 1957 * superblock ro and we shouldn't just undo it like we did for the old mount 1958 * API. In any case, it lets us avoid the hack in the new mount API. 1959 * 1960 * Consequently, the remounting hack must only be used for requests originating 1961 * from the old mount API and should be marked for full deprecation so it can be 1962 * turned off in a couple of years. 1963 * 1964 * The new mount API has no reason to support this hack. 1965 */ 1966 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc) 1967 { 1968 struct vfsmount *mnt; 1969 int ret; 1970 const bool ro2rw = !(fc->sb_flags & SB_RDONLY); 1971 1972 /* 1973 * We got an EBUSY because our SB_RDONLY flag didn't match the existing 1974 * super block, so invert our setting here and retry the mount so we 1975 * can get our vfsmount. 1976 */ 1977 if (ro2rw) 1978 fc->sb_flags |= SB_RDONLY; 1979 else 1980 fc->sb_flags &= ~SB_RDONLY; 1981 1982 mnt = fc_mount(fc); 1983 if (IS_ERR(mnt)) 1984 return mnt; 1985 1986 if (!fc->oldapi || !ro2rw) 1987 return mnt; 1988 1989 /* We need to convert to rw, call reconfigure. */ 1990 fc->sb_flags &= ~SB_RDONLY; 1991 down_write(&mnt->mnt_sb->s_umount); 1992 ret = btrfs_reconfigure(fc); 1993 up_write(&mnt->mnt_sb->s_umount); 1994 if (ret) { 1995 mntput(mnt); 1996 return ERR_PTR(ret); 1997 } 1998 return mnt; 1999 } 2000 2001 static int btrfs_get_tree_subvol(struct fs_context *fc) 2002 { 2003 struct btrfs_fs_info *fs_info = NULL; 2004 struct btrfs_fs_context *ctx = fc->fs_private; 2005 struct fs_context *dup_fc; 2006 struct dentry *dentry; 2007 struct vfsmount *mnt; 2008 2009 /* 2010 * Setup a dummy root and fs_info for test/set super. This is because 2011 * we don't actually fill this stuff out until open_ctree, but we need 2012 * then open_ctree will properly initialize the file system specific 2013 * settings later. btrfs_init_fs_info initializes the static elements 2014 * of the fs_info (locks and such) to make cleanup easier if we find a 2015 * superblock with our given fs_devices later on at sget() time. 2016 */ 2017 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2018 if (!fs_info) 2019 return -ENOMEM; 2020 2021 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2022 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2023 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2024 btrfs_free_fs_info(fs_info); 2025 return -ENOMEM; 2026 } 2027 btrfs_init_fs_info(fs_info); 2028 2029 dup_fc = vfs_dup_fs_context(fc); 2030 if (IS_ERR(dup_fc)) { 2031 btrfs_free_fs_info(fs_info); 2032 return PTR_ERR(dup_fc); 2033 } 2034 2035 /* 2036 * When we do the sget_fc this gets transferred to the sb, so we only 2037 * need to set it on the dup_fc as this is what creates the super block. 2038 */ 2039 dup_fc->s_fs_info = fs_info; 2040 2041 /* 2042 * We'll do the security settings in our btrfs_get_tree_super() mount 2043 * loop, they were duplicated into dup_fc, we can drop the originals 2044 * here. 2045 */ 2046 security_free_mnt_opts(&fc->security); 2047 fc->security = NULL; 2048 2049 mnt = fc_mount(dup_fc); 2050 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) 2051 mnt = btrfs_reconfigure_for_mount(dup_fc); 2052 put_fs_context(dup_fc); 2053 if (IS_ERR(mnt)) 2054 return PTR_ERR(mnt); 2055 2056 /* 2057 * This free's ->subvol_name, because if it isn't set we have to 2058 * allocate a buffer to hold the subvol_name, so we just drop our 2059 * reference to it here. 2060 */ 2061 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2062 ctx->subvol_name = NULL; 2063 if (IS_ERR(dentry)) 2064 return PTR_ERR(dentry); 2065 2066 fc->root = dentry; 2067 return 0; 2068 } 2069 2070 static int btrfs_get_tree(struct fs_context *fc) 2071 { 2072 /* 2073 * Since we use mount_subtree to mount the default/specified subvol, we 2074 * have to do mounts in two steps. 2075 * 2076 * First pass through we call btrfs_get_tree_subvol(), this is just a 2077 * wrapper around fc_mount() to call back into here again, and this time 2078 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2079 * everything to open the devices and file system. Then we return back 2080 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2081 * from there we can do our mount_subvol() call, which will lookup 2082 * whichever subvol we're mounting and setup this fc with the 2083 * appropriate dentry for the subvol. 2084 */ 2085 if (fc->s_fs_info) 2086 return btrfs_get_tree_super(fc); 2087 return btrfs_get_tree_subvol(fc); 2088 } 2089 2090 static void btrfs_kill_super(struct super_block *sb) 2091 { 2092 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2093 kill_anon_super(sb); 2094 btrfs_free_fs_info(fs_info); 2095 } 2096 2097 static void btrfs_free_fs_context(struct fs_context *fc) 2098 { 2099 struct btrfs_fs_context *ctx = fc->fs_private; 2100 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2101 2102 if (fs_info) 2103 btrfs_free_fs_info(fs_info); 2104 2105 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2106 kfree(ctx->subvol_name); 2107 kfree(ctx); 2108 } 2109 } 2110 2111 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2112 { 2113 struct btrfs_fs_context *ctx = src_fc->fs_private; 2114 2115 /* 2116 * Give a ref to our ctx to this dup, as we want to keep it around for 2117 * our original fc so we can have the subvolume name or objectid. 2118 * 2119 * We unset ->source in the original fc because the dup needs it for 2120 * mounting, and then once we free the dup it'll free ->source, so we 2121 * need to make sure we're only pointing to it in one fc. 2122 */ 2123 refcount_inc(&ctx->refs); 2124 fc->fs_private = ctx; 2125 fc->source = src_fc->source; 2126 src_fc->source = NULL; 2127 return 0; 2128 } 2129 2130 static const struct fs_context_operations btrfs_fs_context_ops = { 2131 .parse_param = btrfs_parse_param, 2132 .reconfigure = btrfs_reconfigure, 2133 .get_tree = btrfs_get_tree, 2134 .dup = btrfs_dup_fs_context, 2135 .free = btrfs_free_fs_context, 2136 }; 2137 2138 static int btrfs_init_fs_context(struct fs_context *fc) 2139 { 2140 struct btrfs_fs_context *ctx; 2141 2142 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2143 if (!ctx) 2144 return -ENOMEM; 2145 2146 refcount_set(&ctx->refs, 1); 2147 fc->fs_private = ctx; 2148 fc->ops = &btrfs_fs_context_ops; 2149 2150 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2151 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2152 } else { 2153 ctx->thread_pool_size = 2154 min_t(unsigned long, num_online_cpus() + 2, 8); 2155 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2156 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2157 } 2158 2159 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2160 fc->sb_flags |= SB_POSIXACL; 2161 #endif 2162 fc->sb_flags |= SB_I_VERSION; 2163 2164 return 0; 2165 } 2166 2167 static struct file_system_type btrfs_fs_type = { 2168 .owner = THIS_MODULE, 2169 .name = "btrfs", 2170 .init_fs_context = btrfs_init_fs_context, 2171 .parameters = btrfs_fs_parameters, 2172 .kill_sb = btrfs_kill_super, 2173 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2174 }; 2175 2176 MODULE_ALIAS_FS("btrfs"); 2177 2178 static int btrfs_control_open(struct inode *inode, struct file *file) 2179 { 2180 /* 2181 * The control file's private_data is used to hold the 2182 * transaction when it is started and is used to keep 2183 * track of whether a transaction is already in progress. 2184 */ 2185 file->private_data = NULL; 2186 return 0; 2187 } 2188 2189 /* 2190 * Used by /dev/btrfs-control for devices ioctls. 2191 */ 2192 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2193 unsigned long arg) 2194 { 2195 struct btrfs_ioctl_vol_args *vol; 2196 struct btrfs_device *device = NULL; 2197 dev_t devt = 0; 2198 int ret = -ENOTTY; 2199 2200 if (!capable(CAP_SYS_ADMIN)) 2201 return -EPERM; 2202 2203 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2204 if (IS_ERR(vol)) 2205 return PTR_ERR(vol); 2206 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2207 2208 switch (cmd) { 2209 case BTRFS_IOC_SCAN_DEV: 2210 mutex_lock(&uuid_mutex); 2211 /* 2212 * Scanning outside of mount can return NULL which would turn 2213 * into 0 error code. 2214 */ 2215 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2216 ret = PTR_ERR_OR_ZERO(device); 2217 mutex_unlock(&uuid_mutex); 2218 break; 2219 case BTRFS_IOC_FORGET_DEV: 2220 if (vol->name[0] != 0) { 2221 ret = lookup_bdev(vol->name, &devt); 2222 if (ret) 2223 break; 2224 } 2225 ret = btrfs_forget_devices(devt); 2226 break; 2227 case BTRFS_IOC_DEVICES_READY: 2228 mutex_lock(&uuid_mutex); 2229 /* 2230 * Scanning outside of mount can return NULL which would turn 2231 * into 0 error code. 2232 */ 2233 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2234 if (IS_ERR_OR_NULL(device)) { 2235 mutex_unlock(&uuid_mutex); 2236 ret = PTR_ERR(device); 2237 break; 2238 } 2239 ret = !(device->fs_devices->num_devices == 2240 device->fs_devices->total_devices); 2241 mutex_unlock(&uuid_mutex); 2242 break; 2243 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2244 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2245 break; 2246 } 2247 2248 kfree(vol); 2249 return ret; 2250 } 2251 2252 static int btrfs_freeze(struct super_block *sb) 2253 { 2254 struct btrfs_trans_handle *trans; 2255 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2256 struct btrfs_root *root = fs_info->tree_root; 2257 2258 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2259 /* 2260 * We don't need a barrier here, we'll wait for any transaction that 2261 * could be in progress on other threads (and do delayed iputs that 2262 * we want to avoid on a frozen filesystem), or do the commit 2263 * ourselves. 2264 */ 2265 trans = btrfs_attach_transaction_barrier(root); 2266 if (IS_ERR(trans)) { 2267 /* no transaction, don't bother */ 2268 if (PTR_ERR(trans) == -ENOENT) 2269 return 0; 2270 return PTR_ERR(trans); 2271 } 2272 return btrfs_commit_transaction(trans); 2273 } 2274 2275 static int check_dev_super(struct btrfs_device *dev) 2276 { 2277 struct btrfs_fs_info *fs_info = dev->fs_info; 2278 struct btrfs_super_block *sb; 2279 u64 last_trans; 2280 u16 csum_type; 2281 int ret = 0; 2282 2283 /* This should be called with fs still frozen. */ 2284 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2285 2286 /* Missing dev, no need to check. */ 2287 if (!dev->bdev) 2288 return 0; 2289 2290 /* Only need to check the primary super block. */ 2291 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2292 if (IS_ERR(sb)) 2293 return PTR_ERR(sb); 2294 2295 /* Verify the checksum. */ 2296 csum_type = btrfs_super_csum_type(sb); 2297 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2298 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2299 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2300 ret = -EUCLEAN; 2301 goto out; 2302 } 2303 2304 if (btrfs_check_super_csum(fs_info, sb)) { 2305 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2306 ret = -EUCLEAN; 2307 goto out; 2308 } 2309 2310 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2311 ret = btrfs_validate_super(fs_info, sb, 0); 2312 if (ret < 0) 2313 goto out; 2314 2315 last_trans = btrfs_get_last_trans_committed(fs_info); 2316 if (btrfs_super_generation(sb) != last_trans) { 2317 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2318 btrfs_super_generation(sb), last_trans); 2319 ret = -EUCLEAN; 2320 goto out; 2321 } 2322 out: 2323 btrfs_release_disk_super(sb); 2324 return ret; 2325 } 2326 2327 static int btrfs_unfreeze(struct super_block *sb) 2328 { 2329 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2330 struct btrfs_device *device; 2331 int ret = 0; 2332 2333 /* 2334 * Make sure the fs is not changed by accident (like hibernation then 2335 * modified by other OS). 2336 * If we found anything wrong, we mark the fs error immediately. 2337 * 2338 * And since the fs is frozen, no one can modify the fs yet, thus 2339 * we don't need to hold device_list_mutex. 2340 */ 2341 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2342 ret = check_dev_super(device); 2343 if (ret < 0) { 2344 btrfs_handle_fs_error(fs_info, ret, 2345 "super block on devid %llu got modified unexpectedly", 2346 device->devid); 2347 break; 2348 } 2349 } 2350 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2351 2352 /* 2353 * We still return 0, to allow VFS layer to unfreeze the fs even the 2354 * above checks failed. Since the fs is either fine or read-only, we're 2355 * safe to continue, without causing further damage. 2356 */ 2357 return 0; 2358 } 2359 2360 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2361 { 2362 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2363 2364 /* 2365 * There should be always a valid pointer in latest_dev, it may be stale 2366 * for a short moment in case it's being deleted but still valid until 2367 * the end of RCU grace period. 2368 */ 2369 rcu_read_lock(); 2370 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2371 rcu_read_unlock(); 2372 2373 return 0; 2374 } 2375 2376 static const struct super_operations btrfs_super_ops = { 2377 .drop_inode = btrfs_drop_inode, 2378 .evict_inode = btrfs_evict_inode, 2379 .put_super = btrfs_put_super, 2380 .sync_fs = btrfs_sync_fs, 2381 .show_options = btrfs_show_options, 2382 .show_devname = btrfs_show_devname, 2383 .alloc_inode = btrfs_alloc_inode, 2384 .destroy_inode = btrfs_destroy_inode, 2385 .free_inode = btrfs_free_inode, 2386 .statfs = btrfs_statfs, 2387 .freeze_fs = btrfs_freeze, 2388 .unfreeze_fs = btrfs_unfreeze, 2389 }; 2390 2391 static const struct file_operations btrfs_ctl_fops = { 2392 .open = btrfs_control_open, 2393 .unlocked_ioctl = btrfs_control_ioctl, 2394 .compat_ioctl = compat_ptr_ioctl, 2395 .owner = THIS_MODULE, 2396 .llseek = noop_llseek, 2397 }; 2398 2399 static struct miscdevice btrfs_misc = { 2400 .minor = BTRFS_MINOR, 2401 .name = "btrfs-control", 2402 .fops = &btrfs_ctl_fops 2403 }; 2404 2405 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2406 MODULE_ALIAS("devname:btrfs-control"); 2407 2408 static int __init btrfs_interface_init(void) 2409 { 2410 return misc_register(&btrfs_misc); 2411 } 2412 2413 static __cold void btrfs_interface_exit(void) 2414 { 2415 misc_deregister(&btrfs_misc); 2416 } 2417 2418 static int __init btrfs_print_mod_info(void) 2419 { 2420 static const char options[] = "" 2421 #ifdef CONFIG_BTRFS_DEBUG 2422 ", debug=on" 2423 #endif 2424 #ifdef CONFIG_BTRFS_ASSERT 2425 ", assert=on" 2426 #endif 2427 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2428 ", ref-verify=on" 2429 #endif 2430 #ifdef CONFIG_BLK_DEV_ZONED 2431 ", zoned=yes" 2432 #else 2433 ", zoned=no" 2434 #endif 2435 #ifdef CONFIG_FS_VERITY 2436 ", fsverity=yes" 2437 #else 2438 ", fsverity=no" 2439 #endif 2440 ; 2441 pr_info("Btrfs loaded%s\n", options); 2442 return 0; 2443 } 2444 2445 static int register_btrfs(void) 2446 { 2447 return register_filesystem(&btrfs_fs_type); 2448 } 2449 2450 static void unregister_btrfs(void) 2451 { 2452 unregister_filesystem(&btrfs_fs_type); 2453 } 2454 2455 /* Helper structure for long init/exit functions. */ 2456 struct init_sequence { 2457 int (*init_func)(void); 2458 /* Can be NULL if the init_func doesn't need cleanup. */ 2459 void (*exit_func)(void); 2460 }; 2461 2462 static const struct init_sequence mod_init_seq[] = { 2463 { 2464 .init_func = btrfs_props_init, 2465 .exit_func = NULL, 2466 }, { 2467 .init_func = btrfs_init_sysfs, 2468 .exit_func = btrfs_exit_sysfs, 2469 }, { 2470 .init_func = btrfs_init_compress, 2471 .exit_func = btrfs_exit_compress, 2472 }, { 2473 .init_func = btrfs_init_cachep, 2474 .exit_func = btrfs_destroy_cachep, 2475 }, { 2476 .init_func = btrfs_transaction_init, 2477 .exit_func = btrfs_transaction_exit, 2478 }, { 2479 .init_func = btrfs_ctree_init, 2480 .exit_func = btrfs_ctree_exit, 2481 }, { 2482 .init_func = btrfs_free_space_init, 2483 .exit_func = btrfs_free_space_exit, 2484 }, { 2485 .init_func = extent_state_init_cachep, 2486 .exit_func = extent_state_free_cachep, 2487 }, { 2488 .init_func = extent_buffer_init_cachep, 2489 .exit_func = extent_buffer_free_cachep, 2490 }, { 2491 .init_func = btrfs_bioset_init, 2492 .exit_func = btrfs_bioset_exit, 2493 }, { 2494 .init_func = extent_map_init, 2495 .exit_func = extent_map_exit, 2496 }, { 2497 .init_func = ordered_data_init, 2498 .exit_func = ordered_data_exit, 2499 }, { 2500 .init_func = btrfs_delayed_inode_init, 2501 .exit_func = btrfs_delayed_inode_exit, 2502 }, { 2503 .init_func = btrfs_auto_defrag_init, 2504 .exit_func = btrfs_auto_defrag_exit, 2505 }, { 2506 .init_func = btrfs_delayed_ref_init, 2507 .exit_func = btrfs_delayed_ref_exit, 2508 }, { 2509 .init_func = btrfs_prelim_ref_init, 2510 .exit_func = btrfs_prelim_ref_exit, 2511 }, { 2512 .init_func = btrfs_interface_init, 2513 .exit_func = btrfs_interface_exit, 2514 }, { 2515 .init_func = btrfs_print_mod_info, 2516 .exit_func = NULL, 2517 }, { 2518 .init_func = btrfs_run_sanity_tests, 2519 .exit_func = NULL, 2520 }, { 2521 .init_func = register_btrfs, 2522 .exit_func = unregister_btrfs, 2523 } 2524 }; 2525 2526 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2527 2528 static __always_inline void btrfs_exit_btrfs_fs(void) 2529 { 2530 int i; 2531 2532 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2533 if (!mod_init_result[i]) 2534 continue; 2535 if (mod_init_seq[i].exit_func) 2536 mod_init_seq[i].exit_func(); 2537 mod_init_result[i] = false; 2538 } 2539 } 2540 2541 static void __exit exit_btrfs_fs(void) 2542 { 2543 btrfs_exit_btrfs_fs(); 2544 btrfs_cleanup_fs_uuids(); 2545 } 2546 2547 static int __init init_btrfs_fs(void) 2548 { 2549 int ret; 2550 int i; 2551 2552 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2553 ASSERT(!mod_init_result[i]); 2554 ret = mod_init_seq[i].init_func(); 2555 if (ret < 0) { 2556 btrfs_exit_btrfs_fs(); 2557 return ret; 2558 } 2559 mod_init_result[i] = true; 2560 } 2561 return 0; 2562 } 2563 2564 late_initcall(init_btrfs_fs); 2565 module_exit(exit_btrfs_fs) 2566 2567 MODULE_LICENSE("GPL"); 2568 MODULE_SOFTDEP("pre: crc32c"); 2569 MODULE_SOFTDEP("pre: xxhash64"); 2570 MODULE_SOFTDEP("pre: sha256"); 2571 MODULE_SOFTDEP("pre: blake2b-256"); 2572