1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "direct-io.h" 38 #include "props.h" 39 #include "xattr.h" 40 #include "bio.h" 41 #include "export.h" 42 #include "compression.h" 43 #include "dev-replace.h" 44 #include "free-space-cache.h" 45 #include "backref.h" 46 #include "space-info.h" 47 #include "sysfs.h" 48 #include "zoned.h" 49 #include "tests/btrfs-tests.h" 50 #include "block-group.h" 51 #include "discard.h" 52 #include "qgroup.h" 53 #include "raid56.h" 54 #include "fs.h" 55 #include "accessors.h" 56 #include "defrag.h" 57 #include "dir-item.h" 58 #include "ioctl.h" 59 #include "scrub.h" 60 #include "verity.h" 61 #include "super.h" 62 #include "extent-tree.h" 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static void btrfs_put_super(struct super_block *sb) 70 { 71 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 72 73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 74 close_ctree(fs_info); 75 } 76 77 /* Store the mount options related information. */ 78 struct btrfs_fs_context { 79 char *subvol_name; 80 u64 subvol_objectid; 81 u64 max_inline; 82 u32 commit_interval; 83 u32 metadata_ratio; 84 u32 thread_pool_size; 85 unsigned long long mount_opt; 86 unsigned long compress_type:4; 87 int compress_level; 88 refcount_t refs; 89 }; 90 91 static void btrfs_emit_options(struct btrfs_fs_info *info, 92 struct btrfs_fs_context *old); 93 94 enum { 95 Opt_acl, 96 Opt_clear_cache, 97 Opt_commit_interval, 98 Opt_compress, 99 Opt_compress_force, 100 Opt_compress_force_type, 101 Opt_compress_type, 102 Opt_degraded, 103 Opt_device, 104 Opt_fatal_errors, 105 Opt_flushoncommit, 106 Opt_max_inline, 107 Opt_barrier, 108 Opt_datacow, 109 Opt_datasum, 110 Opt_defrag, 111 Opt_discard, 112 Opt_discard_mode, 113 Opt_ratio, 114 Opt_rescan_uuid_tree, 115 Opt_skip_balance, 116 Opt_space_cache, 117 Opt_space_cache_version, 118 Opt_ssd, 119 Opt_ssd_spread, 120 Opt_subvol, 121 Opt_subvol_empty, 122 Opt_subvolid, 123 Opt_thread_pool, 124 Opt_treelog, 125 Opt_user_subvol_rm_allowed, 126 Opt_norecovery, 127 128 /* Rescue options */ 129 Opt_rescue, 130 Opt_usebackuproot, 131 132 /* Debugging options */ 133 Opt_enospc_debug, 134 #ifdef CONFIG_BTRFS_DEBUG 135 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 136 Opt_ref_verify, 137 Opt_ref_tracker, 138 #endif 139 Opt_err, 140 }; 141 142 enum { 143 Opt_fatal_errors_panic, 144 Opt_fatal_errors_bug, 145 }; 146 147 static const struct constant_table btrfs_parameter_fatal_errors[] = { 148 { "panic", Opt_fatal_errors_panic }, 149 { "bug", Opt_fatal_errors_bug }, 150 {} 151 }; 152 153 enum { 154 Opt_discard_sync, 155 Opt_discard_async, 156 }; 157 158 static const struct constant_table btrfs_parameter_discard[] = { 159 { "sync", Opt_discard_sync }, 160 { "async", Opt_discard_async }, 161 {} 162 }; 163 164 enum { 165 Opt_space_cache_v1, 166 Opt_space_cache_v2, 167 }; 168 169 static const struct constant_table btrfs_parameter_space_cache[] = { 170 { "v1", Opt_space_cache_v1 }, 171 { "v2", Opt_space_cache_v2 }, 172 {} 173 }; 174 175 enum { 176 Opt_rescue_usebackuproot, 177 Opt_rescue_nologreplay, 178 Opt_rescue_ignorebadroots, 179 Opt_rescue_ignoredatacsums, 180 Opt_rescue_ignoremetacsums, 181 Opt_rescue_ignoresuperflags, 182 Opt_rescue_parameter_all, 183 }; 184 185 static const struct constant_table btrfs_parameter_rescue[] = { 186 { "usebackuproot", Opt_rescue_usebackuproot }, 187 { "nologreplay", Opt_rescue_nologreplay }, 188 { "ignorebadroots", Opt_rescue_ignorebadroots }, 189 { "ibadroots", Opt_rescue_ignorebadroots }, 190 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 191 { "ignoremetacsums", Opt_rescue_ignoremetacsums}, 192 { "ignoresuperflags", Opt_rescue_ignoresuperflags}, 193 { "idatacsums", Opt_rescue_ignoredatacsums }, 194 { "imetacsums", Opt_rescue_ignoremetacsums}, 195 { "isuperflags", Opt_rescue_ignoresuperflags}, 196 { "all", Opt_rescue_parameter_all }, 197 {} 198 }; 199 200 #ifdef CONFIG_BTRFS_DEBUG 201 enum { 202 Opt_fragment_parameter_data, 203 Opt_fragment_parameter_metadata, 204 Opt_fragment_parameter_all, 205 }; 206 207 static const struct constant_table btrfs_parameter_fragment[] = { 208 { "data", Opt_fragment_parameter_data }, 209 { "metadata", Opt_fragment_parameter_metadata }, 210 { "all", Opt_fragment_parameter_all }, 211 {} 212 }; 213 #endif 214 215 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 216 fsparam_flag_no("acl", Opt_acl), 217 fsparam_flag_no("autodefrag", Opt_defrag), 218 fsparam_flag_no("barrier", Opt_barrier), 219 fsparam_flag("clear_cache", Opt_clear_cache), 220 fsparam_u32("commit", Opt_commit_interval), 221 fsparam_flag("compress", Opt_compress), 222 fsparam_string("compress", Opt_compress_type), 223 fsparam_flag("compress-force", Opt_compress_force), 224 fsparam_string("compress-force", Opt_compress_force_type), 225 fsparam_flag_no("datacow", Opt_datacow), 226 fsparam_flag_no("datasum", Opt_datasum), 227 fsparam_flag("degraded", Opt_degraded), 228 fsparam_string("device", Opt_device), 229 fsparam_flag_no("discard", Opt_discard), 230 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 231 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 232 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 233 fsparam_string("max_inline", Opt_max_inline), 234 fsparam_u32("metadata_ratio", Opt_ratio), 235 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 236 fsparam_flag("skip_balance", Opt_skip_balance), 237 fsparam_flag_no("space_cache", Opt_space_cache), 238 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 239 fsparam_flag_no("ssd", Opt_ssd), 240 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 241 fsparam_string("subvol", Opt_subvol), 242 fsparam_flag("subvol=", Opt_subvol_empty), 243 fsparam_u64("subvolid", Opt_subvolid), 244 fsparam_u32("thread_pool", Opt_thread_pool), 245 fsparam_flag_no("treelog", Opt_treelog), 246 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 247 248 /* Rescue options. */ 249 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 250 /* Deprecated, with alias rescue=usebackuproot */ 251 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 252 /* For compatibility only, alias for "rescue=nologreplay". */ 253 fsparam_flag("norecovery", Opt_norecovery), 254 255 /* Debugging options. */ 256 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 257 #ifdef CONFIG_BTRFS_DEBUG 258 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 259 fsparam_flag("ref_tracker", Opt_ref_tracker), 260 fsparam_flag("ref_verify", Opt_ref_verify), 261 #endif 262 {} 263 }; 264 265 static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level) 266 { 267 const int len = strlen(type); 268 269 return (strncmp(string, type, len) == 0) && 270 ((may_have_level && string[len] == ':') || string[len] == '\0'); 271 } 272 273 static int btrfs_parse_compress(struct btrfs_fs_context *ctx, 274 const struct fs_parameter *param, int opt) 275 { 276 const char *string = param->string; 277 int ret; 278 279 /* 280 * Provide the same semantics as older kernels that don't use fs 281 * context, specifying the "compress" option clears "force-compress" 282 * without the need to pass "compress-force=[no|none]" before 283 * specifying "compress". 284 */ 285 if (opt != Opt_compress_force && opt != Opt_compress_force_type) 286 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 287 288 if (opt == Opt_compress || opt == Opt_compress_force) { 289 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 290 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 291 btrfs_set_opt(ctx->mount_opt, COMPRESS); 292 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 293 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 294 } else if (btrfs_match_compress_type(string, "zlib", true)) { 295 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 296 ret = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, string + 4, 297 &ctx->compress_level); 298 if (ret < 0) 299 goto error; 300 btrfs_set_opt(ctx->mount_opt, COMPRESS); 301 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 302 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 303 } else if (btrfs_match_compress_type(string, "lzo", true)) { 304 ctx->compress_type = BTRFS_COMPRESS_LZO; 305 ret = btrfs_compress_str2level(BTRFS_COMPRESS_LZO, string + 3, 306 &ctx->compress_level); 307 if (ret < 0) 308 goto error; 309 if (string[3] == ':' && string[4]) 310 btrfs_warn(NULL, "Compression level ignored for LZO"); 311 btrfs_set_opt(ctx->mount_opt, COMPRESS); 312 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 313 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 314 } else if (btrfs_match_compress_type(string, "zstd", true)) { 315 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 316 ret = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, string + 4, 317 &ctx->compress_level); 318 if (ret < 0) 319 goto error; 320 btrfs_set_opt(ctx->mount_opt, COMPRESS); 321 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 322 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 323 } else if (btrfs_match_compress_type(string, "no", false) || 324 btrfs_match_compress_type(string, "none", false)) { 325 ctx->compress_level = 0; 326 ctx->compress_type = 0; 327 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 328 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 329 } else { 330 ret = -EINVAL; 331 goto error; 332 } 333 return 0; 334 error: 335 btrfs_err(NULL, "failed to parse compression option '%s'", string); 336 return ret; 337 338 } 339 340 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 341 { 342 struct btrfs_fs_context *ctx = fc->fs_private; 343 struct fs_parse_result result; 344 int opt; 345 346 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 347 if (opt < 0) 348 return opt; 349 350 switch (opt) { 351 case Opt_degraded: 352 btrfs_set_opt(ctx->mount_opt, DEGRADED); 353 break; 354 case Opt_subvol_empty: 355 /* 356 * This exists because we used to allow it on accident, so we're 357 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 358 * empty subvol= again"). 359 */ 360 break; 361 case Opt_subvol: 362 kfree(ctx->subvol_name); 363 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 364 if (!ctx->subvol_name) 365 return -ENOMEM; 366 break; 367 case Opt_subvolid: 368 ctx->subvol_objectid = result.uint_64; 369 370 /* subvolid=0 means give me the original fs_tree. */ 371 if (!ctx->subvol_objectid) 372 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 373 break; 374 case Opt_device: { 375 struct btrfs_device *device; 376 377 mutex_lock(&uuid_mutex); 378 device = btrfs_scan_one_device(param->string, false); 379 mutex_unlock(&uuid_mutex); 380 if (IS_ERR(device)) 381 return PTR_ERR(device); 382 break; 383 } 384 case Opt_datasum: 385 if (result.negated) { 386 btrfs_set_opt(ctx->mount_opt, NODATASUM); 387 } else { 388 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 389 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 390 } 391 break; 392 case Opt_datacow: 393 if (result.negated) { 394 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 395 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 396 btrfs_set_opt(ctx->mount_opt, NODATACOW); 397 btrfs_set_opt(ctx->mount_opt, NODATASUM); 398 } else { 399 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 400 } 401 break; 402 case Opt_compress_force: 403 case Opt_compress_force_type: 404 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 405 fallthrough; 406 case Opt_compress: 407 case Opt_compress_type: 408 if (btrfs_parse_compress(ctx, param, opt)) 409 return -EINVAL; 410 break; 411 case Opt_ssd: 412 if (result.negated) { 413 btrfs_set_opt(ctx->mount_opt, NOSSD); 414 btrfs_clear_opt(ctx->mount_opt, SSD); 415 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 416 } else { 417 btrfs_set_opt(ctx->mount_opt, SSD); 418 btrfs_clear_opt(ctx->mount_opt, NOSSD); 419 } 420 break; 421 case Opt_ssd_spread: 422 if (result.negated) { 423 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 424 } else { 425 btrfs_set_opt(ctx->mount_opt, SSD); 426 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 427 btrfs_clear_opt(ctx->mount_opt, NOSSD); 428 } 429 break; 430 case Opt_barrier: 431 if (result.negated) 432 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 433 else 434 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 435 break; 436 case Opt_thread_pool: 437 if (result.uint_32 == 0) { 438 btrfs_err(NULL, "invalid value 0 for thread_pool"); 439 return -EINVAL; 440 } 441 ctx->thread_pool_size = result.uint_32; 442 break; 443 case Opt_max_inline: 444 ctx->max_inline = memparse(param->string, NULL); 445 break; 446 case Opt_acl: 447 if (result.negated) { 448 fc->sb_flags &= ~SB_POSIXACL; 449 } else { 450 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 451 fc->sb_flags |= SB_POSIXACL; 452 #else 453 btrfs_err(NULL, "support for ACL not compiled in"); 454 return -EINVAL; 455 #endif 456 } 457 /* 458 * VFS limits the ability to toggle ACL on and off via remount, 459 * despite every file system allowing this. This seems to be 460 * an oversight since we all do, but it'll fail if we're 461 * remounting. So don't set the mask here, we'll check it in 462 * btrfs_reconfigure and do the toggling ourselves. 463 */ 464 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 465 fc->sb_flags_mask |= SB_POSIXACL; 466 break; 467 case Opt_treelog: 468 if (result.negated) 469 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 470 else 471 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 472 break; 473 case Opt_norecovery: 474 btrfs_info(NULL, 475 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 476 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 477 break; 478 case Opt_flushoncommit: 479 if (result.negated) 480 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 481 else 482 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 483 break; 484 case Opt_ratio: 485 ctx->metadata_ratio = result.uint_32; 486 break; 487 case Opt_discard: 488 if (result.negated) { 489 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 490 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 491 btrfs_set_opt(ctx->mount_opt, NODISCARD); 492 } else { 493 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 494 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 495 } 496 break; 497 case Opt_discard_mode: 498 switch (result.uint_32) { 499 case Opt_discard_sync: 500 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 501 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 502 break; 503 case Opt_discard_async: 504 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 505 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 506 break; 507 default: 508 btrfs_err(NULL, "unrecognized discard mode value %s", 509 param->key); 510 return -EINVAL; 511 } 512 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 513 break; 514 case Opt_space_cache: 515 if (result.negated) { 516 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 517 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 518 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 519 } else { 520 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 521 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 522 } 523 break; 524 case Opt_space_cache_version: 525 switch (result.uint_32) { 526 case Opt_space_cache_v1: 527 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 528 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 529 break; 530 case Opt_space_cache_v2: 531 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 532 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 533 break; 534 default: 535 btrfs_err(NULL, "unrecognized space_cache value %s", 536 param->key); 537 return -EINVAL; 538 } 539 break; 540 case Opt_rescan_uuid_tree: 541 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 542 break; 543 case Opt_clear_cache: 544 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 545 break; 546 case Opt_user_subvol_rm_allowed: 547 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 548 break; 549 case Opt_enospc_debug: 550 if (result.negated) 551 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 552 else 553 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 554 break; 555 case Opt_defrag: 556 if (result.negated) 557 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 558 else 559 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 560 break; 561 case Opt_usebackuproot: 562 btrfs_warn(NULL, 563 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 564 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 565 566 /* If we're loading the backup roots we can't trust the space cache. */ 567 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 568 break; 569 case Opt_skip_balance: 570 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 571 break; 572 case Opt_fatal_errors: 573 switch (result.uint_32) { 574 case Opt_fatal_errors_panic: 575 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 576 break; 577 case Opt_fatal_errors_bug: 578 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 579 break; 580 default: 581 btrfs_err(NULL, "unrecognized fatal_errors value %s", 582 param->key); 583 return -EINVAL; 584 } 585 break; 586 case Opt_commit_interval: 587 ctx->commit_interval = result.uint_32; 588 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) { 589 btrfs_warn(NULL, "excessive commit interval %u, use with care", 590 ctx->commit_interval); 591 } 592 if (ctx->commit_interval == 0) 593 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 594 break; 595 case Opt_rescue: 596 switch (result.uint_32) { 597 case Opt_rescue_usebackuproot: 598 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 599 break; 600 case Opt_rescue_nologreplay: 601 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 602 break; 603 case Opt_rescue_ignorebadroots: 604 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 605 break; 606 case Opt_rescue_ignoredatacsums: 607 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 608 break; 609 case Opt_rescue_ignoremetacsums: 610 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 611 break; 612 case Opt_rescue_ignoresuperflags: 613 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 614 break; 615 case Opt_rescue_parameter_all: 616 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 617 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 618 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 619 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 620 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 621 break; 622 default: 623 btrfs_info(NULL, "unrecognized rescue option '%s'", 624 param->key); 625 return -EINVAL; 626 } 627 break; 628 #ifdef CONFIG_BTRFS_DEBUG 629 case Opt_fragment: 630 switch (result.uint_32) { 631 case Opt_fragment_parameter_all: 632 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 633 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 634 break; 635 case Opt_fragment_parameter_metadata: 636 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 637 break; 638 case Opt_fragment_parameter_data: 639 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 640 break; 641 default: 642 btrfs_info(NULL, "unrecognized fragment option '%s'", 643 param->key); 644 return -EINVAL; 645 } 646 break; 647 case Opt_ref_verify: 648 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 649 break; 650 case Opt_ref_tracker: 651 btrfs_set_opt(ctx->mount_opt, REF_TRACKER); 652 break; 653 #endif 654 default: 655 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 656 return -EINVAL; 657 } 658 659 return 0; 660 } 661 662 /* 663 * Some options only have meaning at mount time and shouldn't persist across 664 * remounts, or be displayed. Clear these at the end of mount and remount code 665 * paths. 666 */ 667 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 668 { 669 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 670 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 671 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 672 } 673 674 static bool check_ro_option(const struct btrfs_fs_info *fs_info, 675 unsigned long long mount_opt, unsigned long long opt, 676 const char *opt_name) 677 { 678 if (mount_opt & opt) { 679 btrfs_err(fs_info, "%s must be used with ro mount option", 680 opt_name); 681 return true; 682 } 683 return false; 684 } 685 686 bool btrfs_check_options(const struct btrfs_fs_info *info, 687 unsigned long long *mount_opt, 688 unsigned long flags) 689 { 690 bool ret = true; 691 692 if (!(flags & SB_RDONLY) && 693 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 694 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 695 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") || 696 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") || 697 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags"))) 698 ret = false; 699 700 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 701 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 702 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 703 btrfs_err(info, "cannot disable free-space-tree"); 704 ret = false; 705 } 706 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 707 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 708 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 709 ret = false; 710 } 711 712 if (btrfs_check_mountopts_zoned(info, mount_opt)) 713 ret = false; 714 715 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 716 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 717 btrfs_warn(info, 718 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2"); 719 } 720 } 721 722 return ret; 723 } 724 725 /* 726 * This is subtle, we only call this during open_ctree(). We need to pre-load 727 * the mount options with the on-disk settings. Before the new mount API took 728 * effect we would do this on mount and remount. With the new mount API we'll 729 * only do this on the initial mount. 730 * 731 * This isn't a change in behavior, because we're using the current state of the 732 * file system to set the current mount options. If you mounted with special 733 * options to disable these features and then remounted we wouldn't revert the 734 * settings, because mounting without these features cleared the on-disk 735 * settings, so this being called on re-mount is not needed. 736 */ 737 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 738 { 739 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 740 btrfs_info(fs_info, 741 "forcing free space tree for sector size %u with page size %lu", 742 fs_info->sectorsize, PAGE_SIZE); 743 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 744 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 745 } 746 747 /* 748 * At this point our mount options are populated, so we only mess with 749 * these settings if we don't have any settings already. 750 */ 751 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 752 return; 753 754 if (btrfs_is_zoned(fs_info) && 755 btrfs_free_space_cache_v1_active(fs_info)) { 756 btrfs_info(fs_info, "zoned: clearing existing space cache"); 757 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 758 return; 759 } 760 761 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 762 return; 763 764 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 765 return; 766 767 /* 768 * At this point we don't have explicit options set by the user, set 769 * them ourselves based on the state of the file system. 770 */ 771 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 772 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 773 else if (btrfs_free_space_cache_v1_active(fs_info)) 774 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 775 } 776 777 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 778 { 779 if (!btrfs_test_opt(fs_info, NOSSD) && 780 !fs_info->fs_devices->rotating) 781 btrfs_set_opt(fs_info->mount_opt, SSD); 782 783 /* 784 * For devices supporting discard turn on discard=async automatically, 785 * unless it's already set or disabled. This could be turned off by 786 * nodiscard for the same mount. 787 * 788 * The zoned mode piggy backs on the discard functionality for 789 * resetting a zone. There is no reason to delay the zone reset as it is 790 * fast enough. So, do not enable async discard for zoned mode. 791 */ 792 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 793 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 794 btrfs_test_opt(fs_info, NODISCARD)) && 795 fs_info->fs_devices->discardable && 796 !btrfs_is_zoned(fs_info)) 797 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 798 } 799 800 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 801 u64 subvol_objectid) 802 { 803 struct btrfs_root *root = fs_info->tree_root; 804 struct btrfs_root *fs_root = NULL; 805 struct btrfs_root_ref *root_ref; 806 struct btrfs_inode_ref *inode_ref; 807 struct btrfs_key key; 808 BTRFS_PATH_AUTO_FREE(path); 809 char *name = NULL, *ptr; 810 u64 dirid; 811 int len; 812 int ret; 813 814 path = btrfs_alloc_path(); 815 if (!path) 816 return ERR_PTR(-ENOMEM); 817 818 name = kmalloc(PATH_MAX, GFP_KERNEL); 819 if (!name) { 820 ret = -ENOMEM; 821 goto err; 822 } 823 ptr = name + PATH_MAX - 1; 824 ptr[0] = '\0'; 825 826 /* 827 * Walk up the subvolume trees in the tree of tree roots by root 828 * backrefs until we hit the top-level subvolume. 829 */ 830 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 831 key.objectid = subvol_objectid; 832 key.type = BTRFS_ROOT_BACKREF_KEY; 833 key.offset = (u64)-1; 834 835 ret = btrfs_search_backwards(root, &key, path); 836 if (ret < 0) { 837 goto err; 838 } else if (ret > 0) { 839 ret = -ENOENT; 840 goto err; 841 } 842 843 subvol_objectid = key.offset; 844 845 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 846 struct btrfs_root_ref); 847 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 848 ptr -= len + 1; 849 if (ptr < name) { 850 ret = -ENAMETOOLONG; 851 goto err; 852 } 853 read_extent_buffer(path->nodes[0], ptr + 1, 854 (unsigned long)(root_ref + 1), len); 855 ptr[0] = '/'; 856 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 857 btrfs_release_path(path); 858 859 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 860 if (IS_ERR(fs_root)) { 861 ret = PTR_ERR(fs_root); 862 fs_root = NULL; 863 goto err; 864 } 865 866 /* 867 * Walk up the filesystem tree by inode refs until we hit the 868 * root directory. 869 */ 870 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 871 key.objectid = dirid; 872 key.type = BTRFS_INODE_REF_KEY; 873 key.offset = (u64)-1; 874 875 ret = btrfs_search_backwards(fs_root, &key, path); 876 if (ret < 0) { 877 goto err; 878 } else if (ret > 0) { 879 ret = -ENOENT; 880 goto err; 881 } 882 883 dirid = key.offset; 884 885 inode_ref = btrfs_item_ptr(path->nodes[0], 886 path->slots[0], 887 struct btrfs_inode_ref); 888 len = btrfs_inode_ref_name_len(path->nodes[0], 889 inode_ref); 890 ptr -= len + 1; 891 if (ptr < name) { 892 ret = -ENAMETOOLONG; 893 goto err; 894 } 895 read_extent_buffer(path->nodes[0], ptr + 1, 896 (unsigned long)(inode_ref + 1), len); 897 ptr[0] = '/'; 898 btrfs_release_path(path); 899 } 900 btrfs_put_root(fs_root); 901 fs_root = NULL; 902 } 903 904 if (ptr == name + PATH_MAX - 1) { 905 name[0] = '/'; 906 name[1] = '\0'; 907 } else { 908 memmove(name, ptr, name + PATH_MAX - ptr); 909 } 910 return name; 911 912 err: 913 btrfs_put_root(fs_root); 914 kfree(name); 915 return ERR_PTR(ret); 916 } 917 918 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 919 { 920 struct btrfs_root *root = fs_info->tree_root; 921 struct btrfs_dir_item *di; 922 BTRFS_PATH_AUTO_FREE(path); 923 struct btrfs_key location; 924 struct fscrypt_str name = FSTR_INIT("default", 7); 925 u64 dir_id; 926 927 path = btrfs_alloc_path(); 928 if (!path) 929 return -ENOMEM; 930 931 /* 932 * Find the "default" dir item which points to the root item that we 933 * will mount by default if we haven't been given a specific subvolume 934 * to mount. 935 */ 936 dir_id = btrfs_super_root_dir(fs_info->super_copy); 937 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 938 if (IS_ERR(di)) { 939 return PTR_ERR(di); 940 } 941 if (!di) { 942 /* 943 * Ok the default dir item isn't there. This is weird since 944 * it's always been there, but don't freak out, just try and 945 * mount the top-level subvolume. 946 */ 947 *objectid = BTRFS_FS_TREE_OBJECTID; 948 return 0; 949 } 950 951 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 952 *objectid = location.objectid; 953 return 0; 954 } 955 956 static int btrfs_fill_super(struct super_block *sb, 957 struct btrfs_fs_devices *fs_devices) 958 { 959 struct btrfs_inode *inode; 960 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 961 int ret; 962 963 sb->s_maxbytes = MAX_LFS_FILESIZE; 964 sb->s_magic = BTRFS_SUPER_MAGIC; 965 sb->s_op = &btrfs_super_ops; 966 set_default_d_op(sb, &btrfs_dentry_operations); 967 sb->s_export_op = &btrfs_export_ops; 968 #ifdef CONFIG_FS_VERITY 969 sb->s_vop = &btrfs_verityops; 970 #endif 971 sb->s_xattr = btrfs_xattr_handlers; 972 sb->s_time_gran = 1; 973 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM; 974 975 ret = super_setup_bdi(sb); 976 if (ret) { 977 btrfs_err(fs_info, "super_setup_bdi failed"); 978 return ret; 979 } 980 981 ret = open_ctree(sb, fs_devices); 982 if (ret) { 983 btrfs_err(fs_info, "open_ctree failed: %d", ret); 984 return ret; 985 } 986 987 btrfs_emit_options(fs_info, NULL); 988 989 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 990 if (IS_ERR(inode)) { 991 ret = PTR_ERR(inode); 992 btrfs_handle_fs_error(fs_info, ret, NULL); 993 goto fail_close; 994 } 995 996 sb->s_root = d_make_root(&inode->vfs_inode); 997 if (!sb->s_root) { 998 ret = -ENOMEM; 999 goto fail_close; 1000 } 1001 1002 sb->s_flags |= SB_ACTIVE; 1003 return 0; 1004 1005 fail_close: 1006 close_ctree(fs_info); 1007 return ret; 1008 } 1009 1010 int btrfs_sync_fs(struct super_block *sb, int wait) 1011 { 1012 struct btrfs_trans_handle *trans; 1013 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1014 struct btrfs_root *root = fs_info->tree_root; 1015 1016 trace_btrfs_sync_fs(fs_info, wait); 1017 1018 if (!wait) { 1019 filemap_flush(fs_info->btree_inode->i_mapping); 1020 return 0; 1021 } 1022 1023 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 1024 1025 trans = btrfs_attach_transaction_barrier(root); 1026 if (IS_ERR(trans)) { 1027 /* no transaction, don't bother */ 1028 if (PTR_ERR(trans) == -ENOENT) { 1029 /* 1030 * Exit unless we have some pending changes 1031 * that need to go through commit 1032 */ 1033 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1034 &fs_info->flags)) 1035 return 0; 1036 /* 1037 * A non-blocking test if the fs is frozen. We must not 1038 * start a new transaction here otherwise a deadlock 1039 * happens. The pending operations are delayed to the 1040 * next commit after thawing. 1041 */ 1042 if (sb_start_write_trylock(sb)) 1043 sb_end_write(sb); 1044 else 1045 return 0; 1046 trans = btrfs_start_transaction(root, 0); 1047 } 1048 if (IS_ERR(trans)) 1049 return PTR_ERR(trans); 1050 } 1051 return btrfs_commit_transaction(trans); 1052 } 1053 1054 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1055 { 1056 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1057 *printed = true; 1058 } 1059 1060 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1061 { 1062 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1063 const char *compress_type; 1064 const char *subvol_name; 1065 bool printed = false; 1066 1067 if (btrfs_test_opt(info, DEGRADED)) 1068 seq_puts(seq, ",degraded"); 1069 if (btrfs_test_opt(info, NODATASUM)) 1070 seq_puts(seq, ",nodatasum"); 1071 if (btrfs_test_opt(info, NODATACOW)) 1072 seq_puts(seq, ",nodatacow"); 1073 if (btrfs_test_opt(info, NOBARRIER)) 1074 seq_puts(seq, ",nobarrier"); 1075 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1076 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1077 if (info->thread_pool_size != min_t(unsigned long, 1078 num_online_cpus() + 2, 8)) 1079 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1080 if (btrfs_test_opt(info, COMPRESS)) { 1081 compress_type = btrfs_compress_type2str(info->compress_type); 1082 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1083 seq_printf(seq, ",compress-force=%s", compress_type); 1084 else 1085 seq_printf(seq, ",compress=%s", compress_type); 1086 if (info->compress_level && info->compress_type != BTRFS_COMPRESS_LZO) 1087 seq_printf(seq, ":%d", info->compress_level); 1088 } 1089 if (btrfs_test_opt(info, NOSSD)) 1090 seq_puts(seq, ",nossd"); 1091 if (btrfs_test_opt(info, SSD_SPREAD)) 1092 seq_puts(seq, ",ssd_spread"); 1093 else if (btrfs_test_opt(info, SSD)) 1094 seq_puts(seq, ",ssd"); 1095 if (btrfs_test_opt(info, NOTREELOG)) 1096 seq_puts(seq, ",notreelog"); 1097 if (btrfs_test_opt(info, NOLOGREPLAY)) 1098 print_rescue_option(seq, "nologreplay", &printed); 1099 if (btrfs_test_opt(info, USEBACKUPROOT)) 1100 print_rescue_option(seq, "usebackuproot", &printed); 1101 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1102 print_rescue_option(seq, "ignorebadroots", &printed); 1103 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1104 print_rescue_option(seq, "ignoredatacsums", &printed); 1105 if (btrfs_test_opt(info, IGNOREMETACSUMS)) 1106 print_rescue_option(seq, "ignoremetacsums", &printed); 1107 if (btrfs_test_opt(info, IGNORESUPERFLAGS)) 1108 print_rescue_option(seq, "ignoresuperflags", &printed); 1109 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1110 seq_puts(seq, ",flushoncommit"); 1111 if (btrfs_test_opt(info, DISCARD_SYNC)) 1112 seq_puts(seq, ",discard"); 1113 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1114 seq_puts(seq, ",discard=async"); 1115 if (!(info->sb->s_flags & SB_POSIXACL)) 1116 seq_puts(seq, ",noacl"); 1117 if (btrfs_free_space_cache_v1_active(info)) 1118 seq_puts(seq, ",space_cache"); 1119 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1120 seq_puts(seq, ",space_cache=v2"); 1121 else 1122 seq_puts(seq, ",nospace_cache"); 1123 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1124 seq_puts(seq, ",rescan_uuid_tree"); 1125 if (btrfs_test_opt(info, CLEAR_CACHE)) 1126 seq_puts(seq, ",clear_cache"); 1127 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1128 seq_puts(seq, ",user_subvol_rm_allowed"); 1129 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1130 seq_puts(seq, ",enospc_debug"); 1131 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1132 seq_puts(seq, ",autodefrag"); 1133 if (btrfs_test_opt(info, SKIP_BALANCE)) 1134 seq_puts(seq, ",skip_balance"); 1135 if (info->metadata_ratio) 1136 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1137 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1138 seq_puts(seq, ",fatal_errors=panic"); 1139 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1140 seq_printf(seq, ",commit=%u", info->commit_interval); 1141 #ifdef CONFIG_BTRFS_DEBUG 1142 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1143 seq_puts(seq, ",fragment=data"); 1144 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1145 seq_puts(seq, ",fragment=metadata"); 1146 #endif 1147 if (btrfs_test_opt(info, REF_VERIFY)) 1148 seq_puts(seq, ",ref_verify"); 1149 if (btrfs_test_opt(info, REF_TRACKER)) 1150 seq_puts(seq, ",ref_tracker"); 1151 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1152 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1153 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1154 if (!IS_ERR(subvol_name)) { 1155 seq_show_option(seq, "subvol", subvol_name); 1156 kfree(subvol_name); 1157 } 1158 return 0; 1159 } 1160 1161 /* 1162 * subvolumes are identified by ino 256 1163 */ 1164 static inline bool is_subvolume_inode(struct inode *inode) 1165 { 1166 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1167 return true; 1168 return false; 1169 } 1170 1171 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1172 struct vfsmount *mnt) 1173 { 1174 struct dentry *root; 1175 int ret; 1176 1177 if (!subvol_name) { 1178 if (!subvol_objectid) { 1179 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1180 &subvol_objectid); 1181 if (ret) { 1182 root = ERR_PTR(ret); 1183 goto out; 1184 } 1185 } 1186 subvol_name = btrfs_get_subvol_name_from_objectid( 1187 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1188 if (IS_ERR(subvol_name)) { 1189 root = ERR_CAST(subvol_name); 1190 subvol_name = NULL; 1191 goto out; 1192 } 1193 1194 } 1195 1196 root = mount_subtree(mnt, subvol_name); 1197 /* mount_subtree() drops our reference on the vfsmount. */ 1198 mnt = NULL; 1199 1200 if (!IS_ERR(root)) { 1201 struct super_block *s = root->d_sb; 1202 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1203 struct inode *root_inode = d_inode(root); 1204 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1205 1206 ret = 0; 1207 if (!is_subvolume_inode(root_inode)) { 1208 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1209 subvol_name); 1210 ret = -EINVAL; 1211 } 1212 if (subvol_objectid && root_objectid != subvol_objectid) { 1213 /* 1214 * This will also catch a race condition where a 1215 * subvolume which was passed by ID is renamed and 1216 * another subvolume is renamed over the old location. 1217 */ 1218 btrfs_err(fs_info, 1219 "subvol '%s' does not match subvolid %llu", 1220 subvol_name, subvol_objectid); 1221 ret = -EINVAL; 1222 } 1223 if (ret) { 1224 dput(root); 1225 root = ERR_PTR(ret); 1226 deactivate_locked_super(s); 1227 } 1228 } 1229 1230 out: 1231 mntput(mnt); 1232 kfree(subvol_name); 1233 return root; 1234 } 1235 1236 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1237 u32 new_pool_size, u32 old_pool_size) 1238 { 1239 if (new_pool_size == old_pool_size) 1240 return; 1241 1242 fs_info->thread_pool_size = new_pool_size; 1243 1244 btrfs_info(fs_info, "resize thread pool %d -> %d", 1245 old_pool_size, new_pool_size); 1246 1247 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1248 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1249 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1250 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1251 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1252 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1253 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1254 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1255 } 1256 1257 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1258 unsigned long long old_opts, int flags) 1259 { 1260 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1261 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1262 (flags & SB_RDONLY))) { 1263 /* wait for any defraggers to finish */ 1264 wait_event(fs_info->transaction_wait, 1265 (atomic_read(&fs_info->defrag_running) == 0)); 1266 if (flags & SB_RDONLY) 1267 sync_filesystem(fs_info->sb); 1268 } 1269 } 1270 1271 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1272 unsigned long long old_opts) 1273 { 1274 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1275 1276 /* 1277 * We need to cleanup all defraggable inodes if the autodefragment is 1278 * close or the filesystem is read only. 1279 */ 1280 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1281 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1282 btrfs_cleanup_defrag_inodes(fs_info); 1283 } 1284 1285 /* If we toggled discard async */ 1286 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1287 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1288 btrfs_discard_resume(fs_info); 1289 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1290 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1291 btrfs_discard_cleanup(fs_info); 1292 1293 /* If we toggled space cache */ 1294 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1295 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1296 } 1297 1298 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1299 { 1300 int ret; 1301 1302 if (BTRFS_FS_ERROR(fs_info)) { 1303 btrfs_err(fs_info, 1304 "remounting read-write after error is not allowed"); 1305 return -EINVAL; 1306 } 1307 1308 if (fs_info->fs_devices->rw_devices == 0) 1309 return -EACCES; 1310 1311 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1312 btrfs_warn(fs_info, 1313 "too many missing devices, writable remount is not allowed"); 1314 return -EACCES; 1315 } 1316 1317 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1318 btrfs_warn(fs_info, 1319 "mount required to replay tree-log, cannot remount read-write"); 1320 return -EINVAL; 1321 } 1322 1323 /* 1324 * NOTE: when remounting with a change that does writes, don't put it 1325 * anywhere above this point, as we are not sure to be safe to write 1326 * until we pass the above checks. 1327 */ 1328 ret = btrfs_start_pre_rw_mount(fs_info); 1329 if (ret) 1330 return ret; 1331 1332 btrfs_clear_sb_rdonly(fs_info->sb); 1333 1334 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1335 1336 /* 1337 * If we've gone from readonly -> read-write, we need to get our 1338 * sync/async discard lists in the right state. 1339 */ 1340 btrfs_discard_resume(fs_info); 1341 1342 return 0; 1343 } 1344 1345 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1346 { 1347 /* 1348 * This also happens on 'umount -rf' or on shutdown, when the 1349 * filesystem is busy. 1350 */ 1351 cancel_work_sync(&fs_info->async_reclaim_work); 1352 cancel_work_sync(&fs_info->async_data_reclaim_work); 1353 1354 btrfs_discard_cleanup(fs_info); 1355 1356 /* Wait for the uuid_scan task to finish */ 1357 down(&fs_info->uuid_tree_rescan_sem); 1358 /* Avoid complains from lockdep et al. */ 1359 up(&fs_info->uuid_tree_rescan_sem); 1360 1361 btrfs_set_sb_rdonly(fs_info->sb); 1362 1363 /* 1364 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1365 * loop if it's already active. If it's already asleep, we'll leave 1366 * unused block groups on disk until we're mounted read-write again 1367 * unless we clean them up here. 1368 */ 1369 btrfs_delete_unused_bgs(fs_info); 1370 1371 /* 1372 * The cleaner task could be already running before we set the flag 1373 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1374 * sure that after we finish the remount, i.e. after we call 1375 * btrfs_commit_super(), the cleaner can no longer start a transaction 1376 * - either because it was dropping a dead root, running delayed iputs 1377 * or deleting an unused block group (the cleaner picked a block 1378 * group from the list of unused block groups before we were able to 1379 * in the previous call to btrfs_delete_unused_bgs()). 1380 */ 1381 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1382 1383 /* 1384 * We've set the superblock to RO mode, so we might have made the 1385 * cleaner task sleep without running all pending delayed iputs. Go 1386 * through all the delayed iputs here, so that if an unmount happens 1387 * without remounting RW we don't end up at finishing close_ctree() 1388 * with a non-empty list of delayed iputs. 1389 */ 1390 btrfs_run_delayed_iputs(fs_info); 1391 1392 btrfs_dev_replace_suspend_for_unmount(fs_info); 1393 btrfs_scrub_cancel(fs_info); 1394 btrfs_pause_balance(fs_info); 1395 1396 /* 1397 * Pause the qgroup rescan worker if it is running. We don't want it to 1398 * be still running after we are in RO mode, as after that, by the time 1399 * we unmount, it might have left a transaction open, so we would leak 1400 * the transaction and/or crash. 1401 */ 1402 btrfs_qgroup_wait_for_completion(fs_info, false); 1403 1404 return btrfs_commit_super(fs_info); 1405 } 1406 1407 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1408 { 1409 fs_info->max_inline = ctx->max_inline; 1410 fs_info->commit_interval = ctx->commit_interval; 1411 fs_info->metadata_ratio = ctx->metadata_ratio; 1412 fs_info->thread_pool_size = ctx->thread_pool_size; 1413 fs_info->mount_opt = ctx->mount_opt; 1414 fs_info->compress_type = ctx->compress_type; 1415 fs_info->compress_level = ctx->compress_level; 1416 } 1417 1418 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1419 { 1420 ctx->max_inline = fs_info->max_inline; 1421 ctx->commit_interval = fs_info->commit_interval; 1422 ctx->metadata_ratio = fs_info->metadata_ratio; 1423 ctx->thread_pool_size = fs_info->thread_pool_size; 1424 ctx->mount_opt = fs_info->mount_opt; 1425 ctx->compress_type = fs_info->compress_type; 1426 ctx->compress_level = fs_info->compress_level; 1427 } 1428 1429 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1430 do { \ 1431 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1432 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1433 btrfs_info(fs_info, fmt, ##args); \ 1434 } while (0) 1435 1436 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1437 do { \ 1438 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1439 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1440 btrfs_info(fs_info, fmt, ##args); \ 1441 } while (0) 1442 1443 static void btrfs_emit_options(struct btrfs_fs_info *info, 1444 struct btrfs_fs_context *old) 1445 { 1446 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1447 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1448 btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow"); 1449 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1450 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1451 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1452 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1453 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1454 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1455 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1456 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1457 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1458 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1459 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1460 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1461 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1462 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1463 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1464 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1465 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1466 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1467 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums"); 1468 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags"); 1469 1470 btrfs_info_if_unset(info, old, NODATASUM, "setting datasum"); 1471 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1472 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1473 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1474 btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers"); 1475 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1476 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1477 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1478 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1479 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1480 1481 /* Did the compression settings change? */ 1482 if (btrfs_test_opt(info, COMPRESS) && 1483 (!old || 1484 old->compress_type != info->compress_type || 1485 old->compress_level != info->compress_level || 1486 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1487 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1488 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1489 1490 btrfs_info(info, "%s %s compression, level %d", 1491 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1492 compress_type, info->compress_level); 1493 } 1494 1495 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1496 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1497 } 1498 1499 static int btrfs_reconfigure(struct fs_context *fc) 1500 { 1501 struct super_block *sb = fc->root->d_sb; 1502 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1503 struct btrfs_fs_context *ctx = fc->fs_private; 1504 struct btrfs_fs_context old_ctx; 1505 int ret = 0; 1506 bool mount_reconfigure = (fc->s_fs_info != NULL); 1507 1508 btrfs_info_to_ctx(fs_info, &old_ctx); 1509 1510 /* 1511 * This is our "bind mount" trick, we don't want to allow the user to do 1512 * anything other than mount a different ro/rw and a different subvol, 1513 * all of the mount options should be maintained. 1514 */ 1515 if (mount_reconfigure) 1516 ctx->mount_opt = old_ctx.mount_opt; 1517 1518 sync_filesystem(sb); 1519 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1520 1521 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1522 return -EINVAL; 1523 1524 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1525 if (ret < 0) 1526 return ret; 1527 1528 btrfs_ctx_to_info(fs_info, ctx); 1529 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1530 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1531 old_ctx.thread_pool_size); 1532 1533 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1534 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1535 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1536 btrfs_warn(fs_info, 1537 "remount supports changing free space tree only from RO to RW"); 1538 /* Make sure free space cache options match the state on disk. */ 1539 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1540 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1541 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1542 } 1543 if (btrfs_free_space_cache_v1_active(fs_info)) { 1544 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1545 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1546 } 1547 } 1548 1549 ret = 0; 1550 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1551 ret = btrfs_remount_ro(fs_info); 1552 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1553 ret = btrfs_remount_rw(fs_info); 1554 if (ret) 1555 goto restore; 1556 1557 /* 1558 * If we set the mask during the parameter parsing VFS would reject the 1559 * remount. Here we can set the mask and the value will be updated 1560 * appropriately. 1561 */ 1562 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1563 fc->sb_flags_mask |= SB_POSIXACL; 1564 1565 btrfs_emit_options(fs_info, &old_ctx); 1566 wake_up_process(fs_info->transaction_kthread); 1567 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1568 btrfs_clear_oneshot_options(fs_info); 1569 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1570 1571 return 0; 1572 restore: 1573 btrfs_ctx_to_info(fs_info, &old_ctx); 1574 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1575 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1576 return ret; 1577 } 1578 1579 /* Used to sort the devices by max_avail(descending sort) */ 1580 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1581 { 1582 const struct btrfs_device_info *dev_info1 = a; 1583 const struct btrfs_device_info *dev_info2 = b; 1584 1585 if (dev_info1->max_avail > dev_info2->max_avail) 1586 return -1; 1587 else if (dev_info1->max_avail < dev_info2->max_avail) 1588 return 1; 1589 return 0; 1590 } 1591 1592 /* 1593 * sort the devices by max_avail, in which max free extent size of each device 1594 * is stored.(Descending Sort) 1595 */ 1596 static inline void btrfs_descending_sort_devices( 1597 struct btrfs_device_info *devices, 1598 size_t nr_devices) 1599 { 1600 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1601 btrfs_cmp_device_free_bytes, NULL); 1602 } 1603 1604 /* 1605 * The helper to calc the free space on the devices that can be used to store 1606 * file data. 1607 */ 1608 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1609 u64 *free_bytes) 1610 { 1611 struct btrfs_device_info AUTO_KFREE(devices_info); 1612 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1613 struct btrfs_device *device; 1614 u64 type; 1615 u64 avail_space; 1616 u64 min_stripe_size; 1617 int num_stripes = 1; 1618 int i = 0, nr_devices; 1619 const struct btrfs_raid_attr *rattr; 1620 1621 /* 1622 * We aren't under the device list lock, so this is racy-ish, but good 1623 * enough for our purposes. 1624 */ 1625 nr_devices = fs_info->fs_devices->open_devices; 1626 if (!nr_devices) { 1627 smp_mb(); 1628 nr_devices = fs_info->fs_devices->open_devices; 1629 ASSERT(nr_devices); 1630 if (!nr_devices) { 1631 *free_bytes = 0; 1632 return 0; 1633 } 1634 } 1635 1636 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1637 GFP_KERNEL); 1638 if (!devices_info) 1639 return -ENOMEM; 1640 1641 /* calc min stripe number for data space allocation */ 1642 type = btrfs_data_alloc_profile(fs_info); 1643 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1644 1645 if (type & BTRFS_BLOCK_GROUP_RAID0) 1646 num_stripes = nr_devices; 1647 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1648 num_stripes = rattr->ncopies; 1649 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1650 num_stripes = 4; 1651 1652 /* Adjust for more than 1 stripe per device */ 1653 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1654 1655 rcu_read_lock(); 1656 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1657 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1658 &device->dev_state) || 1659 !device->bdev || 1660 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1661 continue; 1662 1663 if (i >= nr_devices) 1664 break; 1665 1666 avail_space = device->total_bytes - device->bytes_used; 1667 1668 /* align with stripe_len */ 1669 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1670 1671 /* 1672 * Ensure we have at least min_stripe_size on top of the 1673 * reserved space on the device. 1674 */ 1675 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1676 continue; 1677 1678 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1679 1680 devices_info[i].dev = device; 1681 devices_info[i].max_avail = avail_space; 1682 1683 i++; 1684 } 1685 rcu_read_unlock(); 1686 1687 nr_devices = i; 1688 1689 btrfs_descending_sort_devices(devices_info, nr_devices); 1690 1691 i = nr_devices - 1; 1692 avail_space = 0; 1693 while (nr_devices >= rattr->devs_min) { 1694 num_stripes = min(num_stripes, nr_devices); 1695 1696 if (devices_info[i].max_avail >= min_stripe_size) { 1697 int j; 1698 u64 alloc_size; 1699 1700 avail_space += devices_info[i].max_avail * num_stripes; 1701 alloc_size = devices_info[i].max_avail; 1702 for (j = i + 1 - num_stripes; j <= i; j++) 1703 devices_info[j].max_avail -= alloc_size; 1704 } 1705 i--; 1706 nr_devices--; 1707 } 1708 1709 *free_bytes = avail_space; 1710 return 0; 1711 } 1712 1713 /* 1714 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1715 * 1716 * If there's a redundant raid level at DATA block groups, use the respective 1717 * multiplier to scale the sizes. 1718 * 1719 * Unused device space usage is based on simulating the chunk allocator 1720 * algorithm that respects the device sizes and order of allocations. This is 1721 * a close approximation of the actual use but there are other factors that may 1722 * change the result (like a new metadata chunk). 1723 * 1724 * If metadata is exhausted, f_bavail will be 0. 1725 */ 1726 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1727 { 1728 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1729 struct btrfs_super_block *disk_super = fs_info->super_copy; 1730 struct btrfs_space_info *found; 1731 u64 total_used = 0; 1732 u64 total_free_data = 0; 1733 u64 total_free_meta = 0; 1734 u32 bits = fs_info->sectorsize_bits; 1735 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1736 unsigned factor = 1; 1737 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1738 int ret; 1739 u64 thresh = 0; 1740 int mixed = 0; 1741 1742 list_for_each_entry(found, &fs_info->space_info, list) { 1743 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1744 int i; 1745 1746 total_free_data += found->disk_total - found->disk_used; 1747 total_free_data -= 1748 btrfs_account_ro_block_groups_free_space(found); 1749 1750 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1751 if (!list_empty(&found->block_groups[i])) 1752 factor = btrfs_bg_type_to_factor( 1753 btrfs_raid_array[i].bg_flag); 1754 } 1755 } 1756 1757 /* 1758 * Metadata in mixed block group profiles are accounted in data 1759 */ 1760 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1761 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1762 mixed = 1; 1763 else 1764 total_free_meta += found->disk_total - 1765 found->disk_used; 1766 } 1767 1768 total_used += found->disk_used; 1769 } 1770 1771 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1772 buf->f_blocks >>= bits; 1773 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1774 1775 /* Account global block reserve as used, it's in logical size already */ 1776 spin_lock(&block_rsv->lock); 1777 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1778 if (buf->f_bfree >= block_rsv->size >> bits) 1779 buf->f_bfree -= block_rsv->size >> bits; 1780 else 1781 buf->f_bfree = 0; 1782 spin_unlock(&block_rsv->lock); 1783 1784 buf->f_bavail = div_u64(total_free_data, factor); 1785 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1786 if (ret) 1787 return ret; 1788 buf->f_bavail += div_u64(total_free_data, factor); 1789 buf->f_bavail = buf->f_bavail >> bits; 1790 1791 /* 1792 * We calculate the remaining metadata space minus global reserve. If 1793 * this is (supposedly) smaller than zero, there's no space. But this 1794 * does not hold in practice, the exhausted state happens where's still 1795 * some positive delta. So we apply some guesswork and compare the 1796 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1797 * 1798 * We probably cannot calculate the exact threshold value because this 1799 * depends on the internal reservations requested by various 1800 * operations, so some operations that consume a few metadata will 1801 * succeed even if the Avail is zero. But this is better than the other 1802 * way around. 1803 */ 1804 thresh = SZ_4M; 1805 1806 /* 1807 * We only want to claim there's no available space if we can no longer 1808 * allocate chunks for our metadata profile and our global reserve will 1809 * not fit in the free metadata space. If we aren't ->full then we 1810 * still can allocate chunks and thus are fine using the currently 1811 * calculated f_bavail. 1812 */ 1813 if (!mixed && block_rsv->space_info->full && 1814 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1815 buf->f_bavail = 0; 1816 1817 buf->f_type = BTRFS_SUPER_MAGIC; 1818 buf->f_bsize = fs_info->sectorsize; 1819 buf->f_namelen = BTRFS_NAME_LEN; 1820 1821 /* We treat it as constant endianness (it doesn't matter _which_) 1822 because we want the fsid to come out the same whether mounted 1823 on a big-endian or little-endian host */ 1824 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1825 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1826 /* Mask in the root object ID too, to disambiguate subvols */ 1827 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1828 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1829 1830 return 0; 1831 } 1832 1833 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1834 { 1835 struct btrfs_fs_info *p = fc->s_fs_info; 1836 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1837 1838 return fs_info->fs_devices == p->fs_devices; 1839 } 1840 1841 static int btrfs_get_tree_super(struct fs_context *fc) 1842 { 1843 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1844 struct btrfs_fs_context *ctx = fc->fs_private; 1845 struct btrfs_fs_devices *fs_devices = NULL; 1846 struct btrfs_device *device; 1847 struct super_block *sb; 1848 blk_mode_t mode = sb_open_mode(fc->sb_flags); 1849 int ret; 1850 1851 btrfs_ctx_to_info(fs_info, ctx); 1852 mutex_lock(&uuid_mutex); 1853 1854 /* 1855 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1856 * either a valid device or an error. 1857 */ 1858 device = btrfs_scan_one_device(fc->source, true); 1859 ASSERT(device != NULL); 1860 if (IS_ERR(device)) { 1861 mutex_unlock(&uuid_mutex); 1862 return PTR_ERR(device); 1863 } 1864 fs_devices = device->fs_devices; 1865 /* 1866 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a 1867 * locking order reversal with s_umount. 1868 * 1869 * So here we increase the holding number of fs_devices, this will ensure 1870 * the fs_devices itself won't be freed. 1871 */ 1872 btrfs_fs_devices_inc_holding(fs_devices); 1873 fs_info->fs_devices = fs_devices; 1874 mutex_unlock(&uuid_mutex); 1875 1876 1877 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1878 if (IS_ERR(sb)) { 1879 mutex_lock(&uuid_mutex); 1880 btrfs_fs_devices_dec_holding(fs_devices); 1881 /* 1882 * Since the fs_devices is not opened, it can be freed at any 1883 * time after unlocking uuid_mutex. We need to avoid double 1884 * free through put_fs_context()->btrfs_free_fs_info(). 1885 * So here we reset fs_info->fs_devices to NULL, and let the 1886 * regular fs_devices reclaim path to handle it. 1887 * 1888 * This applies to all later branches where no fs_devices is 1889 * opened. 1890 */ 1891 fs_info->fs_devices = NULL; 1892 mutex_unlock(&uuid_mutex); 1893 return PTR_ERR(sb); 1894 } 1895 1896 if (sb->s_root) { 1897 /* 1898 * Not the first mount of the fs thus got an existing super block. 1899 * Will reuse the returned super block, fs_info and fs_devices. 1900 * 1901 * fc->s_fs_info is not touched and will be later freed by 1902 * put_fs_context() through btrfs_free_fs_context(). 1903 */ 1904 ASSERT(fc->s_fs_info == fs_info); 1905 1906 mutex_lock(&uuid_mutex); 1907 btrfs_fs_devices_dec_holding(fs_devices); 1908 fs_info->fs_devices = NULL; 1909 mutex_unlock(&uuid_mutex); 1910 /* 1911 * At this stage we may have RO flag mismatch between 1912 * fc->sb_flags and sb->s_flags. Caller should detect such 1913 * mismatch and reconfigure with sb->s_umount rwsem held if 1914 * needed. 1915 */ 1916 } else { 1917 struct block_device *bdev; 1918 1919 /* 1920 * The first mount of the fs thus a new superblock, fc->s_fs_info 1921 * must be NULL, and the ownership of our fs_info and fs_devices is 1922 * transferred to the super block. 1923 */ 1924 ASSERT(fc->s_fs_info == NULL); 1925 1926 mutex_lock(&uuid_mutex); 1927 btrfs_fs_devices_dec_holding(fs_devices); 1928 ret = btrfs_open_devices(fs_devices, mode, sb); 1929 if (ret < 0) 1930 fs_info->fs_devices = NULL; 1931 mutex_unlock(&uuid_mutex); 1932 if (ret < 0) { 1933 deactivate_locked_super(sb); 1934 return ret; 1935 } 1936 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1937 deactivate_locked_super(sb); 1938 return -EACCES; 1939 } 1940 set_device_specific_options(fs_info); 1941 bdev = fs_devices->latest_dev->bdev; 1942 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1943 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1944 ret = btrfs_fill_super(sb, fs_devices); 1945 if (ret) { 1946 deactivate_locked_super(sb); 1947 return ret; 1948 } 1949 } 1950 1951 btrfs_clear_oneshot_options(fs_info); 1952 1953 fc->root = dget(sb->s_root); 1954 return 0; 1955 } 1956 1957 /* 1958 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1959 * with different ro/rw options") the following works: 1960 * 1961 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1962 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1963 * 1964 * which looks nice and innocent but is actually pretty intricate and deserves 1965 * a long comment. 1966 * 1967 * On another filesystem a subvolume mount is close to something like: 1968 * 1969 * (iii) # create rw superblock + initial mount 1970 * mount -t xfs /dev/sdb /opt/ 1971 * 1972 * # create ro bind mount 1973 * mount --bind -o ro /opt/foo /mnt/foo 1974 * 1975 * # unmount initial mount 1976 * umount /opt 1977 * 1978 * Of course, there's some special subvolume sauce and there's the fact that the 1979 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1980 * it's very close and will help us understand the issue. 1981 * 1982 * The old mount API didn't cleanly distinguish between a mount being made ro 1983 * and a superblock being made ro. The only way to change the ro state of 1984 * either object was by passing ms_rdonly. If a new mount was created via 1985 * mount(2) such as: 1986 * 1987 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1988 * 1989 * the MS_RDONLY flag being specified had two effects: 1990 * 1991 * (1) MNT_READONLY was raised -> the resulting mount got 1992 * @mnt->mnt_flags |= MNT_READONLY raised. 1993 * 1994 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1995 * made the superblock ro. Note, how SB_RDONLY has the same value as 1996 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1997 * 1998 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1999 * subtree mounted ro. 2000 * 2001 * But consider the effect on the old mount API on btrfs subvolume mounting 2002 * which combines the distinct step in (iii) into a single step. 2003 * 2004 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 2005 * is issued the superblock is ro and thus even if the mount created for (ii) is 2006 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 2007 * to rw for (ii) which it did using an internal remount call. 2008 * 2009 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 2010 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 2011 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 2012 * passed by mount(8) to mount(2). 2013 * 2014 * Enter the new mount API. The new mount API disambiguates making a mount ro 2015 * and making a superblock ro. 2016 * 2017 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 2018 * fsmount() or mount_setattr() this is a pure VFS level change for a 2019 * specific mount or mount tree that is never seen by the filesystem itself. 2020 * 2021 * (4) To turn a superblock ro the "ro" flag must be used with 2022 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 2023 * in fc->sb_flags. 2024 * 2025 * But, currently the util-linux mount command already utilizes the new mount 2026 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's 2027 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting 2028 * work with different options work we need to keep backward compatibility. 2029 */ 2030 static int btrfs_reconfigure_for_mount(struct fs_context *fc) 2031 { 2032 int ret = 0; 2033 2034 if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY)) 2035 ret = btrfs_reconfigure(fc); 2036 2037 return ret; 2038 } 2039 2040 static int btrfs_get_tree_subvol(struct fs_context *fc) 2041 { 2042 struct btrfs_fs_info *fs_info = NULL; 2043 struct btrfs_fs_context *ctx = fc->fs_private; 2044 struct fs_context *dup_fc; 2045 struct dentry *dentry; 2046 struct vfsmount *mnt; 2047 int ret = 0; 2048 2049 /* 2050 * Setup a dummy root and fs_info for test/set super. This is because 2051 * we don't actually fill this stuff out until open_ctree, but we need 2052 * then open_ctree will properly initialize the file system specific 2053 * settings later. btrfs_init_fs_info initializes the static elements 2054 * of the fs_info (locks and such) to make cleanup easier if we find a 2055 * superblock with our given fs_devices later on at sget() time. 2056 */ 2057 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2058 if (!fs_info) 2059 return -ENOMEM; 2060 2061 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2062 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2063 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2064 /* 2065 * Dont call btrfs_free_fs_info() to free it as it's still 2066 * initialized partially. 2067 */ 2068 kfree(fs_info->super_copy); 2069 kfree(fs_info->super_for_commit); 2070 kvfree(fs_info); 2071 return -ENOMEM; 2072 } 2073 btrfs_init_fs_info(fs_info); 2074 2075 dup_fc = vfs_dup_fs_context(fc); 2076 if (IS_ERR(dup_fc)) { 2077 btrfs_free_fs_info(fs_info); 2078 return PTR_ERR(dup_fc); 2079 } 2080 2081 /* 2082 * When we do the sget_fc this gets transferred to the sb, so we only 2083 * need to set it on the dup_fc as this is what creates the super block. 2084 */ 2085 dup_fc->s_fs_info = fs_info; 2086 2087 ret = btrfs_get_tree_super(dup_fc); 2088 if (ret) 2089 goto error; 2090 2091 ret = btrfs_reconfigure_for_mount(dup_fc); 2092 up_write(&dup_fc->root->d_sb->s_umount); 2093 if (ret) 2094 goto error; 2095 mnt = vfs_create_mount(dup_fc); 2096 put_fs_context(dup_fc); 2097 if (IS_ERR(mnt)) 2098 return PTR_ERR(mnt); 2099 2100 /* 2101 * This free's ->subvol_name, because if it isn't set we have to 2102 * allocate a buffer to hold the subvol_name, so we just drop our 2103 * reference to it here. 2104 */ 2105 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2106 ctx->subvol_name = NULL; 2107 if (IS_ERR(dentry)) 2108 return PTR_ERR(dentry); 2109 2110 fc->root = dentry; 2111 return 0; 2112 error: 2113 put_fs_context(dup_fc); 2114 return ret; 2115 } 2116 2117 static int btrfs_get_tree(struct fs_context *fc) 2118 { 2119 ASSERT(fc->s_fs_info == NULL); 2120 2121 return btrfs_get_tree_subvol(fc); 2122 } 2123 2124 static void btrfs_kill_super(struct super_block *sb) 2125 { 2126 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2127 kill_anon_super(sb); 2128 btrfs_free_fs_info(fs_info); 2129 } 2130 2131 static void btrfs_free_fs_context(struct fs_context *fc) 2132 { 2133 struct btrfs_fs_context *ctx = fc->fs_private; 2134 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2135 2136 if (fs_info) 2137 btrfs_free_fs_info(fs_info); 2138 2139 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2140 kfree(ctx->subvol_name); 2141 kfree(ctx); 2142 } 2143 } 2144 2145 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2146 { 2147 struct btrfs_fs_context *ctx = src_fc->fs_private; 2148 2149 /* 2150 * Give a ref to our ctx to this dup, as we want to keep it around for 2151 * our original fc so we can have the subvolume name or objectid. 2152 * 2153 * We unset ->source in the original fc because the dup needs it for 2154 * mounting, and then once we free the dup it'll free ->source, so we 2155 * need to make sure we're only pointing to it in one fc. 2156 */ 2157 refcount_inc(&ctx->refs); 2158 fc->fs_private = ctx; 2159 fc->source = src_fc->source; 2160 src_fc->source = NULL; 2161 return 0; 2162 } 2163 2164 static const struct fs_context_operations btrfs_fs_context_ops = { 2165 .parse_param = btrfs_parse_param, 2166 .reconfigure = btrfs_reconfigure, 2167 .get_tree = btrfs_get_tree, 2168 .dup = btrfs_dup_fs_context, 2169 .free = btrfs_free_fs_context, 2170 }; 2171 2172 static int btrfs_init_fs_context(struct fs_context *fc) 2173 { 2174 struct btrfs_fs_context *ctx; 2175 2176 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2177 if (!ctx) 2178 return -ENOMEM; 2179 2180 refcount_set(&ctx->refs, 1); 2181 fc->fs_private = ctx; 2182 fc->ops = &btrfs_fs_context_ops; 2183 2184 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2185 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2186 } else { 2187 ctx->thread_pool_size = 2188 min_t(unsigned long, num_online_cpus() + 2, 8); 2189 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2190 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2191 } 2192 2193 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2194 fc->sb_flags |= SB_POSIXACL; 2195 #endif 2196 fc->sb_flags |= SB_I_VERSION; 2197 2198 return 0; 2199 } 2200 2201 static struct file_system_type btrfs_fs_type = { 2202 .owner = THIS_MODULE, 2203 .name = "btrfs", 2204 .init_fs_context = btrfs_init_fs_context, 2205 .parameters = btrfs_fs_parameters, 2206 .kill_sb = btrfs_kill_super, 2207 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | 2208 FS_ALLOW_IDMAP | FS_MGTIME, 2209 }; 2210 2211 MODULE_ALIAS_FS("btrfs"); 2212 2213 static int btrfs_control_open(struct inode *inode, struct file *file) 2214 { 2215 /* 2216 * The control file's private_data is used to hold the 2217 * transaction when it is started and is used to keep 2218 * track of whether a transaction is already in progress. 2219 */ 2220 file->private_data = NULL; 2221 return 0; 2222 } 2223 2224 /* 2225 * Used by /dev/btrfs-control for devices ioctls. 2226 */ 2227 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2228 unsigned long arg) 2229 { 2230 struct btrfs_ioctl_vol_args *vol; 2231 struct btrfs_device *device = NULL; 2232 dev_t devt = 0; 2233 int ret = -ENOTTY; 2234 2235 if (!capable(CAP_SYS_ADMIN)) 2236 return -EPERM; 2237 2238 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2239 if (IS_ERR(vol)) 2240 return PTR_ERR(vol); 2241 ret = btrfs_check_ioctl_vol_args_path(vol); 2242 if (ret < 0) 2243 goto out; 2244 2245 switch (cmd) { 2246 case BTRFS_IOC_SCAN_DEV: 2247 mutex_lock(&uuid_mutex); 2248 /* 2249 * Scanning outside of mount can return NULL which would turn 2250 * into 0 error code. 2251 */ 2252 device = btrfs_scan_one_device(vol->name, false); 2253 ret = PTR_ERR_OR_ZERO(device); 2254 mutex_unlock(&uuid_mutex); 2255 break; 2256 case BTRFS_IOC_FORGET_DEV: 2257 if (vol->name[0] != 0) { 2258 ret = lookup_bdev(vol->name, &devt); 2259 if (ret) 2260 break; 2261 } 2262 ret = btrfs_forget_devices(devt); 2263 break; 2264 case BTRFS_IOC_DEVICES_READY: 2265 mutex_lock(&uuid_mutex); 2266 /* 2267 * Scanning outside of mount can return NULL which would turn 2268 * into 0 error code. 2269 */ 2270 device = btrfs_scan_one_device(vol->name, false); 2271 if (IS_ERR_OR_NULL(device)) { 2272 mutex_unlock(&uuid_mutex); 2273 ret = PTR_ERR_OR_ZERO(device); 2274 break; 2275 } 2276 ret = !(device->fs_devices->num_devices == 2277 device->fs_devices->total_devices); 2278 mutex_unlock(&uuid_mutex); 2279 break; 2280 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2281 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2282 break; 2283 } 2284 2285 out: 2286 kfree(vol); 2287 return ret; 2288 } 2289 2290 static int btrfs_freeze(struct super_block *sb) 2291 { 2292 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2293 2294 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2295 /* 2296 * We don't need a barrier here, we'll wait for any transaction that 2297 * could be in progress on other threads (and do delayed iputs that 2298 * we want to avoid on a frozen filesystem), or do the commit 2299 * ourselves. 2300 */ 2301 return btrfs_commit_current_transaction(fs_info->tree_root); 2302 } 2303 2304 static int check_dev_super(struct btrfs_device *dev) 2305 { 2306 struct btrfs_fs_info *fs_info = dev->fs_info; 2307 struct btrfs_super_block *sb; 2308 u64 last_trans; 2309 u16 csum_type; 2310 int ret = 0; 2311 2312 /* This should be called with fs still frozen. */ 2313 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2314 2315 /* Missing dev, no need to check. */ 2316 if (!dev->bdev) 2317 return 0; 2318 2319 /* Only need to check the primary super block. */ 2320 sb = btrfs_read_disk_super(dev->bdev, 0, true); 2321 if (IS_ERR(sb)) 2322 return PTR_ERR(sb); 2323 2324 /* Verify the checksum. */ 2325 csum_type = btrfs_super_csum_type(sb); 2326 if (unlikely(csum_type != btrfs_super_csum_type(fs_info->super_copy))) { 2327 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2328 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2329 ret = -EUCLEAN; 2330 goto out; 2331 } 2332 2333 if (unlikely(btrfs_check_super_csum(fs_info, sb))) { 2334 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2335 ret = -EUCLEAN; 2336 goto out; 2337 } 2338 2339 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2340 ret = btrfs_validate_super(fs_info, sb, 0); 2341 if (ret < 0) 2342 goto out; 2343 2344 last_trans = btrfs_get_last_trans_committed(fs_info); 2345 if (unlikely(btrfs_super_generation(sb) != last_trans)) { 2346 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2347 btrfs_super_generation(sb), last_trans); 2348 ret = -EUCLEAN; 2349 goto out; 2350 } 2351 out: 2352 btrfs_release_disk_super(sb); 2353 return ret; 2354 } 2355 2356 static int btrfs_unfreeze(struct super_block *sb) 2357 { 2358 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2359 struct btrfs_device *device; 2360 int ret = 0; 2361 2362 /* 2363 * Make sure the fs is not changed by accident (like hibernation then 2364 * modified by other OS). 2365 * If we found anything wrong, we mark the fs error immediately. 2366 * 2367 * And since the fs is frozen, no one can modify the fs yet, thus 2368 * we don't need to hold device_list_mutex. 2369 */ 2370 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2371 ret = check_dev_super(device); 2372 if (ret < 0) { 2373 btrfs_handle_fs_error(fs_info, ret, 2374 "super block on devid %llu got modified unexpectedly", 2375 device->devid); 2376 break; 2377 } 2378 } 2379 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2380 2381 /* 2382 * We still return 0, to allow VFS layer to unfreeze the fs even the 2383 * above checks failed. Since the fs is either fine or read-only, we're 2384 * safe to continue, without causing further damage. 2385 */ 2386 return 0; 2387 } 2388 2389 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2390 { 2391 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2392 2393 /* 2394 * There should be always a valid pointer in latest_dev, it may be stale 2395 * for a short moment in case it's being deleted but still valid until 2396 * the end of RCU grace period. 2397 */ 2398 rcu_read_lock(); 2399 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2400 rcu_read_unlock(); 2401 2402 return 0; 2403 } 2404 2405 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2406 { 2407 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2408 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2409 2410 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2411 2412 return nr; 2413 } 2414 2415 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2416 { 2417 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2418 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2419 2420 btrfs_free_extent_maps(fs_info, nr_to_scan); 2421 2422 /* The extent map shrinker runs asynchronously, so always return 0. */ 2423 return 0; 2424 } 2425 2426 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2427 static int btrfs_remove_bdev(struct super_block *sb, struct block_device *bdev) 2428 { 2429 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2430 struct btrfs_device *device; 2431 struct btrfs_dev_lookup_args lookup_args = { .devt = bdev->bd_dev }; 2432 bool can_rw; 2433 2434 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2435 device = btrfs_find_device(fs_info->fs_devices, &lookup_args); 2436 if (!device) { 2437 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2438 /* Device not found, should not affect the running fs, just give a warning. */ 2439 btrfs_warn(fs_info, "unable to find btrfs device for block device '%pg'", bdev); 2440 return 0; 2441 } 2442 /* 2443 * The to-be-removed device is already missing? 2444 * 2445 * That's weird but no special handling needed and can exit right now. 2446 */ 2447 if (unlikely(test_and_set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))) { 2448 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2449 btrfs_warn(fs_info, "btrfs device id %llu is already missing", device->devid); 2450 return 0; 2451 } 2452 2453 device->fs_devices->missing_devices++; 2454 if (test_and_clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2455 list_del_init(&device->dev_alloc_list); 2456 WARN_ON(device->fs_devices->rw_devices < 1); 2457 device->fs_devices->rw_devices--; 2458 } 2459 can_rw = btrfs_check_rw_degradable(fs_info, device); 2460 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2461 /* 2462 * Now device is considered missing, btrfs_device_name() won't give a 2463 * meaningful result anymore, so only output the devid. 2464 */ 2465 if (unlikely(!can_rw)) { 2466 btrfs_crit(fs_info, 2467 "btrfs device id %llu has gone missing, can not maintain read-write", 2468 device->devid); 2469 return -EIO; 2470 } 2471 btrfs_warn(fs_info, 2472 "btrfs device id %llu has gone missing, continue as degraded", 2473 device->devid); 2474 btrfs_set_opt(fs_info->mount_opt, DEGRADED); 2475 return 0; 2476 } 2477 2478 static void btrfs_shutdown(struct super_block *sb) 2479 { 2480 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2481 2482 btrfs_force_shutdown(fs_info); 2483 } 2484 #endif 2485 2486 static const struct super_operations btrfs_super_ops = { 2487 .drop_inode = btrfs_drop_inode, 2488 .evict_inode = btrfs_evict_inode, 2489 .put_super = btrfs_put_super, 2490 .sync_fs = btrfs_sync_fs, 2491 .show_options = btrfs_show_options, 2492 .show_devname = btrfs_show_devname, 2493 .alloc_inode = btrfs_alloc_inode, 2494 .destroy_inode = btrfs_destroy_inode, 2495 .free_inode = btrfs_free_inode, 2496 .statfs = btrfs_statfs, 2497 .freeze_fs = btrfs_freeze, 2498 .unfreeze_fs = btrfs_unfreeze, 2499 .nr_cached_objects = btrfs_nr_cached_objects, 2500 .free_cached_objects = btrfs_free_cached_objects, 2501 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2502 .remove_bdev = btrfs_remove_bdev, 2503 .shutdown = btrfs_shutdown, 2504 #endif 2505 }; 2506 2507 static const struct file_operations btrfs_ctl_fops = { 2508 .open = btrfs_control_open, 2509 .unlocked_ioctl = btrfs_control_ioctl, 2510 .compat_ioctl = compat_ptr_ioctl, 2511 .owner = THIS_MODULE, 2512 .llseek = noop_llseek, 2513 }; 2514 2515 static struct miscdevice btrfs_misc = { 2516 .minor = BTRFS_MINOR, 2517 .name = "btrfs-control", 2518 .fops = &btrfs_ctl_fops 2519 }; 2520 2521 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2522 MODULE_ALIAS("devname:btrfs-control"); 2523 2524 static int __init btrfs_interface_init(void) 2525 { 2526 return misc_register(&btrfs_misc); 2527 } 2528 2529 static __cold void btrfs_interface_exit(void) 2530 { 2531 misc_deregister(&btrfs_misc); 2532 } 2533 2534 static int __init btrfs_print_mod_info(void) 2535 { 2536 static const char options[] = "" 2537 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2538 ", experimental=on" 2539 #endif 2540 #ifdef CONFIG_BTRFS_DEBUG 2541 ", debug=on" 2542 #endif 2543 #ifdef CONFIG_BTRFS_ASSERT 2544 ", assert=on" 2545 #endif 2546 #ifdef CONFIG_BLK_DEV_ZONED 2547 ", zoned=yes" 2548 #else 2549 ", zoned=no" 2550 #endif 2551 #ifdef CONFIG_FS_VERITY 2552 ", fsverity=yes" 2553 #else 2554 ", fsverity=no" 2555 #endif 2556 ; 2557 2558 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2559 if (btrfs_get_mod_read_policy() == NULL) 2560 pr_info("Btrfs loaded%s\n", options); 2561 else 2562 pr_info("Btrfs loaded%s, read_policy=%s\n", 2563 options, btrfs_get_mod_read_policy()); 2564 #else 2565 pr_info("Btrfs loaded%s\n", options); 2566 #endif 2567 2568 return 0; 2569 } 2570 2571 static int register_btrfs(void) 2572 { 2573 return register_filesystem(&btrfs_fs_type); 2574 } 2575 2576 static void unregister_btrfs(void) 2577 { 2578 unregister_filesystem(&btrfs_fs_type); 2579 } 2580 2581 /* Helper structure for long init/exit functions. */ 2582 struct init_sequence { 2583 int (*init_func)(void); 2584 /* Can be NULL if the init_func doesn't need cleanup. */ 2585 void (*exit_func)(void); 2586 }; 2587 2588 static const struct init_sequence mod_init_seq[] = { 2589 { 2590 .init_func = btrfs_props_init, 2591 .exit_func = NULL, 2592 }, { 2593 .init_func = btrfs_init_sysfs, 2594 .exit_func = btrfs_exit_sysfs, 2595 }, { 2596 .init_func = btrfs_init_compress, 2597 .exit_func = btrfs_exit_compress, 2598 }, { 2599 .init_func = btrfs_init_cachep, 2600 .exit_func = btrfs_destroy_cachep, 2601 }, { 2602 .init_func = btrfs_init_dio, 2603 .exit_func = btrfs_destroy_dio, 2604 }, { 2605 .init_func = btrfs_transaction_init, 2606 .exit_func = btrfs_transaction_exit, 2607 }, { 2608 .init_func = btrfs_ctree_init, 2609 .exit_func = btrfs_ctree_exit, 2610 }, { 2611 .init_func = btrfs_free_space_init, 2612 .exit_func = btrfs_free_space_exit, 2613 }, { 2614 .init_func = btrfs_extent_state_init_cachep, 2615 .exit_func = btrfs_extent_state_free_cachep, 2616 }, { 2617 .init_func = extent_buffer_init_cachep, 2618 .exit_func = extent_buffer_free_cachep, 2619 }, { 2620 .init_func = btrfs_bioset_init, 2621 .exit_func = btrfs_bioset_exit, 2622 }, { 2623 .init_func = btrfs_extent_map_init, 2624 .exit_func = btrfs_extent_map_exit, 2625 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2626 }, { 2627 .init_func = btrfs_read_policy_init, 2628 .exit_func = NULL, 2629 #endif 2630 }, { 2631 .init_func = ordered_data_init, 2632 .exit_func = ordered_data_exit, 2633 }, { 2634 .init_func = btrfs_delayed_inode_init, 2635 .exit_func = btrfs_delayed_inode_exit, 2636 }, { 2637 .init_func = btrfs_auto_defrag_init, 2638 .exit_func = btrfs_auto_defrag_exit, 2639 }, { 2640 .init_func = btrfs_delayed_ref_init, 2641 .exit_func = btrfs_delayed_ref_exit, 2642 }, { 2643 .init_func = btrfs_prelim_ref_init, 2644 .exit_func = btrfs_prelim_ref_exit, 2645 }, { 2646 .init_func = btrfs_interface_init, 2647 .exit_func = btrfs_interface_exit, 2648 }, { 2649 .init_func = btrfs_print_mod_info, 2650 .exit_func = NULL, 2651 }, { 2652 .init_func = btrfs_run_sanity_tests, 2653 .exit_func = NULL, 2654 }, { 2655 .init_func = register_btrfs, 2656 .exit_func = unregister_btrfs, 2657 } 2658 }; 2659 2660 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2661 2662 static __always_inline void btrfs_exit_btrfs_fs(void) 2663 { 2664 int i; 2665 2666 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2667 if (!mod_init_result[i]) 2668 continue; 2669 if (mod_init_seq[i].exit_func) 2670 mod_init_seq[i].exit_func(); 2671 mod_init_result[i] = false; 2672 } 2673 } 2674 2675 static void __exit exit_btrfs_fs(void) 2676 { 2677 btrfs_exit_btrfs_fs(); 2678 btrfs_cleanup_fs_uuids(); 2679 } 2680 2681 static int __init init_btrfs_fs(void) 2682 { 2683 int ret; 2684 int i; 2685 2686 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2687 ASSERT(!mod_init_result[i]); 2688 ret = mod_init_seq[i].init_func(); 2689 if (ret < 0) { 2690 btrfs_exit_btrfs_fs(); 2691 return ret; 2692 } 2693 mod_init_result[i] = true; 2694 } 2695 return 0; 2696 } 2697 2698 late_initcall(init_btrfs_fs); 2699 module_exit(exit_btrfs_fs) 2700 2701 MODULE_DESCRIPTION("B-Tree File System (BTRFS)"); 2702 MODULE_LICENSE("GPL"); 2703 MODULE_SOFTDEP("pre: crc32c"); 2704 MODULE_SOFTDEP("pre: xxhash64"); 2705 MODULE_SOFTDEP("pre: sha256"); 2706 MODULE_SOFTDEP("pre: blake2b-256"); 2707