1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include "compat.h" 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "xattr.h" 53 #include "volumes.h" 54 #include "version.h" 55 #include "export.h" 56 #include "compression.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/btrfs.h> 60 61 static const struct super_operations btrfs_super_ops; 62 static struct file_system_type btrfs_fs_type; 63 64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno, 65 char nbuf[16]) 66 { 67 char *errstr = NULL; 68 69 switch (errno) { 70 case -EIO: 71 errstr = "IO failure"; 72 break; 73 case -ENOMEM: 74 errstr = "Out of memory"; 75 break; 76 case -EROFS: 77 errstr = "Readonly filesystem"; 78 break; 79 default: 80 if (nbuf) { 81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 82 errstr = nbuf; 83 } 84 break; 85 } 86 87 return errstr; 88 } 89 90 static void __save_error_info(struct btrfs_fs_info *fs_info) 91 { 92 /* 93 * today we only save the error info into ram. Long term we'll 94 * also send it down to the disk 95 */ 96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR; 97 } 98 99 /* NOTE: 100 * We move write_super stuff at umount in order to avoid deadlock 101 * for umount hold all lock. 102 */ 103 static void save_error_info(struct btrfs_fs_info *fs_info) 104 { 105 __save_error_info(fs_info); 106 } 107 108 /* btrfs handle error by forcing the filesystem readonly */ 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 110 { 111 struct super_block *sb = fs_info->sb; 112 113 if (sb->s_flags & MS_RDONLY) 114 return; 115 116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 117 sb->s_flags |= MS_RDONLY; 118 printk(KERN_INFO "btrfs is forced readonly\n"); 119 } 120 } 121 122 /* 123 * __btrfs_std_error decodes expected errors from the caller and 124 * invokes the approciate error response. 125 */ 126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 127 unsigned int line, int errno) 128 { 129 struct super_block *sb = fs_info->sb; 130 char nbuf[16]; 131 const char *errstr; 132 133 /* 134 * Special case: if the error is EROFS, and we're already 135 * under MS_RDONLY, then it is safe here. 136 */ 137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 138 return; 139 140 errstr = btrfs_decode_error(fs_info, errno, nbuf); 141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", 142 sb->s_id, function, line, errstr); 143 save_error_info(fs_info); 144 145 btrfs_handle_error(fs_info); 146 } 147 148 static void btrfs_put_super(struct super_block *sb) 149 { 150 (void)close_ctree(btrfs_sb(sb)->tree_root); 151 /* FIXME: need to fix VFS to return error? */ 152 /* AV: return it _where_? ->put_super() can be triggered by any number 153 * of async events, up to and including delivery of SIGKILL to the 154 * last process that kept it busy. Or segfault in the aforementioned 155 * process... Whom would you report that to? 156 */ 157 } 158 159 enum { 160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, 167 Opt_no_space_cache, Opt_recovery, Opt_skip_balance, 168 Opt_check_integrity, Opt_check_integrity_including_extent_data, 169 Opt_check_integrity_print_mask, 170 Opt_err, 171 }; 172 173 static match_table_t tokens = { 174 {Opt_degraded, "degraded"}, 175 {Opt_subvol, "subvol=%s"}, 176 {Opt_subvolid, "subvolid=%d"}, 177 {Opt_device, "device=%s"}, 178 {Opt_nodatasum, "nodatasum"}, 179 {Opt_nodatacow, "nodatacow"}, 180 {Opt_nobarrier, "nobarrier"}, 181 {Opt_max_inline, "max_inline=%s"}, 182 {Opt_alloc_start, "alloc_start=%s"}, 183 {Opt_thread_pool, "thread_pool=%d"}, 184 {Opt_compress, "compress"}, 185 {Opt_compress_type, "compress=%s"}, 186 {Opt_compress_force, "compress-force"}, 187 {Opt_compress_force_type, "compress-force=%s"}, 188 {Opt_ssd, "ssd"}, 189 {Opt_ssd_spread, "ssd_spread"}, 190 {Opt_nossd, "nossd"}, 191 {Opt_noacl, "noacl"}, 192 {Opt_notreelog, "notreelog"}, 193 {Opt_flushoncommit, "flushoncommit"}, 194 {Opt_ratio, "metadata_ratio=%d"}, 195 {Opt_discard, "discard"}, 196 {Opt_space_cache, "space_cache"}, 197 {Opt_clear_cache, "clear_cache"}, 198 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 199 {Opt_enospc_debug, "enospc_debug"}, 200 {Opt_subvolrootid, "subvolrootid=%d"}, 201 {Opt_defrag, "autodefrag"}, 202 {Opt_inode_cache, "inode_cache"}, 203 {Opt_no_space_cache, "nospace_cache"}, 204 {Opt_recovery, "recovery"}, 205 {Opt_skip_balance, "skip_balance"}, 206 {Opt_check_integrity, "check_int"}, 207 {Opt_check_integrity_including_extent_data, "check_int_data"}, 208 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 209 {Opt_err, NULL}, 210 }; 211 212 /* 213 * Regular mount options parser. Everything that is needed only when 214 * reading in a new superblock is parsed here. 215 */ 216 int btrfs_parse_options(struct btrfs_root *root, char *options) 217 { 218 struct btrfs_fs_info *info = root->fs_info; 219 substring_t args[MAX_OPT_ARGS]; 220 char *p, *num, *orig = NULL; 221 u64 cache_gen; 222 int intarg; 223 int ret = 0; 224 char *compress_type; 225 bool compress_force = false; 226 227 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 228 if (cache_gen) 229 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 230 231 if (!options) 232 goto out; 233 234 /* 235 * strsep changes the string, duplicate it because parse_options 236 * gets called twice 237 */ 238 options = kstrdup(options, GFP_NOFS); 239 if (!options) 240 return -ENOMEM; 241 242 orig = options; 243 244 while ((p = strsep(&options, ",")) != NULL) { 245 int token; 246 if (!*p) 247 continue; 248 249 token = match_token(p, tokens, args); 250 switch (token) { 251 case Opt_degraded: 252 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 253 btrfs_set_opt(info->mount_opt, DEGRADED); 254 break; 255 case Opt_subvol: 256 case Opt_subvolid: 257 case Opt_subvolrootid: 258 case Opt_device: 259 /* 260 * These are parsed by btrfs_parse_early_options 261 * and can be happily ignored here. 262 */ 263 break; 264 case Opt_nodatasum: 265 printk(KERN_INFO "btrfs: setting nodatasum\n"); 266 btrfs_set_opt(info->mount_opt, NODATASUM); 267 break; 268 case Opt_nodatacow: 269 printk(KERN_INFO "btrfs: setting nodatacow\n"); 270 btrfs_set_opt(info->mount_opt, NODATACOW); 271 btrfs_set_opt(info->mount_opt, NODATASUM); 272 break; 273 case Opt_compress_force: 274 case Opt_compress_force_type: 275 compress_force = true; 276 case Opt_compress: 277 case Opt_compress_type: 278 if (token == Opt_compress || 279 token == Opt_compress_force || 280 strcmp(args[0].from, "zlib") == 0) { 281 compress_type = "zlib"; 282 info->compress_type = BTRFS_COMPRESS_ZLIB; 283 } else if (strcmp(args[0].from, "lzo") == 0) { 284 compress_type = "lzo"; 285 info->compress_type = BTRFS_COMPRESS_LZO; 286 } else { 287 ret = -EINVAL; 288 goto out; 289 } 290 291 btrfs_set_opt(info->mount_opt, COMPRESS); 292 if (compress_force) { 293 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 294 pr_info("btrfs: force %s compression\n", 295 compress_type); 296 } else 297 pr_info("btrfs: use %s compression\n", 298 compress_type); 299 break; 300 case Opt_ssd: 301 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 302 btrfs_set_opt(info->mount_opt, SSD); 303 break; 304 case Opt_ssd_spread: 305 printk(KERN_INFO "btrfs: use spread ssd " 306 "allocation scheme\n"); 307 btrfs_set_opt(info->mount_opt, SSD); 308 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 309 break; 310 case Opt_nossd: 311 printk(KERN_INFO "btrfs: not using ssd allocation " 312 "scheme\n"); 313 btrfs_set_opt(info->mount_opt, NOSSD); 314 btrfs_clear_opt(info->mount_opt, SSD); 315 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 316 break; 317 case Opt_nobarrier: 318 printk(KERN_INFO "btrfs: turning off barriers\n"); 319 btrfs_set_opt(info->mount_opt, NOBARRIER); 320 break; 321 case Opt_thread_pool: 322 intarg = 0; 323 match_int(&args[0], &intarg); 324 if (intarg) { 325 info->thread_pool_size = intarg; 326 printk(KERN_INFO "btrfs: thread pool %d\n", 327 info->thread_pool_size); 328 } 329 break; 330 case Opt_max_inline: 331 num = match_strdup(&args[0]); 332 if (num) { 333 info->max_inline = memparse(num, NULL); 334 kfree(num); 335 336 if (info->max_inline) { 337 info->max_inline = max_t(u64, 338 info->max_inline, 339 root->sectorsize); 340 } 341 printk(KERN_INFO "btrfs: max_inline at %llu\n", 342 (unsigned long long)info->max_inline); 343 } 344 break; 345 case Opt_alloc_start: 346 num = match_strdup(&args[0]); 347 if (num) { 348 info->alloc_start = memparse(num, NULL); 349 kfree(num); 350 printk(KERN_INFO 351 "btrfs: allocations start at %llu\n", 352 (unsigned long long)info->alloc_start); 353 } 354 break; 355 case Opt_noacl: 356 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 357 break; 358 case Opt_notreelog: 359 printk(KERN_INFO "btrfs: disabling tree log\n"); 360 btrfs_set_opt(info->mount_opt, NOTREELOG); 361 break; 362 case Opt_flushoncommit: 363 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 364 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 365 break; 366 case Opt_ratio: 367 intarg = 0; 368 match_int(&args[0], &intarg); 369 if (intarg) { 370 info->metadata_ratio = intarg; 371 printk(KERN_INFO "btrfs: metadata ratio %d\n", 372 info->metadata_ratio); 373 } 374 break; 375 case Opt_discard: 376 btrfs_set_opt(info->mount_opt, DISCARD); 377 break; 378 case Opt_space_cache: 379 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 380 break; 381 case Opt_no_space_cache: 382 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 383 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 384 break; 385 case Opt_inode_cache: 386 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 387 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 388 break; 389 case Opt_clear_cache: 390 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 391 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 392 break; 393 case Opt_user_subvol_rm_allowed: 394 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 395 break; 396 case Opt_enospc_debug: 397 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 398 break; 399 case Opt_defrag: 400 printk(KERN_INFO "btrfs: enabling auto defrag"); 401 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 402 break; 403 case Opt_recovery: 404 printk(KERN_INFO "btrfs: enabling auto recovery"); 405 btrfs_set_opt(info->mount_opt, RECOVERY); 406 break; 407 case Opt_skip_balance: 408 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 409 break; 410 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 411 case Opt_check_integrity_including_extent_data: 412 printk(KERN_INFO "btrfs: enabling check integrity" 413 " including extent data\n"); 414 btrfs_set_opt(info->mount_opt, 415 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 416 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 417 break; 418 case Opt_check_integrity: 419 printk(KERN_INFO "btrfs: enabling check integrity\n"); 420 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 421 break; 422 case Opt_check_integrity_print_mask: 423 intarg = 0; 424 match_int(&args[0], &intarg); 425 if (intarg) { 426 info->check_integrity_print_mask = intarg; 427 printk(KERN_INFO "btrfs:" 428 " check_integrity_print_mask 0x%x\n", 429 info->check_integrity_print_mask); 430 } 431 break; 432 #else 433 case Opt_check_integrity_including_extent_data: 434 case Opt_check_integrity: 435 case Opt_check_integrity_print_mask: 436 printk(KERN_ERR "btrfs: support for check_integrity*" 437 " not compiled in!\n"); 438 ret = -EINVAL; 439 goto out; 440 #endif 441 case Opt_err: 442 printk(KERN_INFO "btrfs: unrecognized mount option " 443 "'%s'\n", p); 444 ret = -EINVAL; 445 goto out; 446 default: 447 break; 448 } 449 } 450 out: 451 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 452 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 453 kfree(orig); 454 return ret; 455 } 456 457 /* 458 * Parse mount options that are required early in the mount process. 459 * 460 * All other options will be parsed on much later in the mount process and 461 * only when we need to allocate a new super block. 462 */ 463 static int btrfs_parse_early_options(const char *options, fmode_t flags, 464 void *holder, char **subvol_name, u64 *subvol_objectid, 465 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices) 466 { 467 substring_t args[MAX_OPT_ARGS]; 468 char *device_name, *opts, *orig, *p; 469 int error = 0; 470 int intarg; 471 472 if (!options) 473 return 0; 474 475 /* 476 * strsep changes the string, duplicate it because parse_options 477 * gets called twice 478 */ 479 opts = kstrdup(options, GFP_KERNEL); 480 if (!opts) 481 return -ENOMEM; 482 orig = opts; 483 484 while ((p = strsep(&opts, ",")) != NULL) { 485 int token; 486 if (!*p) 487 continue; 488 489 token = match_token(p, tokens, args); 490 switch (token) { 491 case Opt_subvol: 492 kfree(*subvol_name); 493 *subvol_name = match_strdup(&args[0]); 494 break; 495 case Opt_subvolid: 496 intarg = 0; 497 error = match_int(&args[0], &intarg); 498 if (!error) { 499 /* we want the original fs_tree */ 500 if (!intarg) 501 *subvol_objectid = 502 BTRFS_FS_TREE_OBJECTID; 503 else 504 *subvol_objectid = intarg; 505 } 506 break; 507 case Opt_subvolrootid: 508 intarg = 0; 509 error = match_int(&args[0], &intarg); 510 if (!error) { 511 /* we want the original fs_tree */ 512 if (!intarg) 513 *subvol_rootid = 514 BTRFS_FS_TREE_OBJECTID; 515 else 516 *subvol_rootid = intarg; 517 } 518 break; 519 case Opt_device: 520 device_name = match_strdup(&args[0]); 521 if (!device_name) { 522 error = -ENOMEM; 523 goto out; 524 } 525 error = btrfs_scan_one_device(device_name, 526 flags, holder, fs_devices); 527 kfree(device_name); 528 if (error) 529 goto out; 530 break; 531 default: 532 break; 533 } 534 } 535 536 out: 537 kfree(orig); 538 return error; 539 } 540 541 static struct dentry *get_default_root(struct super_block *sb, 542 u64 subvol_objectid) 543 { 544 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 545 struct btrfs_root *root = fs_info->tree_root; 546 struct btrfs_root *new_root; 547 struct btrfs_dir_item *di; 548 struct btrfs_path *path; 549 struct btrfs_key location; 550 struct inode *inode; 551 u64 dir_id; 552 int new = 0; 553 554 /* 555 * We have a specific subvol we want to mount, just setup location and 556 * go look up the root. 557 */ 558 if (subvol_objectid) { 559 location.objectid = subvol_objectid; 560 location.type = BTRFS_ROOT_ITEM_KEY; 561 location.offset = (u64)-1; 562 goto find_root; 563 } 564 565 path = btrfs_alloc_path(); 566 if (!path) 567 return ERR_PTR(-ENOMEM); 568 path->leave_spinning = 1; 569 570 /* 571 * Find the "default" dir item which points to the root item that we 572 * will mount by default if we haven't been given a specific subvolume 573 * to mount. 574 */ 575 dir_id = btrfs_super_root_dir(fs_info->super_copy); 576 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 577 if (IS_ERR(di)) { 578 btrfs_free_path(path); 579 return ERR_CAST(di); 580 } 581 if (!di) { 582 /* 583 * Ok the default dir item isn't there. This is weird since 584 * it's always been there, but don't freak out, just try and 585 * mount to root most subvolume. 586 */ 587 btrfs_free_path(path); 588 dir_id = BTRFS_FIRST_FREE_OBJECTID; 589 new_root = fs_info->fs_root; 590 goto setup_root; 591 } 592 593 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 594 btrfs_free_path(path); 595 596 find_root: 597 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 598 if (IS_ERR(new_root)) 599 return ERR_CAST(new_root); 600 601 if (btrfs_root_refs(&new_root->root_item) == 0) 602 return ERR_PTR(-ENOENT); 603 604 dir_id = btrfs_root_dirid(&new_root->root_item); 605 setup_root: 606 location.objectid = dir_id; 607 location.type = BTRFS_INODE_ITEM_KEY; 608 location.offset = 0; 609 610 inode = btrfs_iget(sb, &location, new_root, &new); 611 if (IS_ERR(inode)) 612 return ERR_CAST(inode); 613 614 /* 615 * If we're just mounting the root most subvol put the inode and return 616 * a reference to the dentry. We will have already gotten a reference 617 * to the inode in btrfs_fill_super so we're good to go. 618 */ 619 if (!new && sb->s_root->d_inode == inode) { 620 iput(inode); 621 return dget(sb->s_root); 622 } 623 624 return d_obtain_alias(inode); 625 } 626 627 static int btrfs_fill_super(struct super_block *sb, 628 struct btrfs_fs_devices *fs_devices, 629 void *data, int silent) 630 { 631 struct inode *inode; 632 struct dentry *root_dentry; 633 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 634 struct btrfs_key key; 635 int err; 636 637 sb->s_maxbytes = MAX_LFS_FILESIZE; 638 sb->s_magic = BTRFS_SUPER_MAGIC; 639 sb->s_op = &btrfs_super_ops; 640 sb->s_d_op = &btrfs_dentry_operations; 641 sb->s_export_op = &btrfs_export_ops; 642 sb->s_xattr = btrfs_xattr_handlers; 643 sb->s_time_gran = 1; 644 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 645 sb->s_flags |= MS_POSIXACL; 646 #endif 647 648 err = open_ctree(sb, fs_devices, (char *)data); 649 if (err) { 650 printk("btrfs: open_ctree failed\n"); 651 return err; 652 } 653 654 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 655 key.type = BTRFS_INODE_ITEM_KEY; 656 key.offset = 0; 657 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 658 if (IS_ERR(inode)) { 659 err = PTR_ERR(inode); 660 goto fail_close; 661 } 662 663 root_dentry = d_alloc_root(inode); 664 if (!root_dentry) { 665 iput(inode); 666 err = -ENOMEM; 667 goto fail_close; 668 } 669 670 sb->s_root = root_dentry; 671 672 save_mount_options(sb, data); 673 cleancache_init_fs(sb); 674 sb->s_flags |= MS_ACTIVE; 675 return 0; 676 677 fail_close: 678 close_ctree(fs_info->tree_root); 679 return err; 680 } 681 682 int btrfs_sync_fs(struct super_block *sb, int wait) 683 { 684 struct btrfs_trans_handle *trans; 685 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 686 struct btrfs_root *root = fs_info->tree_root; 687 int ret; 688 689 trace_btrfs_sync_fs(wait); 690 691 if (!wait) { 692 filemap_flush(fs_info->btree_inode->i_mapping); 693 return 0; 694 } 695 696 btrfs_start_delalloc_inodes(root, 0); 697 btrfs_wait_ordered_extents(root, 0, 0); 698 699 trans = btrfs_start_transaction(root, 0); 700 if (IS_ERR(trans)) 701 return PTR_ERR(trans); 702 ret = btrfs_commit_transaction(trans, root); 703 return ret; 704 } 705 706 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 707 { 708 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 709 struct btrfs_root *root = info->tree_root; 710 char *compress_type; 711 712 if (btrfs_test_opt(root, DEGRADED)) 713 seq_puts(seq, ",degraded"); 714 if (btrfs_test_opt(root, NODATASUM)) 715 seq_puts(seq, ",nodatasum"); 716 if (btrfs_test_opt(root, NODATACOW)) 717 seq_puts(seq, ",nodatacow"); 718 if (btrfs_test_opt(root, NOBARRIER)) 719 seq_puts(seq, ",nobarrier"); 720 if (info->max_inline != 8192 * 1024) 721 seq_printf(seq, ",max_inline=%llu", 722 (unsigned long long)info->max_inline); 723 if (info->alloc_start != 0) 724 seq_printf(seq, ",alloc_start=%llu", 725 (unsigned long long)info->alloc_start); 726 if (info->thread_pool_size != min_t(unsigned long, 727 num_online_cpus() + 2, 8)) 728 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 729 if (btrfs_test_opt(root, COMPRESS)) { 730 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 731 compress_type = "zlib"; 732 else 733 compress_type = "lzo"; 734 if (btrfs_test_opt(root, FORCE_COMPRESS)) 735 seq_printf(seq, ",compress-force=%s", compress_type); 736 else 737 seq_printf(seq, ",compress=%s", compress_type); 738 } 739 if (btrfs_test_opt(root, NOSSD)) 740 seq_puts(seq, ",nossd"); 741 if (btrfs_test_opt(root, SSD_SPREAD)) 742 seq_puts(seq, ",ssd_spread"); 743 else if (btrfs_test_opt(root, SSD)) 744 seq_puts(seq, ",ssd"); 745 if (btrfs_test_opt(root, NOTREELOG)) 746 seq_puts(seq, ",notreelog"); 747 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 748 seq_puts(seq, ",flushoncommit"); 749 if (btrfs_test_opt(root, DISCARD)) 750 seq_puts(seq, ",discard"); 751 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 752 seq_puts(seq, ",noacl"); 753 if (btrfs_test_opt(root, SPACE_CACHE)) 754 seq_puts(seq, ",space_cache"); 755 else 756 seq_puts(seq, ",nospace_cache"); 757 if (btrfs_test_opt(root, CLEAR_CACHE)) 758 seq_puts(seq, ",clear_cache"); 759 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 760 seq_puts(seq, ",user_subvol_rm_allowed"); 761 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 762 seq_puts(seq, ",enospc_debug"); 763 if (btrfs_test_opt(root, AUTO_DEFRAG)) 764 seq_puts(seq, ",autodefrag"); 765 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 766 seq_puts(seq, ",inode_cache"); 767 if (btrfs_test_opt(root, SKIP_BALANCE)) 768 seq_puts(seq, ",skip_balance"); 769 return 0; 770 } 771 772 static int btrfs_test_super(struct super_block *s, void *data) 773 { 774 struct btrfs_fs_info *p = data; 775 struct btrfs_fs_info *fs_info = btrfs_sb(s); 776 777 return fs_info->fs_devices == p->fs_devices; 778 } 779 780 static int btrfs_set_super(struct super_block *s, void *data) 781 { 782 int err = set_anon_super(s, data); 783 if (!err) 784 s->s_fs_info = data; 785 return err; 786 } 787 788 /* 789 * subvolumes are identified by ino 256 790 */ 791 static inline int is_subvolume_inode(struct inode *inode) 792 { 793 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 794 return 1; 795 return 0; 796 } 797 798 /* 799 * This will strip out the subvol=%s argument for an argument string and add 800 * subvolid=0 to make sure we get the actual tree root for path walking to the 801 * subvol we want. 802 */ 803 static char *setup_root_args(char *args) 804 { 805 unsigned copied = 0; 806 unsigned len = strlen(args) + 2; 807 char *pos; 808 char *ret; 809 810 /* 811 * We need the same args as before, but minus 812 * 813 * subvol=a 814 * 815 * and add 816 * 817 * subvolid=0 818 * 819 * which is a difference of 2 characters, so we allocate strlen(args) + 820 * 2 characters. 821 */ 822 ret = kzalloc(len * sizeof(char), GFP_NOFS); 823 if (!ret) 824 return NULL; 825 pos = strstr(args, "subvol="); 826 827 /* This shouldn't happen, but just in case.. */ 828 if (!pos) { 829 kfree(ret); 830 return NULL; 831 } 832 833 /* 834 * The subvol=<> arg is not at the front of the string, copy everybody 835 * up to that into ret. 836 */ 837 if (pos != args) { 838 *pos = '\0'; 839 strcpy(ret, args); 840 copied += strlen(args); 841 pos++; 842 } 843 844 strncpy(ret + copied, "subvolid=0", len - copied); 845 846 /* Length of subvolid=0 */ 847 copied += 10; 848 849 /* 850 * If there is no , after the subvol= option then we know there's no 851 * other options and we can just return. 852 */ 853 pos = strchr(pos, ','); 854 if (!pos) 855 return ret; 856 857 /* Copy the rest of the arguments into our buffer */ 858 strncpy(ret + copied, pos, len - copied); 859 copied += strlen(pos); 860 861 return ret; 862 } 863 864 static struct dentry *mount_subvol(const char *subvol_name, int flags, 865 const char *device_name, char *data) 866 { 867 struct dentry *root; 868 struct vfsmount *mnt; 869 char *newargs; 870 871 newargs = setup_root_args(data); 872 if (!newargs) 873 return ERR_PTR(-ENOMEM); 874 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 875 newargs); 876 kfree(newargs); 877 if (IS_ERR(mnt)) 878 return ERR_CAST(mnt); 879 880 root = mount_subtree(mnt, subvol_name); 881 882 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { 883 struct super_block *s = root->d_sb; 884 dput(root); 885 root = ERR_PTR(-EINVAL); 886 deactivate_locked_super(s); 887 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 888 subvol_name); 889 } 890 891 return root; 892 } 893 894 /* 895 * Find a superblock for the given device / mount point. 896 * 897 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 898 * for multiple device setup. Make sure to keep it in sync. 899 */ 900 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 901 const char *device_name, void *data) 902 { 903 struct block_device *bdev = NULL; 904 struct super_block *s; 905 struct dentry *root; 906 struct btrfs_fs_devices *fs_devices = NULL; 907 struct btrfs_fs_info *fs_info = NULL; 908 fmode_t mode = FMODE_READ; 909 char *subvol_name = NULL; 910 u64 subvol_objectid = 0; 911 u64 subvol_rootid = 0; 912 int error = 0; 913 914 if (!(flags & MS_RDONLY)) 915 mode |= FMODE_WRITE; 916 917 error = btrfs_parse_early_options(data, mode, fs_type, 918 &subvol_name, &subvol_objectid, 919 &subvol_rootid, &fs_devices); 920 if (error) { 921 kfree(subvol_name); 922 return ERR_PTR(error); 923 } 924 925 if (subvol_name) { 926 root = mount_subvol(subvol_name, flags, device_name, data); 927 kfree(subvol_name); 928 return root; 929 } 930 931 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 932 if (error) 933 return ERR_PTR(error); 934 935 /* 936 * Setup a dummy root and fs_info for test/set super. This is because 937 * we don't actually fill this stuff out until open_ctree, but we need 938 * it for searching for existing supers, so this lets us do that and 939 * then open_ctree will properly initialize everything later. 940 */ 941 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 942 if (!fs_info) 943 return ERR_PTR(-ENOMEM); 944 945 fs_info->fs_devices = fs_devices; 946 947 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 948 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 949 if (!fs_info->super_copy || !fs_info->super_for_commit) { 950 error = -ENOMEM; 951 goto error_fs_info; 952 } 953 954 error = btrfs_open_devices(fs_devices, mode, fs_type); 955 if (error) 956 goto error_fs_info; 957 958 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 959 error = -EACCES; 960 goto error_close_devices; 961 } 962 963 bdev = fs_devices->latest_bdev; 964 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info); 965 if (IS_ERR(s)) { 966 error = PTR_ERR(s); 967 goto error_close_devices; 968 } 969 970 if (s->s_root) { 971 btrfs_close_devices(fs_devices); 972 free_fs_info(fs_info); 973 if ((flags ^ s->s_flags) & MS_RDONLY) 974 error = -EBUSY; 975 } else { 976 char b[BDEVNAME_SIZE]; 977 978 s->s_flags = flags | MS_NOSEC; 979 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 980 btrfs_sb(s)->bdev_holder = fs_type; 981 error = btrfs_fill_super(s, fs_devices, data, 982 flags & MS_SILENT ? 1 : 0); 983 } 984 985 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); 986 if (IS_ERR(root)) 987 deactivate_locked_super(s); 988 989 return root; 990 991 error_close_devices: 992 btrfs_close_devices(fs_devices); 993 error_fs_info: 994 free_fs_info(fs_info); 995 return ERR_PTR(error); 996 } 997 998 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 999 { 1000 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1001 struct btrfs_root *root = fs_info->tree_root; 1002 int ret; 1003 1004 ret = btrfs_parse_options(root, data); 1005 if (ret) 1006 return -EINVAL; 1007 1008 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1009 return 0; 1010 1011 if (*flags & MS_RDONLY) { 1012 sb->s_flags |= MS_RDONLY; 1013 1014 ret = btrfs_commit_super(root); 1015 WARN_ON(ret); 1016 } else { 1017 if (fs_info->fs_devices->rw_devices == 0) 1018 return -EACCES; 1019 1020 if (btrfs_super_log_root(fs_info->super_copy) != 0) 1021 return -EINVAL; 1022 1023 ret = btrfs_cleanup_fs_roots(fs_info); 1024 WARN_ON(ret); 1025 1026 /* recover relocation */ 1027 ret = btrfs_recover_relocation(root); 1028 WARN_ON(ret); 1029 1030 sb->s_flags &= ~MS_RDONLY; 1031 } 1032 1033 return 0; 1034 } 1035 1036 /* Used to sort the devices by max_avail(descending sort) */ 1037 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1038 const void *dev_info2) 1039 { 1040 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1041 ((struct btrfs_device_info *)dev_info2)->max_avail) 1042 return -1; 1043 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1044 ((struct btrfs_device_info *)dev_info2)->max_avail) 1045 return 1; 1046 else 1047 return 0; 1048 } 1049 1050 /* 1051 * sort the devices by max_avail, in which max free extent size of each device 1052 * is stored.(Descending Sort) 1053 */ 1054 static inline void btrfs_descending_sort_devices( 1055 struct btrfs_device_info *devices, 1056 size_t nr_devices) 1057 { 1058 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1059 btrfs_cmp_device_free_bytes, NULL); 1060 } 1061 1062 /* 1063 * The helper to calc the free space on the devices that can be used to store 1064 * file data. 1065 */ 1066 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1067 { 1068 struct btrfs_fs_info *fs_info = root->fs_info; 1069 struct btrfs_device_info *devices_info; 1070 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1071 struct btrfs_device *device; 1072 u64 skip_space; 1073 u64 type; 1074 u64 avail_space; 1075 u64 used_space; 1076 u64 min_stripe_size; 1077 int min_stripes = 1, num_stripes = 1; 1078 int i = 0, nr_devices; 1079 int ret; 1080 1081 nr_devices = fs_info->fs_devices->open_devices; 1082 BUG_ON(!nr_devices); 1083 1084 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1085 GFP_NOFS); 1086 if (!devices_info) 1087 return -ENOMEM; 1088 1089 /* calc min stripe number for data space alloction */ 1090 type = btrfs_get_alloc_profile(root, 1); 1091 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1092 min_stripes = 2; 1093 num_stripes = nr_devices; 1094 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1095 min_stripes = 2; 1096 num_stripes = 2; 1097 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1098 min_stripes = 4; 1099 num_stripes = 4; 1100 } 1101 1102 if (type & BTRFS_BLOCK_GROUP_DUP) 1103 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1104 else 1105 min_stripe_size = BTRFS_STRIPE_LEN; 1106 1107 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1108 if (!device->in_fs_metadata || !device->bdev) 1109 continue; 1110 1111 avail_space = device->total_bytes - device->bytes_used; 1112 1113 /* align with stripe_len */ 1114 do_div(avail_space, BTRFS_STRIPE_LEN); 1115 avail_space *= BTRFS_STRIPE_LEN; 1116 1117 /* 1118 * In order to avoid overwritting the superblock on the drive, 1119 * btrfs starts at an offset of at least 1MB when doing chunk 1120 * allocation. 1121 */ 1122 skip_space = 1024 * 1024; 1123 1124 /* user can set the offset in fs_info->alloc_start. */ 1125 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1126 device->total_bytes) 1127 skip_space = max(fs_info->alloc_start, skip_space); 1128 1129 /* 1130 * btrfs can not use the free space in [0, skip_space - 1], 1131 * we must subtract it from the total. In order to implement 1132 * it, we account the used space in this range first. 1133 */ 1134 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1135 &used_space); 1136 if (ret) { 1137 kfree(devices_info); 1138 return ret; 1139 } 1140 1141 /* calc the free space in [0, skip_space - 1] */ 1142 skip_space -= used_space; 1143 1144 /* 1145 * we can use the free space in [0, skip_space - 1], subtract 1146 * it from the total. 1147 */ 1148 if (avail_space && avail_space >= skip_space) 1149 avail_space -= skip_space; 1150 else 1151 avail_space = 0; 1152 1153 if (avail_space < min_stripe_size) 1154 continue; 1155 1156 devices_info[i].dev = device; 1157 devices_info[i].max_avail = avail_space; 1158 1159 i++; 1160 } 1161 1162 nr_devices = i; 1163 1164 btrfs_descending_sort_devices(devices_info, nr_devices); 1165 1166 i = nr_devices - 1; 1167 avail_space = 0; 1168 while (nr_devices >= min_stripes) { 1169 if (num_stripes > nr_devices) 1170 num_stripes = nr_devices; 1171 1172 if (devices_info[i].max_avail >= min_stripe_size) { 1173 int j; 1174 u64 alloc_size; 1175 1176 avail_space += devices_info[i].max_avail * num_stripes; 1177 alloc_size = devices_info[i].max_avail; 1178 for (j = i + 1 - num_stripes; j <= i; j++) 1179 devices_info[j].max_avail -= alloc_size; 1180 } 1181 i--; 1182 nr_devices--; 1183 } 1184 1185 kfree(devices_info); 1186 *free_bytes = avail_space; 1187 return 0; 1188 } 1189 1190 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1191 { 1192 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1193 struct btrfs_super_block *disk_super = fs_info->super_copy; 1194 struct list_head *head = &fs_info->space_info; 1195 struct btrfs_space_info *found; 1196 u64 total_used = 0; 1197 u64 total_free_data = 0; 1198 int bits = dentry->d_sb->s_blocksize_bits; 1199 __be32 *fsid = (__be32 *)fs_info->fsid; 1200 int ret; 1201 1202 /* holding chunk_muext to avoid allocating new chunks */ 1203 mutex_lock(&fs_info->chunk_mutex); 1204 rcu_read_lock(); 1205 list_for_each_entry_rcu(found, head, list) { 1206 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1207 total_free_data += found->disk_total - found->disk_used; 1208 total_free_data -= 1209 btrfs_account_ro_block_groups_free_space(found); 1210 } 1211 1212 total_used += found->disk_used; 1213 } 1214 rcu_read_unlock(); 1215 1216 buf->f_namelen = BTRFS_NAME_LEN; 1217 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1218 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1219 buf->f_bsize = dentry->d_sb->s_blocksize; 1220 buf->f_type = BTRFS_SUPER_MAGIC; 1221 buf->f_bavail = total_free_data; 1222 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); 1223 if (ret) { 1224 mutex_unlock(&fs_info->chunk_mutex); 1225 return ret; 1226 } 1227 buf->f_bavail += total_free_data; 1228 buf->f_bavail = buf->f_bavail >> bits; 1229 mutex_unlock(&fs_info->chunk_mutex); 1230 1231 /* We treat it as constant endianness (it doesn't matter _which_) 1232 because we want the fsid to come out the same whether mounted 1233 on a big-endian or little-endian host */ 1234 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1235 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1236 /* Mask in the root object ID too, to disambiguate subvols */ 1237 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1238 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1239 1240 return 0; 1241 } 1242 1243 static void btrfs_kill_super(struct super_block *sb) 1244 { 1245 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1246 kill_anon_super(sb); 1247 free_fs_info(fs_info); 1248 } 1249 1250 static struct file_system_type btrfs_fs_type = { 1251 .owner = THIS_MODULE, 1252 .name = "btrfs", 1253 .mount = btrfs_mount, 1254 .kill_sb = btrfs_kill_super, 1255 .fs_flags = FS_REQUIRES_DEV, 1256 }; 1257 1258 /* 1259 * used by btrfsctl to scan devices when no FS is mounted 1260 */ 1261 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1262 unsigned long arg) 1263 { 1264 struct btrfs_ioctl_vol_args *vol; 1265 struct btrfs_fs_devices *fs_devices; 1266 int ret = -ENOTTY; 1267 1268 if (!capable(CAP_SYS_ADMIN)) 1269 return -EPERM; 1270 1271 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1272 if (IS_ERR(vol)) 1273 return PTR_ERR(vol); 1274 1275 switch (cmd) { 1276 case BTRFS_IOC_SCAN_DEV: 1277 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1278 &btrfs_fs_type, &fs_devices); 1279 break; 1280 } 1281 1282 kfree(vol); 1283 return ret; 1284 } 1285 1286 static int btrfs_freeze(struct super_block *sb) 1287 { 1288 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1289 mutex_lock(&fs_info->transaction_kthread_mutex); 1290 mutex_lock(&fs_info->cleaner_mutex); 1291 return 0; 1292 } 1293 1294 static int btrfs_unfreeze(struct super_block *sb) 1295 { 1296 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1297 mutex_unlock(&fs_info->cleaner_mutex); 1298 mutex_unlock(&fs_info->transaction_kthread_mutex); 1299 return 0; 1300 } 1301 1302 static void btrfs_fs_dirty_inode(struct inode *inode, int flags) 1303 { 1304 int ret; 1305 1306 ret = btrfs_dirty_inode(inode); 1307 if (ret) 1308 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu " 1309 "error %d\n", btrfs_ino(inode), ret); 1310 } 1311 1312 static const struct super_operations btrfs_super_ops = { 1313 .drop_inode = btrfs_drop_inode, 1314 .evict_inode = btrfs_evict_inode, 1315 .put_super = btrfs_put_super, 1316 .sync_fs = btrfs_sync_fs, 1317 .show_options = btrfs_show_options, 1318 .write_inode = btrfs_write_inode, 1319 .dirty_inode = btrfs_fs_dirty_inode, 1320 .alloc_inode = btrfs_alloc_inode, 1321 .destroy_inode = btrfs_destroy_inode, 1322 .statfs = btrfs_statfs, 1323 .remount_fs = btrfs_remount, 1324 .freeze_fs = btrfs_freeze, 1325 .unfreeze_fs = btrfs_unfreeze, 1326 }; 1327 1328 static const struct file_operations btrfs_ctl_fops = { 1329 .unlocked_ioctl = btrfs_control_ioctl, 1330 .compat_ioctl = btrfs_control_ioctl, 1331 .owner = THIS_MODULE, 1332 .llseek = noop_llseek, 1333 }; 1334 1335 static struct miscdevice btrfs_misc = { 1336 .minor = BTRFS_MINOR, 1337 .name = "btrfs-control", 1338 .fops = &btrfs_ctl_fops 1339 }; 1340 1341 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1342 MODULE_ALIAS("devname:btrfs-control"); 1343 1344 static int btrfs_interface_init(void) 1345 { 1346 return misc_register(&btrfs_misc); 1347 } 1348 1349 static void btrfs_interface_exit(void) 1350 { 1351 if (misc_deregister(&btrfs_misc) < 0) 1352 printk(KERN_INFO "misc_deregister failed for control device"); 1353 } 1354 1355 static int __init init_btrfs_fs(void) 1356 { 1357 int err; 1358 1359 err = btrfs_init_sysfs(); 1360 if (err) 1361 return err; 1362 1363 err = btrfs_init_compress(); 1364 if (err) 1365 goto free_sysfs; 1366 1367 err = btrfs_init_cachep(); 1368 if (err) 1369 goto free_compress; 1370 1371 err = extent_io_init(); 1372 if (err) 1373 goto free_cachep; 1374 1375 err = extent_map_init(); 1376 if (err) 1377 goto free_extent_io; 1378 1379 err = btrfs_delayed_inode_init(); 1380 if (err) 1381 goto free_extent_map; 1382 1383 err = btrfs_interface_init(); 1384 if (err) 1385 goto free_delayed_inode; 1386 1387 err = register_filesystem(&btrfs_fs_type); 1388 if (err) 1389 goto unregister_ioctl; 1390 1391 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1392 return 0; 1393 1394 unregister_ioctl: 1395 btrfs_interface_exit(); 1396 free_delayed_inode: 1397 btrfs_delayed_inode_exit(); 1398 free_extent_map: 1399 extent_map_exit(); 1400 free_extent_io: 1401 extent_io_exit(); 1402 free_cachep: 1403 btrfs_destroy_cachep(); 1404 free_compress: 1405 btrfs_exit_compress(); 1406 free_sysfs: 1407 btrfs_exit_sysfs(); 1408 return err; 1409 } 1410 1411 static void __exit exit_btrfs_fs(void) 1412 { 1413 btrfs_destroy_cachep(); 1414 btrfs_delayed_inode_exit(); 1415 extent_map_exit(); 1416 extent_io_exit(); 1417 btrfs_interface_exit(); 1418 unregister_filesystem(&btrfs_fs_type); 1419 btrfs_exit_sysfs(); 1420 btrfs_cleanup_fs_uuids(); 1421 btrfs_exit_compress(); 1422 } 1423 1424 module_init(init_btrfs_fs) 1425 module_exit(exit_btrfs_fs) 1426 1427 MODULE_LICENSE("GPL"); 1428