xref: /linux/fs/btrfs/super.c (revision 530362934332e4efac81d40583aa1225e64f556f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "export.h"
54 #include "compression.h"
55 #include "rcu-string.h"
56 #include "dev-replace.h"
57 #include "free-space-cache.h"
58 #include "backref.h"
59 #include "tests/btrfs-tests.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66 
67 static const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 		sb->s_flags |= MS_RDONLY;
114 		btrfs_info(fs_info, "forced readonly");
115 		/*
116 		 * Note that a running device replace operation is not
117 		 * canceled here although there is no way to update
118 		 * the progress. It would add the risk of a deadlock,
119 		 * therefore the canceling is ommited. The only penalty
120 		 * is that some I/O remains active until the procedure
121 		 * completes. The next time when the filesystem is
122 		 * mounted writeable again, the device replace
123 		 * operation continues.
124 		 */
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	const char *errstr;
138 
139 	/*
140 	 * Special case: if the error is EROFS, and we're already
141 	 * under MS_RDONLY, then it is safe here.
142 	 */
143 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144   		return;
145 
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		printk(KERN_CRIT
156 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
157 			sb->s_id, function, line, errno, errstr, &vaf);
158 		va_end(args);
159 	} else {
160 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
161 			sb->s_id, function, line, errno, errstr);
162 	}
163 
164 	/* Don't go through full error handling during mount */
165 	save_error_info(fs_info);
166 	if (sb->s_flags & MS_BORN)
167 		btrfs_handle_error(fs_info);
168 }
169 
170 static const char * const logtypes[] = {
171 	"emergency",
172 	"alert",
173 	"critical",
174 	"error",
175 	"warning",
176 	"notice",
177 	"info",
178 	"debug",
179 };
180 
181 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 	struct super_block *sb = fs_info->sb;
184 	char lvl[4];
185 	struct va_format vaf;
186 	va_list args;
187 	const char *type = logtypes[4];
188 	int kern_level;
189 
190 	va_start(args, fmt);
191 
192 	kern_level = printk_get_level(fmt);
193 	if (kern_level) {
194 		size_t size = printk_skip_level(fmt) - fmt;
195 		memcpy(lvl, fmt,  size);
196 		lvl[size] = '\0';
197 		fmt += size;
198 		type = logtypes[kern_level - '0'];
199 	} else
200 		*lvl = '\0';
201 
202 	vaf.fmt = fmt;
203 	vaf.va = &args;
204 
205 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
206 
207 	va_end(args);
208 }
209 
210 #else
211 
212 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
213 		       unsigned int line, int errno, const char *fmt, ...)
214 {
215 	struct super_block *sb = fs_info->sb;
216 
217 	/*
218 	 * Special case: if the error is EROFS, and we're already
219 	 * under MS_RDONLY, then it is safe here.
220 	 */
221 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
222 		return;
223 
224 	/* Don't go through full error handling during mount */
225 	if (sb->s_flags & MS_BORN) {
226 		save_error_info(fs_info);
227 		btrfs_handle_error(fs_info);
228 	}
229 }
230 #endif
231 
232 /*
233  * We only mark the transaction aborted and then set the file system read-only.
234  * This will prevent new transactions from starting or trying to join this
235  * one.
236  *
237  * This means that error recovery at the call site is limited to freeing
238  * any local memory allocations and passing the error code up without
239  * further cleanup. The transaction should complete as it normally would
240  * in the call path but will return -EIO.
241  *
242  * We'll complete the cleanup in btrfs_end_transaction and
243  * btrfs_commit_transaction.
244  */
245 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
246 			       struct btrfs_root *root, const char *function,
247 			       unsigned int line, int errno)
248 {
249 	/*
250 	 * Report first abort since mount
251 	 */
252 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
253 				&root->fs_info->fs_state)) {
254 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
255 				errno);
256 	}
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->blocks_used) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(root->fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	ACCESS_ONCE(trans->transaction->aborted) = errno;
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&root->fs_info->transaction_wait);
272 	wake_up(&root->fs_info->transaction_blocked_wait);
273 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 		   function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	(void)close_ctree(btrfs_sb(sb)->tree_root);
307 	/* FIXME: need to fix VFS to return error? */
308 	/* AV: return it _where_?  ->put_super() can be triggered by any number
309 	 * of async events, up to and including delivery of SIGKILL to the
310 	 * last process that kept it busy.  Or segfault in the aforementioned
311 	 * process...  Whom would you report that to?
312 	 */
313 }
314 
315 enum {
316 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
317 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
318 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
319 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
320 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
321 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
322 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
323 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
324 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
325 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
326 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
327 	Opt_noenospc_debug,
328 	Opt_err,
329 };
330 
331 static match_table_t tokens = {
332 	{Opt_degraded, "degraded"},
333 	{Opt_subvol, "subvol=%s"},
334 	{Opt_subvolid, "subvolid=%s"},
335 	{Opt_device, "device=%s"},
336 	{Opt_nodatasum, "nodatasum"},
337 	{Opt_nodatacow, "nodatacow"},
338 	{Opt_nobarrier, "nobarrier"},
339 	{Opt_barrier, "barrier"},
340 	{Opt_max_inline, "max_inline=%s"},
341 	{Opt_alloc_start, "alloc_start=%s"},
342 	{Opt_thread_pool, "thread_pool=%d"},
343 	{Opt_compress, "compress"},
344 	{Opt_compress_type, "compress=%s"},
345 	{Opt_compress_force, "compress-force"},
346 	{Opt_compress_force_type, "compress-force=%s"},
347 	{Opt_ssd, "ssd"},
348 	{Opt_ssd_spread, "ssd_spread"},
349 	{Opt_nossd, "nossd"},
350 	{Opt_noacl, "noacl"},
351 	{Opt_notreelog, "notreelog"},
352 	{Opt_flushoncommit, "flushoncommit"},
353 	{Opt_ratio, "metadata_ratio=%d"},
354 	{Opt_discard, "discard"},
355 	{Opt_nodiscard, "nodiscard"},
356 	{Opt_space_cache, "space_cache"},
357 	{Opt_clear_cache, "clear_cache"},
358 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
359 	{Opt_enospc_debug, "enospc_debug"},
360 	{Opt_noenospc_debug, "noenospc_debug"},
361 	{Opt_subvolrootid, "subvolrootid=%d"},
362 	{Opt_defrag, "autodefrag"},
363 	{Opt_nodefrag, "noautodefrag"},
364 	{Opt_inode_cache, "inode_cache"},
365 	{Opt_no_space_cache, "nospace_cache"},
366 	{Opt_recovery, "recovery"},
367 	{Opt_skip_balance, "skip_balance"},
368 	{Opt_check_integrity, "check_int"},
369 	{Opt_check_integrity_including_extent_data, "check_int_data"},
370 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
371 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
372 	{Opt_fatal_errors, "fatal_errors=%s"},
373 	{Opt_commit_interval, "commit=%d"},
374 	{Opt_err, NULL},
375 };
376 
377 /*
378  * Regular mount options parser.  Everything that is needed only when
379  * reading in a new superblock is parsed here.
380  * XXX JDM: This needs to be cleaned up for remount.
381  */
382 int btrfs_parse_options(struct btrfs_root *root, char *options)
383 {
384 	struct btrfs_fs_info *info = root->fs_info;
385 	substring_t args[MAX_OPT_ARGS];
386 	char *p, *num, *orig = NULL;
387 	u64 cache_gen;
388 	int intarg;
389 	int ret = 0;
390 	char *compress_type;
391 	bool compress_force = false;
392 
393 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
394 	if (cache_gen)
395 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
396 
397 	if (!options)
398 		goto out;
399 
400 	/*
401 	 * strsep changes the string, duplicate it because parse_options
402 	 * gets called twice
403 	 */
404 	options = kstrdup(options, GFP_NOFS);
405 	if (!options)
406 		return -ENOMEM;
407 
408 	orig = options;
409 
410 	while ((p = strsep(&options, ",")) != NULL) {
411 		int token;
412 		if (!*p)
413 			continue;
414 
415 		token = match_token(p, tokens, args);
416 		switch (token) {
417 		case Opt_degraded:
418 			btrfs_info(root->fs_info, "allowing degraded mounts");
419 			btrfs_set_opt(info->mount_opt, DEGRADED);
420 			break;
421 		case Opt_subvol:
422 		case Opt_subvolid:
423 		case Opt_subvolrootid:
424 		case Opt_device:
425 			/*
426 			 * These are parsed by btrfs_parse_early_options
427 			 * and can be happily ignored here.
428 			 */
429 			break;
430 		case Opt_nodatasum:
431 			btrfs_info(root->fs_info, "setting nodatasum");
432 			btrfs_set_opt(info->mount_opt, NODATASUM);
433 			break;
434 		case Opt_nodatacow:
435 			if (!btrfs_test_opt(root, COMPRESS) ||
436 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
437 					btrfs_info(root->fs_info,
438 						"setting nodatacow, compression disabled");
439 			} else {
440 				btrfs_info(root->fs_info, "setting nodatacow");
441 			}
442 			btrfs_clear_opt(info->mount_opt, COMPRESS);
443 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
444 			btrfs_set_opt(info->mount_opt, NODATACOW);
445 			btrfs_set_opt(info->mount_opt, NODATASUM);
446 			break;
447 		case Opt_compress_force:
448 		case Opt_compress_force_type:
449 			compress_force = true;
450 			/* Fallthrough */
451 		case Opt_compress:
452 		case Opt_compress_type:
453 			if (token == Opt_compress ||
454 			    token == Opt_compress_force ||
455 			    strcmp(args[0].from, "zlib") == 0) {
456 				compress_type = "zlib";
457 				info->compress_type = BTRFS_COMPRESS_ZLIB;
458 				btrfs_set_opt(info->mount_opt, COMPRESS);
459 				btrfs_clear_opt(info->mount_opt, NODATACOW);
460 				btrfs_clear_opt(info->mount_opt, NODATASUM);
461 			} else if (strcmp(args[0].from, "lzo") == 0) {
462 				compress_type = "lzo";
463 				info->compress_type = BTRFS_COMPRESS_LZO;
464 				btrfs_set_opt(info->mount_opt, COMPRESS);
465 				btrfs_clear_opt(info->mount_opt, NODATACOW);
466 				btrfs_clear_opt(info->mount_opt, NODATASUM);
467 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
468 			} else if (strncmp(args[0].from, "no", 2) == 0) {
469 				compress_type = "no";
470 				btrfs_clear_opt(info->mount_opt, COMPRESS);
471 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
472 				compress_force = false;
473 			} else {
474 				ret = -EINVAL;
475 				goto out;
476 			}
477 
478 			if (compress_force) {
479 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
480 				btrfs_info(root->fs_info, "force %s compression",
481 					compress_type);
482 			} else if (btrfs_test_opt(root, COMPRESS)) {
483 				pr_info("btrfs: use %s compression\n",
484 					compress_type);
485 			}
486 			break;
487 		case Opt_ssd:
488 			btrfs_info(root->fs_info, "use ssd allocation scheme");
489 			btrfs_set_opt(info->mount_opt, SSD);
490 			break;
491 		case Opt_ssd_spread:
492 			btrfs_info(root->fs_info, "use spread ssd allocation scheme");
493 			btrfs_set_opt(info->mount_opt, SSD);
494 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
495 			break;
496 		case Opt_nossd:
497 			btrfs_info(root->fs_info, "not using ssd allocation scheme");
498 			btrfs_set_opt(info->mount_opt, NOSSD);
499 			btrfs_clear_opt(info->mount_opt, SSD);
500 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
501 			break;
502 		case Opt_barrier:
503 			if (btrfs_test_opt(root, NOBARRIER))
504 				btrfs_info(root->fs_info, "turning on barriers");
505 			btrfs_clear_opt(info->mount_opt, NOBARRIER);
506 			break;
507 		case Opt_nobarrier:
508 			btrfs_info(root->fs_info, "turning off barriers");
509 			btrfs_set_opt(info->mount_opt, NOBARRIER);
510 			break;
511 		case Opt_thread_pool:
512 			ret = match_int(&args[0], &intarg);
513 			if (ret) {
514 				goto out;
515 			} else if (intarg > 0) {
516 				info->thread_pool_size = intarg;
517 			} else {
518 				ret = -EINVAL;
519 				goto out;
520 			}
521 			break;
522 		case Opt_max_inline:
523 			num = match_strdup(&args[0]);
524 			if (num) {
525 				info->max_inline = memparse(num, NULL);
526 				kfree(num);
527 
528 				if (info->max_inline) {
529 					info->max_inline = max_t(u64,
530 						info->max_inline,
531 						root->sectorsize);
532 				}
533 				btrfs_info(root->fs_info, "max_inline at %llu",
534 					info->max_inline);
535 			} else {
536 				ret = -ENOMEM;
537 				goto out;
538 			}
539 			break;
540 		case Opt_alloc_start:
541 			num = match_strdup(&args[0]);
542 			if (num) {
543 				mutex_lock(&info->chunk_mutex);
544 				info->alloc_start = memparse(num, NULL);
545 				mutex_unlock(&info->chunk_mutex);
546 				kfree(num);
547 				btrfs_info(root->fs_info, "allocations start at %llu",
548 					info->alloc_start);
549 			} else {
550 				ret = -ENOMEM;
551 				goto out;
552 			}
553 			break;
554 		case Opt_noacl:
555 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
556 			break;
557 		case Opt_notreelog:
558 			btrfs_info(root->fs_info, "disabling tree log");
559 			btrfs_set_opt(info->mount_opt, NOTREELOG);
560 			break;
561 		case Opt_flushoncommit:
562 			btrfs_info(root->fs_info, "turning on flush-on-commit");
563 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
564 			break;
565 		case Opt_ratio:
566 			ret = match_int(&args[0], &intarg);
567 			if (ret) {
568 				goto out;
569 			} else if (intarg >= 0) {
570 				info->metadata_ratio = intarg;
571 				btrfs_info(root->fs_info, "metadata ratio %d",
572 				       info->metadata_ratio);
573 			} else {
574 				ret = -EINVAL;
575 				goto out;
576 			}
577 			break;
578 		case Opt_discard:
579 			btrfs_set_opt(info->mount_opt, DISCARD);
580 			break;
581 		case Opt_nodiscard:
582 			btrfs_clear_opt(info->mount_opt, DISCARD);
583 			break;
584 		case Opt_space_cache:
585 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
586 			break;
587 		case Opt_rescan_uuid_tree:
588 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
589 			break;
590 		case Opt_no_space_cache:
591 			btrfs_info(root->fs_info, "disabling disk space caching");
592 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
593 			break;
594 		case Opt_inode_cache:
595 			btrfs_info(root->fs_info, "enabling inode map caching");
596 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
597 			break;
598 		case Opt_clear_cache:
599 			btrfs_info(root->fs_info, "force clearing of disk cache");
600 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
601 			break;
602 		case Opt_user_subvol_rm_allowed:
603 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
604 			break;
605 		case Opt_enospc_debug:
606 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
607 			break;
608 		case Opt_noenospc_debug:
609 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
610 			break;
611 		case Opt_defrag:
612 			btrfs_info(root->fs_info, "enabling auto defrag");
613 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
614 			break;
615 		case Opt_nodefrag:
616 			if (btrfs_test_opt(root, AUTO_DEFRAG))
617 				btrfs_info(root->fs_info, "disabling auto defrag");
618 			btrfs_clear_opt(info->mount_opt, AUTO_DEFRAG);
619 			break;
620 		case Opt_recovery:
621 			btrfs_info(root->fs_info, "enabling auto recovery");
622 			btrfs_set_opt(info->mount_opt, RECOVERY);
623 			break;
624 		case Opt_skip_balance:
625 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
626 			break;
627 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
628 		case Opt_check_integrity_including_extent_data:
629 			btrfs_info(root->fs_info,
630 				   "enabling check integrity including extent data");
631 			btrfs_set_opt(info->mount_opt,
632 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
633 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
634 			break;
635 		case Opt_check_integrity:
636 			btrfs_info(root->fs_info, "enabling check integrity");
637 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
638 			break;
639 		case Opt_check_integrity_print_mask:
640 			ret = match_int(&args[0], &intarg);
641 			if (ret) {
642 				goto out;
643 			} else if (intarg >= 0) {
644 				info->check_integrity_print_mask = intarg;
645 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
646 				       info->check_integrity_print_mask);
647 			} else {
648 				ret = -EINVAL;
649 				goto out;
650 			}
651 			break;
652 #else
653 		case Opt_check_integrity_including_extent_data:
654 		case Opt_check_integrity:
655 		case Opt_check_integrity_print_mask:
656 			btrfs_err(root->fs_info,
657 				"support for check_integrity* not compiled in!");
658 			ret = -EINVAL;
659 			goto out;
660 #endif
661 		case Opt_fatal_errors:
662 			if (strcmp(args[0].from, "panic") == 0)
663 				btrfs_set_opt(info->mount_opt,
664 					      PANIC_ON_FATAL_ERROR);
665 			else if (strcmp(args[0].from, "bug") == 0)
666 				btrfs_clear_opt(info->mount_opt,
667 					      PANIC_ON_FATAL_ERROR);
668 			else {
669 				ret = -EINVAL;
670 				goto out;
671 			}
672 			break;
673 		case Opt_commit_interval:
674 			intarg = 0;
675 			ret = match_int(&args[0], &intarg);
676 			if (ret < 0) {
677 				btrfs_err(root->fs_info, "invalid commit interval");
678 				ret = -EINVAL;
679 				goto out;
680 			}
681 			if (intarg > 0) {
682 				if (intarg > 300) {
683 					btrfs_warn(root->fs_info, "excessive commit interval %d",
684 							intarg);
685 				}
686 				info->commit_interval = intarg;
687 			} else {
688 				btrfs_info(root->fs_info, "using default commit interval %ds",
689 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
690 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
691 			}
692 			break;
693 		case Opt_err:
694 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
695 			ret = -EINVAL;
696 			goto out;
697 		default:
698 			break;
699 		}
700 	}
701 out:
702 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
703 		btrfs_info(root->fs_info, "disk space caching is enabled");
704 	kfree(orig);
705 	return ret;
706 }
707 
708 /*
709  * Parse mount options that are required early in the mount process.
710  *
711  * All other options will be parsed on much later in the mount process and
712  * only when we need to allocate a new super block.
713  */
714 static int btrfs_parse_early_options(const char *options, fmode_t flags,
715 		void *holder, char **subvol_name, u64 *subvol_objectid,
716 		struct btrfs_fs_devices **fs_devices)
717 {
718 	substring_t args[MAX_OPT_ARGS];
719 	char *device_name, *opts, *orig, *p;
720 	char *num = NULL;
721 	int error = 0;
722 
723 	if (!options)
724 		return 0;
725 
726 	/*
727 	 * strsep changes the string, duplicate it because parse_options
728 	 * gets called twice
729 	 */
730 	opts = kstrdup(options, GFP_KERNEL);
731 	if (!opts)
732 		return -ENOMEM;
733 	orig = opts;
734 
735 	while ((p = strsep(&opts, ",")) != NULL) {
736 		int token;
737 		if (!*p)
738 			continue;
739 
740 		token = match_token(p, tokens, args);
741 		switch (token) {
742 		case Opt_subvol:
743 			kfree(*subvol_name);
744 			*subvol_name = match_strdup(&args[0]);
745 			if (!*subvol_name) {
746 				error = -ENOMEM;
747 				goto out;
748 			}
749 			break;
750 		case Opt_subvolid:
751 			num = match_strdup(&args[0]);
752 			if (num) {
753 				*subvol_objectid = memparse(num, NULL);
754 				kfree(num);
755 				/* we want the original fs_tree */
756 				if (!*subvol_objectid)
757 					*subvol_objectid =
758 						BTRFS_FS_TREE_OBJECTID;
759 			} else {
760 				error = -EINVAL;
761 				goto out;
762 			}
763 			break;
764 		case Opt_subvolrootid:
765 			printk(KERN_WARNING
766 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
767 				"no effect\n");
768 			break;
769 		case Opt_device:
770 			device_name = match_strdup(&args[0]);
771 			if (!device_name) {
772 				error = -ENOMEM;
773 				goto out;
774 			}
775 			error = btrfs_scan_one_device(device_name,
776 					flags, holder, fs_devices);
777 			kfree(device_name);
778 			if (error)
779 				goto out;
780 			break;
781 		default:
782 			break;
783 		}
784 	}
785 
786 out:
787 	kfree(orig);
788 	return error;
789 }
790 
791 static struct dentry *get_default_root(struct super_block *sb,
792 				       u64 subvol_objectid)
793 {
794 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
795 	struct btrfs_root *root = fs_info->tree_root;
796 	struct btrfs_root *new_root;
797 	struct btrfs_dir_item *di;
798 	struct btrfs_path *path;
799 	struct btrfs_key location;
800 	struct inode *inode;
801 	u64 dir_id;
802 	int new = 0;
803 
804 	/*
805 	 * We have a specific subvol we want to mount, just setup location and
806 	 * go look up the root.
807 	 */
808 	if (subvol_objectid) {
809 		location.objectid = subvol_objectid;
810 		location.type = BTRFS_ROOT_ITEM_KEY;
811 		location.offset = (u64)-1;
812 		goto find_root;
813 	}
814 
815 	path = btrfs_alloc_path();
816 	if (!path)
817 		return ERR_PTR(-ENOMEM);
818 	path->leave_spinning = 1;
819 
820 	/*
821 	 * Find the "default" dir item which points to the root item that we
822 	 * will mount by default if we haven't been given a specific subvolume
823 	 * to mount.
824 	 */
825 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
826 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
827 	if (IS_ERR(di)) {
828 		btrfs_free_path(path);
829 		return ERR_CAST(di);
830 	}
831 	if (!di) {
832 		/*
833 		 * Ok the default dir item isn't there.  This is weird since
834 		 * it's always been there, but don't freak out, just try and
835 		 * mount to root most subvolume.
836 		 */
837 		btrfs_free_path(path);
838 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
839 		new_root = fs_info->fs_root;
840 		goto setup_root;
841 	}
842 
843 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
844 	btrfs_free_path(path);
845 
846 find_root:
847 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
848 	if (IS_ERR(new_root))
849 		return ERR_CAST(new_root);
850 
851 	dir_id = btrfs_root_dirid(&new_root->root_item);
852 setup_root:
853 	location.objectid = dir_id;
854 	location.type = BTRFS_INODE_ITEM_KEY;
855 	location.offset = 0;
856 
857 	inode = btrfs_iget(sb, &location, new_root, &new);
858 	if (IS_ERR(inode))
859 		return ERR_CAST(inode);
860 
861 	/*
862 	 * If we're just mounting the root most subvol put the inode and return
863 	 * a reference to the dentry.  We will have already gotten a reference
864 	 * to the inode in btrfs_fill_super so we're good to go.
865 	 */
866 	if (!new && sb->s_root->d_inode == inode) {
867 		iput(inode);
868 		return dget(sb->s_root);
869 	}
870 
871 	return d_obtain_alias(inode);
872 }
873 
874 static int btrfs_fill_super(struct super_block *sb,
875 			    struct btrfs_fs_devices *fs_devices,
876 			    void *data, int silent)
877 {
878 	struct inode *inode;
879 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
880 	struct btrfs_key key;
881 	int err;
882 
883 	sb->s_maxbytes = MAX_LFS_FILESIZE;
884 	sb->s_magic = BTRFS_SUPER_MAGIC;
885 	sb->s_op = &btrfs_super_ops;
886 	sb->s_d_op = &btrfs_dentry_operations;
887 	sb->s_export_op = &btrfs_export_ops;
888 	sb->s_xattr = btrfs_xattr_handlers;
889 	sb->s_time_gran = 1;
890 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
891 	sb->s_flags |= MS_POSIXACL;
892 #endif
893 	sb->s_flags |= MS_I_VERSION;
894 	err = open_ctree(sb, fs_devices, (char *)data);
895 	if (err) {
896 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
897 		return err;
898 	}
899 
900 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
901 	key.type = BTRFS_INODE_ITEM_KEY;
902 	key.offset = 0;
903 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
904 	if (IS_ERR(inode)) {
905 		err = PTR_ERR(inode);
906 		goto fail_close;
907 	}
908 
909 	sb->s_root = d_make_root(inode);
910 	if (!sb->s_root) {
911 		err = -ENOMEM;
912 		goto fail_close;
913 	}
914 
915 	save_mount_options(sb, data);
916 	cleancache_init_fs(sb);
917 	sb->s_flags |= MS_ACTIVE;
918 	return 0;
919 
920 fail_close:
921 	close_ctree(fs_info->tree_root);
922 	return err;
923 }
924 
925 int btrfs_sync_fs(struct super_block *sb, int wait)
926 {
927 	struct btrfs_trans_handle *trans;
928 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
929 	struct btrfs_root *root = fs_info->tree_root;
930 
931 	trace_btrfs_sync_fs(wait);
932 
933 	if (!wait) {
934 		filemap_flush(fs_info->btree_inode->i_mapping);
935 		return 0;
936 	}
937 
938 	btrfs_wait_ordered_roots(fs_info, -1);
939 
940 	trans = btrfs_attach_transaction_barrier(root);
941 	if (IS_ERR(trans)) {
942 		/* no transaction, don't bother */
943 		if (PTR_ERR(trans) == -ENOENT)
944 			return 0;
945 		return PTR_ERR(trans);
946 	}
947 	return btrfs_commit_transaction(trans, root);
948 }
949 
950 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
951 {
952 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
953 	struct btrfs_root *root = info->tree_root;
954 	char *compress_type;
955 
956 	if (btrfs_test_opt(root, DEGRADED))
957 		seq_puts(seq, ",degraded");
958 	if (btrfs_test_opt(root, NODATASUM))
959 		seq_puts(seq, ",nodatasum");
960 	if (btrfs_test_opt(root, NODATACOW))
961 		seq_puts(seq, ",nodatacow");
962 	if (btrfs_test_opt(root, NOBARRIER))
963 		seq_puts(seq, ",nobarrier");
964 	if (info->max_inline != 8192 * 1024)
965 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
966 	if (info->alloc_start != 0)
967 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
968 	if (info->thread_pool_size !=  min_t(unsigned long,
969 					     num_online_cpus() + 2, 8))
970 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
971 	if (btrfs_test_opt(root, COMPRESS)) {
972 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
973 			compress_type = "zlib";
974 		else
975 			compress_type = "lzo";
976 		if (btrfs_test_opt(root, FORCE_COMPRESS))
977 			seq_printf(seq, ",compress-force=%s", compress_type);
978 		else
979 			seq_printf(seq, ",compress=%s", compress_type);
980 	}
981 	if (btrfs_test_opt(root, NOSSD))
982 		seq_puts(seq, ",nossd");
983 	if (btrfs_test_opt(root, SSD_SPREAD))
984 		seq_puts(seq, ",ssd_spread");
985 	else if (btrfs_test_opt(root, SSD))
986 		seq_puts(seq, ",ssd");
987 	if (btrfs_test_opt(root, NOTREELOG))
988 		seq_puts(seq, ",notreelog");
989 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
990 		seq_puts(seq, ",flushoncommit");
991 	if (btrfs_test_opt(root, DISCARD))
992 		seq_puts(seq, ",discard");
993 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
994 		seq_puts(seq, ",noacl");
995 	if (btrfs_test_opt(root, SPACE_CACHE))
996 		seq_puts(seq, ",space_cache");
997 	else
998 		seq_puts(seq, ",nospace_cache");
999 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1000 		seq_puts(seq, ",rescan_uuid_tree");
1001 	if (btrfs_test_opt(root, CLEAR_CACHE))
1002 		seq_puts(seq, ",clear_cache");
1003 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1004 		seq_puts(seq, ",user_subvol_rm_allowed");
1005 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1006 		seq_puts(seq, ",enospc_debug");
1007 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1008 		seq_puts(seq, ",autodefrag");
1009 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1010 		seq_puts(seq, ",inode_cache");
1011 	if (btrfs_test_opt(root, SKIP_BALANCE))
1012 		seq_puts(seq, ",skip_balance");
1013 	if (btrfs_test_opt(root, RECOVERY))
1014 		seq_puts(seq, ",recovery");
1015 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1016 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1017 		seq_puts(seq, ",check_int_data");
1018 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1019 		seq_puts(seq, ",check_int");
1020 	if (info->check_integrity_print_mask)
1021 		seq_printf(seq, ",check_int_print_mask=%d",
1022 				info->check_integrity_print_mask);
1023 #endif
1024 	if (info->metadata_ratio)
1025 		seq_printf(seq, ",metadata_ratio=%d",
1026 				info->metadata_ratio);
1027 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1028 		seq_puts(seq, ",fatal_errors=panic");
1029 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1030 		seq_printf(seq, ",commit=%d", info->commit_interval);
1031 	return 0;
1032 }
1033 
1034 static int btrfs_test_super(struct super_block *s, void *data)
1035 {
1036 	struct btrfs_fs_info *p = data;
1037 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1038 
1039 	return fs_info->fs_devices == p->fs_devices;
1040 }
1041 
1042 static int btrfs_set_super(struct super_block *s, void *data)
1043 {
1044 	int err = set_anon_super(s, data);
1045 	if (!err)
1046 		s->s_fs_info = data;
1047 	return err;
1048 }
1049 
1050 /*
1051  * subvolumes are identified by ino 256
1052  */
1053 static inline int is_subvolume_inode(struct inode *inode)
1054 {
1055 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1056 		return 1;
1057 	return 0;
1058 }
1059 
1060 /*
1061  * This will strip out the subvol=%s argument for an argument string and add
1062  * subvolid=0 to make sure we get the actual tree root for path walking to the
1063  * subvol we want.
1064  */
1065 static char *setup_root_args(char *args)
1066 {
1067 	unsigned len = strlen(args) + 2 + 1;
1068 	char *src, *dst, *buf;
1069 
1070 	/*
1071 	 * We need the same args as before, but with this substitution:
1072 	 * s!subvol=[^,]+!subvolid=0!
1073 	 *
1074 	 * Since the replacement string is up to 2 bytes longer than the
1075 	 * original, allocate strlen(args) + 2 + 1 bytes.
1076 	 */
1077 
1078 	src = strstr(args, "subvol=");
1079 	/* This shouldn't happen, but just in case.. */
1080 	if (!src)
1081 		return NULL;
1082 
1083 	buf = dst = kmalloc(len, GFP_NOFS);
1084 	if (!buf)
1085 		return NULL;
1086 
1087 	/*
1088 	 * If the subvol= arg is not at the start of the string,
1089 	 * copy whatever precedes it into buf.
1090 	 */
1091 	if (src != args) {
1092 		*src++ = '\0';
1093 		strcpy(buf, args);
1094 		dst += strlen(args);
1095 	}
1096 
1097 	strcpy(dst, "subvolid=0");
1098 	dst += strlen("subvolid=0");
1099 
1100 	/*
1101 	 * If there is a "," after the original subvol=... string,
1102 	 * copy that suffix into our buffer.  Otherwise, we're done.
1103 	 */
1104 	src = strchr(src, ',');
1105 	if (src)
1106 		strcpy(dst, src);
1107 
1108 	return buf;
1109 }
1110 
1111 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1112 				   const char *device_name, char *data)
1113 {
1114 	struct dentry *root;
1115 	struct vfsmount *mnt;
1116 	char *newargs;
1117 
1118 	newargs = setup_root_args(data);
1119 	if (!newargs)
1120 		return ERR_PTR(-ENOMEM);
1121 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1122 			     newargs);
1123 	kfree(newargs);
1124 	if (IS_ERR(mnt))
1125 		return ERR_CAST(mnt);
1126 
1127 	root = mount_subtree(mnt, subvol_name);
1128 
1129 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1130 		struct super_block *s = root->d_sb;
1131 		dput(root);
1132 		root = ERR_PTR(-EINVAL);
1133 		deactivate_locked_super(s);
1134 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1135 				subvol_name);
1136 	}
1137 
1138 	return root;
1139 }
1140 
1141 /*
1142  * Find a superblock for the given device / mount point.
1143  *
1144  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1145  *	  for multiple device setup.  Make sure to keep it in sync.
1146  */
1147 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1148 		const char *device_name, void *data)
1149 {
1150 	struct block_device *bdev = NULL;
1151 	struct super_block *s;
1152 	struct dentry *root;
1153 	struct btrfs_fs_devices *fs_devices = NULL;
1154 	struct btrfs_fs_info *fs_info = NULL;
1155 	fmode_t mode = FMODE_READ;
1156 	char *subvol_name = NULL;
1157 	u64 subvol_objectid = 0;
1158 	int error = 0;
1159 
1160 	if (!(flags & MS_RDONLY))
1161 		mode |= FMODE_WRITE;
1162 
1163 	error = btrfs_parse_early_options(data, mode, fs_type,
1164 					  &subvol_name, &subvol_objectid,
1165 					  &fs_devices);
1166 	if (error) {
1167 		kfree(subvol_name);
1168 		return ERR_PTR(error);
1169 	}
1170 
1171 	if (subvol_name) {
1172 		root = mount_subvol(subvol_name, flags, device_name, data);
1173 		kfree(subvol_name);
1174 		return root;
1175 	}
1176 
1177 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1178 	if (error)
1179 		return ERR_PTR(error);
1180 
1181 	/*
1182 	 * Setup a dummy root and fs_info for test/set super.  This is because
1183 	 * we don't actually fill this stuff out until open_ctree, but we need
1184 	 * it for searching for existing supers, so this lets us do that and
1185 	 * then open_ctree will properly initialize everything later.
1186 	 */
1187 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1188 	if (!fs_info)
1189 		return ERR_PTR(-ENOMEM);
1190 
1191 	fs_info->fs_devices = fs_devices;
1192 
1193 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1194 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1195 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1196 		error = -ENOMEM;
1197 		goto error_fs_info;
1198 	}
1199 
1200 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1201 	if (error)
1202 		goto error_fs_info;
1203 
1204 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1205 		error = -EACCES;
1206 		goto error_close_devices;
1207 	}
1208 
1209 	bdev = fs_devices->latest_bdev;
1210 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1211 		 fs_info);
1212 	if (IS_ERR(s)) {
1213 		error = PTR_ERR(s);
1214 		goto error_close_devices;
1215 	}
1216 
1217 	if (s->s_root) {
1218 		btrfs_close_devices(fs_devices);
1219 		free_fs_info(fs_info);
1220 		if ((flags ^ s->s_flags) & MS_RDONLY)
1221 			error = -EBUSY;
1222 	} else {
1223 		char b[BDEVNAME_SIZE];
1224 
1225 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1226 		btrfs_sb(s)->bdev_holder = fs_type;
1227 		error = btrfs_fill_super(s, fs_devices, data,
1228 					 flags & MS_SILENT ? 1 : 0);
1229 	}
1230 
1231 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1232 	if (IS_ERR(root))
1233 		deactivate_locked_super(s);
1234 
1235 	return root;
1236 
1237 error_close_devices:
1238 	btrfs_close_devices(fs_devices);
1239 error_fs_info:
1240 	free_fs_info(fs_info);
1241 	return ERR_PTR(error);
1242 }
1243 
1244 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1245 {
1246 	spin_lock_irq(&workers->lock);
1247 	workers->max_workers = new_limit;
1248 	spin_unlock_irq(&workers->lock);
1249 }
1250 
1251 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1252 				     int new_pool_size, int old_pool_size)
1253 {
1254 	if (new_pool_size == old_pool_size)
1255 		return;
1256 
1257 	fs_info->thread_pool_size = new_pool_size;
1258 
1259 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1260 	       old_pool_size, new_pool_size);
1261 
1262 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1263 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1264 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1265 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1266 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1267 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1268 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1269 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1270 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1271 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1272 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1273 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1274 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1275 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1276 			      new_pool_size);
1277 }
1278 
1279 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1280 {
1281 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1282 }
1283 
1284 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1285 				       unsigned long old_opts, int flags)
1286 {
1287 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1288 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1289 	     (flags & MS_RDONLY))) {
1290 		/* wait for any defraggers to finish */
1291 		wait_event(fs_info->transaction_wait,
1292 			   (atomic_read(&fs_info->defrag_running) == 0));
1293 		if (flags & MS_RDONLY)
1294 			sync_filesystem(fs_info->sb);
1295 	}
1296 }
1297 
1298 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1299 					 unsigned long old_opts)
1300 {
1301 	/*
1302 	 * We need cleanup all defragable inodes if the autodefragment is
1303 	 * close or the fs is R/O.
1304 	 */
1305 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1306 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1307 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1308 		btrfs_cleanup_defrag_inodes(fs_info);
1309 	}
1310 
1311 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1312 }
1313 
1314 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1315 {
1316 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1317 	struct btrfs_root *root = fs_info->tree_root;
1318 	unsigned old_flags = sb->s_flags;
1319 	unsigned long old_opts = fs_info->mount_opt;
1320 	unsigned long old_compress_type = fs_info->compress_type;
1321 	u64 old_max_inline = fs_info->max_inline;
1322 	u64 old_alloc_start = fs_info->alloc_start;
1323 	int old_thread_pool_size = fs_info->thread_pool_size;
1324 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1325 	int ret;
1326 
1327 	btrfs_remount_prepare(fs_info);
1328 
1329 	ret = btrfs_parse_options(root, data);
1330 	if (ret) {
1331 		ret = -EINVAL;
1332 		goto restore;
1333 	}
1334 
1335 	btrfs_remount_begin(fs_info, old_opts, *flags);
1336 	btrfs_resize_thread_pool(fs_info,
1337 		fs_info->thread_pool_size, old_thread_pool_size);
1338 
1339 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1340 		goto out;
1341 
1342 	if (*flags & MS_RDONLY) {
1343 		/*
1344 		 * this also happens on 'umount -rf' or on shutdown, when
1345 		 * the filesystem is busy.
1346 		 */
1347 
1348 		/* wait for the uuid_scan task to finish */
1349 		down(&fs_info->uuid_tree_rescan_sem);
1350 		/* avoid complains from lockdep et al. */
1351 		up(&fs_info->uuid_tree_rescan_sem);
1352 
1353 		sb->s_flags |= MS_RDONLY;
1354 
1355 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1356 		btrfs_scrub_cancel(fs_info);
1357 		btrfs_pause_balance(fs_info);
1358 
1359 		ret = btrfs_commit_super(root);
1360 		if (ret)
1361 			goto restore;
1362 	} else {
1363 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1364 			btrfs_err(fs_info,
1365 				"Remounting read-write after error is not allowed");
1366 			ret = -EINVAL;
1367 			goto restore;
1368 		}
1369 		if (fs_info->fs_devices->rw_devices == 0) {
1370 			ret = -EACCES;
1371 			goto restore;
1372 		}
1373 
1374 		if (fs_info->fs_devices->missing_devices >
1375 		     fs_info->num_tolerated_disk_barrier_failures &&
1376 		    !(*flags & MS_RDONLY)) {
1377 			btrfs_warn(fs_info,
1378 				"too many missing devices, writeable remount is not allowed");
1379 			ret = -EACCES;
1380 			goto restore;
1381 		}
1382 
1383 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1384 			ret = -EINVAL;
1385 			goto restore;
1386 		}
1387 
1388 		ret = btrfs_cleanup_fs_roots(fs_info);
1389 		if (ret)
1390 			goto restore;
1391 
1392 		/* recover relocation */
1393 		ret = btrfs_recover_relocation(root);
1394 		if (ret)
1395 			goto restore;
1396 
1397 		ret = btrfs_resume_balance_async(fs_info);
1398 		if (ret)
1399 			goto restore;
1400 
1401 		ret = btrfs_resume_dev_replace_async(fs_info);
1402 		if (ret) {
1403 			btrfs_warn(fs_info, "failed to resume dev_replace");
1404 			goto restore;
1405 		}
1406 
1407 		if (!fs_info->uuid_root) {
1408 			btrfs_info(fs_info, "creating UUID tree");
1409 			ret = btrfs_create_uuid_tree(fs_info);
1410 			if (ret) {
1411 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1412 				goto restore;
1413 			}
1414 		}
1415 		sb->s_flags &= ~MS_RDONLY;
1416 	}
1417 out:
1418 	btrfs_remount_cleanup(fs_info, old_opts);
1419 	return 0;
1420 
1421 restore:
1422 	/* We've hit an error - don't reset MS_RDONLY */
1423 	if (sb->s_flags & MS_RDONLY)
1424 		old_flags |= MS_RDONLY;
1425 	sb->s_flags = old_flags;
1426 	fs_info->mount_opt = old_opts;
1427 	fs_info->compress_type = old_compress_type;
1428 	fs_info->max_inline = old_max_inline;
1429 	mutex_lock(&fs_info->chunk_mutex);
1430 	fs_info->alloc_start = old_alloc_start;
1431 	mutex_unlock(&fs_info->chunk_mutex);
1432 	btrfs_resize_thread_pool(fs_info,
1433 		old_thread_pool_size, fs_info->thread_pool_size);
1434 	fs_info->metadata_ratio = old_metadata_ratio;
1435 	btrfs_remount_cleanup(fs_info, old_opts);
1436 	return ret;
1437 }
1438 
1439 /* Used to sort the devices by max_avail(descending sort) */
1440 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1441 				       const void *dev_info2)
1442 {
1443 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1444 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1445 		return -1;
1446 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1447 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1448 		return 1;
1449 	else
1450 	return 0;
1451 }
1452 
1453 /*
1454  * sort the devices by max_avail, in which max free extent size of each device
1455  * is stored.(Descending Sort)
1456  */
1457 static inline void btrfs_descending_sort_devices(
1458 					struct btrfs_device_info *devices,
1459 					size_t nr_devices)
1460 {
1461 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1462 	     btrfs_cmp_device_free_bytes, NULL);
1463 }
1464 
1465 /*
1466  * The helper to calc the free space on the devices that can be used to store
1467  * file data.
1468  */
1469 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1470 {
1471 	struct btrfs_fs_info *fs_info = root->fs_info;
1472 	struct btrfs_device_info *devices_info;
1473 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1474 	struct btrfs_device *device;
1475 	u64 skip_space;
1476 	u64 type;
1477 	u64 avail_space;
1478 	u64 used_space;
1479 	u64 min_stripe_size;
1480 	int min_stripes = 1, num_stripes = 1;
1481 	int i = 0, nr_devices;
1482 	int ret;
1483 
1484 	nr_devices = fs_info->fs_devices->open_devices;
1485 	BUG_ON(!nr_devices);
1486 
1487 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1488 			       GFP_NOFS);
1489 	if (!devices_info)
1490 		return -ENOMEM;
1491 
1492 	/* calc min stripe number for data space alloction */
1493 	type = btrfs_get_alloc_profile(root, 1);
1494 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1495 		min_stripes = 2;
1496 		num_stripes = nr_devices;
1497 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1498 		min_stripes = 2;
1499 		num_stripes = 2;
1500 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1501 		min_stripes = 4;
1502 		num_stripes = 4;
1503 	}
1504 
1505 	if (type & BTRFS_BLOCK_GROUP_DUP)
1506 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1507 	else
1508 		min_stripe_size = BTRFS_STRIPE_LEN;
1509 
1510 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1511 		if (!device->in_fs_metadata || !device->bdev ||
1512 		    device->is_tgtdev_for_dev_replace)
1513 			continue;
1514 
1515 		avail_space = device->total_bytes - device->bytes_used;
1516 
1517 		/* align with stripe_len */
1518 		do_div(avail_space, BTRFS_STRIPE_LEN);
1519 		avail_space *= BTRFS_STRIPE_LEN;
1520 
1521 		/*
1522 		 * In order to avoid overwritting the superblock on the drive,
1523 		 * btrfs starts at an offset of at least 1MB when doing chunk
1524 		 * allocation.
1525 		 */
1526 		skip_space = 1024 * 1024;
1527 
1528 		/* user can set the offset in fs_info->alloc_start. */
1529 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1530 		    device->total_bytes)
1531 			skip_space = max(fs_info->alloc_start, skip_space);
1532 
1533 		/*
1534 		 * btrfs can not use the free space in [0, skip_space - 1],
1535 		 * we must subtract it from the total. In order to implement
1536 		 * it, we account the used space in this range first.
1537 		 */
1538 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1539 						     &used_space);
1540 		if (ret) {
1541 			kfree(devices_info);
1542 			return ret;
1543 		}
1544 
1545 		/* calc the free space in [0, skip_space - 1] */
1546 		skip_space -= used_space;
1547 
1548 		/*
1549 		 * we can use the free space in [0, skip_space - 1], subtract
1550 		 * it from the total.
1551 		 */
1552 		if (avail_space && avail_space >= skip_space)
1553 			avail_space -= skip_space;
1554 		else
1555 			avail_space = 0;
1556 
1557 		if (avail_space < min_stripe_size)
1558 			continue;
1559 
1560 		devices_info[i].dev = device;
1561 		devices_info[i].max_avail = avail_space;
1562 
1563 		i++;
1564 	}
1565 
1566 	nr_devices = i;
1567 
1568 	btrfs_descending_sort_devices(devices_info, nr_devices);
1569 
1570 	i = nr_devices - 1;
1571 	avail_space = 0;
1572 	while (nr_devices >= min_stripes) {
1573 		if (num_stripes > nr_devices)
1574 			num_stripes = nr_devices;
1575 
1576 		if (devices_info[i].max_avail >= min_stripe_size) {
1577 			int j;
1578 			u64 alloc_size;
1579 
1580 			avail_space += devices_info[i].max_avail * num_stripes;
1581 			alloc_size = devices_info[i].max_avail;
1582 			for (j = i + 1 - num_stripes; j <= i; j++)
1583 				devices_info[j].max_avail -= alloc_size;
1584 		}
1585 		i--;
1586 		nr_devices--;
1587 	}
1588 
1589 	kfree(devices_info);
1590 	*free_bytes = avail_space;
1591 	return 0;
1592 }
1593 
1594 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1595 {
1596 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1597 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1598 	struct list_head *head = &fs_info->space_info;
1599 	struct btrfs_space_info *found;
1600 	u64 total_used = 0;
1601 	u64 total_free_data = 0;
1602 	int bits = dentry->d_sb->s_blocksize_bits;
1603 	__be32 *fsid = (__be32 *)fs_info->fsid;
1604 	int ret;
1605 
1606 	/* holding chunk_muext to avoid allocating new chunks */
1607 	mutex_lock(&fs_info->chunk_mutex);
1608 	rcu_read_lock();
1609 	list_for_each_entry_rcu(found, head, list) {
1610 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1611 			total_free_data += found->disk_total - found->disk_used;
1612 			total_free_data -=
1613 				btrfs_account_ro_block_groups_free_space(found);
1614 		}
1615 
1616 		total_used += found->disk_used;
1617 	}
1618 	rcu_read_unlock();
1619 
1620 	buf->f_namelen = BTRFS_NAME_LEN;
1621 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1622 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1623 	buf->f_bsize = dentry->d_sb->s_blocksize;
1624 	buf->f_type = BTRFS_SUPER_MAGIC;
1625 	buf->f_bavail = total_free_data;
1626 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1627 	if (ret) {
1628 		mutex_unlock(&fs_info->chunk_mutex);
1629 		return ret;
1630 	}
1631 	buf->f_bavail += total_free_data;
1632 	buf->f_bavail = buf->f_bavail >> bits;
1633 	mutex_unlock(&fs_info->chunk_mutex);
1634 
1635 	/* We treat it as constant endianness (it doesn't matter _which_)
1636 	   because we want the fsid to come out the same whether mounted
1637 	   on a big-endian or little-endian host */
1638 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1639 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1640 	/* Mask in the root object ID too, to disambiguate subvols */
1641 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1642 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1643 
1644 	return 0;
1645 }
1646 
1647 static void btrfs_kill_super(struct super_block *sb)
1648 {
1649 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1650 	kill_anon_super(sb);
1651 	free_fs_info(fs_info);
1652 }
1653 
1654 static struct file_system_type btrfs_fs_type = {
1655 	.owner		= THIS_MODULE,
1656 	.name		= "btrfs",
1657 	.mount		= btrfs_mount,
1658 	.kill_sb	= btrfs_kill_super,
1659 	.fs_flags	= FS_REQUIRES_DEV,
1660 };
1661 MODULE_ALIAS_FS("btrfs");
1662 
1663 /*
1664  * used by btrfsctl to scan devices when no FS is mounted
1665  */
1666 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1667 				unsigned long arg)
1668 {
1669 	struct btrfs_ioctl_vol_args *vol;
1670 	struct btrfs_fs_devices *fs_devices;
1671 	int ret = -ENOTTY;
1672 
1673 	if (!capable(CAP_SYS_ADMIN))
1674 		return -EPERM;
1675 
1676 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1677 	if (IS_ERR(vol))
1678 		return PTR_ERR(vol);
1679 
1680 	switch (cmd) {
1681 	case BTRFS_IOC_SCAN_DEV:
1682 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1683 					    &btrfs_fs_type, &fs_devices);
1684 		break;
1685 	case BTRFS_IOC_DEVICES_READY:
1686 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1687 					    &btrfs_fs_type, &fs_devices);
1688 		if (ret)
1689 			break;
1690 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1691 		break;
1692 	}
1693 
1694 	kfree(vol);
1695 	return ret;
1696 }
1697 
1698 static int btrfs_freeze(struct super_block *sb)
1699 {
1700 	struct btrfs_trans_handle *trans;
1701 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1702 
1703 	trans = btrfs_attach_transaction_barrier(root);
1704 	if (IS_ERR(trans)) {
1705 		/* no transaction, don't bother */
1706 		if (PTR_ERR(trans) == -ENOENT)
1707 			return 0;
1708 		return PTR_ERR(trans);
1709 	}
1710 	return btrfs_commit_transaction(trans, root);
1711 }
1712 
1713 static int btrfs_unfreeze(struct super_block *sb)
1714 {
1715 	return 0;
1716 }
1717 
1718 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1719 {
1720 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1721 	struct btrfs_fs_devices *cur_devices;
1722 	struct btrfs_device *dev, *first_dev = NULL;
1723 	struct list_head *head;
1724 	struct rcu_string *name;
1725 
1726 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1727 	cur_devices = fs_info->fs_devices;
1728 	while (cur_devices) {
1729 		head = &cur_devices->devices;
1730 		list_for_each_entry(dev, head, dev_list) {
1731 			if (dev->missing)
1732 				continue;
1733 			if (!first_dev || dev->devid < first_dev->devid)
1734 				first_dev = dev;
1735 		}
1736 		cur_devices = cur_devices->seed;
1737 	}
1738 
1739 	if (first_dev) {
1740 		rcu_read_lock();
1741 		name = rcu_dereference(first_dev->name);
1742 		seq_escape(m, name->str, " \t\n\\");
1743 		rcu_read_unlock();
1744 	} else {
1745 		WARN_ON(1);
1746 	}
1747 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1748 	return 0;
1749 }
1750 
1751 static const struct super_operations btrfs_super_ops = {
1752 	.drop_inode	= btrfs_drop_inode,
1753 	.evict_inode	= btrfs_evict_inode,
1754 	.put_super	= btrfs_put_super,
1755 	.sync_fs	= btrfs_sync_fs,
1756 	.show_options	= btrfs_show_options,
1757 	.show_devname	= btrfs_show_devname,
1758 	.write_inode	= btrfs_write_inode,
1759 	.alloc_inode	= btrfs_alloc_inode,
1760 	.destroy_inode	= btrfs_destroy_inode,
1761 	.statfs		= btrfs_statfs,
1762 	.remount_fs	= btrfs_remount,
1763 	.freeze_fs	= btrfs_freeze,
1764 	.unfreeze_fs	= btrfs_unfreeze,
1765 };
1766 
1767 static const struct file_operations btrfs_ctl_fops = {
1768 	.unlocked_ioctl	 = btrfs_control_ioctl,
1769 	.compat_ioctl = btrfs_control_ioctl,
1770 	.owner	 = THIS_MODULE,
1771 	.llseek = noop_llseek,
1772 };
1773 
1774 static struct miscdevice btrfs_misc = {
1775 	.minor		= BTRFS_MINOR,
1776 	.name		= "btrfs-control",
1777 	.fops		= &btrfs_ctl_fops
1778 };
1779 
1780 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1781 MODULE_ALIAS("devname:btrfs-control");
1782 
1783 static int btrfs_interface_init(void)
1784 {
1785 	return misc_register(&btrfs_misc);
1786 }
1787 
1788 static void btrfs_interface_exit(void)
1789 {
1790 	if (misc_deregister(&btrfs_misc) < 0)
1791 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1792 }
1793 
1794 static void btrfs_print_info(void)
1795 {
1796 	printk(KERN_INFO "Btrfs loaded"
1797 #ifdef CONFIG_BTRFS_DEBUG
1798 			", debug=on"
1799 #endif
1800 #ifdef CONFIG_BTRFS_ASSERT
1801 			", assert=on"
1802 #endif
1803 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1804 			", integrity-checker=on"
1805 #endif
1806 			"\n");
1807 }
1808 
1809 static int btrfs_run_sanity_tests(void)
1810 {
1811 	int ret;
1812 
1813 	ret = btrfs_init_test_fs();
1814 	if (ret)
1815 		return ret;
1816 
1817 	ret = btrfs_test_free_space_cache();
1818 	if (ret)
1819 		goto out;
1820 	ret = btrfs_test_extent_buffer_operations();
1821 	if (ret)
1822 		goto out;
1823 	ret = btrfs_test_extent_io();
1824 	if (ret)
1825 		goto out;
1826 	ret = btrfs_test_inodes();
1827 out:
1828 	btrfs_destroy_test_fs();
1829 	return ret;
1830 }
1831 
1832 static int __init init_btrfs_fs(void)
1833 {
1834 	int err;
1835 
1836 	err = btrfs_init_sysfs();
1837 	if (err)
1838 		return err;
1839 
1840 	btrfs_init_compress();
1841 
1842 	err = btrfs_init_cachep();
1843 	if (err)
1844 		goto free_compress;
1845 
1846 	err = extent_io_init();
1847 	if (err)
1848 		goto free_cachep;
1849 
1850 	err = extent_map_init();
1851 	if (err)
1852 		goto free_extent_io;
1853 
1854 	err = ordered_data_init();
1855 	if (err)
1856 		goto free_extent_map;
1857 
1858 	err = btrfs_delayed_inode_init();
1859 	if (err)
1860 		goto free_ordered_data;
1861 
1862 	err = btrfs_auto_defrag_init();
1863 	if (err)
1864 		goto free_delayed_inode;
1865 
1866 	err = btrfs_delayed_ref_init();
1867 	if (err)
1868 		goto free_auto_defrag;
1869 
1870 	err = btrfs_prelim_ref_init();
1871 	if (err)
1872 		goto free_prelim_ref;
1873 
1874 	err = btrfs_interface_init();
1875 	if (err)
1876 		goto free_delayed_ref;
1877 
1878 	btrfs_init_lockdep();
1879 
1880 	btrfs_print_info();
1881 
1882 	err = btrfs_run_sanity_tests();
1883 	if (err)
1884 		goto unregister_ioctl;
1885 
1886 	err = register_filesystem(&btrfs_fs_type);
1887 	if (err)
1888 		goto unregister_ioctl;
1889 
1890 	return 0;
1891 
1892 unregister_ioctl:
1893 	btrfs_interface_exit();
1894 free_prelim_ref:
1895 	btrfs_prelim_ref_exit();
1896 free_delayed_ref:
1897 	btrfs_delayed_ref_exit();
1898 free_auto_defrag:
1899 	btrfs_auto_defrag_exit();
1900 free_delayed_inode:
1901 	btrfs_delayed_inode_exit();
1902 free_ordered_data:
1903 	ordered_data_exit();
1904 free_extent_map:
1905 	extent_map_exit();
1906 free_extent_io:
1907 	extent_io_exit();
1908 free_cachep:
1909 	btrfs_destroy_cachep();
1910 free_compress:
1911 	btrfs_exit_compress();
1912 	btrfs_exit_sysfs();
1913 	return err;
1914 }
1915 
1916 static void __exit exit_btrfs_fs(void)
1917 {
1918 	btrfs_destroy_cachep();
1919 	btrfs_delayed_ref_exit();
1920 	btrfs_auto_defrag_exit();
1921 	btrfs_delayed_inode_exit();
1922 	btrfs_prelim_ref_exit();
1923 	ordered_data_exit();
1924 	extent_map_exit();
1925 	extent_io_exit();
1926 	btrfs_interface_exit();
1927 	unregister_filesystem(&btrfs_fs_type);
1928 	btrfs_exit_sysfs();
1929 	btrfs_cleanup_fs_uuids();
1930 	btrfs_exit_compress();
1931 }
1932 
1933 module_init(init_btrfs_fs)
1934 module_exit(exit_btrfs_fs)
1935 
1936 MODULE_LICENSE("GPL");
1937