xref: /linux/fs/btrfs/super.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include "compat.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "xattr.h"
51 #include "volumes.h"
52 #include "version.h"
53 #include "export.h"
54 #include "compression.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/btrfs.h>
58 
59 static const struct super_operations btrfs_super_ops;
60 
61 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
62 				      char nbuf[16])
63 {
64 	char *errstr = NULL;
65 
66 	switch (errno) {
67 	case -EIO:
68 		errstr = "IO failure";
69 		break;
70 	case -ENOMEM:
71 		errstr = "Out of memory";
72 		break;
73 	case -EROFS:
74 		errstr = "Readonly filesystem";
75 		break;
76 	default:
77 		if (nbuf) {
78 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
79 				errstr = nbuf;
80 		}
81 		break;
82 	}
83 
84 	return errstr;
85 }
86 
87 static void __save_error_info(struct btrfs_fs_info *fs_info)
88 {
89 	/*
90 	 * today we only save the error info into ram.  Long term we'll
91 	 * also send it down to the disk
92 	 */
93 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
94 }
95 
96 /* NOTE:
97  *	We move write_super stuff at umount in order to avoid deadlock
98  *	for umount hold all lock.
99  */
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 	__save_error_info(fs_info);
103 }
104 
105 /* btrfs handle error by forcing the filesystem readonly */
106 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
107 {
108 	struct super_block *sb = fs_info->sb;
109 
110 	if (sb->s_flags & MS_RDONLY)
111 		return;
112 
113 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
114 		sb->s_flags |= MS_RDONLY;
115 		printk(KERN_INFO "btrfs is forced readonly\n");
116 	}
117 }
118 
119 /*
120  * __btrfs_std_error decodes expected errors from the caller and
121  * invokes the approciate error response.
122  */
123 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
124 		     unsigned int line, int errno)
125 {
126 	struct super_block *sb = fs_info->sb;
127 	char nbuf[16];
128 	const char *errstr;
129 
130 	/*
131 	 * Special case: if the error is EROFS, and we're already
132 	 * under MS_RDONLY, then it is safe here.
133 	 */
134 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
135 		return;
136 
137 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
138 	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
139 		sb->s_id, function, line, errstr);
140 	save_error_info(fs_info);
141 
142 	btrfs_handle_error(fs_info);
143 }
144 
145 static void btrfs_put_super(struct super_block *sb)
146 {
147 	struct btrfs_root *root = btrfs_sb(sb);
148 	int ret;
149 
150 	ret = close_ctree(root);
151 	sb->s_fs_info = NULL;
152 
153 	(void)ret; /* FIXME: need to fix VFS to return error? */
154 }
155 
156 enum {
157 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
158 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
159 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
160 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
161 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
162 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
163 	Opt_enospc_debug, Opt_subvolrootid, Opt_err,
164 };
165 
166 static match_table_t tokens = {
167 	{Opt_degraded, "degraded"},
168 	{Opt_subvol, "subvol=%s"},
169 	{Opt_subvolid, "subvolid=%d"},
170 	{Opt_device, "device=%s"},
171 	{Opt_nodatasum, "nodatasum"},
172 	{Opt_nodatacow, "nodatacow"},
173 	{Opt_nobarrier, "nobarrier"},
174 	{Opt_max_inline, "max_inline=%s"},
175 	{Opt_alloc_start, "alloc_start=%s"},
176 	{Opt_thread_pool, "thread_pool=%d"},
177 	{Opt_compress, "compress"},
178 	{Opt_compress_type, "compress=%s"},
179 	{Opt_compress_force, "compress-force"},
180 	{Opt_compress_force_type, "compress-force=%s"},
181 	{Opt_ssd, "ssd"},
182 	{Opt_ssd_spread, "ssd_spread"},
183 	{Opt_nossd, "nossd"},
184 	{Opt_noacl, "noacl"},
185 	{Opt_notreelog, "notreelog"},
186 	{Opt_flushoncommit, "flushoncommit"},
187 	{Opt_ratio, "metadata_ratio=%d"},
188 	{Opt_discard, "discard"},
189 	{Opt_space_cache, "space_cache"},
190 	{Opt_clear_cache, "clear_cache"},
191 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
192 	{Opt_enospc_debug, "enospc_debug"},
193 	{Opt_subvolrootid, "subvolrootid=%d"},
194 	{Opt_err, NULL},
195 };
196 
197 /*
198  * Regular mount options parser.  Everything that is needed only when
199  * reading in a new superblock is parsed here.
200  */
201 int btrfs_parse_options(struct btrfs_root *root, char *options)
202 {
203 	struct btrfs_fs_info *info = root->fs_info;
204 	substring_t args[MAX_OPT_ARGS];
205 	char *p, *num, *orig;
206 	int intarg;
207 	int ret = 0;
208 	char *compress_type;
209 	bool compress_force = false;
210 
211 	if (!options)
212 		return 0;
213 
214 	/*
215 	 * strsep changes the string, duplicate it because parse_options
216 	 * gets called twice
217 	 */
218 	options = kstrdup(options, GFP_NOFS);
219 	if (!options)
220 		return -ENOMEM;
221 
222 	orig = options;
223 
224 	while ((p = strsep(&options, ",")) != NULL) {
225 		int token;
226 		if (!*p)
227 			continue;
228 
229 		token = match_token(p, tokens, args);
230 		switch (token) {
231 		case Opt_degraded:
232 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
233 			btrfs_set_opt(info->mount_opt, DEGRADED);
234 			break;
235 		case Opt_subvol:
236 		case Opt_subvolid:
237 		case Opt_subvolrootid:
238 		case Opt_device:
239 			/*
240 			 * These are parsed by btrfs_parse_early_options
241 			 * and can be happily ignored here.
242 			 */
243 			break;
244 		case Opt_nodatasum:
245 			printk(KERN_INFO "btrfs: setting nodatasum\n");
246 			btrfs_set_opt(info->mount_opt, NODATASUM);
247 			break;
248 		case Opt_nodatacow:
249 			printk(KERN_INFO "btrfs: setting nodatacow\n");
250 			btrfs_set_opt(info->mount_opt, NODATACOW);
251 			btrfs_set_opt(info->mount_opt, NODATASUM);
252 			break;
253 		case Opt_compress_force:
254 		case Opt_compress_force_type:
255 			compress_force = true;
256 		case Opt_compress:
257 		case Opt_compress_type:
258 			if (token == Opt_compress ||
259 			    token == Opt_compress_force ||
260 			    strcmp(args[0].from, "zlib") == 0) {
261 				compress_type = "zlib";
262 				info->compress_type = BTRFS_COMPRESS_ZLIB;
263 			} else if (strcmp(args[0].from, "lzo") == 0) {
264 				compress_type = "lzo";
265 				info->compress_type = BTRFS_COMPRESS_LZO;
266 			} else {
267 				ret = -EINVAL;
268 				goto out;
269 			}
270 
271 			btrfs_set_opt(info->mount_opt, COMPRESS);
272 			if (compress_force) {
273 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
274 				pr_info("btrfs: force %s compression\n",
275 					compress_type);
276 			} else
277 				pr_info("btrfs: use %s compression\n",
278 					compress_type);
279 			break;
280 		case Opt_ssd:
281 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
282 			btrfs_set_opt(info->mount_opt, SSD);
283 			break;
284 		case Opt_ssd_spread:
285 			printk(KERN_INFO "btrfs: use spread ssd "
286 			       "allocation scheme\n");
287 			btrfs_set_opt(info->mount_opt, SSD);
288 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
289 			break;
290 		case Opt_nossd:
291 			printk(KERN_INFO "btrfs: not using ssd allocation "
292 			       "scheme\n");
293 			btrfs_set_opt(info->mount_opt, NOSSD);
294 			btrfs_clear_opt(info->mount_opt, SSD);
295 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
296 			break;
297 		case Opt_nobarrier:
298 			printk(KERN_INFO "btrfs: turning off barriers\n");
299 			btrfs_set_opt(info->mount_opt, NOBARRIER);
300 			break;
301 		case Opt_thread_pool:
302 			intarg = 0;
303 			match_int(&args[0], &intarg);
304 			if (intarg) {
305 				info->thread_pool_size = intarg;
306 				printk(KERN_INFO "btrfs: thread pool %d\n",
307 				       info->thread_pool_size);
308 			}
309 			break;
310 		case Opt_max_inline:
311 			num = match_strdup(&args[0]);
312 			if (num) {
313 				info->max_inline = memparse(num, NULL);
314 				kfree(num);
315 
316 				if (info->max_inline) {
317 					info->max_inline = max_t(u64,
318 						info->max_inline,
319 						root->sectorsize);
320 				}
321 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
322 					(unsigned long long)info->max_inline);
323 			}
324 			break;
325 		case Opt_alloc_start:
326 			num = match_strdup(&args[0]);
327 			if (num) {
328 				info->alloc_start = memparse(num, NULL);
329 				kfree(num);
330 				printk(KERN_INFO
331 					"btrfs: allocations start at %llu\n",
332 					(unsigned long long)info->alloc_start);
333 			}
334 			break;
335 		case Opt_noacl:
336 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
337 			break;
338 		case Opt_notreelog:
339 			printk(KERN_INFO "btrfs: disabling tree log\n");
340 			btrfs_set_opt(info->mount_opt, NOTREELOG);
341 			break;
342 		case Opt_flushoncommit:
343 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
344 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
345 			break;
346 		case Opt_ratio:
347 			intarg = 0;
348 			match_int(&args[0], &intarg);
349 			if (intarg) {
350 				info->metadata_ratio = intarg;
351 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
352 				       info->metadata_ratio);
353 			}
354 			break;
355 		case Opt_discard:
356 			btrfs_set_opt(info->mount_opt, DISCARD);
357 			break;
358 		case Opt_space_cache:
359 			printk(KERN_INFO "btrfs: enabling disk space caching\n");
360 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
361 			break;
362 		case Opt_clear_cache:
363 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
364 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
365 			break;
366 		case Opt_user_subvol_rm_allowed:
367 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
368 			break;
369 		case Opt_enospc_debug:
370 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
371 			break;
372 		case Opt_err:
373 			printk(KERN_INFO "btrfs: unrecognized mount option "
374 			       "'%s'\n", p);
375 			ret = -EINVAL;
376 			goto out;
377 		default:
378 			break;
379 		}
380 	}
381 out:
382 	kfree(orig);
383 	return ret;
384 }
385 
386 /*
387  * Parse mount options that are required early in the mount process.
388  *
389  * All other options will be parsed on much later in the mount process and
390  * only when we need to allocate a new super block.
391  */
392 static int btrfs_parse_early_options(const char *options, fmode_t flags,
393 		void *holder, char **subvol_name, u64 *subvol_objectid,
394 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
395 {
396 	substring_t args[MAX_OPT_ARGS];
397 	char *opts, *orig, *p;
398 	int error = 0;
399 	int intarg;
400 
401 	if (!options)
402 		goto out;
403 
404 	/*
405 	 * strsep changes the string, duplicate it because parse_options
406 	 * gets called twice
407 	 */
408 	opts = kstrdup(options, GFP_KERNEL);
409 	if (!opts)
410 		return -ENOMEM;
411 	orig = opts;
412 
413 	while ((p = strsep(&opts, ",")) != NULL) {
414 		int token;
415 		if (!*p)
416 			continue;
417 
418 		token = match_token(p, tokens, args);
419 		switch (token) {
420 		case Opt_subvol:
421 			*subvol_name = match_strdup(&args[0]);
422 			break;
423 		case Opt_subvolid:
424 			intarg = 0;
425 			error = match_int(&args[0], &intarg);
426 			if (!error) {
427 				/* we want the original fs_tree */
428 				if (!intarg)
429 					*subvol_objectid =
430 						BTRFS_FS_TREE_OBJECTID;
431 				else
432 					*subvol_objectid = intarg;
433 			}
434 			break;
435 		case Opt_subvolrootid:
436 			intarg = 0;
437 			error = match_int(&args[0], &intarg);
438 			if (!error) {
439 				/* we want the original fs_tree */
440 				if (!intarg)
441 					*subvol_rootid =
442 						BTRFS_FS_TREE_OBJECTID;
443 				else
444 					*subvol_rootid = intarg;
445 			}
446 			break;
447 		case Opt_device:
448 			error = btrfs_scan_one_device(match_strdup(&args[0]),
449 					flags, holder, fs_devices);
450 			if (error)
451 				goto out_free_opts;
452 			break;
453 		default:
454 			break;
455 		}
456 	}
457 
458  out_free_opts:
459 	kfree(orig);
460  out:
461 	/*
462 	 * If no subvolume name is specified we use the default one.  Allocate
463 	 * a copy of the string "." here so that code later in the
464 	 * mount path doesn't care if it's the default volume or another one.
465 	 */
466 	if (!*subvol_name) {
467 		*subvol_name = kstrdup(".", GFP_KERNEL);
468 		if (!*subvol_name)
469 			return -ENOMEM;
470 	}
471 	return error;
472 }
473 
474 static struct dentry *get_default_root(struct super_block *sb,
475 				       u64 subvol_objectid)
476 {
477 	struct btrfs_root *root = sb->s_fs_info;
478 	struct btrfs_root *new_root;
479 	struct btrfs_dir_item *di;
480 	struct btrfs_path *path;
481 	struct btrfs_key location;
482 	struct inode *inode;
483 	struct dentry *dentry;
484 	u64 dir_id;
485 	int new = 0;
486 
487 	/*
488 	 * We have a specific subvol we want to mount, just setup location and
489 	 * go look up the root.
490 	 */
491 	if (subvol_objectid) {
492 		location.objectid = subvol_objectid;
493 		location.type = BTRFS_ROOT_ITEM_KEY;
494 		location.offset = (u64)-1;
495 		goto find_root;
496 	}
497 
498 	path = btrfs_alloc_path();
499 	if (!path)
500 		return ERR_PTR(-ENOMEM);
501 	path->leave_spinning = 1;
502 
503 	/*
504 	 * Find the "default" dir item which points to the root item that we
505 	 * will mount by default if we haven't been given a specific subvolume
506 	 * to mount.
507 	 */
508 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
509 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
510 	if (IS_ERR(di))
511 		return ERR_CAST(di);
512 	if (!di) {
513 		/*
514 		 * Ok the default dir item isn't there.  This is weird since
515 		 * it's always been there, but don't freak out, just try and
516 		 * mount to root most subvolume.
517 		 */
518 		btrfs_free_path(path);
519 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
520 		new_root = root->fs_info->fs_root;
521 		goto setup_root;
522 	}
523 
524 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
525 	btrfs_free_path(path);
526 
527 find_root:
528 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
529 	if (IS_ERR(new_root))
530 		return ERR_CAST(new_root);
531 
532 	if (btrfs_root_refs(&new_root->root_item) == 0)
533 		return ERR_PTR(-ENOENT);
534 
535 	dir_id = btrfs_root_dirid(&new_root->root_item);
536 setup_root:
537 	location.objectid = dir_id;
538 	location.type = BTRFS_INODE_ITEM_KEY;
539 	location.offset = 0;
540 
541 	inode = btrfs_iget(sb, &location, new_root, &new);
542 	if (IS_ERR(inode))
543 		return ERR_CAST(inode);
544 
545 	/*
546 	 * If we're just mounting the root most subvol put the inode and return
547 	 * a reference to the dentry.  We will have already gotten a reference
548 	 * to the inode in btrfs_fill_super so we're good to go.
549 	 */
550 	if (!new && sb->s_root->d_inode == inode) {
551 		iput(inode);
552 		return dget(sb->s_root);
553 	}
554 
555 	if (new) {
556 		const struct qstr name = { .name = "/", .len = 1 };
557 
558 		/*
559 		 * New inode, we need to make the dentry a sibling of s_root so
560 		 * everything gets cleaned up properly on unmount.
561 		 */
562 		dentry = d_alloc(sb->s_root, &name);
563 		if (!dentry) {
564 			iput(inode);
565 			return ERR_PTR(-ENOMEM);
566 		}
567 		d_splice_alias(inode, dentry);
568 	} else {
569 		/*
570 		 * We found the inode in cache, just find a dentry for it and
571 		 * put the reference to the inode we just got.
572 		 */
573 		dentry = d_find_alias(inode);
574 		iput(inode);
575 	}
576 
577 	return dentry;
578 }
579 
580 static int btrfs_fill_super(struct super_block *sb,
581 			    struct btrfs_fs_devices *fs_devices,
582 			    void *data, int silent)
583 {
584 	struct inode *inode;
585 	struct dentry *root_dentry;
586 	struct btrfs_root *tree_root;
587 	struct btrfs_key key;
588 	int err;
589 
590 	sb->s_maxbytes = MAX_LFS_FILESIZE;
591 	sb->s_magic = BTRFS_SUPER_MAGIC;
592 	sb->s_op = &btrfs_super_ops;
593 	sb->s_d_op = &btrfs_dentry_operations;
594 	sb->s_export_op = &btrfs_export_ops;
595 	sb->s_xattr = btrfs_xattr_handlers;
596 	sb->s_time_gran = 1;
597 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
598 	sb->s_flags |= MS_POSIXACL;
599 #endif
600 
601 	tree_root = open_ctree(sb, fs_devices, (char *)data);
602 
603 	if (IS_ERR(tree_root)) {
604 		printk("btrfs: open_ctree failed\n");
605 		return PTR_ERR(tree_root);
606 	}
607 	sb->s_fs_info = tree_root;
608 
609 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
610 	key.type = BTRFS_INODE_ITEM_KEY;
611 	key.offset = 0;
612 	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
613 	if (IS_ERR(inode)) {
614 		err = PTR_ERR(inode);
615 		goto fail_close;
616 	}
617 
618 	root_dentry = d_alloc_root(inode);
619 	if (!root_dentry) {
620 		iput(inode);
621 		err = -ENOMEM;
622 		goto fail_close;
623 	}
624 
625 	sb->s_root = root_dentry;
626 
627 	save_mount_options(sb, data);
628 	cleancache_init_fs(sb);
629 	return 0;
630 
631 fail_close:
632 	close_ctree(tree_root);
633 	return err;
634 }
635 
636 int btrfs_sync_fs(struct super_block *sb, int wait)
637 {
638 	struct btrfs_trans_handle *trans;
639 	struct btrfs_root *root = btrfs_sb(sb);
640 	int ret;
641 
642 	trace_btrfs_sync_fs(wait);
643 
644 	if (!wait) {
645 		filemap_flush(root->fs_info->btree_inode->i_mapping);
646 		return 0;
647 	}
648 
649 	btrfs_start_delalloc_inodes(root, 0);
650 	btrfs_wait_ordered_extents(root, 0, 0);
651 
652 	trans = btrfs_start_transaction(root, 0);
653 	if (IS_ERR(trans))
654 		return PTR_ERR(trans);
655 	ret = btrfs_commit_transaction(trans, root);
656 	return ret;
657 }
658 
659 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
660 {
661 	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
662 	struct btrfs_fs_info *info = root->fs_info;
663 	char *compress_type;
664 
665 	if (btrfs_test_opt(root, DEGRADED))
666 		seq_puts(seq, ",degraded");
667 	if (btrfs_test_opt(root, NODATASUM))
668 		seq_puts(seq, ",nodatasum");
669 	if (btrfs_test_opt(root, NODATACOW))
670 		seq_puts(seq, ",nodatacow");
671 	if (btrfs_test_opt(root, NOBARRIER))
672 		seq_puts(seq, ",nobarrier");
673 	if (info->max_inline != 8192 * 1024)
674 		seq_printf(seq, ",max_inline=%llu",
675 			   (unsigned long long)info->max_inline);
676 	if (info->alloc_start != 0)
677 		seq_printf(seq, ",alloc_start=%llu",
678 			   (unsigned long long)info->alloc_start);
679 	if (info->thread_pool_size !=  min_t(unsigned long,
680 					     num_online_cpus() + 2, 8))
681 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
682 	if (btrfs_test_opt(root, COMPRESS)) {
683 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
684 			compress_type = "zlib";
685 		else
686 			compress_type = "lzo";
687 		if (btrfs_test_opt(root, FORCE_COMPRESS))
688 			seq_printf(seq, ",compress-force=%s", compress_type);
689 		else
690 			seq_printf(seq, ",compress=%s", compress_type);
691 	}
692 	if (btrfs_test_opt(root, NOSSD))
693 		seq_puts(seq, ",nossd");
694 	if (btrfs_test_opt(root, SSD_SPREAD))
695 		seq_puts(seq, ",ssd_spread");
696 	else if (btrfs_test_opt(root, SSD))
697 		seq_puts(seq, ",ssd");
698 	if (btrfs_test_opt(root, NOTREELOG))
699 		seq_puts(seq, ",notreelog");
700 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
701 		seq_puts(seq, ",flushoncommit");
702 	if (btrfs_test_opt(root, DISCARD))
703 		seq_puts(seq, ",discard");
704 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
705 		seq_puts(seq, ",noacl");
706 	if (btrfs_test_opt(root, SPACE_CACHE))
707 		seq_puts(seq, ",space_cache");
708 	if (btrfs_test_opt(root, CLEAR_CACHE))
709 		seq_puts(seq, ",clear_cache");
710 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
711 		seq_puts(seq, ",user_subvol_rm_allowed");
712 	return 0;
713 }
714 
715 static int btrfs_test_super(struct super_block *s, void *data)
716 {
717 	struct btrfs_root *test_root = data;
718 	struct btrfs_root *root = btrfs_sb(s);
719 
720 	/*
721 	 * If this super block is going away, return false as it
722 	 * can't match as an existing super block.
723 	 */
724 	if (!atomic_read(&s->s_active))
725 		return 0;
726 	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
727 }
728 
729 static int btrfs_set_super(struct super_block *s, void *data)
730 {
731 	s->s_fs_info = data;
732 
733 	return set_anon_super(s, data);
734 }
735 
736 
737 /*
738  * Find a superblock for the given device / mount point.
739  *
740  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
741  *	  for multiple device setup.  Make sure to keep it in sync.
742  */
743 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
744 		const char *dev_name, void *data)
745 {
746 	struct block_device *bdev = NULL;
747 	struct super_block *s;
748 	struct dentry *root;
749 	struct btrfs_fs_devices *fs_devices = NULL;
750 	struct btrfs_root *tree_root = NULL;
751 	struct btrfs_fs_info *fs_info = NULL;
752 	fmode_t mode = FMODE_READ;
753 	char *subvol_name = NULL;
754 	u64 subvol_objectid = 0;
755 	u64 subvol_rootid = 0;
756 	int error = 0;
757 
758 	if (!(flags & MS_RDONLY))
759 		mode |= FMODE_WRITE;
760 
761 	error = btrfs_parse_early_options(data, mode, fs_type,
762 					  &subvol_name, &subvol_objectid,
763 					  &subvol_rootid, &fs_devices);
764 	if (error)
765 		return ERR_PTR(error);
766 
767 	error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
768 	if (error)
769 		goto error_free_subvol_name;
770 
771 	error = btrfs_open_devices(fs_devices, mode, fs_type);
772 	if (error)
773 		goto error_free_subvol_name;
774 
775 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
776 		error = -EACCES;
777 		goto error_close_devices;
778 	}
779 
780 	/*
781 	 * Setup a dummy root and fs_info for test/set super.  This is because
782 	 * we don't actually fill this stuff out until open_ctree, but we need
783 	 * it for searching for existing supers, so this lets us do that and
784 	 * then open_ctree will properly initialize everything later.
785 	 */
786 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
787 	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
788 	if (!fs_info || !tree_root) {
789 		error = -ENOMEM;
790 		goto error_close_devices;
791 	}
792 	fs_info->tree_root = tree_root;
793 	fs_info->fs_devices = fs_devices;
794 	tree_root->fs_info = fs_info;
795 
796 	bdev = fs_devices->latest_bdev;
797 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
798 	if (IS_ERR(s))
799 		goto error_s;
800 
801 	if (s->s_root) {
802 		if ((flags ^ s->s_flags) & MS_RDONLY) {
803 			deactivate_locked_super(s);
804 			error = -EBUSY;
805 			goto error_close_devices;
806 		}
807 
808 		btrfs_close_devices(fs_devices);
809 		kfree(fs_info);
810 		kfree(tree_root);
811 	} else {
812 		char b[BDEVNAME_SIZE];
813 
814 		s->s_flags = flags;
815 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
816 		error = btrfs_fill_super(s, fs_devices, data,
817 					 flags & MS_SILENT ? 1 : 0);
818 		if (error) {
819 			deactivate_locked_super(s);
820 			goto error_free_subvol_name;
821 		}
822 
823 		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
824 		s->s_flags |= MS_ACTIVE;
825 	}
826 
827 	/* if they gave us a subvolume name bind mount into that */
828 	if (strcmp(subvol_name, ".")) {
829 		struct dentry *new_root;
830 
831 		root = get_default_root(s, subvol_rootid);
832 		if (IS_ERR(root)) {
833 			error = PTR_ERR(root);
834 			deactivate_locked_super(s);
835 			goto error_free_subvol_name;
836 		}
837 
838 		mutex_lock(&root->d_inode->i_mutex);
839 		new_root = lookup_one_len(subvol_name, root,
840 				      strlen(subvol_name));
841 		mutex_unlock(&root->d_inode->i_mutex);
842 
843 		if (IS_ERR(new_root)) {
844 			dput(root);
845 			deactivate_locked_super(s);
846 			error = PTR_ERR(new_root);
847 			goto error_free_subvol_name;
848 		}
849 		if (!new_root->d_inode) {
850 			dput(root);
851 			dput(new_root);
852 			deactivate_locked_super(s);
853 			error = -ENXIO;
854 			goto error_free_subvol_name;
855 		}
856 		dput(root);
857 		root = new_root;
858 	} else {
859 		root = get_default_root(s, subvol_objectid);
860 		if (IS_ERR(root)) {
861 			error = PTR_ERR(root);
862 			deactivate_locked_super(s);
863 			goto error_free_subvol_name;
864 		}
865 	}
866 
867 	kfree(subvol_name);
868 	return root;
869 
870 error_s:
871 	error = PTR_ERR(s);
872 error_close_devices:
873 	btrfs_close_devices(fs_devices);
874 	kfree(fs_info);
875 	kfree(tree_root);
876 error_free_subvol_name:
877 	kfree(subvol_name);
878 	return ERR_PTR(error);
879 }
880 
881 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
882 {
883 	struct btrfs_root *root = btrfs_sb(sb);
884 	int ret;
885 
886 	ret = btrfs_parse_options(root, data);
887 	if (ret)
888 		return -EINVAL;
889 
890 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
891 		return 0;
892 
893 	if (*flags & MS_RDONLY) {
894 		sb->s_flags |= MS_RDONLY;
895 
896 		ret =  btrfs_commit_super(root);
897 		WARN_ON(ret);
898 	} else {
899 		if (root->fs_info->fs_devices->rw_devices == 0)
900 			return -EACCES;
901 
902 		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
903 			return -EINVAL;
904 
905 		ret = btrfs_cleanup_fs_roots(root->fs_info);
906 		WARN_ON(ret);
907 
908 		/* recover relocation */
909 		ret = btrfs_recover_relocation(root);
910 		WARN_ON(ret);
911 
912 		sb->s_flags &= ~MS_RDONLY;
913 	}
914 
915 	return 0;
916 }
917 
918 /*
919  * The helper to calc the free space on the devices that can be used to store
920  * file data.
921  */
922 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
923 {
924 	struct btrfs_fs_info *fs_info = root->fs_info;
925 	struct btrfs_device_info *devices_info;
926 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
927 	struct btrfs_device *device;
928 	u64 skip_space;
929 	u64 type;
930 	u64 avail_space;
931 	u64 used_space;
932 	u64 min_stripe_size;
933 	int min_stripes = 1;
934 	int i = 0, nr_devices;
935 	int ret;
936 
937 	nr_devices = fs_info->fs_devices->rw_devices;
938 	BUG_ON(!nr_devices);
939 
940 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
941 			       GFP_NOFS);
942 	if (!devices_info)
943 		return -ENOMEM;
944 
945 	/* calc min stripe number for data space alloction */
946 	type = btrfs_get_alloc_profile(root, 1);
947 	if (type & BTRFS_BLOCK_GROUP_RAID0)
948 		min_stripes = 2;
949 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
950 		min_stripes = 2;
951 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
952 		min_stripes = 4;
953 
954 	if (type & BTRFS_BLOCK_GROUP_DUP)
955 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
956 	else
957 		min_stripe_size = BTRFS_STRIPE_LEN;
958 
959 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
960 		if (!device->in_fs_metadata)
961 			continue;
962 
963 		avail_space = device->total_bytes - device->bytes_used;
964 
965 		/* align with stripe_len */
966 		do_div(avail_space, BTRFS_STRIPE_LEN);
967 		avail_space *= BTRFS_STRIPE_LEN;
968 
969 		/*
970 		 * In order to avoid overwritting the superblock on the drive,
971 		 * btrfs starts at an offset of at least 1MB when doing chunk
972 		 * allocation.
973 		 */
974 		skip_space = 1024 * 1024;
975 
976 		/* user can set the offset in fs_info->alloc_start. */
977 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
978 		    device->total_bytes)
979 			skip_space = max(fs_info->alloc_start, skip_space);
980 
981 		/*
982 		 * btrfs can not use the free space in [0, skip_space - 1],
983 		 * we must subtract it from the total. In order to implement
984 		 * it, we account the used space in this range first.
985 		 */
986 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
987 						     &used_space);
988 		if (ret) {
989 			kfree(devices_info);
990 			return ret;
991 		}
992 
993 		/* calc the free space in [0, skip_space - 1] */
994 		skip_space -= used_space;
995 
996 		/*
997 		 * we can use the free space in [0, skip_space - 1], subtract
998 		 * it from the total.
999 		 */
1000 		if (avail_space && avail_space >= skip_space)
1001 			avail_space -= skip_space;
1002 		else
1003 			avail_space = 0;
1004 
1005 		if (avail_space < min_stripe_size)
1006 			continue;
1007 
1008 		devices_info[i].dev = device;
1009 		devices_info[i].max_avail = avail_space;
1010 
1011 		i++;
1012 	}
1013 
1014 	nr_devices = i;
1015 
1016 	btrfs_descending_sort_devices(devices_info, nr_devices);
1017 
1018 	i = nr_devices - 1;
1019 	avail_space = 0;
1020 	while (nr_devices >= min_stripes) {
1021 		if (devices_info[i].max_avail >= min_stripe_size) {
1022 			int j;
1023 			u64 alloc_size;
1024 
1025 			avail_space += devices_info[i].max_avail * min_stripes;
1026 			alloc_size = devices_info[i].max_avail;
1027 			for (j = i + 1 - min_stripes; j <= i; j++)
1028 				devices_info[j].max_avail -= alloc_size;
1029 		}
1030 		i--;
1031 		nr_devices--;
1032 	}
1033 
1034 	kfree(devices_info);
1035 	*free_bytes = avail_space;
1036 	return 0;
1037 }
1038 
1039 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1040 {
1041 	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1042 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1043 	struct list_head *head = &root->fs_info->space_info;
1044 	struct btrfs_space_info *found;
1045 	u64 total_used = 0;
1046 	u64 total_free_data = 0;
1047 	int bits = dentry->d_sb->s_blocksize_bits;
1048 	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1049 	int ret;
1050 
1051 	/* holding chunk_muext to avoid allocating new chunks */
1052 	mutex_lock(&root->fs_info->chunk_mutex);
1053 	rcu_read_lock();
1054 	list_for_each_entry_rcu(found, head, list) {
1055 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1056 			total_free_data += found->disk_total - found->disk_used;
1057 			total_free_data -=
1058 				btrfs_account_ro_block_groups_free_space(found);
1059 		}
1060 
1061 		total_used += found->disk_used;
1062 	}
1063 	rcu_read_unlock();
1064 
1065 	buf->f_namelen = BTRFS_NAME_LEN;
1066 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1067 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1068 	buf->f_bsize = dentry->d_sb->s_blocksize;
1069 	buf->f_type = BTRFS_SUPER_MAGIC;
1070 	buf->f_bavail = total_free_data;
1071 	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1072 	if (ret) {
1073 		mutex_unlock(&root->fs_info->chunk_mutex);
1074 		return ret;
1075 	}
1076 	buf->f_bavail += total_free_data;
1077 	buf->f_bavail = buf->f_bavail >> bits;
1078 	mutex_unlock(&root->fs_info->chunk_mutex);
1079 
1080 	/* We treat it as constant endianness (it doesn't matter _which_)
1081 	   because we want the fsid to come out the same whether mounted
1082 	   on a big-endian or little-endian host */
1083 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1084 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1085 	/* Mask in the root object ID too, to disambiguate subvols */
1086 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1087 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1088 
1089 	return 0;
1090 }
1091 
1092 static struct file_system_type btrfs_fs_type = {
1093 	.owner		= THIS_MODULE,
1094 	.name		= "btrfs",
1095 	.mount		= btrfs_mount,
1096 	.kill_sb	= kill_anon_super,
1097 	.fs_flags	= FS_REQUIRES_DEV,
1098 };
1099 
1100 /*
1101  * used by btrfsctl to scan devices when no FS is mounted
1102  */
1103 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1104 				unsigned long arg)
1105 {
1106 	struct btrfs_ioctl_vol_args *vol;
1107 	struct btrfs_fs_devices *fs_devices;
1108 	int ret = -ENOTTY;
1109 
1110 	if (!capable(CAP_SYS_ADMIN))
1111 		return -EPERM;
1112 
1113 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1114 	if (IS_ERR(vol))
1115 		return PTR_ERR(vol);
1116 
1117 	switch (cmd) {
1118 	case BTRFS_IOC_SCAN_DEV:
1119 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1120 					    &btrfs_fs_type, &fs_devices);
1121 		break;
1122 	}
1123 
1124 	kfree(vol);
1125 	return ret;
1126 }
1127 
1128 static int btrfs_freeze(struct super_block *sb)
1129 {
1130 	struct btrfs_root *root = btrfs_sb(sb);
1131 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1132 	mutex_lock(&root->fs_info->cleaner_mutex);
1133 	return 0;
1134 }
1135 
1136 static int btrfs_unfreeze(struct super_block *sb)
1137 {
1138 	struct btrfs_root *root = btrfs_sb(sb);
1139 	mutex_unlock(&root->fs_info->cleaner_mutex);
1140 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1141 	return 0;
1142 }
1143 
1144 static const struct super_operations btrfs_super_ops = {
1145 	.drop_inode	= btrfs_drop_inode,
1146 	.evict_inode	= btrfs_evict_inode,
1147 	.put_super	= btrfs_put_super,
1148 	.sync_fs	= btrfs_sync_fs,
1149 	.show_options	= btrfs_show_options,
1150 	.write_inode	= btrfs_write_inode,
1151 	.dirty_inode	= btrfs_dirty_inode,
1152 	.alloc_inode	= btrfs_alloc_inode,
1153 	.destroy_inode	= btrfs_destroy_inode,
1154 	.statfs		= btrfs_statfs,
1155 	.remount_fs	= btrfs_remount,
1156 	.freeze_fs	= btrfs_freeze,
1157 	.unfreeze_fs	= btrfs_unfreeze,
1158 };
1159 
1160 static const struct file_operations btrfs_ctl_fops = {
1161 	.unlocked_ioctl	 = btrfs_control_ioctl,
1162 	.compat_ioctl = btrfs_control_ioctl,
1163 	.owner	 = THIS_MODULE,
1164 	.llseek = noop_llseek,
1165 };
1166 
1167 static struct miscdevice btrfs_misc = {
1168 	.minor		= BTRFS_MINOR,
1169 	.name		= "btrfs-control",
1170 	.fops		= &btrfs_ctl_fops
1171 };
1172 
1173 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1174 MODULE_ALIAS("devname:btrfs-control");
1175 
1176 static int btrfs_interface_init(void)
1177 {
1178 	return misc_register(&btrfs_misc);
1179 }
1180 
1181 static void btrfs_interface_exit(void)
1182 {
1183 	if (misc_deregister(&btrfs_misc) < 0)
1184 		printk(KERN_INFO "misc_deregister failed for control device");
1185 }
1186 
1187 static int __init init_btrfs_fs(void)
1188 {
1189 	int err;
1190 
1191 	err = btrfs_init_sysfs();
1192 	if (err)
1193 		return err;
1194 
1195 	err = btrfs_init_compress();
1196 	if (err)
1197 		goto free_sysfs;
1198 
1199 	err = btrfs_init_cachep();
1200 	if (err)
1201 		goto free_compress;
1202 
1203 	err = extent_io_init();
1204 	if (err)
1205 		goto free_cachep;
1206 
1207 	err = extent_map_init();
1208 	if (err)
1209 		goto free_extent_io;
1210 
1211 	err = btrfs_interface_init();
1212 	if (err)
1213 		goto free_extent_map;
1214 
1215 	err = register_filesystem(&btrfs_fs_type);
1216 	if (err)
1217 		goto unregister_ioctl;
1218 
1219 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1220 	return 0;
1221 
1222 unregister_ioctl:
1223 	btrfs_interface_exit();
1224 free_extent_map:
1225 	extent_map_exit();
1226 free_extent_io:
1227 	extent_io_exit();
1228 free_cachep:
1229 	btrfs_destroy_cachep();
1230 free_compress:
1231 	btrfs_exit_compress();
1232 free_sysfs:
1233 	btrfs_exit_sysfs();
1234 	return err;
1235 }
1236 
1237 static void __exit exit_btrfs_fs(void)
1238 {
1239 	btrfs_destroy_cachep();
1240 	extent_map_exit();
1241 	extent_io_exit();
1242 	btrfs_interface_exit();
1243 	unregister_filesystem(&btrfs_fs_type);
1244 	btrfs_exit_sysfs();
1245 	btrfs_cleanup_fs_uuids();
1246 	btrfs_exit_compress();
1247 }
1248 
1249 module_init(init_btrfs_fs)
1250 module_exit(exit_btrfs_fs)
1251 
1252 MODULE_LICENSE("GPL");
1253