xref: /linux/fs/btrfs/super.c (revision 393fc2f5948fd340d016a9557eea6e1ac2f6c60c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "delayed-inode.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "props.h"
36 #include "xattr.h"
37 #include "volumes.h"
38 #include "export.h"
39 #include "compression.h"
40 #include "rcu-string.h"
41 #include "dev-replace.h"
42 #include "free-space-cache.h"
43 #include "backref.h"
44 #include "space-info.h"
45 #include "sysfs.h"
46 #include "zoned.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 #include "qgroup.h"
51 #include "raid56.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 #ifdef CONFIG_PRINTK
71 
72 #define STATE_STRING_PREFACE	": state "
73 #define STATE_STRING_BUF_LEN	(sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT)
74 
75 /*
76  * Characters to print to indicate error conditions or uncommon filesystem state.
77  * RO is not an error.
78  */
79 static const char fs_state_chars[] = {
80 	[BTRFS_FS_STATE_ERROR]			= 'E',
81 	[BTRFS_FS_STATE_REMOUNTING]		= 'M',
82 	[BTRFS_FS_STATE_RO]			= 0,
83 	[BTRFS_FS_STATE_TRANS_ABORTED]		= 'A',
84 	[BTRFS_FS_STATE_DEV_REPLACING]		= 'R',
85 	[BTRFS_FS_STATE_DUMMY_FS_INFO]		= 0,
86 	[BTRFS_FS_STATE_NO_CSUMS]		= 'C',
87 	[BTRFS_FS_STATE_LOG_CLEANUP_ERROR]	= 'L',
88 };
89 
90 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
91 {
92 	unsigned int bit;
93 	bool states_printed = false;
94 	unsigned long fs_state = READ_ONCE(info->fs_state);
95 	char *curr = buf;
96 
97 	memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
98 	curr += sizeof(STATE_STRING_PREFACE) - 1;
99 
100 	for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
101 		WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
102 		if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
103 			*curr++ = fs_state_chars[bit];
104 			states_printed = true;
105 		}
106 	}
107 
108 	/* If no states were printed, reset the buffer */
109 	if (!states_printed)
110 		curr = buf;
111 
112 	*curr++ = 0;
113 }
114 #endif
115 
116 /*
117  * Generally the error codes correspond to their respective errors, but there
118  * are a few special cases.
119  *
120  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
121  *          instance will return EUCLEAN if any of the blocks are corrupted in
122  *          a way that is problematic.  We want to reserve EUCLEAN for these
123  *          sort of corruptions.
124  *
125  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
126  *        need to use EROFS for this case.  We will have no idea of the
127  *        original failure, that will have been reported at the time we tripped
128  *        over the error.  Each subsequent error that doesn't have any context
129  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
130  */
131 const char * __attribute_const__ btrfs_decode_error(int errno)
132 {
133 	char *errstr = "unknown";
134 
135 	switch (errno) {
136 	case -ENOENT:		/* -2 */
137 		errstr = "No such entry";
138 		break;
139 	case -EIO:		/* -5 */
140 		errstr = "IO failure";
141 		break;
142 	case -ENOMEM:		/* -12*/
143 		errstr = "Out of memory";
144 		break;
145 	case -EEXIST:		/* -17 */
146 		errstr = "Object already exists";
147 		break;
148 	case -ENOSPC:		/* -28 */
149 		errstr = "No space left";
150 		break;
151 	case -EROFS:		/* -30 */
152 		errstr = "Readonly filesystem";
153 		break;
154 	case -EOPNOTSUPP:	/* -95 */
155 		errstr = "Operation not supported";
156 		break;
157 	case -EUCLEAN:		/* -117 */
158 		errstr = "Filesystem corrupted";
159 		break;
160 	case -EDQUOT:		/* -122 */
161 		errstr = "Quota exceeded";
162 		break;
163 	}
164 
165 	return errstr;
166 }
167 
168 /*
169  * __btrfs_handle_fs_error decodes expected errors from the caller and
170  * invokes the appropriate error response.
171  */
172 __cold
173 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
174 		       unsigned int line, int errno, const char *fmt, ...)
175 {
176 	struct super_block *sb = fs_info->sb;
177 #ifdef CONFIG_PRINTK
178 	char statestr[STATE_STRING_BUF_LEN];
179 	const char *errstr;
180 #endif
181 
182 	/*
183 	 * Special case: if the error is EROFS, and we're already
184 	 * under SB_RDONLY, then it is safe here.
185 	 */
186 	if (errno == -EROFS && sb_rdonly(sb))
187   		return;
188 
189 #ifdef CONFIG_PRINTK
190 	errstr = btrfs_decode_error(errno);
191 	btrfs_state_to_string(fs_info, statestr);
192 	if (fmt) {
193 		struct va_format vaf;
194 		va_list args;
195 
196 		va_start(args, fmt);
197 		vaf.fmt = fmt;
198 		vaf.va = &args;
199 
200 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
201 			sb->s_id, statestr, function, line, errno, errstr, &vaf);
202 		va_end(args);
203 	} else {
204 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
205 			sb->s_id, statestr, function, line, errno, errstr);
206 	}
207 #endif
208 
209 	/*
210 	 * Today we only save the error info to memory.  Long term we'll
211 	 * also send it down to the disk
212 	 */
213 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
214 
215 	/* Don't go through full error handling during mount */
216 	if (!(sb->s_flags & SB_BORN))
217 		return;
218 
219 	if (sb_rdonly(sb))
220 		return;
221 
222 	btrfs_discard_stop(fs_info);
223 
224 	/* btrfs handle error by forcing the filesystem readonly */
225 	btrfs_set_sb_rdonly(sb);
226 	btrfs_info(fs_info, "forced readonly");
227 	/*
228 	 * Note that a running device replace operation is not canceled here
229 	 * although there is no way to update the progress. It would add the
230 	 * risk of a deadlock, therefore the canceling is omitted. The only
231 	 * penalty is that some I/O remains active until the procedure
232 	 * completes. The next time when the filesystem is mounted writable
233 	 * again, the device replace operation continues.
234 	 */
235 }
236 
237 #ifdef CONFIG_PRINTK
238 static const char * const logtypes[] = {
239 	"emergency",
240 	"alert",
241 	"critical",
242 	"error",
243 	"warning",
244 	"notice",
245 	"info",
246 	"debug",
247 };
248 
249 
250 /*
251  * Use one ratelimit state per log level so that a flood of less important
252  * messages doesn't cause more important ones to be dropped.
253  */
254 static struct ratelimit_state printk_limits[] = {
255 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
256 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
257 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
258 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
259 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
260 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
261 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
262 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
263 };
264 
265 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
266 {
267 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
268 	struct va_format vaf;
269 	va_list args;
270 	int kern_level;
271 	const char *type = logtypes[4];
272 	struct ratelimit_state *ratelimit = &printk_limits[4];
273 
274 	va_start(args, fmt);
275 
276 	while ((kern_level = printk_get_level(fmt)) != 0) {
277 		size_t size = printk_skip_level(fmt) - fmt;
278 
279 		if (kern_level >= '0' && kern_level <= '7') {
280 			memcpy(lvl, fmt,  size);
281 			lvl[size] = '\0';
282 			type = logtypes[kern_level - '0'];
283 			ratelimit = &printk_limits[kern_level - '0'];
284 		}
285 		fmt += size;
286 	}
287 
288 	vaf.fmt = fmt;
289 	vaf.va = &args;
290 
291 	if (__ratelimit(ratelimit)) {
292 		if (fs_info) {
293 			char statestr[STATE_STRING_BUF_LEN];
294 
295 			btrfs_state_to_string(fs_info, statestr);
296 			_printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
297 				fs_info->sb->s_id, statestr, &vaf);
298 		} else {
299 			_printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
300 		}
301 	}
302 
303 	va_end(args);
304 }
305 #endif
306 
307 #if BITS_PER_LONG == 32
308 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
309 {
310 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
311 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
312 		btrfs_warn(fs_info,
313 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
314 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
315 		btrfs_warn(fs_info,
316 			   "please consider upgrading to 64bit kernel/hardware");
317 	}
318 }
319 
320 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
321 {
322 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
323 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
324 		btrfs_err(fs_info,
325 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
326 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
327 		btrfs_err(fs_info,
328 			   "please consider upgrading to 64bit kernel/hardware");
329 	}
330 }
331 #endif
332 
333 /*
334  * We only mark the transaction aborted and then set the file system read-only.
335  * This will prevent new transactions from starting or trying to join this
336  * one.
337  *
338  * This means that error recovery at the call site is limited to freeing
339  * any local memory allocations and passing the error code up without
340  * further cleanup. The transaction should complete as it normally would
341  * in the call path but will return -EIO.
342  *
343  * We'll complete the cleanup in btrfs_end_transaction and
344  * btrfs_commit_transaction.
345  */
346 __cold
347 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
348 			       const char *function,
349 			       unsigned int line, int errno)
350 {
351 	struct btrfs_fs_info *fs_info = trans->fs_info;
352 
353 	WRITE_ONCE(trans->aborted, errno);
354 	WRITE_ONCE(trans->transaction->aborted, errno);
355 	/* Wake up anybody who may be waiting on this transaction */
356 	wake_up(&fs_info->transaction_wait);
357 	wake_up(&fs_info->transaction_blocked_wait);
358 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
359 }
360 /*
361  * __btrfs_panic decodes unexpected, fatal errors from the caller,
362  * issues an alert, and either panics or BUGs, depending on mount options.
363  */
364 __cold
365 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
366 		   unsigned int line, int errno, const char *fmt, ...)
367 {
368 	char *s_id = "<unknown>";
369 	const char *errstr;
370 	struct va_format vaf = { .fmt = fmt };
371 	va_list args;
372 
373 	if (fs_info)
374 		s_id = fs_info->sb->s_id;
375 
376 	va_start(args, fmt);
377 	vaf.va = &args;
378 
379 	errstr = btrfs_decode_error(errno);
380 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
381 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
382 			s_id, function, line, &vaf, errno, errstr);
383 
384 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
385 		   function, line, &vaf, errno, errstr);
386 	va_end(args);
387 	/* Caller calls BUG() */
388 }
389 
390 static void btrfs_put_super(struct super_block *sb)
391 {
392 	close_ctree(btrfs_sb(sb));
393 }
394 
395 enum {
396 	Opt_acl, Opt_noacl,
397 	Opt_clear_cache,
398 	Opt_commit_interval,
399 	Opt_compress,
400 	Opt_compress_force,
401 	Opt_compress_force_type,
402 	Opt_compress_type,
403 	Opt_degraded,
404 	Opt_device,
405 	Opt_fatal_errors,
406 	Opt_flushoncommit, Opt_noflushoncommit,
407 	Opt_max_inline,
408 	Opt_barrier, Opt_nobarrier,
409 	Opt_datacow, Opt_nodatacow,
410 	Opt_datasum, Opt_nodatasum,
411 	Opt_defrag, Opt_nodefrag,
412 	Opt_discard, Opt_nodiscard,
413 	Opt_discard_mode,
414 	Opt_norecovery,
415 	Opt_ratio,
416 	Opt_rescan_uuid_tree,
417 	Opt_skip_balance,
418 	Opt_space_cache, Opt_no_space_cache,
419 	Opt_space_cache_version,
420 	Opt_ssd, Opt_nossd,
421 	Opt_ssd_spread, Opt_nossd_spread,
422 	Opt_subvol,
423 	Opt_subvol_empty,
424 	Opt_subvolid,
425 	Opt_thread_pool,
426 	Opt_treelog, Opt_notreelog,
427 	Opt_user_subvol_rm_allowed,
428 
429 	/* Rescue options */
430 	Opt_rescue,
431 	Opt_usebackuproot,
432 	Opt_nologreplay,
433 	Opt_ignorebadroots,
434 	Opt_ignoredatacsums,
435 	Opt_rescue_all,
436 
437 	/* Deprecated options */
438 	Opt_recovery,
439 	Opt_inode_cache, Opt_noinode_cache,
440 
441 	/* Debugging options */
442 	Opt_check_integrity,
443 	Opt_check_integrity_including_extent_data,
444 	Opt_check_integrity_print_mask,
445 	Opt_enospc_debug, Opt_noenospc_debug,
446 #ifdef CONFIG_BTRFS_DEBUG
447 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
448 #endif
449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
450 	Opt_ref_verify,
451 #endif
452 	Opt_err,
453 };
454 
455 static const match_table_t tokens = {
456 	{Opt_acl, "acl"},
457 	{Opt_noacl, "noacl"},
458 	{Opt_clear_cache, "clear_cache"},
459 	{Opt_commit_interval, "commit=%u"},
460 	{Opt_compress, "compress"},
461 	{Opt_compress_type, "compress=%s"},
462 	{Opt_compress_force, "compress-force"},
463 	{Opt_compress_force_type, "compress-force=%s"},
464 	{Opt_degraded, "degraded"},
465 	{Opt_device, "device=%s"},
466 	{Opt_fatal_errors, "fatal_errors=%s"},
467 	{Opt_flushoncommit, "flushoncommit"},
468 	{Opt_noflushoncommit, "noflushoncommit"},
469 	{Opt_inode_cache, "inode_cache"},
470 	{Opt_noinode_cache, "noinode_cache"},
471 	{Opt_max_inline, "max_inline=%s"},
472 	{Opt_barrier, "barrier"},
473 	{Opt_nobarrier, "nobarrier"},
474 	{Opt_datacow, "datacow"},
475 	{Opt_nodatacow, "nodatacow"},
476 	{Opt_datasum, "datasum"},
477 	{Opt_nodatasum, "nodatasum"},
478 	{Opt_defrag, "autodefrag"},
479 	{Opt_nodefrag, "noautodefrag"},
480 	{Opt_discard, "discard"},
481 	{Opt_discard_mode, "discard=%s"},
482 	{Opt_nodiscard, "nodiscard"},
483 	{Opt_norecovery, "norecovery"},
484 	{Opt_ratio, "metadata_ratio=%u"},
485 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
486 	{Opt_skip_balance, "skip_balance"},
487 	{Opt_space_cache, "space_cache"},
488 	{Opt_no_space_cache, "nospace_cache"},
489 	{Opt_space_cache_version, "space_cache=%s"},
490 	{Opt_ssd, "ssd"},
491 	{Opt_nossd, "nossd"},
492 	{Opt_ssd_spread, "ssd_spread"},
493 	{Opt_nossd_spread, "nossd_spread"},
494 	{Opt_subvol, "subvol=%s"},
495 	{Opt_subvol_empty, "subvol="},
496 	{Opt_subvolid, "subvolid=%s"},
497 	{Opt_thread_pool, "thread_pool=%u"},
498 	{Opt_treelog, "treelog"},
499 	{Opt_notreelog, "notreelog"},
500 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
501 
502 	/* Rescue options */
503 	{Opt_rescue, "rescue=%s"},
504 	/* Deprecated, with alias rescue=nologreplay */
505 	{Opt_nologreplay, "nologreplay"},
506 	/* Deprecated, with alias rescue=usebackuproot */
507 	{Opt_usebackuproot, "usebackuproot"},
508 
509 	/* Deprecated options */
510 	{Opt_recovery, "recovery"},
511 
512 	/* Debugging options */
513 	{Opt_check_integrity, "check_int"},
514 	{Opt_check_integrity_including_extent_data, "check_int_data"},
515 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
516 	{Opt_enospc_debug, "enospc_debug"},
517 	{Opt_noenospc_debug, "noenospc_debug"},
518 #ifdef CONFIG_BTRFS_DEBUG
519 	{Opt_fragment_data, "fragment=data"},
520 	{Opt_fragment_metadata, "fragment=metadata"},
521 	{Opt_fragment_all, "fragment=all"},
522 #endif
523 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
524 	{Opt_ref_verify, "ref_verify"},
525 #endif
526 	{Opt_err, NULL},
527 };
528 
529 static const match_table_t rescue_tokens = {
530 	{Opt_usebackuproot, "usebackuproot"},
531 	{Opt_nologreplay, "nologreplay"},
532 	{Opt_ignorebadroots, "ignorebadroots"},
533 	{Opt_ignorebadroots, "ibadroots"},
534 	{Opt_ignoredatacsums, "ignoredatacsums"},
535 	{Opt_ignoredatacsums, "idatacsums"},
536 	{Opt_rescue_all, "all"},
537 	{Opt_err, NULL},
538 };
539 
540 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
541 			    const char *opt_name)
542 {
543 	if (fs_info->mount_opt & opt) {
544 		btrfs_err(fs_info, "%s must be used with ro mount option",
545 			  opt_name);
546 		return true;
547 	}
548 	return false;
549 }
550 
551 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
552 {
553 	char *opts;
554 	char *orig;
555 	char *p;
556 	substring_t args[MAX_OPT_ARGS];
557 	int ret = 0;
558 
559 	opts = kstrdup(options, GFP_KERNEL);
560 	if (!opts)
561 		return -ENOMEM;
562 	orig = opts;
563 
564 	while ((p = strsep(&opts, ":")) != NULL) {
565 		int token;
566 
567 		if (!*p)
568 			continue;
569 		token = match_token(p, rescue_tokens, args);
570 		switch (token){
571 		case Opt_usebackuproot:
572 			btrfs_info(info,
573 				   "trying to use backup root at mount time");
574 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
575 			break;
576 		case Opt_nologreplay:
577 			btrfs_set_and_info(info, NOLOGREPLAY,
578 					   "disabling log replay at mount time");
579 			break;
580 		case Opt_ignorebadroots:
581 			btrfs_set_and_info(info, IGNOREBADROOTS,
582 					   "ignoring bad roots");
583 			break;
584 		case Opt_ignoredatacsums:
585 			btrfs_set_and_info(info, IGNOREDATACSUMS,
586 					   "ignoring data csums");
587 			break;
588 		case Opt_rescue_all:
589 			btrfs_info(info, "enabling all of the rescue options");
590 			btrfs_set_and_info(info, IGNOREDATACSUMS,
591 					   "ignoring data csums");
592 			btrfs_set_and_info(info, IGNOREBADROOTS,
593 					   "ignoring bad roots");
594 			btrfs_set_and_info(info, NOLOGREPLAY,
595 					   "disabling log replay at mount time");
596 			break;
597 		case Opt_err:
598 			btrfs_info(info, "unrecognized rescue option '%s'", p);
599 			ret = -EINVAL;
600 			goto out;
601 		default:
602 			break;
603 		}
604 
605 	}
606 out:
607 	kfree(orig);
608 	return ret;
609 }
610 
611 /*
612  * Regular mount options parser.  Everything that is needed only when
613  * reading in a new superblock is parsed here.
614  * XXX JDM: This needs to be cleaned up for remount.
615  */
616 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
617 			unsigned long new_flags)
618 {
619 	substring_t args[MAX_OPT_ARGS];
620 	char *p, *num;
621 	int intarg;
622 	int ret = 0;
623 	char *compress_type;
624 	bool compress_force = false;
625 	enum btrfs_compression_type saved_compress_type;
626 	int saved_compress_level;
627 	bool saved_compress_force;
628 	int no_compress = 0;
629 
630 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
631 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
632 	else if (btrfs_free_space_cache_v1_active(info)) {
633 		if (btrfs_is_zoned(info)) {
634 			btrfs_info(info,
635 			"zoned: clearing existing space cache");
636 			btrfs_set_super_cache_generation(info->super_copy, 0);
637 		} else {
638 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
639 		}
640 	}
641 
642 	/*
643 	 * Even the options are empty, we still need to do extra check
644 	 * against new flags
645 	 */
646 	if (!options)
647 		goto check;
648 
649 	while ((p = strsep(&options, ",")) != NULL) {
650 		int token;
651 		if (!*p)
652 			continue;
653 
654 		token = match_token(p, tokens, args);
655 		switch (token) {
656 		case Opt_degraded:
657 			btrfs_info(info, "allowing degraded mounts");
658 			btrfs_set_opt(info->mount_opt, DEGRADED);
659 			break;
660 		case Opt_subvol:
661 		case Opt_subvol_empty:
662 		case Opt_subvolid:
663 		case Opt_device:
664 			/*
665 			 * These are parsed by btrfs_parse_subvol_options or
666 			 * btrfs_parse_device_options and can be ignored here.
667 			 */
668 			break;
669 		case Opt_nodatasum:
670 			btrfs_set_and_info(info, NODATASUM,
671 					   "setting nodatasum");
672 			break;
673 		case Opt_datasum:
674 			if (btrfs_test_opt(info, NODATASUM)) {
675 				if (btrfs_test_opt(info, NODATACOW))
676 					btrfs_info(info,
677 						   "setting datasum, datacow enabled");
678 				else
679 					btrfs_info(info, "setting datasum");
680 			}
681 			btrfs_clear_opt(info->mount_opt, NODATACOW);
682 			btrfs_clear_opt(info->mount_opt, NODATASUM);
683 			break;
684 		case Opt_nodatacow:
685 			if (!btrfs_test_opt(info, NODATACOW)) {
686 				if (!btrfs_test_opt(info, COMPRESS) ||
687 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
688 					btrfs_info(info,
689 						   "setting nodatacow, compression disabled");
690 				} else {
691 					btrfs_info(info, "setting nodatacow");
692 				}
693 			}
694 			btrfs_clear_opt(info->mount_opt, COMPRESS);
695 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
696 			btrfs_set_opt(info->mount_opt, NODATACOW);
697 			btrfs_set_opt(info->mount_opt, NODATASUM);
698 			break;
699 		case Opt_datacow:
700 			btrfs_clear_and_info(info, NODATACOW,
701 					     "setting datacow");
702 			break;
703 		case Opt_compress_force:
704 		case Opt_compress_force_type:
705 			compress_force = true;
706 			fallthrough;
707 		case Opt_compress:
708 		case Opt_compress_type:
709 			saved_compress_type = btrfs_test_opt(info,
710 							     COMPRESS) ?
711 				info->compress_type : BTRFS_COMPRESS_NONE;
712 			saved_compress_force =
713 				btrfs_test_opt(info, FORCE_COMPRESS);
714 			saved_compress_level = info->compress_level;
715 			if (token == Opt_compress ||
716 			    token == Opt_compress_force ||
717 			    strncmp(args[0].from, "zlib", 4) == 0) {
718 				compress_type = "zlib";
719 
720 				info->compress_type = BTRFS_COMPRESS_ZLIB;
721 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
722 				/*
723 				 * args[0] contains uninitialized data since
724 				 * for these tokens we don't expect any
725 				 * parameter.
726 				 */
727 				if (token != Opt_compress &&
728 				    token != Opt_compress_force)
729 					info->compress_level =
730 					  btrfs_compress_str2level(
731 							BTRFS_COMPRESS_ZLIB,
732 							args[0].from + 4);
733 				btrfs_set_opt(info->mount_opt, COMPRESS);
734 				btrfs_clear_opt(info->mount_opt, NODATACOW);
735 				btrfs_clear_opt(info->mount_opt, NODATASUM);
736 				no_compress = 0;
737 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
738 				compress_type = "lzo";
739 				info->compress_type = BTRFS_COMPRESS_LZO;
740 				info->compress_level = 0;
741 				btrfs_set_opt(info->mount_opt, COMPRESS);
742 				btrfs_clear_opt(info->mount_opt, NODATACOW);
743 				btrfs_clear_opt(info->mount_opt, NODATASUM);
744 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
745 				no_compress = 0;
746 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
747 				compress_type = "zstd";
748 				info->compress_type = BTRFS_COMPRESS_ZSTD;
749 				info->compress_level =
750 					btrfs_compress_str2level(
751 							 BTRFS_COMPRESS_ZSTD,
752 							 args[0].from + 4);
753 				btrfs_set_opt(info->mount_opt, COMPRESS);
754 				btrfs_clear_opt(info->mount_opt, NODATACOW);
755 				btrfs_clear_opt(info->mount_opt, NODATASUM);
756 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
757 				no_compress = 0;
758 			} else if (strncmp(args[0].from, "no", 2) == 0) {
759 				compress_type = "no";
760 				info->compress_level = 0;
761 				info->compress_type = 0;
762 				btrfs_clear_opt(info->mount_opt, COMPRESS);
763 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
764 				compress_force = false;
765 				no_compress++;
766 			} else {
767 				btrfs_err(info, "unrecognized compression value %s",
768 					  args[0].from);
769 				ret = -EINVAL;
770 				goto out;
771 			}
772 
773 			if (compress_force) {
774 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
775 			} else {
776 				/*
777 				 * If we remount from compress-force=xxx to
778 				 * compress=xxx, we need clear FORCE_COMPRESS
779 				 * flag, otherwise, there is no way for users
780 				 * to disable forcible compression separately.
781 				 */
782 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
783 			}
784 			if (no_compress == 1) {
785 				btrfs_info(info, "use no compression");
786 			} else if ((info->compress_type != saved_compress_type) ||
787 				   (compress_force != saved_compress_force) ||
788 				   (info->compress_level != saved_compress_level)) {
789 				btrfs_info(info, "%s %s compression, level %d",
790 					   (compress_force) ? "force" : "use",
791 					   compress_type, info->compress_level);
792 			}
793 			compress_force = false;
794 			break;
795 		case Opt_ssd:
796 			btrfs_set_and_info(info, SSD,
797 					   "enabling ssd optimizations");
798 			btrfs_clear_opt(info->mount_opt, NOSSD);
799 			break;
800 		case Opt_ssd_spread:
801 			btrfs_set_and_info(info, SSD,
802 					   "enabling ssd optimizations");
803 			btrfs_set_and_info(info, SSD_SPREAD,
804 					   "using spread ssd allocation scheme");
805 			btrfs_clear_opt(info->mount_opt, NOSSD);
806 			break;
807 		case Opt_nossd:
808 			btrfs_set_opt(info->mount_opt, NOSSD);
809 			btrfs_clear_and_info(info, SSD,
810 					     "not using ssd optimizations");
811 			fallthrough;
812 		case Opt_nossd_spread:
813 			btrfs_clear_and_info(info, SSD_SPREAD,
814 					     "not using spread ssd allocation scheme");
815 			break;
816 		case Opt_barrier:
817 			btrfs_clear_and_info(info, NOBARRIER,
818 					     "turning on barriers");
819 			break;
820 		case Opt_nobarrier:
821 			btrfs_set_and_info(info, NOBARRIER,
822 					   "turning off barriers");
823 			break;
824 		case Opt_thread_pool:
825 			ret = match_int(&args[0], &intarg);
826 			if (ret) {
827 				btrfs_err(info, "unrecognized thread_pool value %s",
828 					  args[0].from);
829 				goto out;
830 			} else if (intarg == 0) {
831 				btrfs_err(info, "invalid value 0 for thread_pool");
832 				ret = -EINVAL;
833 				goto out;
834 			}
835 			info->thread_pool_size = intarg;
836 			break;
837 		case Opt_max_inline:
838 			num = match_strdup(&args[0]);
839 			if (num) {
840 				info->max_inline = memparse(num, NULL);
841 				kfree(num);
842 
843 				if (info->max_inline) {
844 					info->max_inline = min_t(u64,
845 						info->max_inline,
846 						info->sectorsize);
847 				}
848 				btrfs_info(info, "max_inline at %llu",
849 					   info->max_inline);
850 			} else {
851 				ret = -ENOMEM;
852 				goto out;
853 			}
854 			break;
855 		case Opt_acl:
856 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
857 			info->sb->s_flags |= SB_POSIXACL;
858 			break;
859 #else
860 			btrfs_err(info, "support for ACL not compiled in!");
861 			ret = -EINVAL;
862 			goto out;
863 #endif
864 		case Opt_noacl:
865 			info->sb->s_flags &= ~SB_POSIXACL;
866 			break;
867 		case Opt_notreelog:
868 			btrfs_set_and_info(info, NOTREELOG,
869 					   "disabling tree log");
870 			break;
871 		case Opt_treelog:
872 			btrfs_clear_and_info(info, NOTREELOG,
873 					     "enabling tree log");
874 			break;
875 		case Opt_norecovery:
876 		case Opt_nologreplay:
877 			btrfs_warn(info,
878 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
879 			btrfs_set_and_info(info, NOLOGREPLAY,
880 					   "disabling log replay at mount time");
881 			break;
882 		case Opt_flushoncommit:
883 			btrfs_set_and_info(info, FLUSHONCOMMIT,
884 					   "turning on flush-on-commit");
885 			break;
886 		case Opt_noflushoncommit:
887 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
888 					     "turning off flush-on-commit");
889 			break;
890 		case Opt_ratio:
891 			ret = match_int(&args[0], &intarg);
892 			if (ret) {
893 				btrfs_err(info, "unrecognized metadata_ratio value %s",
894 					  args[0].from);
895 				goto out;
896 			}
897 			info->metadata_ratio = intarg;
898 			btrfs_info(info, "metadata ratio %u",
899 				   info->metadata_ratio);
900 			break;
901 		case Opt_discard:
902 		case Opt_discard_mode:
903 			if (token == Opt_discard ||
904 			    strcmp(args[0].from, "sync") == 0) {
905 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
906 				btrfs_set_and_info(info, DISCARD_SYNC,
907 						   "turning on sync discard");
908 			} else if (strcmp(args[0].from, "async") == 0) {
909 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
910 				btrfs_set_and_info(info, DISCARD_ASYNC,
911 						   "turning on async discard");
912 			} else {
913 				btrfs_err(info, "unrecognized discard mode value %s",
914 					  args[0].from);
915 				ret = -EINVAL;
916 				goto out;
917 			}
918 			break;
919 		case Opt_nodiscard:
920 			btrfs_clear_and_info(info, DISCARD_SYNC,
921 					     "turning off discard");
922 			btrfs_clear_and_info(info, DISCARD_ASYNC,
923 					     "turning off async discard");
924 			break;
925 		case Opt_space_cache:
926 		case Opt_space_cache_version:
927 			/*
928 			 * We already set FREE_SPACE_TREE above because we have
929 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
930 			 * to allow v1 to be set for extent tree v2, simply
931 			 * ignore this setting if we're extent tree v2.
932 			 */
933 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
934 				break;
935 			if (token == Opt_space_cache ||
936 			    strcmp(args[0].from, "v1") == 0) {
937 				btrfs_clear_opt(info->mount_opt,
938 						FREE_SPACE_TREE);
939 				btrfs_set_and_info(info, SPACE_CACHE,
940 					   "enabling disk space caching");
941 			} else if (strcmp(args[0].from, "v2") == 0) {
942 				btrfs_clear_opt(info->mount_opt,
943 						SPACE_CACHE);
944 				btrfs_set_and_info(info, FREE_SPACE_TREE,
945 						   "enabling free space tree");
946 			} else {
947 				btrfs_err(info, "unrecognized space_cache value %s",
948 					  args[0].from);
949 				ret = -EINVAL;
950 				goto out;
951 			}
952 			break;
953 		case Opt_rescan_uuid_tree:
954 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
955 			break;
956 		case Opt_no_space_cache:
957 			/*
958 			 * We cannot operate without the free space tree with
959 			 * extent tree v2, ignore this option.
960 			 */
961 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
962 				break;
963 			if (btrfs_test_opt(info, SPACE_CACHE)) {
964 				btrfs_clear_and_info(info, SPACE_CACHE,
965 					     "disabling disk space caching");
966 			}
967 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
968 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
969 					     "disabling free space tree");
970 			}
971 			break;
972 		case Opt_inode_cache:
973 		case Opt_noinode_cache:
974 			btrfs_warn(info,
975 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
976 			break;
977 		case Opt_clear_cache:
978 			/*
979 			 * We cannot clear the free space tree with extent tree
980 			 * v2, ignore this option.
981 			 */
982 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
983 				break;
984 			btrfs_set_and_info(info, CLEAR_CACHE,
985 					   "force clearing of disk cache");
986 			break;
987 		case Opt_user_subvol_rm_allowed:
988 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
989 			break;
990 		case Opt_enospc_debug:
991 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
992 			break;
993 		case Opt_noenospc_debug:
994 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
995 			break;
996 		case Opt_defrag:
997 			btrfs_set_and_info(info, AUTO_DEFRAG,
998 					   "enabling auto defrag");
999 			break;
1000 		case Opt_nodefrag:
1001 			btrfs_clear_and_info(info, AUTO_DEFRAG,
1002 					     "disabling auto defrag");
1003 			break;
1004 		case Opt_recovery:
1005 		case Opt_usebackuproot:
1006 			btrfs_warn(info,
1007 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
1008 				   token == Opt_recovery ? "recovery" :
1009 				   "usebackuproot");
1010 			btrfs_info(info,
1011 				   "trying to use backup root at mount time");
1012 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
1013 			break;
1014 		case Opt_skip_balance:
1015 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
1016 			break;
1017 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1018 		case Opt_check_integrity_including_extent_data:
1019 			btrfs_info(info,
1020 				   "enabling check integrity including extent data");
1021 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
1022 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1023 			break;
1024 		case Opt_check_integrity:
1025 			btrfs_info(info, "enabling check integrity");
1026 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1027 			break;
1028 		case Opt_check_integrity_print_mask:
1029 			ret = match_int(&args[0], &intarg);
1030 			if (ret) {
1031 				btrfs_err(info,
1032 				"unrecognized check_integrity_print_mask value %s",
1033 					args[0].from);
1034 				goto out;
1035 			}
1036 			info->check_integrity_print_mask = intarg;
1037 			btrfs_info(info, "check_integrity_print_mask 0x%x",
1038 				   info->check_integrity_print_mask);
1039 			break;
1040 #else
1041 		case Opt_check_integrity_including_extent_data:
1042 		case Opt_check_integrity:
1043 		case Opt_check_integrity_print_mask:
1044 			btrfs_err(info,
1045 				  "support for check_integrity* not compiled in!");
1046 			ret = -EINVAL;
1047 			goto out;
1048 #endif
1049 		case Opt_fatal_errors:
1050 			if (strcmp(args[0].from, "panic") == 0) {
1051 				btrfs_set_opt(info->mount_opt,
1052 					      PANIC_ON_FATAL_ERROR);
1053 			} else if (strcmp(args[0].from, "bug") == 0) {
1054 				btrfs_clear_opt(info->mount_opt,
1055 					      PANIC_ON_FATAL_ERROR);
1056 			} else {
1057 				btrfs_err(info, "unrecognized fatal_errors value %s",
1058 					  args[0].from);
1059 				ret = -EINVAL;
1060 				goto out;
1061 			}
1062 			break;
1063 		case Opt_commit_interval:
1064 			intarg = 0;
1065 			ret = match_int(&args[0], &intarg);
1066 			if (ret) {
1067 				btrfs_err(info, "unrecognized commit_interval value %s",
1068 					  args[0].from);
1069 				ret = -EINVAL;
1070 				goto out;
1071 			}
1072 			if (intarg == 0) {
1073 				btrfs_info(info,
1074 					   "using default commit interval %us",
1075 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
1076 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
1077 			} else if (intarg > 300) {
1078 				btrfs_warn(info, "excessive commit interval %d",
1079 					   intarg);
1080 			}
1081 			info->commit_interval = intarg;
1082 			break;
1083 		case Opt_rescue:
1084 			ret = parse_rescue_options(info, args[0].from);
1085 			if (ret < 0) {
1086 				btrfs_err(info, "unrecognized rescue value %s",
1087 					  args[0].from);
1088 				goto out;
1089 			}
1090 			break;
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 		case Opt_fragment_all:
1093 			btrfs_info(info, "fragmenting all space");
1094 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1095 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1096 			break;
1097 		case Opt_fragment_metadata:
1098 			btrfs_info(info, "fragmenting metadata");
1099 			btrfs_set_opt(info->mount_opt,
1100 				      FRAGMENT_METADATA);
1101 			break;
1102 		case Opt_fragment_data:
1103 			btrfs_info(info, "fragmenting data");
1104 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1105 			break;
1106 #endif
1107 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1108 		case Opt_ref_verify:
1109 			btrfs_info(info, "doing ref verification");
1110 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1111 			break;
1112 #endif
1113 		case Opt_err:
1114 			btrfs_err(info, "unrecognized mount option '%s'", p);
1115 			ret = -EINVAL;
1116 			goto out;
1117 		default:
1118 			break;
1119 		}
1120 	}
1121 check:
1122 	/* We're read-only, don't have to check. */
1123 	if (new_flags & SB_RDONLY)
1124 		goto out;
1125 
1126 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1127 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1128 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1129 		ret = -EINVAL;
1130 out:
1131 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1132 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1133 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1134 		btrfs_err(info, "cannot disable free space tree");
1135 		ret = -EINVAL;
1136 
1137 	}
1138 	if (!ret)
1139 		ret = btrfs_check_mountopts_zoned(info);
1140 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1141 		btrfs_info(info, "disk space caching is enabled");
1142 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1143 		btrfs_info(info, "using free space tree");
1144 	return ret;
1145 }
1146 
1147 /*
1148  * Parse mount options that are required early in the mount process.
1149  *
1150  * All other options will be parsed on much later in the mount process and
1151  * only when we need to allocate a new super block.
1152  */
1153 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1154 				      void *holder)
1155 {
1156 	substring_t args[MAX_OPT_ARGS];
1157 	char *device_name, *opts, *orig, *p;
1158 	struct btrfs_device *device = NULL;
1159 	int error = 0;
1160 
1161 	lockdep_assert_held(&uuid_mutex);
1162 
1163 	if (!options)
1164 		return 0;
1165 
1166 	/*
1167 	 * strsep changes the string, duplicate it because btrfs_parse_options
1168 	 * gets called later
1169 	 */
1170 	opts = kstrdup(options, GFP_KERNEL);
1171 	if (!opts)
1172 		return -ENOMEM;
1173 	orig = opts;
1174 
1175 	while ((p = strsep(&opts, ",")) != NULL) {
1176 		int token;
1177 
1178 		if (!*p)
1179 			continue;
1180 
1181 		token = match_token(p, tokens, args);
1182 		if (token == Opt_device) {
1183 			device_name = match_strdup(&args[0]);
1184 			if (!device_name) {
1185 				error = -ENOMEM;
1186 				goto out;
1187 			}
1188 			device = btrfs_scan_one_device(device_name, flags,
1189 					holder);
1190 			kfree(device_name);
1191 			if (IS_ERR(device)) {
1192 				error = PTR_ERR(device);
1193 				goto out;
1194 			}
1195 		}
1196 	}
1197 
1198 out:
1199 	kfree(orig);
1200 	return error;
1201 }
1202 
1203 /*
1204  * Parse mount options that are related to subvolume id
1205  *
1206  * The value is later passed to mount_subvol()
1207  */
1208 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1209 		u64 *subvol_objectid)
1210 {
1211 	substring_t args[MAX_OPT_ARGS];
1212 	char *opts, *orig, *p;
1213 	int error = 0;
1214 	u64 subvolid;
1215 
1216 	if (!options)
1217 		return 0;
1218 
1219 	/*
1220 	 * strsep changes the string, duplicate it because
1221 	 * btrfs_parse_device_options gets called later
1222 	 */
1223 	opts = kstrdup(options, GFP_KERNEL);
1224 	if (!opts)
1225 		return -ENOMEM;
1226 	orig = opts;
1227 
1228 	while ((p = strsep(&opts, ",")) != NULL) {
1229 		int token;
1230 		if (!*p)
1231 			continue;
1232 
1233 		token = match_token(p, tokens, args);
1234 		switch (token) {
1235 		case Opt_subvol:
1236 			kfree(*subvol_name);
1237 			*subvol_name = match_strdup(&args[0]);
1238 			if (!*subvol_name) {
1239 				error = -ENOMEM;
1240 				goto out;
1241 			}
1242 			break;
1243 		case Opt_subvolid:
1244 			error = match_u64(&args[0], &subvolid);
1245 			if (error)
1246 				goto out;
1247 
1248 			/* we want the original fs_tree */
1249 			if (subvolid == 0)
1250 				subvolid = BTRFS_FS_TREE_OBJECTID;
1251 
1252 			*subvol_objectid = subvolid;
1253 			break;
1254 		default:
1255 			break;
1256 		}
1257 	}
1258 
1259 out:
1260 	kfree(orig);
1261 	return error;
1262 }
1263 
1264 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1265 					  u64 subvol_objectid)
1266 {
1267 	struct btrfs_root *root = fs_info->tree_root;
1268 	struct btrfs_root *fs_root = NULL;
1269 	struct btrfs_root_ref *root_ref;
1270 	struct btrfs_inode_ref *inode_ref;
1271 	struct btrfs_key key;
1272 	struct btrfs_path *path = NULL;
1273 	char *name = NULL, *ptr;
1274 	u64 dirid;
1275 	int len;
1276 	int ret;
1277 
1278 	path = btrfs_alloc_path();
1279 	if (!path) {
1280 		ret = -ENOMEM;
1281 		goto err;
1282 	}
1283 
1284 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1285 	if (!name) {
1286 		ret = -ENOMEM;
1287 		goto err;
1288 	}
1289 	ptr = name + PATH_MAX - 1;
1290 	ptr[0] = '\0';
1291 
1292 	/*
1293 	 * Walk up the subvolume trees in the tree of tree roots by root
1294 	 * backrefs until we hit the top-level subvolume.
1295 	 */
1296 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1297 		key.objectid = subvol_objectid;
1298 		key.type = BTRFS_ROOT_BACKREF_KEY;
1299 		key.offset = (u64)-1;
1300 
1301 		ret = btrfs_search_backwards(root, &key, path);
1302 		if (ret < 0) {
1303 			goto err;
1304 		} else if (ret > 0) {
1305 			ret = -ENOENT;
1306 			goto err;
1307 		}
1308 
1309 		subvol_objectid = key.offset;
1310 
1311 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1312 					  struct btrfs_root_ref);
1313 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1314 		ptr -= len + 1;
1315 		if (ptr < name) {
1316 			ret = -ENAMETOOLONG;
1317 			goto err;
1318 		}
1319 		read_extent_buffer(path->nodes[0], ptr + 1,
1320 				   (unsigned long)(root_ref + 1), len);
1321 		ptr[0] = '/';
1322 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1323 		btrfs_release_path(path);
1324 
1325 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1326 		if (IS_ERR(fs_root)) {
1327 			ret = PTR_ERR(fs_root);
1328 			fs_root = NULL;
1329 			goto err;
1330 		}
1331 
1332 		/*
1333 		 * Walk up the filesystem tree by inode refs until we hit the
1334 		 * root directory.
1335 		 */
1336 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1337 			key.objectid = dirid;
1338 			key.type = BTRFS_INODE_REF_KEY;
1339 			key.offset = (u64)-1;
1340 
1341 			ret = btrfs_search_backwards(fs_root, &key, path);
1342 			if (ret < 0) {
1343 				goto err;
1344 			} else if (ret > 0) {
1345 				ret = -ENOENT;
1346 				goto err;
1347 			}
1348 
1349 			dirid = key.offset;
1350 
1351 			inode_ref = btrfs_item_ptr(path->nodes[0],
1352 						   path->slots[0],
1353 						   struct btrfs_inode_ref);
1354 			len = btrfs_inode_ref_name_len(path->nodes[0],
1355 						       inode_ref);
1356 			ptr -= len + 1;
1357 			if (ptr < name) {
1358 				ret = -ENAMETOOLONG;
1359 				goto err;
1360 			}
1361 			read_extent_buffer(path->nodes[0], ptr + 1,
1362 					   (unsigned long)(inode_ref + 1), len);
1363 			ptr[0] = '/';
1364 			btrfs_release_path(path);
1365 		}
1366 		btrfs_put_root(fs_root);
1367 		fs_root = NULL;
1368 	}
1369 
1370 	btrfs_free_path(path);
1371 	if (ptr == name + PATH_MAX - 1) {
1372 		name[0] = '/';
1373 		name[1] = '\0';
1374 	} else {
1375 		memmove(name, ptr, name + PATH_MAX - ptr);
1376 	}
1377 	return name;
1378 
1379 err:
1380 	btrfs_put_root(fs_root);
1381 	btrfs_free_path(path);
1382 	kfree(name);
1383 	return ERR_PTR(ret);
1384 }
1385 
1386 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1387 {
1388 	struct btrfs_root *root = fs_info->tree_root;
1389 	struct btrfs_dir_item *di;
1390 	struct btrfs_path *path;
1391 	struct btrfs_key location;
1392 	u64 dir_id;
1393 
1394 	path = btrfs_alloc_path();
1395 	if (!path)
1396 		return -ENOMEM;
1397 
1398 	/*
1399 	 * Find the "default" dir item which points to the root item that we
1400 	 * will mount by default if we haven't been given a specific subvolume
1401 	 * to mount.
1402 	 */
1403 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1404 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1405 	if (IS_ERR(di)) {
1406 		btrfs_free_path(path);
1407 		return PTR_ERR(di);
1408 	}
1409 	if (!di) {
1410 		/*
1411 		 * Ok the default dir item isn't there.  This is weird since
1412 		 * it's always been there, but don't freak out, just try and
1413 		 * mount the top-level subvolume.
1414 		 */
1415 		btrfs_free_path(path);
1416 		*objectid = BTRFS_FS_TREE_OBJECTID;
1417 		return 0;
1418 	}
1419 
1420 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1421 	btrfs_free_path(path);
1422 	*objectid = location.objectid;
1423 	return 0;
1424 }
1425 
1426 static int btrfs_fill_super(struct super_block *sb,
1427 			    struct btrfs_fs_devices *fs_devices,
1428 			    void *data)
1429 {
1430 	struct inode *inode;
1431 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1432 	int err;
1433 
1434 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1435 	sb->s_magic = BTRFS_SUPER_MAGIC;
1436 	sb->s_op = &btrfs_super_ops;
1437 	sb->s_d_op = &btrfs_dentry_operations;
1438 	sb->s_export_op = &btrfs_export_ops;
1439 #ifdef CONFIG_FS_VERITY
1440 	sb->s_vop = &btrfs_verityops;
1441 #endif
1442 	sb->s_xattr = btrfs_xattr_handlers;
1443 	sb->s_time_gran = 1;
1444 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1445 	sb->s_flags |= SB_POSIXACL;
1446 #endif
1447 	sb->s_flags |= SB_I_VERSION;
1448 	sb->s_iflags |= SB_I_CGROUPWB;
1449 
1450 	err = super_setup_bdi(sb);
1451 	if (err) {
1452 		btrfs_err(fs_info, "super_setup_bdi failed");
1453 		return err;
1454 	}
1455 
1456 	err = open_ctree(sb, fs_devices, (char *)data);
1457 	if (err) {
1458 		btrfs_err(fs_info, "open_ctree failed");
1459 		return err;
1460 	}
1461 
1462 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1463 	if (IS_ERR(inode)) {
1464 		err = PTR_ERR(inode);
1465 		goto fail_close;
1466 	}
1467 
1468 	sb->s_root = d_make_root(inode);
1469 	if (!sb->s_root) {
1470 		err = -ENOMEM;
1471 		goto fail_close;
1472 	}
1473 
1474 	sb->s_flags |= SB_ACTIVE;
1475 	return 0;
1476 
1477 fail_close:
1478 	close_ctree(fs_info);
1479 	return err;
1480 }
1481 
1482 int btrfs_sync_fs(struct super_block *sb, int wait)
1483 {
1484 	struct btrfs_trans_handle *trans;
1485 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1486 	struct btrfs_root *root = fs_info->tree_root;
1487 
1488 	trace_btrfs_sync_fs(fs_info, wait);
1489 
1490 	if (!wait) {
1491 		filemap_flush(fs_info->btree_inode->i_mapping);
1492 		return 0;
1493 	}
1494 
1495 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1496 
1497 	trans = btrfs_attach_transaction_barrier(root);
1498 	if (IS_ERR(trans)) {
1499 		/* no transaction, don't bother */
1500 		if (PTR_ERR(trans) == -ENOENT) {
1501 			/*
1502 			 * Exit unless we have some pending changes
1503 			 * that need to go through commit
1504 			 */
1505 			if (fs_info->pending_changes == 0)
1506 				return 0;
1507 			/*
1508 			 * A non-blocking test if the fs is frozen. We must not
1509 			 * start a new transaction here otherwise a deadlock
1510 			 * happens. The pending operations are delayed to the
1511 			 * next commit after thawing.
1512 			 */
1513 			if (sb_start_write_trylock(sb))
1514 				sb_end_write(sb);
1515 			else
1516 				return 0;
1517 			trans = btrfs_start_transaction(root, 0);
1518 		}
1519 		if (IS_ERR(trans))
1520 			return PTR_ERR(trans);
1521 	}
1522 	return btrfs_commit_transaction(trans);
1523 }
1524 
1525 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1526 {
1527 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1528 	*printed = true;
1529 }
1530 
1531 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1532 {
1533 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1534 	const char *compress_type;
1535 	const char *subvol_name;
1536 	bool printed = false;
1537 
1538 	if (btrfs_test_opt(info, DEGRADED))
1539 		seq_puts(seq, ",degraded");
1540 	if (btrfs_test_opt(info, NODATASUM))
1541 		seq_puts(seq, ",nodatasum");
1542 	if (btrfs_test_opt(info, NODATACOW))
1543 		seq_puts(seq, ",nodatacow");
1544 	if (btrfs_test_opt(info, NOBARRIER))
1545 		seq_puts(seq, ",nobarrier");
1546 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1547 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1548 	if (info->thread_pool_size !=  min_t(unsigned long,
1549 					     num_online_cpus() + 2, 8))
1550 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1551 	if (btrfs_test_opt(info, COMPRESS)) {
1552 		compress_type = btrfs_compress_type2str(info->compress_type);
1553 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1554 			seq_printf(seq, ",compress-force=%s", compress_type);
1555 		else
1556 			seq_printf(seq, ",compress=%s", compress_type);
1557 		if (info->compress_level)
1558 			seq_printf(seq, ":%d", info->compress_level);
1559 	}
1560 	if (btrfs_test_opt(info, NOSSD))
1561 		seq_puts(seq, ",nossd");
1562 	if (btrfs_test_opt(info, SSD_SPREAD))
1563 		seq_puts(seq, ",ssd_spread");
1564 	else if (btrfs_test_opt(info, SSD))
1565 		seq_puts(seq, ",ssd");
1566 	if (btrfs_test_opt(info, NOTREELOG))
1567 		seq_puts(seq, ",notreelog");
1568 	if (btrfs_test_opt(info, NOLOGREPLAY))
1569 		print_rescue_option(seq, "nologreplay", &printed);
1570 	if (btrfs_test_opt(info, USEBACKUPROOT))
1571 		print_rescue_option(seq, "usebackuproot", &printed);
1572 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1573 		print_rescue_option(seq, "ignorebadroots", &printed);
1574 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1575 		print_rescue_option(seq, "ignoredatacsums", &printed);
1576 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1577 		seq_puts(seq, ",flushoncommit");
1578 	if (btrfs_test_opt(info, DISCARD_SYNC))
1579 		seq_puts(seq, ",discard");
1580 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1581 		seq_puts(seq, ",discard=async");
1582 	if (!(info->sb->s_flags & SB_POSIXACL))
1583 		seq_puts(seq, ",noacl");
1584 	if (btrfs_free_space_cache_v1_active(info))
1585 		seq_puts(seq, ",space_cache");
1586 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1587 		seq_puts(seq, ",space_cache=v2");
1588 	else
1589 		seq_puts(seq, ",nospace_cache");
1590 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1591 		seq_puts(seq, ",rescan_uuid_tree");
1592 	if (btrfs_test_opt(info, CLEAR_CACHE))
1593 		seq_puts(seq, ",clear_cache");
1594 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1595 		seq_puts(seq, ",user_subvol_rm_allowed");
1596 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1597 		seq_puts(seq, ",enospc_debug");
1598 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1599 		seq_puts(seq, ",autodefrag");
1600 	if (btrfs_test_opt(info, SKIP_BALANCE))
1601 		seq_puts(seq, ",skip_balance");
1602 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1603 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1604 		seq_puts(seq, ",check_int_data");
1605 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1606 		seq_puts(seq, ",check_int");
1607 	if (info->check_integrity_print_mask)
1608 		seq_printf(seq, ",check_int_print_mask=%d",
1609 				info->check_integrity_print_mask);
1610 #endif
1611 	if (info->metadata_ratio)
1612 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1613 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1614 		seq_puts(seq, ",fatal_errors=panic");
1615 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1616 		seq_printf(seq, ",commit=%u", info->commit_interval);
1617 #ifdef CONFIG_BTRFS_DEBUG
1618 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1619 		seq_puts(seq, ",fragment=data");
1620 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1621 		seq_puts(seq, ",fragment=metadata");
1622 #endif
1623 	if (btrfs_test_opt(info, REF_VERIFY))
1624 		seq_puts(seq, ",ref_verify");
1625 	seq_printf(seq, ",subvolid=%llu",
1626 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1627 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1628 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1629 	if (!IS_ERR(subvol_name)) {
1630 		seq_puts(seq, ",subvol=");
1631 		seq_escape(seq, subvol_name, " \t\n\\");
1632 		kfree(subvol_name);
1633 	}
1634 	return 0;
1635 }
1636 
1637 static int btrfs_test_super(struct super_block *s, void *data)
1638 {
1639 	struct btrfs_fs_info *p = data;
1640 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1641 
1642 	return fs_info->fs_devices == p->fs_devices;
1643 }
1644 
1645 static int btrfs_set_super(struct super_block *s, void *data)
1646 {
1647 	int err = set_anon_super(s, data);
1648 	if (!err)
1649 		s->s_fs_info = data;
1650 	return err;
1651 }
1652 
1653 /*
1654  * subvolumes are identified by ino 256
1655  */
1656 static inline int is_subvolume_inode(struct inode *inode)
1657 {
1658 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1659 		return 1;
1660 	return 0;
1661 }
1662 
1663 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1664 				   struct vfsmount *mnt)
1665 {
1666 	struct dentry *root;
1667 	int ret;
1668 
1669 	if (!subvol_name) {
1670 		if (!subvol_objectid) {
1671 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1672 							  &subvol_objectid);
1673 			if (ret) {
1674 				root = ERR_PTR(ret);
1675 				goto out;
1676 			}
1677 		}
1678 		subvol_name = btrfs_get_subvol_name_from_objectid(
1679 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1680 		if (IS_ERR(subvol_name)) {
1681 			root = ERR_CAST(subvol_name);
1682 			subvol_name = NULL;
1683 			goto out;
1684 		}
1685 
1686 	}
1687 
1688 	root = mount_subtree(mnt, subvol_name);
1689 	/* mount_subtree() drops our reference on the vfsmount. */
1690 	mnt = NULL;
1691 
1692 	if (!IS_ERR(root)) {
1693 		struct super_block *s = root->d_sb;
1694 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1695 		struct inode *root_inode = d_inode(root);
1696 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1697 
1698 		ret = 0;
1699 		if (!is_subvolume_inode(root_inode)) {
1700 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1701 			       subvol_name);
1702 			ret = -EINVAL;
1703 		}
1704 		if (subvol_objectid && root_objectid != subvol_objectid) {
1705 			/*
1706 			 * This will also catch a race condition where a
1707 			 * subvolume which was passed by ID is renamed and
1708 			 * another subvolume is renamed over the old location.
1709 			 */
1710 			btrfs_err(fs_info,
1711 				  "subvol '%s' does not match subvolid %llu",
1712 				  subvol_name, subvol_objectid);
1713 			ret = -EINVAL;
1714 		}
1715 		if (ret) {
1716 			dput(root);
1717 			root = ERR_PTR(ret);
1718 			deactivate_locked_super(s);
1719 		}
1720 	}
1721 
1722 out:
1723 	mntput(mnt);
1724 	kfree(subvol_name);
1725 	return root;
1726 }
1727 
1728 /*
1729  * Find a superblock for the given device / mount point.
1730  *
1731  * Note: This is based on mount_bdev from fs/super.c with a few additions
1732  *       for multiple device setup.  Make sure to keep it in sync.
1733  */
1734 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1735 		int flags, const char *device_name, void *data)
1736 {
1737 	struct block_device *bdev = NULL;
1738 	struct super_block *s;
1739 	struct btrfs_device *device = NULL;
1740 	struct btrfs_fs_devices *fs_devices = NULL;
1741 	struct btrfs_fs_info *fs_info = NULL;
1742 	void *new_sec_opts = NULL;
1743 	fmode_t mode = FMODE_READ;
1744 	int error = 0;
1745 
1746 	if (!(flags & SB_RDONLY))
1747 		mode |= FMODE_WRITE;
1748 
1749 	if (data) {
1750 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1751 		if (error)
1752 			return ERR_PTR(error);
1753 	}
1754 
1755 	/*
1756 	 * Setup a dummy root and fs_info for test/set super.  This is because
1757 	 * we don't actually fill this stuff out until open_ctree, but we need
1758 	 * then open_ctree will properly initialize the file system specific
1759 	 * settings later.  btrfs_init_fs_info initializes the static elements
1760 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1761 	 * superblock with our given fs_devices later on at sget() time.
1762 	 */
1763 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1764 	if (!fs_info) {
1765 		error = -ENOMEM;
1766 		goto error_sec_opts;
1767 	}
1768 	btrfs_init_fs_info(fs_info);
1769 
1770 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1771 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1772 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1773 		error = -ENOMEM;
1774 		goto error_fs_info;
1775 	}
1776 
1777 	mutex_lock(&uuid_mutex);
1778 	error = btrfs_parse_device_options(data, mode, fs_type);
1779 	if (error) {
1780 		mutex_unlock(&uuid_mutex);
1781 		goto error_fs_info;
1782 	}
1783 
1784 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1785 	if (IS_ERR(device)) {
1786 		mutex_unlock(&uuid_mutex);
1787 		error = PTR_ERR(device);
1788 		goto error_fs_info;
1789 	}
1790 
1791 	fs_devices = device->fs_devices;
1792 	fs_info->fs_devices = fs_devices;
1793 
1794 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1795 	mutex_unlock(&uuid_mutex);
1796 	if (error)
1797 		goto error_fs_info;
1798 
1799 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1800 		error = -EACCES;
1801 		goto error_close_devices;
1802 	}
1803 
1804 	bdev = fs_devices->latest_dev->bdev;
1805 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1806 		 fs_info);
1807 	if (IS_ERR(s)) {
1808 		error = PTR_ERR(s);
1809 		goto error_close_devices;
1810 	}
1811 
1812 	if (s->s_root) {
1813 		btrfs_close_devices(fs_devices);
1814 		btrfs_free_fs_info(fs_info);
1815 		if ((flags ^ s->s_flags) & SB_RDONLY)
1816 			error = -EBUSY;
1817 	} else {
1818 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1819 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1820 					s->s_id);
1821 		btrfs_sb(s)->bdev_holder = fs_type;
1822 		if (!strstr(crc32c_impl(), "generic"))
1823 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1824 		error = btrfs_fill_super(s, fs_devices, data);
1825 	}
1826 	if (!error)
1827 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1828 	security_free_mnt_opts(&new_sec_opts);
1829 	if (error) {
1830 		deactivate_locked_super(s);
1831 		return ERR_PTR(error);
1832 	}
1833 
1834 	return dget(s->s_root);
1835 
1836 error_close_devices:
1837 	btrfs_close_devices(fs_devices);
1838 error_fs_info:
1839 	btrfs_free_fs_info(fs_info);
1840 error_sec_opts:
1841 	security_free_mnt_opts(&new_sec_opts);
1842 	return ERR_PTR(error);
1843 }
1844 
1845 /*
1846  * Mount function which is called by VFS layer.
1847  *
1848  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1849  * which needs vfsmount* of device's root (/).  This means device's root has to
1850  * be mounted internally in any case.
1851  *
1852  * Operation flow:
1853  *   1. Parse subvol id related options for later use in mount_subvol().
1854  *
1855  *   2. Mount device's root (/) by calling vfs_kern_mount().
1856  *
1857  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1858  *      first place. In order to avoid calling btrfs_mount() again, we use
1859  *      different file_system_type which is not registered to VFS by
1860  *      register_filesystem() (btrfs_root_fs_type). As a result,
1861  *      btrfs_mount_root() is called. The return value will be used by
1862  *      mount_subtree() in mount_subvol().
1863  *
1864  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1865  *      "btrfs subvolume set-default", mount_subvol() is called always.
1866  */
1867 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1868 		const char *device_name, void *data)
1869 {
1870 	struct vfsmount *mnt_root;
1871 	struct dentry *root;
1872 	char *subvol_name = NULL;
1873 	u64 subvol_objectid = 0;
1874 	int error = 0;
1875 
1876 	error = btrfs_parse_subvol_options(data, &subvol_name,
1877 					&subvol_objectid);
1878 	if (error) {
1879 		kfree(subvol_name);
1880 		return ERR_PTR(error);
1881 	}
1882 
1883 	/* mount device's root (/) */
1884 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1885 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1886 		if (flags & SB_RDONLY) {
1887 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1888 				flags & ~SB_RDONLY, device_name, data);
1889 		} else {
1890 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1891 				flags | SB_RDONLY, device_name, data);
1892 			if (IS_ERR(mnt_root)) {
1893 				root = ERR_CAST(mnt_root);
1894 				kfree(subvol_name);
1895 				goto out;
1896 			}
1897 
1898 			down_write(&mnt_root->mnt_sb->s_umount);
1899 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1900 			up_write(&mnt_root->mnt_sb->s_umount);
1901 			if (error < 0) {
1902 				root = ERR_PTR(error);
1903 				mntput(mnt_root);
1904 				kfree(subvol_name);
1905 				goto out;
1906 			}
1907 		}
1908 	}
1909 	if (IS_ERR(mnt_root)) {
1910 		root = ERR_CAST(mnt_root);
1911 		kfree(subvol_name);
1912 		goto out;
1913 	}
1914 
1915 	/* mount_subvol() will free subvol_name and mnt_root */
1916 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1917 
1918 out:
1919 	return root;
1920 }
1921 
1922 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1923 				     u32 new_pool_size, u32 old_pool_size)
1924 {
1925 	if (new_pool_size == old_pool_size)
1926 		return;
1927 
1928 	fs_info->thread_pool_size = new_pool_size;
1929 
1930 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1931 	       old_pool_size, new_pool_size);
1932 
1933 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1934 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1935 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1936 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1937 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1938 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1939 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1940 }
1941 
1942 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1943 				       unsigned long old_opts, int flags)
1944 {
1945 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1946 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1947 	     (flags & SB_RDONLY))) {
1948 		/* wait for any defraggers to finish */
1949 		wait_event(fs_info->transaction_wait,
1950 			   (atomic_read(&fs_info->defrag_running) == 0));
1951 		if (flags & SB_RDONLY)
1952 			sync_filesystem(fs_info->sb);
1953 	}
1954 }
1955 
1956 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1957 					 unsigned long old_opts)
1958 {
1959 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1960 
1961 	/*
1962 	 * We need to cleanup all defragable inodes if the autodefragment is
1963 	 * close or the filesystem is read only.
1964 	 */
1965 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1966 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1967 		btrfs_cleanup_defrag_inodes(fs_info);
1968 	}
1969 
1970 	/* If we toggled discard async */
1971 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1972 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1973 		btrfs_discard_resume(fs_info);
1974 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1975 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1976 		btrfs_discard_cleanup(fs_info);
1977 
1978 	/* If we toggled space cache */
1979 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1980 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1981 }
1982 
1983 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1984 {
1985 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1986 	unsigned old_flags = sb->s_flags;
1987 	unsigned long old_opts = fs_info->mount_opt;
1988 	unsigned long old_compress_type = fs_info->compress_type;
1989 	u64 old_max_inline = fs_info->max_inline;
1990 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1991 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1992 	int ret;
1993 
1994 	sync_filesystem(sb);
1995 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1996 
1997 	if (data) {
1998 		void *new_sec_opts = NULL;
1999 
2000 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
2001 		if (!ret)
2002 			ret = security_sb_remount(sb, new_sec_opts);
2003 		security_free_mnt_opts(&new_sec_opts);
2004 		if (ret)
2005 			goto restore;
2006 	}
2007 
2008 	ret = btrfs_parse_options(fs_info, data, *flags);
2009 	if (ret)
2010 		goto restore;
2011 
2012 	/* V1 cache is not supported for subpage mount. */
2013 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
2014 		btrfs_warn(fs_info,
2015 	"v1 space cache is not supported for page size %lu with sectorsize %u",
2016 			   PAGE_SIZE, fs_info->sectorsize);
2017 		ret = -EINVAL;
2018 		goto restore;
2019 	}
2020 	btrfs_remount_begin(fs_info, old_opts, *flags);
2021 	btrfs_resize_thread_pool(fs_info,
2022 		fs_info->thread_pool_size, old_thread_pool_size);
2023 
2024 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
2025 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2026 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
2027 		btrfs_warn(fs_info,
2028 		"remount supports changing free space tree only from ro to rw");
2029 		/* Make sure free space cache options match the state on disk */
2030 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2031 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2032 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
2033 		}
2034 		if (btrfs_free_space_cache_v1_active(fs_info)) {
2035 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2036 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
2037 		}
2038 	}
2039 
2040 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
2041 		goto out;
2042 
2043 	if (*flags & SB_RDONLY) {
2044 		/*
2045 		 * this also happens on 'umount -rf' or on shutdown, when
2046 		 * the filesystem is busy.
2047 		 */
2048 		cancel_work_sync(&fs_info->async_reclaim_work);
2049 		cancel_work_sync(&fs_info->async_data_reclaim_work);
2050 
2051 		btrfs_discard_cleanup(fs_info);
2052 
2053 		/* wait for the uuid_scan task to finish */
2054 		down(&fs_info->uuid_tree_rescan_sem);
2055 		/* avoid complains from lockdep et al. */
2056 		up(&fs_info->uuid_tree_rescan_sem);
2057 
2058 		btrfs_set_sb_rdonly(sb);
2059 
2060 		/*
2061 		 * Setting SB_RDONLY will put the cleaner thread to
2062 		 * sleep at the next loop if it's already active.
2063 		 * If it's already asleep, we'll leave unused block
2064 		 * groups on disk until we're mounted read-write again
2065 		 * unless we clean them up here.
2066 		 */
2067 		btrfs_delete_unused_bgs(fs_info);
2068 
2069 		/*
2070 		 * The cleaner task could be already running before we set the
2071 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
2072 		 * We must make sure that after we finish the remount, i.e. after
2073 		 * we call btrfs_commit_super(), the cleaner can no longer start
2074 		 * a transaction - either because it was dropping a dead root,
2075 		 * running delayed iputs or deleting an unused block group (the
2076 		 * cleaner picked a block group from the list of unused block
2077 		 * groups before we were able to in the previous call to
2078 		 * btrfs_delete_unused_bgs()).
2079 		 */
2080 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2081 			    TASK_UNINTERRUPTIBLE);
2082 
2083 		/*
2084 		 * We've set the superblock to RO mode, so we might have made
2085 		 * the cleaner task sleep without running all pending delayed
2086 		 * iputs. Go through all the delayed iputs here, so that if an
2087 		 * unmount happens without remounting RW we don't end up at
2088 		 * finishing close_ctree() with a non-empty list of delayed
2089 		 * iputs.
2090 		 */
2091 		btrfs_run_delayed_iputs(fs_info);
2092 
2093 		btrfs_dev_replace_suspend_for_unmount(fs_info);
2094 		btrfs_scrub_cancel(fs_info);
2095 		btrfs_pause_balance(fs_info);
2096 
2097 		/*
2098 		 * Pause the qgroup rescan worker if it is running. We don't want
2099 		 * it to be still running after we are in RO mode, as after that,
2100 		 * by the time we unmount, it might have left a transaction open,
2101 		 * so we would leak the transaction and/or crash.
2102 		 */
2103 		btrfs_qgroup_wait_for_completion(fs_info, false);
2104 
2105 		ret = btrfs_commit_super(fs_info);
2106 		if (ret)
2107 			goto restore;
2108 	} else {
2109 		if (BTRFS_FS_ERROR(fs_info)) {
2110 			btrfs_err(fs_info,
2111 				"Remounting read-write after error is not allowed");
2112 			ret = -EINVAL;
2113 			goto restore;
2114 		}
2115 		if (fs_info->fs_devices->rw_devices == 0) {
2116 			ret = -EACCES;
2117 			goto restore;
2118 		}
2119 
2120 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2121 			btrfs_warn(fs_info,
2122 		"too many missing devices, writable remount is not allowed");
2123 			ret = -EACCES;
2124 			goto restore;
2125 		}
2126 
2127 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2128 			btrfs_warn(fs_info,
2129 		"mount required to replay tree-log, cannot remount read-write");
2130 			ret = -EINVAL;
2131 			goto restore;
2132 		}
2133 
2134 		/*
2135 		 * NOTE: when remounting with a change that does writes, don't
2136 		 * put it anywhere above this point, as we are not sure to be
2137 		 * safe to write until we pass the above checks.
2138 		 */
2139 		ret = btrfs_start_pre_rw_mount(fs_info);
2140 		if (ret)
2141 			goto restore;
2142 
2143 		btrfs_clear_sb_rdonly(sb);
2144 
2145 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2146 	}
2147 out:
2148 	/*
2149 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2150 	 * since the absence of the flag means it can be toggled off by remount.
2151 	 */
2152 	*flags |= SB_I_VERSION;
2153 
2154 	wake_up_process(fs_info->transaction_kthread);
2155 	btrfs_remount_cleanup(fs_info, old_opts);
2156 	btrfs_clear_oneshot_options(fs_info);
2157 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2158 
2159 	return 0;
2160 
2161 restore:
2162 	/* We've hit an error - don't reset SB_RDONLY */
2163 	if (sb_rdonly(sb))
2164 		old_flags |= SB_RDONLY;
2165 	if (!(old_flags & SB_RDONLY))
2166 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2167 	sb->s_flags = old_flags;
2168 	fs_info->mount_opt = old_opts;
2169 	fs_info->compress_type = old_compress_type;
2170 	fs_info->max_inline = old_max_inline;
2171 	btrfs_resize_thread_pool(fs_info,
2172 		old_thread_pool_size, fs_info->thread_pool_size);
2173 	fs_info->metadata_ratio = old_metadata_ratio;
2174 	btrfs_remount_cleanup(fs_info, old_opts);
2175 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2176 
2177 	return ret;
2178 }
2179 
2180 /* Used to sort the devices by max_avail(descending sort) */
2181 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2182 {
2183 	const struct btrfs_device_info *dev_info1 = a;
2184 	const struct btrfs_device_info *dev_info2 = b;
2185 
2186 	if (dev_info1->max_avail > dev_info2->max_avail)
2187 		return -1;
2188 	else if (dev_info1->max_avail < dev_info2->max_avail)
2189 		return 1;
2190 	return 0;
2191 }
2192 
2193 /*
2194  * sort the devices by max_avail, in which max free extent size of each device
2195  * is stored.(Descending Sort)
2196  */
2197 static inline void btrfs_descending_sort_devices(
2198 					struct btrfs_device_info *devices,
2199 					size_t nr_devices)
2200 {
2201 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2202 	     btrfs_cmp_device_free_bytes, NULL);
2203 }
2204 
2205 /*
2206  * The helper to calc the free space on the devices that can be used to store
2207  * file data.
2208  */
2209 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2210 					      u64 *free_bytes)
2211 {
2212 	struct btrfs_device_info *devices_info;
2213 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2214 	struct btrfs_device *device;
2215 	u64 type;
2216 	u64 avail_space;
2217 	u64 min_stripe_size;
2218 	int num_stripes = 1;
2219 	int i = 0, nr_devices;
2220 	const struct btrfs_raid_attr *rattr;
2221 
2222 	/*
2223 	 * We aren't under the device list lock, so this is racy-ish, but good
2224 	 * enough for our purposes.
2225 	 */
2226 	nr_devices = fs_info->fs_devices->open_devices;
2227 	if (!nr_devices) {
2228 		smp_mb();
2229 		nr_devices = fs_info->fs_devices->open_devices;
2230 		ASSERT(nr_devices);
2231 		if (!nr_devices) {
2232 			*free_bytes = 0;
2233 			return 0;
2234 		}
2235 	}
2236 
2237 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2238 			       GFP_KERNEL);
2239 	if (!devices_info)
2240 		return -ENOMEM;
2241 
2242 	/* calc min stripe number for data space allocation */
2243 	type = btrfs_data_alloc_profile(fs_info);
2244 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2245 
2246 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2247 		num_stripes = nr_devices;
2248 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
2249 		num_stripes = rattr->ncopies;
2250 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2251 		num_stripes = 4;
2252 
2253 	/* Adjust for more than 1 stripe per device */
2254 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2255 
2256 	rcu_read_lock();
2257 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2258 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2259 						&device->dev_state) ||
2260 		    !device->bdev ||
2261 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2262 			continue;
2263 
2264 		if (i >= nr_devices)
2265 			break;
2266 
2267 		avail_space = device->total_bytes - device->bytes_used;
2268 
2269 		/* align with stripe_len */
2270 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2271 
2272 		/*
2273 		 * Ensure we have at least min_stripe_size on top of the
2274 		 * reserved space on the device.
2275 		 */
2276 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
2277 			continue;
2278 
2279 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
2280 
2281 		devices_info[i].dev = device;
2282 		devices_info[i].max_avail = avail_space;
2283 
2284 		i++;
2285 	}
2286 	rcu_read_unlock();
2287 
2288 	nr_devices = i;
2289 
2290 	btrfs_descending_sort_devices(devices_info, nr_devices);
2291 
2292 	i = nr_devices - 1;
2293 	avail_space = 0;
2294 	while (nr_devices >= rattr->devs_min) {
2295 		num_stripes = min(num_stripes, nr_devices);
2296 
2297 		if (devices_info[i].max_avail >= min_stripe_size) {
2298 			int j;
2299 			u64 alloc_size;
2300 
2301 			avail_space += devices_info[i].max_avail * num_stripes;
2302 			alloc_size = devices_info[i].max_avail;
2303 			for (j = i + 1 - num_stripes; j <= i; j++)
2304 				devices_info[j].max_avail -= alloc_size;
2305 		}
2306 		i--;
2307 		nr_devices--;
2308 	}
2309 
2310 	kfree(devices_info);
2311 	*free_bytes = avail_space;
2312 	return 0;
2313 }
2314 
2315 /*
2316  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2317  *
2318  * If there's a redundant raid level at DATA block groups, use the respective
2319  * multiplier to scale the sizes.
2320  *
2321  * Unused device space usage is based on simulating the chunk allocator
2322  * algorithm that respects the device sizes and order of allocations.  This is
2323  * a close approximation of the actual use but there are other factors that may
2324  * change the result (like a new metadata chunk).
2325  *
2326  * If metadata is exhausted, f_bavail will be 0.
2327  */
2328 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2329 {
2330 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2331 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2332 	struct btrfs_space_info *found;
2333 	u64 total_used = 0;
2334 	u64 total_free_data = 0;
2335 	u64 total_free_meta = 0;
2336 	u32 bits = fs_info->sectorsize_bits;
2337 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2338 	unsigned factor = 1;
2339 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2340 	int ret;
2341 	u64 thresh = 0;
2342 	int mixed = 0;
2343 
2344 	list_for_each_entry(found, &fs_info->space_info, list) {
2345 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2346 			int i;
2347 
2348 			total_free_data += found->disk_total - found->disk_used;
2349 			total_free_data -=
2350 				btrfs_account_ro_block_groups_free_space(found);
2351 
2352 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2353 				if (!list_empty(&found->block_groups[i]))
2354 					factor = btrfs_bg_type_to_factor(
2355 						btrfs_raid_array[i].bg_flag);
2356 			}
2357 		}
2358 
2359 		/*
2360 		 * Metadata in mixed block goup profiles are accounted in data
2361 		 */
2362 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2363 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2364 				mixed = 1;
2365 			else
2366 				total_free_meta += found->disk_total -
2367 					found->disk_used;
2368 		}
2369 
2370 		total_used += found->disk_used;
2371 	}
2372 
2373 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2374 	buf->f_blocks >>= bits;
2375 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2376 
2377 	/* Account global block reserve as used, it's in logical size already */
2378 	spin_lock(&block_rsv->lock);
2379 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2380 	if (buf->f_bfree >= block_rsv->size >> bits)
2381 		buf->f_bfree -= block_rsv->size >> bits;
2382 	else
2383 		buf->f_bfree = 0;
2384 	spin_unlock(&block_rsv->lock);
2385 
2386 	buf->f_bavail = div_u64(total_free_data, factor);
2387 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2388 	if (ret)
2389 		return ret;
2390 	buf->f_bavail += div_u64(total_free_data, factor);
2391 	buf->f_bavail = buf->f_bavail >> bits;
2392 
2393 	/*
2394 	 * We calculate the remaining metadata space minus global reserve. If
2395 	 * this is (supposedly) smaller than zero, there's no space. But this
2396 	 * does not hold in practice, the exhausted state happens where's still
2397 	 * some positive delta. So we apply some guesswork and compare the
2398 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2399 	 *
2400 	 * We probably cannot calculate the exact threshold value because this
2401 	 * depends on the internal reservations requested by various
2402 	 * operations, so some operations that consume a few metadata will
2403 	 * succeed even if the Avail is zero. But this is better than the other
2404 	 * way around.
2405 	 */
2406 	thresh = SZ_4M;
2407 
2408 	/*
2409 	 * We only want to claim there's no available space if we can no longer
2410 	 * allocate chunks for our metadata profile and our global reserve will
2411 	 * not fit in the free metadata space.  If we aren't ->full then we
2412 	 * still can allocate chunks and thus are fine using the currently
2413 	 * calculated f_bavail.
2414 	 */
2415 	if (!mixed && block_rsv->space_info->full &&
2416 	    total_free_meta - thresh < block_rsv->size)
2417 		buf->f_bavail = 0;
2418 
2419 	buf->f_type = BTRFS_SUPER_MAGIC;
2420 	buf->f_bsize = dentry->d_sb->s_blocksize;
2421 	buf->f_namelen = BTRFS_NAME_LEN;
2422 
2423 	/* We treat it as constant endianness (it doesn't matter _which_)
2424 	   because we want the fsid to come out the same whether mounted
2425 	   on a big-endian or little-endian host */
2426 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2427 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2428 	/* Mask in the root object ID too, to disambiguate subvols */
2429 	buf->f_fsid.val[0] ^=
2430 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2431 	buf->f_fsid.val[1] ^=
2432 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2433 
2434 	return 0;
2435 }
2436 
2437 static void btrfs_kill_super(struct super_block *sb)
2438 {
2439 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2440 	kill_anon_super(sb);
2441 	btrfs_free_fs_info(fs_info);
2442 }
2443 
2444 static struct file_system_type btrfs_fs_type = {
2445 	.owner		= THIS_MODULE,
2446 	.name		= "btrfs",
2447 	.mount		= btrfs_mount,
2448 	.kill_sb	= btrfs_kill_super,
2449 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2450 };
2451 
2452 static struct file_system_type btrfs_root_fs_type = {
2453 	.owner		= THIS_MODULE,
2454 	.name		= "btrfs",
2455 	.mount		= btrfs_mount_root,
2456 	.kill_sb	= btrfs_kill_super,
2457 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2458 };
2459 
2460 MODULE_ALIAS_FS("btrfs");
2461 
2462 static int btrfs_control_open(struct inode *inode, struct file *file)
2463 {
2464 	/*
2465 	 * The control file's private_data is used to hold the
2466 	 * transaction when it is started and is used to keep
2467 	 * track of whether a transaction is already in progress.
2468 	 */
2469 	file->private_data = NULL;
2470 	return 0;
2471 }
2472 
2473 /*
2474  * Used by /dev/btrfs-control for devices ioctls.
2475  */
2476 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2477 				unsigned long arg)
2478 {
2479 	struct btrfs_ioctl_vol_args *vol;
2480 	struct btrfs_device *device = NULL;
2481 	dev_t devt = 0;
2482 	int ret = -ENOTTY;
2483 
2484 	if (!capable(CAP_SYS_ADMIN))
2485 		return -EPERM;
2486 
2487 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2488 	if (IS_ERR(vol))
2489 		return PTR_ERR(vol);
2490 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2491 
2492 	switch (cmd) {
2493 	case BTRFS_IOC_SCAN_DEV:
2494 		mutex_lock(&uuid_mutex);
2495 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2496 					       &btrfs_root_fs_type);
2497 		ret = PTR_ERR_OR_ZERO(device);
2498 		mutex_unlock(&uuid_mutex);
2499 		break;
2500 	case BTRFS_IOC_FORGET_DEV:
2501 		if (vol->name[0] != 0) {
2502 			ret = lookup_bdev(vol->name, &devt);
2503 			if (ret)
2504 				break;
2505 		}
2506 		ret = btrfs_forget_devices(devt);
2507 		break;
2508 	case BTRFS_IOC_DEVICES_READY:
2509 		mutex_lock(&uuid_mutex);
2510 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2511 					       &btrfs_root_fs_type);
2512 		if (IS_ERR(device)) {
2513 			mutex_unlock(&uuid_mutex);
2514 			ret = PTR_ERR(device);
2515 			break;
2516 		}
2517 		ret = !(device->fs_devices->num_devices ==
2518 			device->fs_devices->total_devices);
2519 		mutex_unlock(&uuid_mutex);
2520 		break;
2521 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2522 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2523 		break;
2524 	}
2525 
2526 	kfree(vol);
2527 	return ret;
2528 }
2529 
2530 static int btrfs_freeze(struct super_block *sb)
2531 {
2532 	struct btrfs_trans_handle *trans;
2533 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2534 	struct btrfs_root *root = fs_info->tree_root;
2535 
2536 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2537 	/*
2538 	 * We don't need a barrier here, we'll wait for any transaction that
2539 	 * could be in progress on other threads (and do delayed iputs that
2540 	 * we want to avoid on a frozen filesystem), or do the commit
2541 	 * ourselves.
2542 	 */
2543 	trans = btrfs_attach_transaction_barrier(root);
2544 	if (IS_ERR(trans)) {
2545 		/* no transaction, don't bother */
2546 		if (PTR_ERR(trans) == -ENOENT)
2547 			return 0;
2548 		return PTR_ERR(trans);
2549 	}
2550 	return btrfs_commit_transaction(trans);
2551 }
2552 
2553 static int btrfs_unfreeze(struct super_block *sb)
2554 {
2555 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2556 
2557 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2558 	return 0;
2559 }
2560 
2561 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2562 {
2563 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2564 
2565 	/*
2566 	 * There should be always a valid pointer in latest_dev, it may be stale
2567 	 * for a short moment in case it's being deleted but still valid until
2568 	 * the end of RCU grace period.
2569 	 */
2570 	rcu_read_lock();
2571 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2572 	rcu_read_unlock();
2573 
2574 	return 0;
2575 }
2576 
2577 static const struct super_operations btrfs_super_ops = {
2578 	.drop_inode	= btrfs_drop_inode,
2579 	.evict_inode	= btrfs_evict_inode,
2580 	.put_super	= btrfs_put_super,
2581 	.sync_fs	= btrfs_sync_fs,
2582 	.show_options	= btrfs_show_options,
2583 	.show_devname	= btrfs_show_devname,
2584 	.alloc_inode	= btrfs_alloc_inode,
2585 	.destroy_inode	= btrfs_destroy_inode,
2586 	.free_inode	= btrfs_free_inode,
2587 	.statfs		= btrfs_statfs,
2588 	.remount_fs	= btrfs_remount,
2589 	.freeze_fs	= btrfs_freeze,
2590 	.unfreeze_fs	= btrfs_unfreeze,
2591 };
2592 
2593 static const struct file_operations btrfs_ctl_fops = {
2594 	.open = btrfs_control_open,
2595 	.unlocked_ioctl	 = btrfs_control_ioctl,
2596 	.compat_ioctl = compat_ptr_ioctl,
2597 	.owner	 = THIS_MODULE,
2598 	.llseek = noop_llseek,
2599 };
2600 
2601 static struct miscdevice btrfs_misc = {
2602 	.minor		= BTRFS_MINOR,
2603 	.name		= "btrfs-control",
2604 	.fops		= &btrfs_ctl_fops
2605 };
2606 
2607 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2608 MODULE_ALIAS("devname:btrfs-control");
2609 
2610 static int __init btrfs_interface_init(void)
2611 {
2612 	return misc_register(&btrfs_misc);
2613 }
2614 
2615 static __cold void btrfs_interface_exit(void)
2616 {
2617 	misc_deregister(&btrfs_misc);
2618 }
2619 
2620 static void __init btrfs_print_mod_info(void)
2621 {
2622 	static const char options[] = ""
2623 #ifdef CONFIG_BTRFS_DEBUG
2624 			", debug=on"
2625 #endif
2626 #ifdef CONFIG_BTRFS_ASSERT
2627 			", assert=on"
2628 #endif
2629 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2630 			", integrity-checker=on"
2631 #endif
2632 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2633 			", ref-verify=on"
2634 #endif
2635 #ifdef CONFIG_BLK_DEV_ZONED
2636 			", zoned=yes"
2637 #else
2638 			", zoned=no"
2639 #endif
2640 #ifdef CONFIG_FS_VERITY
2641 			", fsverity=yes"
2642 #else
2643 			", fsverity=no"
2644 #endif
2645 			;
2646 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2647 }
2648 
2649 static int __init init_btrfs_fs(void)
2650 {
2651 	int err;
2652 
2653 	btrfs_props_init();
2654 
2655 	err = btrfs_init_sysfs();
2656 	if (err)
2657 		return err;
2658 
2659 	btrfs_init_compress();
2660 
2661 	err = btrfs_init_cachep();
2662 	if (err)
2663 		goto free_compress;
2664 
2665 	err = extent_io_init();
2666 	if (err)
2667 		goto free_cachep;
2668 
2669 	err = extent_state_cache_init();
2670 	if (err)
2671 		goto free_extent_io;
2672 
2673 	err = extent_map_init();
2674 	if (err)
2675 		goto free_extent_state_cache;
2676 
2677 	err = ordered_data_init();
2678 	if (err)
2679 		goto free_extent_map;
2680 
2681 	err = btrfs_delayed_inode_init();
2682 	if (err)
2683 		goto free_ordered_data;
2684 
2685 	err = btrfs_auto_defrag_init();
2686 	if (err)
2687 		goto free_delayed_inode;
2688 
2689 	err = btrfs_delayed_ref_init();
2690 	if (err)
2691 		goto free_auto_defrag;
2692 
2693 	err = btrfs_prelim_ref_init();
2694 	if (err)
2695 		goto free_delayed_ref;
2696 
2697 	err = btrfs_interface_init();
2698 	if (err)
2699 		goto free_prelim_ref;
2700 
2701 	btrfs_print_mod_info();
2702 
2703 	err = btrfs_run_sanity_tests();
2704 	if (err)
2705 		goto unregister_ioctl;
2706 
2707 	err = register_filesystem(&btrfs_fs_type);
2708 	if (err)
2709 		goto unregister_ioctl;
2710 
2711 	return 0;
2712 
2713 unregister_ioctl:
2714 	btrfs_interface_exit();
2715 free_prelim_ref:
2716 	btrfs_prelim_ref_exit();
2717 free_delayed_ref:
2718 	btrfs_delayed_ref_exit();
2719 free_auto_defrag:
2720 	btrfs_auto_defrag_exit();
2721 free_delayed_inode:
2722 	btrfs_delayed_inode_exit();
2723 free_ordered_data:
2724 	ordered_data_exit();
2725 free_extent_map:
2726 	extent_map_exit();
2727 free_extent_state_cache:
2728 	extent_state_cache_exit();
2729 free_extent_io:
2730 	extent_io_exit();
2731 free_cachep:
2732 	btrfs_destroy_cachep();
2733 free_compress:
2734 	btrfs_exit_compress();
2735 	btrfs_exit_sysfs();
2736 
2737 	return err;
2738 }
2739 
2740 static void __exit exit_btrfs_fs(void)
2741 {
2742 	btrfs_destroy_cachep();
2743 	btrfs_delayed_ref_exit();
2744 	btrfs_auto_defrag_exit();
2745 	btrfs_delayed_inode_exit();
2746 	btrfs_prelim_ref_exit();
2747 	ordered_data_exit();
2748 	extent_map_exit();
2749 	extent_state_cache_exit();
2750 	extent_io_exit();
2751 	btrfs_interface_exit();
2752 	unregister_filesystem(&btrfs_fs_type);
2753 	btrfs_exit_sysfs();
2754 	btrfs_cleanup_fs_uuids();
2755 	btrfs_exit_compress();
2756 }
2757 
2758 late_initcall(init_btrfs_fs);
2759 module_exit(exit_btrfs_fs)
2760 
2761 MODULE_LICENSE("GPL");
2762 MODULE_SOFTDEP("pre: crc32c");
2763 MODULE_SOFTDEP("pre: xxhash64");
2764 MODULE_SOFTDEP("pre: sha256");
2765 MODULE_SOFTDEP("pre: blake2b-256");
2766