xref: /linux/fs/btrfs/super.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	unsigned int compress_level;
88 	refcount_t refs;
89 };
90 
91 enum {
92 	Opt_acl,
93 	Opt_clear_cache,
94 	Opt_commit_interval,
95 	Opt_compress,
96 	Opt_compress_force,
97 	Opt_compress_force_type,
98 	Opt_compress_type,
99 	Opt_degraded,
100 	Opt_device,
101 	Opt_fatal_errors,
102 	Opt_flushoncommit,
103 	Opt_max_inline,
104 	Opt_barrier,
105 	Opt_datacow,
106 	Opt_datasum,
107 	Opt_defrag,
108 	Opt_discard,
109 	Opt_discard_mode,
110 	Opt_ratio,
111 	Opt_rescan_uuid_tree,
112 	Opt_skip_balance,
113 	Opt_space_cache,
114 	Opt_space_cache_version,
115 	Opt_ssd,
116 	Opt_ssd_spread,
117 	Opt_subvol,
118 	Opt_subvol_empty,
119 	Opt_subvolid,
120 	Opt_thread_pool,
121 	Opt_treelog,
122 	Opt_user_subvol_rm_allowed,
123 	Opt_norecovery,
124 
125 	/* Rescue options */
126 	Opt_rescue,
127 	Opt_usebackuproot,
128 	Opt_nologreplay,
129 
130 	/* Debugging options */
131 	Opt_enospc_debug,
132 #ifdef CONFIG_BTRFS_DEBUG
133 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
134 #endif
135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
136 	Opt_ref_verify,
137 #endif
138 	Opt_err,
139 };
140 
141 enum {
142 	Opt_fatal_errors_panic,
143 	Opt_fatal_errors_bug,
144 };
145 
146 static const struct constant_table btrfs_parameter_fatal_errors[] = {
147 	{ "panic", Opt_fatal_errors_panic },
148 	{ "bug", Opt_fatal_errors_bug },
149 	{}
150 };
151 
152 enum {
153 	Opt_discard_sync,
154 	Opt_discard_async,
155 };
156 
157 static const struct constant_table btrfs_parameter_discard[] = {
158 	{ "sync", Opt_discard_sync },
159 	{ "async", Opt_discard_async },
160 	{}
161 };
162 
163 enum {
164 	Opt_space_cache_v1,
165 	Opt_space_cache_v2,
166 };
167 
168 static const struct constant_table btrfs_parameter_space_cache[] = {
169 	{ "v1", Opt_space_cache_v1 },
170 	{ "v2", Opt_space_cache_v2 },
171 	{}
172 };
173 
174 enum {
175 	Opt_rescue_usebackuproot,
176 	Opt_rescue_nologreplay,
177 	Opt_rescue_ignorebadroots,
178 	Opt_rescue_ignoredatacsums,
179 	Opt_rescue_ignoremetacsums,
180 	Opt_rescue_ignoresuperflags,
181 	Opt_rescue_parameter_all,
182 };
183 
184 static const struct constant_table btrfs_parameter_rescue[] = {
185 	{ "usebackuproot", Opt_rescue_usebackuproot },
186 	{ "nologreplay", Opt_rescue_nologreplay },
187 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
188 	{ "ibadroots", Opt_rescue_ignorebadroots },
189 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
190 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
191 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
192 	{ "idatacsums", Opt_rescue_ignoredatacsums },
193 	{ "imetacsums", Opt_rescue_ignoremetacsums},
194 	{ "isuperflags", Opt_rescue_ignoresuperflags},
195 	{ "all", Opt_rescue_parameter_all },
196 	{}
197 };
198 
199 #ifdef CONFIG_BTRFS_DEBUG
200 enum {
201 	Opt_fragment_parameter_data,
202 	Opt_fragment_parameter_metadata,
203 	Opt_fragment_parameter_all,
204 };
205 
206 static const struct constant_table btrfs_parameter_fragment[] = {
207 	{ "data", Opt_fragment_parameter_data },
208 	{ "metadata", Opt_fragment_parameter_metadata },
209 	{ "all", Opt_fragment_parameter_all },
210 	{}
211 };
212 #endif
213 
214 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
215 	fsparam_flag_no("acl", Opt_acl),
216 	fsparam_flag_no("autodefrag", Opt_defrag),
217 	fsparam_flag_no("barrier", Opt_barrier),
218 	fsparam_flag("clear_cache", Opt_clear_cache),
219 	fsparam_u32("commit", Opt_commit_interval),
220 	fsparam_flag("compress", Opt_compress),
221 	fsparam_string("compress", Opt_compress_type),
222 	fsparam_flag("compress-force", Opt_compress_force),
223 	fsparam_string("compress-force", Opt_compress_force_type),
224 	fsparam_flag_no("datacow", Opt_datacow),
225 	fsparam_flag_no("datasum", Opt_datasum),
226 	fsparam_flag("degraded", Opt_degraded),
227 	fsparam_string("device", Opt_device),
228 	fsparam_flag_no("discard", Opt_discard),
229 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
230 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
231 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
232 	fsparam_string("max_inline", Opt_max_inline),
233 	fsparam_u32("metadata_ratio", Opt_ratio),
234 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
235 	fsparam_flag("skip_balance", Opt_skip_balance),
236 	fsparam_flag_no("space_cache", Opt_space_cache),
237 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
238 	fsparam_flag_no("ssd", Opt_ssd),
239 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
240 	fsparam_string("subvol", Opt_subvol),
241 	fsparam_flag("subvol=", Opt_subvol_empty),
242 	fsparam_u64("subvolid", Opt_subvolid),
243 	fsparam_u32("thread_pool", Opt_thread_pool),
244 	fsparam_flag_no("treelog", Opt_treelog),
245 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
246 
247 	/* Rescue options. */
248 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
249 	/* Deprecated, with alias rescue=nologreplay */
250 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
251 	/* Deprecated, with alias rescue=usebackuproot */
252 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 	/* For compatibility only, alias for "rescue=nologreplay". */
254 	fsparam_flag("norecovery", Opt_norecovery),
255 
256 	/* Debugging options. */
257 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 	fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 	{}
265 };
266 
267 /* No support for restricting writes to btrfs devices yet... */
268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
269 {
270 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
271 }
272 
273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
274 {
275 	struct btrfs_fs_context *ctx = fc->fs_private;
276 	struct fs_parse_result result;
277 	int opt;
278 
279 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280 	if (opt < 0)
281 		return opt;
282 
283 	switch (opt) {
284 	case Opt_degraded:
285 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
286 		break;
287 	case Opt_subvol_empty:
288 		/*
289 		 * This exists because we used to allow it on accident, so we're
290 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
291 		 * empty subvol= again").
292 		 */
293 		break;
294 	case Opt_subvol:
295 		kfree(ctx->subvol_name);
296 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
297 		if (!ctx->subvol_name)
298 			return -ENOMEM;
299 		break;
300 	case Opt_subvolid:
301 		ctx->subvol_objectid = result.uint_64;
302 
303 		/* subvolid=0 means give me the original fs_tree. */
304 		if (!ctx->subvol_objectid)
305 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
306 		break;
307 	case Opt_device: {
308 		struct btrfs_device *device;
309 		blk_mode_t mode = btrfs_open_mode(fc);
310 
311 		mutex_lock(&uuid_mutex);
312 		device = btrfs_scan_one_device(param->string, mode, false);
313 		mutex_unlock(&uuid_mutex);
314 		if (IS_ERR(device))
315 			return PTR_ERR(device);
316 		break;
317 	}
318 	case Opt_datasum:
319 		if (result.negated) {
320 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
321 		} else {
322 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
323 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
324 		}
325 		break;
326 	case Opt_datacow:
327 		if (result.negated) {
328 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
329 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
330 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
331 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
332 		} else {
333 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
334 		}
335 		break;
336 	case Opt_compress_force:
337 	case Opt_compress_force_type:
338 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
339 		fallthrough;
340 	case Opt_compress:
341 	case Opt_compress_type:
342 		/*
343 		 * Provide the same semantics as older kernels that don't use fs
344 		 * context, specifying the "compress" option clears
345 		 * "force-compress" without the need to pass
346 		 * "compress-force=[no|none]" before specifying "compress".
347 		 */
348 		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
349 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
350 
351 		if (opt == Opt_compress || opt == Opt_compress_force) {
352 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
353 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
354 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
355 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357 		} else if (strncmp(param->string, "zlib", 4) == 0) {
358 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
359 			ctx->compress_level =
360 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
361 							 param->string + 4);
362 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
363 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365 		} else if (strncmp(param->string, "lzo", 3) == 0) {
366 			ctx->compress_type = BTRFS_COMPRESS_LZO;
367 			ctx->compress_level = 0;
368 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
369 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
370 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
371 		} else if (strncmp(param->string, "zstd", 4) == 0) {
372 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
373 			ctx->compress_level =
374 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
375 							 param->string + 4);
376 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
377 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
378 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
379 		} else if (strncmp(param->string, "no", 2) == 0) {
380 			ctx->compress_level = 0;
381 			ctx->compress_type = 0;
382 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
383 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
384 		} else {
385 			btrfs_err(NULL, "unrecognized compression value %s",
386 				  param->string);
387 			return -EINVAL;
388 		}
389 		break;
390 	case Opt_ssd:
391 		if (result.negated) {
392 			btrfs_set_opt(ctx->mount_opt, NOSSD);
393 			btrfs_clear_opt(ctx->mount_opt, SSD);
394 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
395 		} else {
396 			btrfs_set_opt(ctx->mount_opt, SSD);
397 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
398 		}
399 		break;
400 	case Opt_ssd_spread:
401 		if (result.negated) {
402 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
403 		} else {
404 			btrfs_set_opt(ctx->mount_opt, SSD);
405 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
406 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
407 		}
408 		break;
409 	case Opt_barrier:
410 		if (result.negated)
411 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
412 		else
413 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
414 		break;
415 	case Opt_thread_pool:
416 		if (result.uint_32 == 0) {
417 			btrfs_err(NULL, "invalid value 0 for thread_pool");
418 			return -EINVAL;
419 		}
420 		ctx->thread_pool_size = result.uint_32;
421 		break;
422 	case Opt_max_inline:
423 		ctx->max_inline = memparse(param->string, NULL);
424 		break;
425 	case Opt_acl:
426 		if (result.negated) {
427 			fc->sb_flags &= ~SB_POSIXACL;
428 		} else {
429 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
430 			fc->sb_flags |= SB_POSIXACL;
431 #else
432 			btrfs_err(NULL, "support for ACL not compiled in");
433 			return -EINVAL;
434 #endif
435 		}
436 		/*
437 		 * VFS limits the ability to toggle ACL on and off via remount,
438 		 * despite every file system allowing this.  This seems to be
439 		 * an oversight since we all do, but it'll fail if we're
440 		 * remounting.  So don't set the mask here, we'll check it in
441 		 * btrfs_reconfigure and do the toggling ourselves.
442 		 */
443 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
444 			fc->sb_flags_mask |= SB_POSIXACL;
445 		break;
446 	case Opt_treelog:
447 		if (result.negated)
448 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
449 		else
450 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
451 		break;
452 	case Opt_nologreplay:
453 		btrfs_warn(NULL,
454 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
455 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
456 		break;
457 	case Opt_norecovery:
458 		btrfs_info(NULL,
459 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
460 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
461 		break;
462 	case Opt_flushoncommit:
463 		if (result.negated)
464 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
465 		else
466 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
467 		break;
468 	case Opt_ratio:
469 		ctx->metadata_ratio = result.uint_32;
470 		break;
471 	case Opt_discard:
472 		if (result.negated) {
473 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
474 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
475 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
476 		} else {
477 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
478 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
479 		}
480 		break;
481 	case Opt_discard_mode:
482 		switch (result.uint_32) {
483 		case Opt_discard_sync:
484 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
485 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
486 			break;
487 		case Opt_discard_async:
488 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
489 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
490 			break;
491 		default:
492 			btrfs_err(NULL, "unrecognized discard mode value %s",
493 				  param->key);
494 			return -EINVAL;
495 		}
496 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
497 		break;
498 	case Opt_space_cache:
499 		if (result.negated) {
500 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
501 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
502 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
503 		} else {
504 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
505 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
506 		}
507 		break;
508 	case Opt_space_cache_version:
509 		switch (result.uint_32) {
510 		case Opt_space_cache_v1:
511 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
512 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
513 			break;
514 		case Opt_space_cache_v2:
515 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
516 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
517 			break;
518 		default:
519 			btrfs_err(NULL, "unrecognized space_cache value %s",
520 				  param->key);
521 			return -EINVAL;
522 		}
523 		break;
524 	case Opt_rescan_uuid_tree:
525 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
526 		break;
527 	case Opt_clear_cache:
528 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
529 		break;
530 	case Opt_user_subvol_rm_allowed:
531 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
532 		break;
533 	case Opt_enospc_debug:
534 		if (result.negated)
535 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
536 		else
537 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
538 		break;
539 	case Opt_defrag:
540 		if (result.negated)
541 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
542 		else
543 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
544 		break;
545 	case Opt_usebackuproot:
546 		btrfs_warn(NULL,
547 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
548 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
549 
550 		/* If we're loading the backup roots we can't trust the space cache. */
551 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
552 		break;
553 	case Opt_skip_balance:
554 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
555 		break;
556 	case Opt_fatal_errors:
557 		switch (result.uint_32) {
558 		case Opt_fatal_errors_panic:
559 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
560 			break;
561 		case Opt_fatal_errors_bug:
562 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
563 			break;
564 		default:
565 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
566 				  param->key);
567 			return -EINVAL;
568 		}
569 		break;
570 	case Opt_commit_interval:
571 		ctx->commit_interval = result.uint_32;
572 		if (ctx->commit_interval == 0)
573 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
574 		break;
575 	case Opt_rescue:
576 		switch (result.uint_32) {
577 		case Opt_rescue_usebackuproot:
578 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
579 			break;
580 		case Opt_rescue_nologreplay:
581 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
582 			break;
583 		case Opt_rescue_ignorebadroots:
584 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
585 			break;
586 		case Opt_rescue_ignoredatacsums:
587 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
588 			break;
589 		case Opt_rescue_ignoremetacsums:
590 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
591 			break;
592 		case Opt_rescue_ignoresuperflags:
593 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
594 			break;
595 		case Opt_rescue_parameter_all:
596 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
597 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
598 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
599 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
600 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
601 			break;
602 		default:
603 			btrfs_info(NULL, "unrecognized rescue option '%s'",
604 				   param->key);
605 			return -EINVAL;
606 		}
607 		break;
608 #ifdef CONFIG_BTRFS_DEBUG
609 	case Opt_fragment:
610 		switch (result.uint_32) {
611 		case Opt_fragment_parameter_all:
612 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
613 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
614 			break;
615 		case Opt_fragment_parameter_metadata:
616 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
617 			break;
618 		case Opt_fragment_parameter_data:
619 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
620 			break;
621 		default:
622 			btrfs_info(NULL, "unrecognized fragment option '%s'",
623 				   param->key);
624 			return -EINVAL;
625 		}
626 		break;
627 #endif
628 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
629 	case Opt_ref_verify:
630 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
631 		break;
632 #endif
633 	default:
634 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
635 		return -EINVAL;
636 	}
637 
638 	return 0;
639 }
640 
641 /*
642  * Some options only have meaning at mount time and shouldn't persist across
643  * remounts, or be displayed. Clear these at the end of mount and remount code
644  * paths.
645  */
646 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
647 {
648 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
649 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
650 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
651 }
652 
653 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
654 			    unsigned long long mount_opt, unsigned long long opt,
655 			    const char *opt_name)
656 {
657 	if (mount_opt & opt) {
658 		btrfs_err(fs_info, "%s must be used with ro mount option",
659 			  opt_name);
660 		return true;
661 	}
662 	return false;
663 }
664 
665 bool btrfs_check_options(const struct btrfs_fs_info *info,
666 			 unsigned long long *mount_opt,
667 			 unsigned long flags)
668 {
669 	bool ret = true;
670 
671 	if (!(flags & SB_RDONLY) &&
672 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
673 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
674 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
675 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
676 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
677 		ret = false;
678 
679 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
680 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
681 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
682 		btrfs_err(info, "cannot disable free-space-tree");
683 		ret = false;
684 	}
685 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
686 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
687 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
688 		ret = false;
689 	}
690 
691 	if (btrfs_check_mountopts_zoned(info, mount_opt))
692 		ret = false;
693 
694 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
695 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
696 			btrfs_info(info, "disk space caching is enabled");
697 			btrfs_warn(info,
698 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
699 		}
700 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
701 			btrfs_info(info, "using free-space-tree");
702 	}
703 
704 	return ret;
705 }
706 
707 /*
708  * This is subtle, we only call this during open_ctree().  We need to pre-load
709  * the mount options with the on-disk settings.  Before the new mount API took
710  * effect we would do this on mount and remount.  With the new mount API we'll
711  * only do this on the initial mount.
712  *
713  * This isn't a change in behavior, because we're using the current state of the
714  * file system to set the current mount options.  If you mounted with special
715  * options to disable these features and then remounted we wouldn't revert the
716  * settings, because mounting without these features cleared the on-disk
717  * settings, so this being called on re-mount is not needed.
718  */
719 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
720 {
721 	if (fs_info->sectorsize < PAGE_SIZE) {
722 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
723 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
724 			btrfs_info(fs_info,
725 				   "forcing free space tree for sector size %u with page size %lu",
726 				   fs_info->sectorsize, PAGE_SIZE);
727 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
728 		}
729 	}
730 
731 	/*
732 	 * At this point our mount options are populated, so we only mess with
733 	 * these settings if we don't have any settings already.
734 	 */
735 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
736 		return;
737 
738 	if (btrfs_is_zoned(fs_info) &&
739 	    btrfs_free_space_cache_v1_active(fs_info)) {
740 		btrfs_info(fs_info, "zoned: clearing existing space cache");
741 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
742 		return;
743 	}
744 
745 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
746 		return;
747 
748 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
749 		return;
750 
751 	/*
752 	 * At this point we don't have explicit options set by the user, set
753 	 * them ourselves based on the state of the file system.
754 	 */
755 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
756 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
757 	else if (btrfs_free_space_cache_v1_active(fs_info))
758 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
759 }
760 
761 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
762 {
763 	if (!btrfs_test_opt(fs_info, NOSSD) &&
764 	    !fs_info->fs_devices->rotating)
765 		btrfs_set_opt(fs_info->mount_opt, SSD);
766 
767 	/*
768 	 * For devices supporting discard turn on discard=async automatically,
769 	 * unless it's already set or disabled. This could be turned off by
770 	 * nodiscard for the same mount.
771 	 *
772 	 * The zoned mode piggy backs on the discard functionality for
773 	 * resetting a zone. There is no reason to delay the zone reset as it is
774 	 * fast enough. So, do not enable async discard for zoned mode.
775 	 */
776 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
777 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
778 	      btrfs_test_opt(fs_info, NODISCARD)) &&
779 	    fs_info->fs_devices->discardable &&
780 	    !btrfs_is_zoned(fs_info))
781 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
782 }
783 
784 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
785 					  u64 subvol_objectid)
786 {
787 	struct btrfs_root *root = fs_info->tree_root;
788 	struct btrfs_root *fs_root = NULL;
789 	struct btrfs_root_ref *root_ref;
790 	struct btrfs_inode_ref *inode_ref;
791 	struct btrfs_key key;
792 	struct btrfs_path *path = NULL;
793 	char *name = NULL, *ptr;
794 	u64 dirid;
795 	int len;
796 	int ret;
797 
798 	path = btrfs_alloc_path();
799 	if (!path) {
800 		ret = -ENOMEM;
801 		goto err;
802 	}
803 
804 	name = kmalloc(PATH_MAX, GFP_KERNEL);
805 	if (!name) {
806 		ret = -ENOMEM;
807 		goto err;
808 	}
809 	ptr = name + PATH_MAX - 1;
810 	ptr[0] = '\0';
811 
812 	/*
813 	 * Walk up the subvolume trees in the tree of tree roots by root
814 	 * backrefs until we hit the top-level subvolume.
815 	 */
816 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
817 		key.objectid = subvol_objectid;
818 		key.type = BTRFS_ROOT_BACKREF_KEY;
819 		key.offset = (u64)-1;
820 
821 		ret = btrfs_search_backwards(root, &key, path);
822 		if (ret < 0) {
823 			goto err;
824 		} else if (ret > 0) {
825 			ret = -ENOENT;
826 			goto err;
827 		}
828 
829 		subvol_objectid = key.offset;
830 
831 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
832 					  struct btrfs_root_ref);
833 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
834 		ptr -= len + 1;
835 		if (ptr < name) {
836 			ret = -ENAMETOOLONG;
837 			goto err;
838 		}
839 		read_extent_buffer(path->nodes[0], ptr + 1,
840 				   (unsigned long)(root_ref + 1), len);
841 		ptr[0] = '/';
842 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
843 		btrfs_release_path(path);
844 
845 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
846 		if (IS_ERR(fs_root)) {
847 			ret = PTR_ERR(fs_root);
848 			fs_root = NULL;
849 			goto err;
850 		}
851 
852 		/*
853 		 * Walk up the filesystem tree by inode refs until we hit the
854 		 * root directory.
855 		 */
856 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
857 			key.objectid = dirid;
858 			key.type = BTRFS_INODE_REF_KEY;
859 			key.offset = (u64)-1;
860 
861 			ret = btrfs_search_backwards(fs_root, &key, path);
862 			if (ret < 0) {
863 				goto err;
864 			} else if (ret > 0) {
865 				ret = -ENOENT;
866 				goto err;
867 			}
868 
869 			dirid = key.offset;
870 
871 			inode_ref = btrfs_item_ptr(path->nodes[0],
872 						   path->slots[0],
873 						   struct btrfs_inode_ref);
874 			len = btrfs_inode_ref_name_len(path->nodes[0],
875 						       inode_ref);
876 			ptr -= len + 1;
877 			if (ptr < name) {
878 				ret = -ENAMETOOLONG;
879 				goto err;
880 			}
881 			read_extent_buffer(path->nodes[0], ptr + 1,
882 					   (unsigned long)(inode_ref + 1), len);
883 			ptr[0] = '/';
884 			btrfs_release_path(path);
885 		}
886 		btrfs_put_root(fs_root);
887 		fs_root = NULL;
888 	}
889 
890 	btrfs_free_path(path);
891 	if (ptr == name + PATH_MAX - 1) {
892 		name[0] = '/';
893 		name[1] = '\0';
894 	} else {
895 		memmove(name, ptr, name + PATH_MAX - ptr);
896 	}
897 	return name;
898 
899 err:
900 	btrfs_put_root(fs_root);
901 	btrfs_free_path(path);
902 	kfree(name);
903 	return ERR_PTR(ret);
904 }
905 
906 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
907 {
908 	struct btrfs_root *root = fs_info->tree_root;
909 	struct btrfs_dir_item *di;
910 	struct btrfs_path *path;
911 	struct btrfs_key location;
912 	struct fscrypt_str name = FSTR_INIT("default", 7);
913 	u64 dir_id;
914 
915 	path = btrfs_alloc_path();
916 	if (!path)
917 		return -ENOMEM;
918 
919 	/*
920 	 * Find the "default" dir item which points to the root item that we
921 	 * will mount by default if we haven't been given a specific subvolume
922 	 * to mount.
923 	 */
924 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
925 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
926 	if (IS_ERR(di)) {
927 		btrfs_free_path(path);
928 		return PTR_ERR(di);
929 	}
930 	if (!di) {
931 		/*
932 		 * Ok the default dir item isn't there.  This is weird since
933 		 * it's always been there, but don't freak out, just try and
934 		 * mount the top-level subvolume.
935 		 */
936 		btrfs_free_path(path);
937 		*objectid = BTRFS_FS_TREE_OBJECTID;
938 		return 0;
939 	}
940 
941 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
942 	btrfs_free_path(path);
943 	*objectid = location.objectid;
944 	return 0;
945 }
946 
947 static int btrfs_fill_super(struct super_block *sb,
948 			    struct btrfs_fs_devices *fs_devices)
949 {
950 	struct inode *inode;
951 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
952 	int err;
953 
954 	sb->s_maxbytes = MAX_LFS_FILESIZE;
955 	sb->s_magic = BTRFS_SUPER_MAGIC;
956 	sb->s_op = &btrfs_super_ops;
957 	sb->s_d_op = &btrfs_dentry_operations;
958 	sb->s_export_op = &btrfs_export_ops;
959 #ifdef CONFIG_FS_VERITY
960 	sb->s_vop = &btrfs_verityops;
961 #endif
962 	sb->s_xattr = btrfs_xattr_handlers;
963 	sb->s_time_gran = 1;
964 	sb->s_iflags |= SB_I_CGROUPWB;
965 
966 	err = super_setup_bdi(sb);
967 	if (err) {
968 		btrfs_err(fs_info, "super_setup_bdi failed");
969 		return err;
970 	}
971 
972 	err = open_ctree(sb, fs_devices);
973 	if (err) {
974 		btrfs_err(fs_info, "open_ctree failed");
975 		return err;
976 	}
977 
978 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
979 	if (IS_ERR(inode)) {
980 		err = PTR_ERR(inode);
981 		btrfs_handle_fs_error(fs_info, err, NULL);
982 		goto fail_close;
983 	}
984 
985 	sb->s_root = d_make_root(inode);
986 	if (!sb->s_root) {
987 		err = -ENOMEM;
988 		goto fail_close;
989 	}
990 
991 	sb->s_flags |= SB_ACTIVE;
992 	return 0;
993 
994 fail_close:
995 	close_ctree(fs_info);
996 	return err;
997 }
998 
999 int btrfs_sync_fs(struct super_block *sb, int wait)
1000 {
1001 	struct btrfs_trans_handle *trans;
1002 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1003 	struct btrfs_root *root = fs_info->tree_root;
1004 
1005 	trace_btrfs_sync_fs(fs_info, wait);
1006 
1007 	if (!wait) {
1008 		filemap_flush(fs_info->btree_inode->i_mapping);
1009 		return 0;
1010 	}
1011 
1012 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1013 
1014 	trans = btrfs_attach_transaction_barrier(root);
1015 	if (IS_ERR(trans)) {
1016 		/* no transaction, don't bother */
1017 		if (PTR_ERR(trans) == -ENOENT) {
1018 			/*
1019 			 * Exit unless we have some pending changes
1020 			 * that need to go through commit
1021 			 */
1022 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1023 				      &fs_info->flags))
1024 				return 0;
1025 			/*
1026 			 * A non-blocking test if the fs is frozen. We must not
1027 			 * start a new transaction here otherwise a deadlock
1028 			 * happens. The pending operations are delayed to the
1029 			 * next commit after thawing.
1030 			 */
1031 			if (sb_start_write_trylock(sb))
1032 				sb_end_write(sb);
1033 			else
1034 				return 0;
1035 			trans = btrfs_start_transaction(root, 0);
1036 		}
1037 		if (IS_ERR(trans))
1038 			return PTR_ERR(trans);
1039 	}
1040 	return btrfs_commit_transaction(trans);
1041 }
1042 
1043 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1044 {
1045 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1046 	*printed = true;
1047 }
1048 
1049 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1050 {
1051 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1052 	const char *compress_type;
1053 	const char *subvol_name;
1054 	bool printed = false;
1055 
1056 	if (btrfs_test_opt(info, DEGRADED))
1057 		seq_puts(seq, ",degraded");
1058 	if (btrfs_test_opt(info, NODATASUM))
1059 		seq_puts(seq, ",nodatasum");
1060 	if (btrfs_test_opt(info, NODATACOW))
1061 		seq_puts(seq, ",nodatacow");
1062 	if (btrfs_test_opt(info, NOBARRIER))
1063 		seq_puts(seq, ",nobarrier");
1064 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1065 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1066 	if (info->thread_pool_size !=  min_t(unsigned long,
1067 					     num_online_cpus() + 2, 8))
1068 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1069 	if (btrfs_test_opt(info, COMPRESS)) {
1070 		compress_type = btrfs_compress_type2str(info->compress_type);
1071 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1072 			seq_printf(seq, ",compress-force=%s", compress_type);
1073 		else
1074 			seq_printf(seq, ",compress=%s", compress_type);
1075 		if (info->compress_level)
1076 			seq_printf(seq, ":%d", info->compress_level);
1077 	}
1078 	if (btrfs_test_opt(info, NOSSD))
1079 		seq_puts(seq, ",nossd");
1080 	if (btrfs_test_opt(info, SSD_SPREAD))
1081 		seq_puts(seq, ",ssd_spread");
1082 	else if (btrfs_test_opt(info, SSD))
1083 		seq_puts(seq, ",ssd");
1084 	if (btrfs_test_opt(info, NOTREELOG))
1085 		seq_puts(seq, ",notreelog");
1086 	if (btrfs_test_opt(info, NOLOGREPLAY))
1087 		print_rescue_option(seq, "nologreplay", &printed);
1088 	if (btrfs_test_opt(info, USEBACKUPROOT))
1089 		print_rescue_option(seq, "usebackuproot", &printed);
1090 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1091 		print_rescue_option(seq, "ignorebadroots", &printed);
1092 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1093 		print_rescue_option(seq, "ignoredatacsums", &printed);
1094 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1095 		print_rescue_option(seq, "ignoremetacsums", &printed);
1096 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1097 		print_rescue_option(seq, "ignoresuperflags", &printed);
1098 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1099 		seq_puts(seq, ",flushoncommit");
1100 	if (btrfs_test_opt(info, DISCARD_SYNC))
1101 		seq_puts(seq, ",discard");
1102 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1103 		seq_puts(seq, ",discard=async");
1104 	if (!(info->sb->s_flags & SB_POSIXACL))
1105 		seq_puts(seq, ",noacl");
1106 	if (btrfs_free_space_cache_v1_active(info))
1107 		seq_puts(seq, ",space_cache");
1108 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1109 		seq_puts(seq, ",space_cache=v2");
1110 	else
1111 		seq_puts(seq, ",nospace_cache");
1112 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1113 		seq_puts(seq, ",rescan_uuid_tree");
1114 	if (btrfs_test_opt(info, CLEAR_CACHE))
1115 		seq_puts(seq, ",clear_cache");
1116 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1117 		seq_puts(seq, ",user_subvol_rm_allowed");
1118 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1119 		seq_puts(seq, ",enospc_debug");
1120 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1121 		seq_puts(seq, ",autodefrag");
1122 	if (btrfs_test_opt(info, SKIP_BALANCE))
1123 		seq_puts(seq, ",skip_balance");
1124 	if (info->metadata_ratio)
1125 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1126 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1127 		seq_puts(seq, ",fatal_errors=panic");
1128 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1129 		seq_printf(seq, ",commit=%u", info->commit_interval);
1130 #ifdef CONFIG_BTRFS_DEBUG
1131 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1132 		seq_puts(seq, ",fragment=data");
1133 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1134 		seq_puts(seq, ",fragment=metadata");
1135 #endif
1136 	if (btrfs_test_opt(info, REF_VERIFY))
1137 		seq_puts(seq, ",ref_verify");
1138 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1139 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1140 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1141 	if (!IS_ERR(subvol_name)) {
1142 		seq_puts(seq, ",subvol=");
1143 		seq_escape(seq, subvol_name, " \t\n\\");
1144 		kfree(subvol_name);
1145 	}
1146 	return 0;
1147 }
1148 
1149 /*
1150  * subvolumes are identified by ino 256
1151  */
1152 static inline int is_subvolume_inode(struct inode *inode)
1153 {
1154 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1155 		return 1;
1156 	return 0;
1157 }
1158 
1159 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1160 				   struct vfsmount *mnt)
1161 {
1162 	struct dentry *root;
1163 	int ret;
1164 
1165 	if (!subvol_name) {
1166 		if (!subvol_objectid) {
1167 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1168 							  &subvol_objectid);
1169 			if (ret) {
1170 				root = ERR_PTR(ret);
1171 				goto out;
1172 			}
1173 		}
1174 		subvol_name = btrfs_get_subvol_name_from_objectid(
1175 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1176 		if (IS_ERR(subvol_name)) {
1177 			root = ERR_CAST(subvol_name);
1178 			subvol_name = NULL;
1179 			goto out;
1180 		}
1181 
1182 	}
1183 
1184 	root = mount_subtree(mnt, subvol_name);
1185 	/* mount_subtree() drops our reference on the vfsmount. */
1186 	mnt = NULL;
1187 
1188 	if (!IS_ERR(root)) {
1189 		struct super_block *s = root->d_sb;
1190 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1191 		struct inode *root_inode = d_inode(root);
1192 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1193 
1194 		ret = 0;
1195 		if (!is_subvolume_inode(root_inode)) {
1196 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1197 			       subvol_name);
1198 			ret = -EINVAL;
1199 		}
1200 		if (subvol_objectid && root_objectid != subvol_objectid) {
1201 			/*
1202 			 * This will also catch a race condition where a
1203 			 * subvolume which was passed by ID is renamed and
1204 			 * another subvolume is renamed over the old location.
1205 			 */
1206 			btrfs_err(fs_info,
1207 				  "subvol '%s' does not match subvolid %llu",
1208 				  subvol_name, subvol_objectid);
1209 			ret = -EINVAL;
1210 		}
1211 		if (ret) {
1212 			dput(root);
1213 			root = ERR_PTR(ret);
1214 			deactivate_locked_super(s);
1215 		}
1216 	}
1217 
1218 out:
1219 	mntput(mnt);
1220 	kfree(subvol_name);
1221 	return root;
1222 }
1223 
1224 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1225 				     u32 new_pool_size, u32 old_pool_size)
1226 {
1227 	if (new_pool_size == old_pool_size)
1228 		return;
1229 
1230 	fs_info->thread_pool_size = new_pool_size;
1231 
1232 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1233 	       old_pool_size, new_pool_size);
1234 
1235 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1236 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1237 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1238 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1239 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1240 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1241 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1242 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1243 }
1244 
1245 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1246 				       unsigned long long old_opts, int flags)
1247 {
1248 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1249 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1250 	     (flags & SB_RDONLY))) {
1251 		/* wait for any defraggers to finish */
1252 		wait_event(fs_info->transaction_wait,
1253 			   (atomic_read(&fs_info->defrag_running) == 0));
1254 		if (flags & SB_RDONLY)
1255 			sync_filesystem(fs_info->sb);
1256 	}
1257 }
1258 
1259 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1260 					 unsigned long long old_opts)
1261 {
1262 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1263 
1264 	/*
1265 	 * We need to cleanup all defragable inodes if the autodefragment is
1266 	 * close or the filesystem is read only.
1267 	 */
1268 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1269 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1270 		btrfs_cleanup_defrag_inodes(fs_info);
1271 	}
1272 
1273 	/* If we toggled discard async */
1274 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1275 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1276 		btrfs_discard_resume(fs_info);
1277 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1278 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1279 		btrfs_discard_cleanup(fs_info);
1280 
1281 	/* If we toggled space cache */
1282 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1283 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1284 }
1285 
1286 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1287 {
1288 	int ret;
1289 
1290 	if (BTRFS_FS_ERROR(fs_info)) {
1291 		btrfs_err(fs_info,
1292 			  "remounting read-write after error is not allowed");
1293 		return -EINVAL;
1294 	}
1295 
1296 	if (fs_info->fs_devices->rw_devices == 0)
1297 		return -EACCES;
1298 
1299 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1300 		btrfs_warn(fs_info,
1301 			   "too many missing devices, writable remount is not allowed");
1302 		return -EACCES;
1303 	}
1304 
1305 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1306 		btrfs_warn(fs_info,
1307 			   "mount required to replay tree-log, cannot remount read-write");
1308 		return -EINVAL;
1309 	}
1310 
1311 	/*
1312 	 * NOTE: when remounting with a change that does writes, don't put it
1313 	 * anywhere above this point, as we are not sure to be safe to write
1314 	 * until we pass the above checks.
1315 	 */
1316 	ret = btrfs_start_pre_rw_mount(fs_info);
1317 	if (ret)
1318 		return ret;
1319 
1320 	btrfs_clear_sb_rdonly(fs_info->sb);
1321 
1322 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1323 
1324 	/*
1325 	 * If we've gone from readonly -> read-write, we need to get our
1326 	 * sync/async discard lists in the right state.
1327 	 */
1328 	btrfs_discard_resume(fs_info);
1329 
1330 	return 0;
1331 }
1332 
1333 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1334 {
1335 	/*
1336 	 * This also happens on 'umount -rf' or on shutdown, when the
1337 	 * filesystem is busy.
1338 	 */
1339 	cancel_work_sync(&fs_info->async_reclaim_work);
1340 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1341 
1342 	btrfs_discard_cleanup(fs_info);
1343 
1344 	/* Wait for the uuid_scan task to finish */
1345 	down(&fs_info->uuid_tree_rescan_sem);
1346 	/* Avoid complains from lockdep et al. */
1347 	up(&fs_info->uuid_tree_rescan_sem);
1348 
1349 	btrfs_set_sb_rdonly(fs_info->sb);
1350 
1351 	/*
1352 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1353 	 * loop if it's already active.  If it's already asleep, we'll leave
1354 	 * unused block groups on disk until we're mounted read-write again
1355 	 * unless we clean them up here.
1356 	 */
1357 	btrfs_delete_unused_bgs(fs_info);
1358 
1359 	/*
1360 	 * The cleaner task could be already running before we set the flag
1361 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1362 	 * sure that after we finish the remount, i.e. after we call
1363 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1364 	 * - either because it was dropping a dead root, running delayed iputs
1365 	 *   or deleting an unused block group (the cleaner picked a block
1366 	 *   group from the list of unused block groups before we were able to
1367 	 *   in the previous call to btrfs_delete_unused_bgs()).
1368 	 */
1369 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1370 
1371 	/*
1372 	 * We've set the superblock to RO mode, so we might have made the
1373 	 * cleaner task sleep without running all pending delayed iputs. Go
1374 	 * through all the delayed iputs here, so that if an unmount happens
1375 	 * without remounting RW we don't end up at finishing close_ctree()
1376 	 * with a non-empty list of delayed iputs.
1377 	 */
1378 	btrfs_run_delayed_iputs(fs_info);
1379 
1380 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1381 	btrfs_scrub_cancel(fs_info);
1382 	btrfs_pause_balance(fs_info);
1383 
1384 	/*
1385 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1386 	 * be still running after we are in RO mode, as after that, by the time
1387 	 * we unmount, it might have left a transaction open, so we would leak
1388 	 * the transaction and/or crash.
1389 	 */
1390 	btrfs_qgroup_wait_for_completion(fs_info, false);
1391 
1392 	return btrfs_commit_super(fs_info);
1393 }
1394 
1395 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1396 {
1397 	fs_info->max_inline = ctx->max_inline;
1398 	fs_info->commit_interval = ctx->commit_interval;
1399 	fs_info->metadata_ratio = ctx->metadata_ratio;
1400 	fs_info->thread_pool_size = ctx->thread_pool_size;
1401 	fs_info->mount_opt = ctx->mount_opt;
1402 	fs_info->compress_type = ctx->compress_type;
1403 	fs_info->compress_level = ctx->compress_level;
1404 }
1405 
1406 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1407 {
1408 	ctx->max_inline = fs_info->max_inline;
1409 	ctx->commit_interval = fs_info->commit_interval;
1410 	ctx->metadata_ratio = fs_info->metadata_ratio;
1411 	ctx->thread_pool_size = fs_info->thread_pool_size;
1412 	ctx->mount_opt = fs_info->mount_opt;
1413 	ctx->compress_type = fs_info->compress_type;
1414 	ctx->compress_level = fs_info->compress_level;
1415 }
1416 
1417 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1418 do {										\
1419 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1420 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1421 		btrfs_info(fs_info, fmt, ##args);				\
1422 } while (0)
1423 
1424 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1425 do {									\
1426 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1427 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1428 		btrfs_info(fs_info, fmt, ##args);			\
1429 } while (0)
1430 
1431 static void btrfs_emit_options(struct btrfs_fs_info *info,
1432 			       struct btrfs_fs_context *old)
1433 {
1434 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1435 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1436 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1437 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1438 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1439 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1440 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1441 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1442 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1443 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1444 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1445 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1446 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1447 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1448 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1449 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1450 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1451 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1452 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1453 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1454 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1455 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1456 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1457 
1458 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1459 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1460 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1461 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1462 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1463 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1464 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1465 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1466 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1467 
1468 	/* Did the compression settings change? */
1469 	if (btrfs_test_opt(info, COMPRESS) &&
1470 	    (!old ||
1471 	     old->compress_type != info->compress_type ||
1472 	     old->compress_level != info->compress_level ||
1473 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1474 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1475 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1476 
1477 		btrfs_info(info, "%s %s compression, level %d",
1478 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1479 			   compress_type, info->compress_level);
1480 	}
1481 
1482 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1483 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1484 }
1485 
1486 static int btrfs_reconfigure(struct fs_context *fc)
1487 {
1488 	struct super_block *sb = fc->root->d_sb;
1489 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1490 	struct btrfs_fs_context *ctx = fc->fs_private;
1491 	struct btrfs_fs_context old_ctx;
1492 	int ret = 0;
1493 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1494 
1495 	btrfs_info_to_ctx(fs_info, &old_ctx);
1496 
1497 	/*
1498 	 * This is our "bind mount" trick, we don't want to allow the user to do
1499 	 * anything other than mount a different ro/rw and a different subvol,
1500 	 * all of the mount options should be maintained.
1501 	 */
1502 	if (mount_reconfigure)
1503 		ctx->mount_opt = old_ctx.mount_opt;
1504 
1505 	sync_filesystem(sb);
1506 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1507 
1508 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1509 		return -EINVAL;
1510 
1511 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	btrfs_ctx_to_info(fs_info, ctx);
1516 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1517 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1518 				 old_ctx.thread_pool_size);
1519 
1520 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1521 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1522 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1523 		btrfs_warn(fs_info,
1524 		"remount supports changing free space tree only from RO to RW");
1525 		/* Make sure free space cache options match the state on disk. */
1526 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1527 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1528 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1529 		}
1530 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1531 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1532 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1533 		}
1534 	}
1535 
1536 	ret = 0;
1537 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1538 		ret = btrfs_remount_ro(fs_info);
1539 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1540 		ret = btrfs_remount_rw(fs_info);
1541 	if (ret)
1542 		goto restore;
1543 
1544 	/*
1545 	 * If we set the mask during the parameter parsing VFS would reject the
1546 	 * remount.  Here we can set the mask and the value will be updated
1547 	 * appropriately.
1548 	 */
1549 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1550 		fc->sb_flags_mask |= SB_POSIXACL;
1551 
1552 	btrfs_emit_options(fs_info, &old_ctx);
1553 	wake_up_process(fs_info->transaction_kthread);
1554 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1555 	btrfs_clear_oneshot_options(fs_info);
1556 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1557 
1558 	return 0;
1559 restore:
1560 	btrfs_ctx_to_info(fs_info, &old_ctx);
1561 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1562 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1563 	return ret;
1564 }
1565 
1566 /* Used to sort the devices by max_avail(descending sort) */
1567 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1568 {
1569 	const struct btrfs_device_info *dev_info1 = a;
1570 	const struct btrfs_device_info *dev_info2 = b;
1571 
1572 	if (dev_info1->max_avail > dev_info2->max_avail)
1573 		return -1;
1574 	else if (dev_info1->max_avail < dev_info2->max_avail)
1575 		return 1;
1576 	return 0;
1577 }
1578 
1579 /*
1580  * sort the devices by max_avail, in which max free extent size of each device
1581  * is stored.(Descending Sort)
1582  */
1583 static inline void btrfs_descending_sort_devices(
1584 					struct btrfs_device_info *devices,
1585 					size_t nr_devices)
1586 {
1587 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1588 	     btrfs_cmp_device_free_bytes, NULL);
1589 }
1590 
1591 /*
1592  * The helper to calc the free space on the devices that can be used to store
1593  * file data.
1594  */
1595 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1596 					      u64 *free_bytes)
1597 {
1598 	struct btrfs_device_info *devices_info;
1599 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1600 	struct btrfs_device *device;
1601 	u64 type;
1602 	u64 avail_space;
1603 	u64 min_stripe_size;
1604 	int num_stripes = 1;
1605 	int i = 0, nr_devices;
1606 	const struct btrfs_raid_attr *rattr;
1607 
1608 	/*
1609 	 * We aren't under the device list lock, so this is racy-ish, but good
1610 	 * enough for our purposes.
1611 	 */
1612 	nr_devices = fs_info->fs_devices->open_devices;
1613 	if (!nr_devices) {
1614 		smp_mb();
1615 		nr_devices = fs_info->fs_devices->open_devices;
1616 		ASSERT(nr_devices);
1617 		if (!nr_devices) {
1618 			*free_bytes = 0;
1619 			return 0;
1620 		}
1621 	}
1622 
1623 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1624 			       GFP_KERNEL);
1625 	if (!devices_info)
1626 		return -ENOMEM;
1627 
1628 	/* calc min stripe number for data space allocation */
1629 	type = btrfs_data_alloc_profile(fs_info);
1630 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1631 
1632 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1633 		num_stripes = nr_devices;
1634 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1635 		num_stripes = rattr->ncopies;
1636 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1637 		num_stripes = 4;
1638 
1639 	/* Adjust for more than 1 stripe per device */
1640 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1641 
1642 	rcu_read_lock();
1643 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1644 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1645 						&device->dev_state) ||
1646 		    !device->bdev ||
1647 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1648 			continue;
1649 
1650 		if (i >= nr_devices)
1651 			break;
1652 
1653 		avail_space = device->total_bytes - device->bytes_used;
1654 
1655 		/* align with stripe_len */
1656 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1657 
1658 		/*
1659 		 * Ensure we have at least min_stripe_size on top of the
1660 		 * reserved space on the device.
1661 		 */
1662 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1663 			continue;
1664 
1665 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1666 
1667 		devices_info[i].dev = device;
1668 		devices_info[i].max_avail = avail_space;
1669 
1670 		i++;
1671 	}
1672 	rcu_read_unlock();
1673 
1674 	nr_devices = i;
1675 
1676 	btrfs_descending_sort_devices(devices_info, nr_devices);
1677 
1678 	i = nr_devices - 1;
1679 	avail_space = 0;
1680 	while (nr_devices >= rattr->devs_min) {
1681 		num_stripes = min(num_stripes, nr_devices);
1682 
1683 		if (devices_info[i].max_avail >= min_stripe_size) {
1684 			int j;
1685 			u64 alloc_size;
1686 
1687 			avail_space += devices_info[i].max_avail * num_stripes;
1688 			alloc_size = devices_info[i].max_avail;
1689 			for (j = i + 1 - num_stripes; j <= i; j++)
1690 				devices_info[j].max_avail -= alloc_size;
1691 		}
1692 		i--;
1693 		nr_devices--;
1694 	}
1695 
1696 	kfree(devices_info);
1697 	*free_bytes = avail_space;
1698 	return 0;
1699 }
1700 
1701 /*
1702  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1703  *
1704  * If there's a redundant raid level at DATA block groups, use the respective
1705  * multiplier to scale the sizes.
1706  *
1707  * Unused device space usage is based on simulating the chunk allocator
1708  * algorithm that respects the device sizes and order of allocations.  This is
1709  * a close approximation of the actual use but there are other factors that may
1710  * change the result (like a new metadata chunk).
1711  *
1712  * If metadata is exhausted, f_bavail will be 0.
1713  */
1714 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1715 {
1716 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1717 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1718 	struct btrfs_space_info *found;
1719 	u64 total_used = 0;
1720 	u64 total_free_data = 0;
1721 	u64 total_free_meta = 0;
1722 	u32 bits = fs_info->sectorsize_bits;
1723 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1724 	unsigned factor = 1;
1725 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1726 	int ret;
1727 	u64 thresh = 0;
1728 	int mixed = 0;
1729 
1730 	list_for_each_entry(found, &fs_info->space_info, list) {
1731 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1732 			int i;
1733 
1734 			total_free_data += found->disk_total - found->disk_used;
1735 			total_free_data -=
1736 				btrfs_account_ro_block_groups_free_space(found);
1737 
1738 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1739 				if (!list_empty(&found->block_groups[i]))
1740 					factor = btrfs_bg_type_to_factor(
1741 						btrfs_raid_array[i].bg_flag);
1742 			}
1743 		}
1744 
1745 		/*
1746 		 * Metadata in mixed block group profiles are accounted in data
1747 		 */
1748 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1749 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1750 				mixed = 1;
1751 			else
1752 				total_free_meta += found->disk_total -
1753 					found->disk_used;
1754 		}
1755 
1756 		total_used += found->disk_used;
1757 	}
1758 
1759 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1760 	buf->f_blocks >>= bits;
1761 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1762 
1763 	/* Account global block reserve as used, it's in logical size already */
1764 	spin_lock(&block_rsv->lock);
1765 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1766 	if (buf->f_bfree >= block_rsv->size >> bits)
1767 		buf->f_bfree -= block_rsv->size >> bits;
1768 	else
1769 		buf->f_bfree = 0;
1770 	spin_unlock(&block_rsv->lock);
1771 
1772 	buf->f_bavail = div_u64(total_free_data, factor);
1773 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1774 	if (ret)
1775 		return ret;
1776 	buf->f_bavail += div_u64(total_free_data, factor);
1777 	buf->f_bavail = buf->f_bavail >> bits;
1778 
1779 	/*
1780 	 * We calculate the remaining metadata space minus global reserve. If
1781 	 * this is (supposedly) smaller than zero, there's no space. But this
1782 	 * does not hold in practice, the exhausted state happens where's still
1783 	 * some positive delta. So we apply some guesswork and compare the
1784 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1785 	 *
1786 	 * We probably cannot calculate the exact threshold value because this
1787 	 * depends on the internal reservations requested by various
1788 	 * operations, so some operations that consume a few metadata will
1789 	 * succeed even if the Avail is zero. But this is better than the other
1790 	 * way around.
1791 	 */
1792 	thresh = SZ_4M;
1793 
1794 	/*
1795 	 * We only want to claim there's no available space if we can no longer
1796 	 * allocate chunks for our metadata profile and our global reserve will
1797 	 * not fit in the free metadata space.  If we aren't ->full then we
1798 	 * still can allocate chunks and thus are fine using the currently
1799 	 * calculated f_bavail.
1800 	 */
1801 	if (!mixed && block_rsv->space_info->full &&
1802 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1803 		buf->f_bavail = 0;
1804 
1805 	buf->f_type = BTRFS_SUPER_MAGIC;
1806 	buf->f_bsize = fs_info->sectorsize;
1807 	buf->f_namelen = BTRFS_NAME_LEN;
1808 
1809 	/* We treat it as constant endianness (it doesn't matter _which_)
1810 	   because we want the fsid to come out the same whether mounted
1811 	   on a big-endian or little-endian host */
1812 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1813 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1814 	/* Mask in the root object ID too, to disambiguate subvols */
1815 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1816 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1817 
1818 	return 0;
1819 }
1820 
1821 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1822 {
1823 	struct btrfs_fs_info *p = fc->s_fs_info;
1824 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1825 
1826 	return fs_info->fs_devices == p->fs_devices;
1827 }
1828 
1829 static int btrfs_get_tree_super(struct fs_context *fc)
1830 {
1831 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1832 	struct btrfs_fs_context *ctx = fc->fs_private;
1833 	struct btrfs_fs_devices *fs_devices = NULL;
1834 	struct block_device *bdev;
1835 	struct btrfs_device *device;
1836 	struct super_block *sb;
1837 	blk_mode_t mode = btrfs_open_mode(fc);
1838 	int ret;
1839 
1840 	btrfs_ctx_to_info(fs_info, ctx);
1841 	mutex_lock(&uuid_mutex);
1842 
1843 	/*
1844 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1845 	 * either a valid device or an error.
1846 	 */
1847 	device = btrfs_scan_one_device(fc->source, mode, true);
1848 	ASSERT(device != NULL);
1849 	if (IS_ERR(device)) {
1850 		mutex_unlock(&uuid_mutex);
1851 		return PTR_ERR(device);
1852 	}
1853 
1854 	fs_devices = device->fs_devices;
1855 	fs_info->fs_devices = fs_devices;
1856 
1857 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1858 	mutex_unlock(&uuid_mutex);
1859 	if (ret)
1860 		return ret;
1861 
1862 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1863 		ret = -EACCES;
1864 		goto error;
1865 	}
1866 
1867 	bdev = fs_devices->latest_dev->bdev;
1868 
1869 	/*
1870 	 * From now on the error handling is not straightforward.
1871 	 *
1872 	 * If successful, this will transfer the fs_info into the super block,
1873 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1874 	 * super, we'll still have fc->s_fs_info populated.  If we error
1875 	 * completely out it'll be cleaned up when we drop the fs_context,
1876 	 * otherwise it's tied to the lifetime of the super_block.
1877 	 */
1878 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1879 	if (IS_ERR(sb)) {
1880 		ret = PTR_ERR(sb);
1881 		goto error;
1882 	}
1883 
1884 	set_device_specific_options(fs_info);
1885 
1886 	if (sb->s_root) {
1887 		btrfs_close_devices(fs_devices);
1888 		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1889 			ret = -EBUSY;
1890 	} else {
1891 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1892 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1893 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1894 		ret = btrfs_fill_super(sb, fs_devices);
1895 	}
1896 
1897 	if (ret) {
1898 		deactivate_locked_super(sb);
1899 		return ret;
1900 	}
1901 
1902 	btrfs_clear_oneshot_options(fs_info);
1903 
1904 	fc->root = dget(sb->s_root);
1905 	return 0;
1906 
1907 error:
1908 	btrfs_close_devices(fs_devices);
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1914  * with different ro/rw options") the following works:
1915  *
1916  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1917  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1918  *
1919  * which looks nice and innocent but is actually pretty intricate and deserves
1920  * a long comment.
1921  *
1922  * On another filesystem a subvolume mount is close to something like:
1923  *
1924  *	(iii) # create rw superblock + initial mount
1925  *	      mount -t xfs /dev/sdb /opt/
1926  *
1927  *	      # create ro bind mount
1928  *	      mount --bind -o ro /opt/foo /mnt/foo
1929  *
1930  *	      # unmount initial mount
1931  *	      umount /opt
1932  *
1933  * Of course, there's some special subvolume sauce and there's the fact that the
1934  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1935  * it's very close and will help us understand the issue.
1936  *
1937  * The old mount API didn't cleanly distinguish between a mount being made ro
1938  * and a superblock being made ro.  The only way to change the ro state of
1939  * either object was by passing ms_rdonly. If a new mount was created via
1940  * mount(2) such as:
1941  *
1942  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1943  *
1944  * the MS_RDONLY flag being specified had two effects:
1945  *
1946  * (1) MNT_READONLY was raised -> the resulting mount got
1947  *     @mnt->mnt_flags |= MNT_READONLY raised.
1948  *
1949  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1950  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1951  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1952  *
1953  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1954  * subtree mounted ro.
1955  *
1956  * But consider the effect on the old mount API on btrfs subvolume mounting
1957  * which combines the distinct step in (iii) into a single step.
1958  *
1959  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1960  * is issued the superblock is ro and thus even if the mount created for (ii) is
1961  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1962  * to rw for (ii) which it did using an internal remount call.
1963  *
1964  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1965  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1966  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1967  * passed by mount(8) to mount(2).
1968  *
1969  * Enter the new mount API. The new mount API disambiguates making a mount ro
1970  * and making a superblock ro.
1971  *
1972  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1973  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1974  *     specific mount or mount tree that is never seen by the filesystem itself.
1975  *
1976  * (4) To turn a superblock ro the "ro" flag must be used with
1977  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1978  *     in fc->sb_flags.
1979  *
1980  * But, currently the util-linux mount command already utilizes the new mount
1981  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1982  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1983  * work with different options work we need to keep backward compatibility.
1984  */
1985 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1986 {
1987 	struct vfsmount *mnt;
1988 	int ret;
1989 	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1990 
1991 	/*
1992 	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1993 	 * super block, so invert our setting here and retry the mount so we
1994 	 * can get our vfsmount.
1995 	 */
1996 	if (ro2rw)
1997 		fc->sb_flags |= SB_RDONLY;
1998 	else
1999 		fc->sb_flags &= ~SB_RDONLY;
2000 
2001 	mnt = fc_mount(fc);
2002 	if (IS_ERR(mnt))
2003 		return mnt;
2004 
2005 	if (!ro2rw)
2006 		return mnt;
2007 
2008 	/* We need to convert to rw, call reconfigure. */
2009 	fc->sb_flags &= ~SB_RDONLY;
2010 	down_write(&mnt->mnt_sb->s_umount);
2011 	ret = btrfs_reconfigure(fc);
2012 	up_write(&mnt->mnt_sb->s_umount);
2013 	if (ret) {
2014 		mntput(mnt);
2015 		return ERR_PTR(ret);
2016 	}
2017 	return mnt;
2018 }
2019 
2020 static int btrfs_get_tree_subvol(struct fs_context *fc)
2021 {
2022 	struct btrfs_fs_info *fs_info = NULL;
2023 	struct btrfs_fs_context *ctx = fc->fs_private;
2024 	struct fs_context *dup_fc;
2025 	struct dentry *dentry;
2026 	struct vfsmount *mnt;
2027 
2028 	/*
2029 	 * Setup a dummy root and fs_info for test/set super.  This is because
2030 	 * we don't actually fill this stuff out until open_ctree, but we need
2031 	 * then open_ctree will properly initialize the file system specific
2032 	 * settings later.  btrfs_init_fs_info initializes the static elements
2033 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2034 	 * superblock with our given fs_devices later on at sget() time.
2035 	 */
2036 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2037 	if (!fs_info)
2038 		return -ENOMEM;
2039 
2040 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2041 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2042 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2043 		btrfs_free_fs_info(fs_info);
2044 		return -ENOMEM;
2045 	}
2046 	btrfs_init_fs_info(fs_info);
2047 
2048 	dup_fc = vfs_dup_fs_context(fc);
2049 	if (IS_ERR(dup_fc)) {
2050 		btrfs_free_fs_info(fs_info);
2051 		return PTR_ERR(dup_fc);
2052 	}
2053 
2054 	/*
2055 	 * When we do the sget_fc this gets transferred to the sb, so we only
2056 	 * need to set it on the dup_fc as this is what creates the super block.
2057 	 */
2058 	dup_fc->s_fs_info = fs_info;
2059 
2060 	/*
2061 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2062 	 * loop, they were duplicated into dup_fc, we can drop the originals
2063 	 * here.
2064 	 */
2065 	security_free_mnt_opts(&fc->security);
2066 	fc->security = NULL;
2067 
2068 	mnt = fc_mount(dup_fc);
2069 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2070 		mnt = btrfs_reconfigure_for_mount(dup_fc);
2071 	put_fs_context(dup_fc);
2072 	if (IS_ERR(mnt))
2073 		return PTR_ERR(mnt);
2074 
2075 	/*
2076 	 * This free's ->subvol_name, because if it isn't set we have to
2077 	 * allocate a buffer to hold the subvol_name, so we just drop our
2078 	 * reference to it here.
2079 	 */
2080 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2081 	ctx->subvol_name = NULL;
2082 	if (IS_ERR(dentry))
2083 		return PTR_ERR(dentry);
2084 
2085 	fc->root = dentry;
2086 	return 0;
2087 }
2088 
2089 static int btrfs_get_tree(struct fs_context *fc)
2090 {
2091 	/*
2092 	 * Since we use mount_subtree to mount the default/specified subvol, we
2093 	 * have to do mounts in two steps.
2094 	 *
2095 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2096 	 * wrapper around fc_mount() to call back into here again, and this time
2097 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2098 	 * everything to open the devices and file system.  Then we return back
2099 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2100 	 * from there we can do our mount_subvol() call, which will lookup
2101 	 * whichever subvol we're mounting and setup this fc with the
2102 	 * appropriate dentry for the subvol.
2103 	 */
2104 	if (fc->s_fs_info)
2105 		return btrfs_get_tree_super(fc);
2106 	return btrfs_get_tree_subvol(fc);
2107 }
2108 
2109 static void btrfs_kill_super(struct super_block *sb)
2110 {
2111 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2112 	kill_anon_super(sb);
2113 	btrfs_free_fs_info(fs_info);
2114 }
2115 
2116 static void btrfs_free_fs_context(struct fs_context *fc)
2117 {
2118 	struct btrfs_fs_context *ctx = fc->fs_private;
2119 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2120 
2121 	if (fs_info)
2122 		btrfs_free_fs_info(fs_info);
2123 
2124 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2125 		kfree(ctx->subvol_name);
2126 		kfree(ctx);
2127 	}
2128 }
2129 
2130 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2131 {
2132 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2133 
2134 	/*
2135 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2136 	 * our original fc so we can have the subvolume name or objectid.
2137 	 *
2138 	 * We unset ->source in the original fc because the dup needs it for
2139 	 * mounting, and then once we free the dup it'll free ->source, so we
2140 	 * need to make sure we're only pointing to it in one fc.
2141 	 */
2142 	refcount_inc(&ctx->refs);
2143 	fc->fs_private = ctx;
2144 	fc->source = src_fc->source;
2145 	src_fc->source = NULL;
2146 	return 0;
2147 }
2148 
2149 static const struct fs_context_operations btrfs_fs_context_ops = {
2150 	.parse_param	= btrfs_parse_param,
2151 	.reconfigure	= btrfs_reconfigure,
2152 	.get_tree	= btrfs_get_tree,
2153 	.dup		= btrfs_dup_fs_context,
2154 	.free		= btrfs_free_fs_context,
2155 };
2156 
2157 static int btrfs_init_fs_context(struct fs_context *fc)
2158 {
2159 	struct btrfs_fs_context *ctx;
2160 
2161 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2162 	if (!ctx)
2163 		return -ENOMEM;
2164 
2165 	refcount_set(&ctx->refs, 1);
2166 	fc->fs_private = ctx;
2167 	fc->ops = &btrfs_fs_context_ops;
2168 
2169 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2170 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2171 	} else {
2172 		ctx->thread_pool_size =
2173 			min_t(unsigned long, num_online_cpus() + 2, 8);
2174 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2175 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2176 	}
2177 
2178 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2179 	fc->sb_flags |= SB_POSIXACL;
2180 #endif
2181 	fc->sb_flags |= SB_I_VERSION;
2182 
2183 	return 0;
2184 }
2185 
2186 static struct file_system_type btrfs_fs_type = {
2187 	.owner			= THIS_MODULE,
2188 	.name			= "btrfs",
2189 	.init_fs_context	= btrfs_init_fs_context,
2190 	.parameters		= btrfs_fs_parameters,
2191 	.kill_sb		= btrfs_kill_super,
2192 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2193 				  FS_ALLOW_IDMAP | FS_MGTIME,
2194  };
2195 
2196 MODULE_ALIAS_FS("btrfs");
2197 
2198 static int btrfs_control_open(struct inode *inode, struct file *file)
2199 {
2200 	/*
2201 	 * The control file's private_data is used to hold the
2202 	 * transaction when it is started and is used to keep
2203 	 * track of whether a transaction is already in progress.
2204 	 */
2205 	file->private_data = NULL;
2206 	return 0;
2207 }
2208 
2209 /*
2210  * Used by /dev/btrfs-control for devices ioctls.
2211  */
2212 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2213 				unsigned long arg)
2214 {
2215 	struct btrfs_ioctl_vol_args *vol;
2216 	struct btrfs_device *device = NULL;
2217 	dev_t devt = 0;
2218 	int ret = -ENOTTY;
2219 
2220 	if (!capable(CAP_SYS_ADMIN))
2221 		return -EPERM;
2222 
2223 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2224 	if (IS_ERR(vol))
2225 		return PTR_ERR(vol);
2226 	ret = btrfs_check_ioctl_vol_args_path(vol);
2227 	if (ret < 0)
2228 		goto out;
2229 
2230 	switch (cmd) {
2231 	case BTRFS_IOC_SCAN_DEV:
2232 		mutex_lock(&uuid_mutex);
2233 		/*
2234 		 * Scanning outside of mount can return NULL which would turn
2235 		 * into 0 error code.
2236 		 */
2237 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2238 		ret = PTR_ERR_OR_ZERO(device);
2239 		mutex_unlock(&uuid_mutex);
2240 		break;
2241 	case BTRFS_IOC_FORGET_DEV:
2242 		if (vol->name[0] != 0) {
2243 			ret = lookup_bdev(vol->name, &devt);
2244 			if (ret)
2245 				break;
2246 		}
2247 		ret = btrfs_forget_devices(devt);
2248 		break;
2249 	case BTRFS_IOC_DEVICES_READY:
2250 		mutex_lock(&uuid_mutex);
2251 		/*
2252 		 * Scanning outside of mount can return NULL which would turn
2253 		 * into 0 error code.
2254 		 */
2255 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2256 		if (IS_ERR_OR_NULL(device)) {
2257 			mutex_unlock(&uuid_mutex);
2258 			if (IS_ERR(device))
2259 				ret = PTR_ERR(device);
2260 			else
2261 				ret = 0;
2262 			break;
2263 		}
2264 		ret = !(device->fs_devices->num_devices ==
2265 			device->fs_devices->total_devices);
2266 		mutex_unlock(&uuid_mutex);
2267 		break;
2268 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2269 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2270 		break;
2271 	}
2272 
2273 out:
2274 	kfree(vol);
2275 	return ret;
2276 }
2277 
2278 static int btrfs_freeze(struct super_block *sb)
2279 {
2280 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2281 
2282 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2283 	/*
2284 	 * We don't need a barrier here, we'll wait for any transaction that
2285 	 * could be in progress on other threads (and do delayed iputs that
2286 	 * we want to avoid on a frozen filesystem), or do the commit
2287 	 * ourselves.
2288 	 */
2289 	return btrfs_commit_current_transaction(fs_info->tree_root);
2290 }
2291 
2292 static int check_dev_super(struct btrfs_device *dev)
2293 {
2294 	struct btrfs_fs_info *fs_info = dev->fs_info;
2295 	struct btrfs_super_block *sb;
2296 	u64 last_trans;
2297 	u16 csum_type;
2298 	int ret = 0;
2299 
2300 	/* This should be called with fs still frozen. */
2301 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2302 
2303 	/* Missing dev, no need to check. */
2304 	if (!dev->bdev)
2305 		return 0;
2306 
2307 	/* Only need to check the primary super block. */
2308 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2309 	if (IS_ERR(sb))
2310 		return PTR_ERR(sb);
2311 
2312 	/* Verify the checksum. */
2313 	csum_type = btrfs_super_csum_type(sb);
2314 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2315 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2316 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2317 		ret = -EUCLEAN;
2318 		goto out;
2319 	}
2320 
2321 	if (btrfs_check_super_csum(fs_info, sb)) {
2322 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2323 		ret = -EUCLEAN;
2324 		goto out;
2325 	}
2326 
2327 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2328 	ret = btrfs_validate_super(fs_info, sb, 0);
2329 	if (ret < 0)
2330 		goto out;
2331 
2332 	last_trans = btrfs_get_last_trans_committed(fs_info);
2333 	if (btrfs_super_generation(sb) != last_trans) {
2334 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2335 			  btrfs_super_generation(sb), last_trans);
2336 		ret = -EUCLEAN;
2337 		goto out;
2338 	}
2339 out:
2340 	btrfs_release_disk_super(sb);
2341 	return ret;
2342 }
2343 
2344 static int btrfs_unfreeze(struct super_block *sb)
2345 {
2346 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2347 	struct btrfs_device *device;
2348 	int ret = 0;
2349 
2350 	/*
2351 	 * Make sure the fs is not changed by accident (like hibernation then
2352 	 * modified by other OS).
2353 	 * If we found anything wrong, we mark the fs error immediately.
2354 	 *
2355 	 * And since the fs is frozen, no one can modify the fs yet, thus
2356 	 * we don't need to hold device_list_mutex.
2357 	 */
2358 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2359 		ret = check_dev_super(device);
2360 		if (ret < 0) {
2361 			btrfs_handle_fs_error(fs_info, ret,
2362 				"super block on devid %llu got modified unexpectedly",
2363 				device->devid);
2364 			break;
2365 		}
2366 	}
2367 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2368 
2369 	/*
2370 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2371 	 * above checks failed. Since the fs is either fine or read-only, we're
2372 	 * safe to continue, without causing further damage.
2373 	 */
2374 	return 0;
2375 }
2376 
2377 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2378 {
2379 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2380 
2381 	/*
2382 	 * There should be always a valid pointer in latest_dev, it may be stale
2383 	 * for a short moment in case it's being deleted but still valid until
2384 	 * the end of RCU grace period.
2385 	 */
2386 	rcu_read_lock();
2387 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2388 	rcu_read_unlock();
2389 
2390 	return 0;
2391 }
2392 
2393 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2394 {
2395 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2396 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2397 
2398 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2399 
2400 	return nr;
2401 }
2402 
2403 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2404 {
2405 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2406 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2407 
2408 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2409 
2410 	/* The extent map shrinker runs asynchronously, so always return 0. */
2411 	return 0;
2412 }
2413 
2414 static const struct super_operations btrfs_super_ops = {
2415 	.drop_inode	= btrfs_drop_inode,
2416 	.evict_inode	= btrfs_evict_inode,
2417 	.put_super	= btrfs_put_super,
2418 	.sync_fs	= btrfs_sync_fs,
2419 	.show_options	= btrfs_show_options,
2420 	.show_devname	= btrfs_show_devname,
2421 	.alloc_inode	= btrfs_alloc_inode,
2422 	.destroy_inode	= btrfs_destroy_inode,
2423 	.free_inode	= btrfs_free_inode,
2424 	.statfs		= btrfs_statfs,
2425 	.freeze_fs	= btrfs_freeze,
2426 	.unfreeze_fs	= btrfs_unfreeze,
2427 	.nr_cached_objects = btrfs_nr_cached_objects,
2428 	.free_cached_objects = btrfs_free_cached_objects,
2429 };
2430 
2431 static const struct file_operations btrfs_ctl_fops = {
2432 	.open = btrfs_control_open,
2433 	.unlocked_ioctl	 = btrfs_control_ioctl,
2434 	.compat_ioctl = compat_ptr_ioctl,
2435 	.owner	 = THIS_MODULE,
2436 	.llseek = noop_llseek,
2437 };
2438 
2439 static struct miscdevice btrfs_misc = {
2440 	.minor		= BTRFS_MINOR,
2441 	.name		= "btrfs-control",
2442 	.fops		= &btrfs_ctl_fops
2443 };
2444 
2445 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2446 MODULE_ALIAS("devname:btrfs-control");
2447 
2448 static int __init btrfs_interface_init(void)
2449 {
2450 	return misc_register(&btrfs_misc);
2451 }
2452 
2453 static __cold void btrfs_interface_exit(void)
2454 {
2455 	misc_deregister(&btrfs_misc);
2456 }
2457 
2458 static int __init btrfs_print_mod_info(void)
2459 {
2460 	static const char options[] = ""
2461 #ifdef CONFIG_BTRFS_DEBUG
2462 			", debug=on"
2463 #endif
2464 #ifdef CONFIG_BTRFS_ASSERT
2465 			", assert=on"
2466 #endif
2467 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2468 			", ref-verify=on"
2469 #endif
2470 #ifdef CONFIG_BLK_DEV_ZONED
2471 			", zoned=yes"
2472 #else
2473 			", zoned=no"
2474 #endif
2475 #ifdef CONFIG_FS_VERITY
2476 			", fsverity=yes"
2477 #else
2478 			", fsverity=no"
2479 #endif
2480 			;
2481 	pr_info("Btrfs loaded%s\n", options);
2482 	return 0;
2483 }
2484 
2485 static int register_btrfs(void)
2486 {
2487 	return register_filesystem(&btrfs_fs_type);
2488 }
2489 
2490 static void unregister_btrfs(void)
2491 {
2492 	unregister_filesystem(&btrfs_fs_type);
2493 }
2494 
2495 /* Helper structure for long init/exit functions. */
2496 struct init_sequence {
2497 	int (*init_func)(void);
2498 	/* Can be NULL if the init_func doesn't need cleanup. */
2499 	void (*exit_func)(void);
2500 };
2501 
2502 static const struct init_sequence mod_init_seq[] = {
2503 	{
2504 		.init_func = btrfs_props_init,
2505 		.exit_func = NULL,
2506 	}, {
2507 		.init_func = btrfs_init_sysfs,
2508 		.exit_func = btrfs_exit_sysfs,
2509 	}, {
2510 		.init_func = btrfs_init_compress,
2511 		.exit_func = btrfs_exit_compress,
2512 	}, {
2513 		.init_func = btrfs_init_cachep,
2514 		.exit_func = btrfs_destroy_cachep,
2515 	}, {
2516 		.init_func = btrfs_init_dio,
2517 		.exit_func = btrfs_destroy_dio,
2518 	}, {
2519 		.init_func = btrfs_transaction_init,
2520 		.exit_func = btrfs_transaction_exit,
2521 	}, {
2522 		.init_func = btrfs_ctree_init,
2523 		.exit_func = btrfs_ctree_exit,
2524 	}, {
2525 		.init_func = btrfs_free_space_init,
2526 		.exit_func = btrfs_free_space_exit,
2527 	}, {
2528 		.init_func = extent_state_init_cachep,
2529 		.exit_func = extent_state_free_cachep,
2530 	}, {
2531 		.init_func = extent_buffer_init_cachep,
2532 		.exit_func = extent_buffer_free_cachep,
2533 	}, {
2534 		.init_func = btrfs_bioset_init,
2535 		.exit_func = btrfs_bioset_exit,
2536 	}, {
2537 		.init_func = extent_map_init,
2538 		.exit_func = extent_map_exit,
2539 	}, {
2540 		.init_func = ordered_data_init,
2541 		.exit_func = ordered_data_exit,
2542 	}, {
2543 		.init_func = btrfs_delayed_inode_init,
2544 		.exit_func = btrfs_delayed_inode_exit,
2545 	}, {
2546 		.init_func = btrfs_auto_defrag_init,
2547 		.exit_func = btrfs_auto_defrag_exit,
2548 	}, {
2549 		.init_func = btrfs_delayed_ref_init,
2550 		.exit_func = btrfs_delayed_ref_exit,
2551 	}, {
2552 		.init_func = btrfs_prelim_ref_init,
2553 		.exit_func = btrfs_prelim_ref_exit,
2554 	}, {
2555 		.init_func = btrfs_interface_init,
2556 		.exit_func = btrfs_interface_exit,
2557 	}, {
2558 		.init_func = btrfs_print_mod_info,
2559 		.exit_func = NULL,
2560 	}, {
2561 		.init_func = btrfs_run_sanity_tests,
2562 		.exit_func = NULL,
2563 	}, {
2564 		.init_func = register_btrfs,
2565 		.exit_func = unregister_btrfs,
2566 	}
2567 };
2568 
2569 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2570 
2571 static __always_inline void btrfs_exit_btrfs_fs(void)
2572 {
2573 	int i;
2574 
2575 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2576 		if (!mod_init_result[i])
2577 			continue;
2578 		if (mod_init_seq[i].exit_func)
2579 			mod_init_seq[i].exit_func();
2580 		mod_init_result[i] = false;
2581 	}
2582 }
2583 
2584 static void __exit exit_btrfs_fs(void)
2585 {
2586 	btrfs_exit_btrfs_fs();
2587 	btrfs_cleanup_fs_uuids();
2588 }
2589 
2590 static int __init init_btrfs_fs(void)
2591 {
2592 	int ret;
2593 	int i;
2594 
2595 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2596 		ASSERT(!mod_init_result[i]);
2597 		ret = mod_init_seq[i].init_func();
2598 		if (ret < 0) {
2599 			btrfs_exit_btrfs_fs();
2600 			return ret;
2601 		}
2602 		mod_init_result[i] = true;
2603 	}
2604 	return 0;
2605 }
2606 
2607 late_initcall(init_btrfs_fs);
2608 module_exit(exit_btrfs_fs)
2609 
2610 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2611 MODULE_LICENSE("GPL");
2612 MODULE_SOFTDEP("pre: crc32c");
2613 MODULE_SOFTDEP("pre: xxhash64");
2614 MODULE_SOFTDEP("pre: sha256");
2615 MODULE_SOFTDEP("pre: blake2b-256");
2616