1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include "messages.h" 32 #include "delayed-inode.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "direct-io.h" 38 #include "props.h" 39 #include "xattr.h" 40 #include "bio.h" 41 #include "export.h" 42 #include "compression.h" 43 #include "dev-replace.h" 44 #include "free-space-cache.h" 45 #include "backref.h" 46 #include "space-info.h" 47 #include "sysfs.h" 48 #include "zoned.h" 49 #include "tests/btrfs-tests.h" 50 #include "block-group.h" 51 #include "discard.h" 52 #include "qgroup.h" 53 #include "raid56.h" 54 #include "fs.h" 55 #include "accessors.h" 56 #include "defrag.h" 57 #include "dir-item.h" 58 #include "ioctl.h" 59 #include "scrub.h" 60 #include "verity.h" 61 #include "super.h" 62 #include "extent-tree.h" 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/btrfs.h> 65 66 static const struct super_operations btrfs_super_ops; 67 static struct file_system_type btrfs_fs_type; 68 69 static void btrfs_put_super(struct super_block *sb) 70 { 71 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 72 73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 74 close_ctree(fs_info); 75 } 76 77 /* Store the mount options related information. */ 78 struct btrfs_fs_context { 79 char *subvol_name; 80 u64 subvol_objectid; 81 u64 max_inline; 82 u32 commit_interval; 83 u32 metadata_ratio; 84 u32 thread_pool_size; 85 unsigned long long mount_opt; 86 unsigned long compress_type:4; 87 int compress_level; 88 refcount_t refs; 89 }; 90 91 enum { 92 Opt_acl, 93 Opt_clear_cache, 94 Opt_commit_interval, 95 Opt_compress, 96 Opt_compress_force, 97 Opt_compress_force_type, 98 Opt_compress_type, 99 Opt_degraded, 100 Opt_device, 101 Opt_fatal_errors, 102 Opt_flushoncommit, 103 Opt_max_inline, 104 Opt_barrier, 105 Opt_datacow, 106 Opt_datasum, 107 Opt_defrag, 108 Opt_discard, 109 Opt_discard_mode, 110 Opt_ratio, 111 Opt_rescan_uuid_tree, 112 Opt_skip_balance, 113 Opt_space_cache, 114 Opt_space_cache_version, 115 Opt_ssd, 116 Opt_ssd_spread, 117 Opt_subvol, 118 Opt_subvol_empty, 119 Opt_subvolid, 120 Opt_thread_pool, 121 Opt_treelog, 122 Opt_user_subvol_rm_allowed, 123 Opt_norecovery, 124 125 /* Rescue options */ 126 Opt_rescue, 127 Opt_usebackuproot, 128 Opt_nologreplay, 129 130 /* Debugging options */ 131 Opt_enospc_debug, 132 #ifdef CONFIG_BTRFS_DEBUG 133 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 134 #endif 135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 136 Opt_ref_verify, 137 #endif 138 Opt_err, 139 }; 140 141 enum { 142 Opt_fatal_errors_panic, 143 Opt_fatal_errors_bug, 144 }; 145 146 static const struct constant_table btrfs_parameter_fatal_errors[] = { 147 { "panic", Opt_fatal_errors_panic }, 148 { "bug", Opt_fatal_errors_bug }, 149 {} 150 }; 151 152 enum { 153 Opt_discard_sync, 154 Opt_discard_async, 155 }; 156 157 static const struct constant_table btrfs_parameter_discard[] = { 158 { "sync", Opt_discard_sync }, 159 { "async", Opt_discard_async }, 160 {} 161 }; 162 163 enum { 164 Opt_space_cache_v1, 165 Opt_space_cache_v2, 166 }; 167 168 static const struct constant_table btrfs_parameter_space_cache[] = { 169 { "v1", Opt_space_cache_v1 }, 170 { "v2", Opt_space_cache_v2 }, 171 {} 172 }; 173 174 enum { 175 Opt_rescue_usebackuproot, 176 Opt_rescue_nologreplay, 177 Opt_rescue_ignorebadroots, 178 Opt_rescue_ignoredatacsums, 179 Opt_rescue_ignoremetacsums, 180 Opt_rescue_ignoresuperflags, 181 Opt_rescue_parameter_all, 182 }; 183 184 static const struct constant_table btrfs_parameter_rescue[] = { 185 { "usebackuproot", Opt_rescue_usebackuproot }, 186 { "nologreplay", Opt_rescue_nologreplay }, 187 { "ignorebadroots", Opt_rescue_ignorebadroots }, 188 { "ibadroots", Opt_rescue_ignorebadroots }, 189 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 190 { "ignoremetacsums", Opt_rescue_ignoremetacsums}, 191 { "ignoresuperflags", Opt_rescue_ignoresuperflags}, 192 { "idatacsums", Opt_rescue_ignoredatacsums }, 193 { "imetacsums", Opt_rescue_ignoremetacsums}, 194 { "isuperflags", Opt_rescue_ignoresuperflags}, 195 { "all", Opt_rescue_parameter_all }, 196 {} 197 }; 198 199 #ifdef CONFIG_BTRFS_DEBUG 200 enum { 201 Opt_fragment_parameter_data, 202 Opt_fragment_parameter_metadata, 203 Opt_fragment_parameter_all, 204 }; 205 206 static const struct constant_table btrfs_parameter_fragment[] = { 207 { "data", Opt_fragment_parameter_data }, 208 { "metadata", Opt_fragment_parameter_metadata }, 209 { "all", Opt_fragment_parameter_all }, 210 {} 211 }; 212 #endif 213 214 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 215 fsparam_flag_no("acl", Opt_acl), 216 fsparam_flag_no("autodefrag", Opt_defrag), 217 fsparam_flag_no("barrier", Opt_barrier), 218 fsparam_flag("clear_cache", Opt_clear_cache), 219 fsparam_u32("commit", Opt_commit_interval), 220 fsparam_flag("compress", Opt_compress), 221 fsparam_string("compress", Opt_compress_type), 222 fsparam_flag("compress-force", Opt_compress_force), 223 fsparam_string("compress-force", Opt_compress_force_type), 224 fsparam_flag_no("datacow", Opt_datacow), 225 fsparam_flag_no("datasum", Opt_datasum), 226 fsparam_flag("degraded", Opt_degraded), 227 fsparam_string("device", Opt_device), 228 fsparam_flag_no("discard", Opt_discard), 229 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 230 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 231 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 232 fsparam_string("max_inline", Opt_max_inline), 233 fsparam_u32("metadata_ratio", Opt_ratio), 234 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 235 fsparam_flag("skip_balance", Opt_skip_balance), 236 fsparam_flag_no("space_cache", Opt_space_cache), 237 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 238 fsparam_flag_no("ssd", Opt_ssd), 239 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 240 fsparam_string("subvol", Opt_subvol), 241 fsparam_flag("subvol=", Opt_subvol_empty), 242 fsparam_u64("subvolid", Opt_subvolid), 243 fsparam_u32("thread_pool", Opt_thread_pool), 244 fsparam_flag_no("treelog", Opt_treelog), 245 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 246 247 /* Rescue options. */ 248 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 249 /* Deprecated, with alias rescue=nologreplay */ 250 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL), 251 /* Deprecated, with alias rescue=usebackuproot */ 252 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 253 /* For compatibility only, alias for "rescue=nologreplay". */ 254 fsparam_flag("norecovery", Opt_norecovery), 255 256 /* Debugging options. */ 257 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 258 #ifdef CONFIG_BTRFS_DEBUG 259 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 260 #endif 261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 262 fsparam_flag("ref_verify", Opt_ref_verify), 263 #endif 264 {} 265 }; 266 267 /* No support for restricting writes to btrfs devices yet... */ 268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 269 { 270 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 271 } 272 273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 274 { 275 struct btrfs_fs_context *ctx = fc->fs_private; 276 struct fs_parse_result result; 277 int opt; 278 279 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 280 if (opt < 0) 281 return opt; 282 283 switch (opt) { 284 case Opt_degraded: 285 btrfs_set_opt(ctx->mount_opt, DEGRADED); 286 break; 287 case Opt_subvol_empty: 288 /* 289 * This exists because we used to allow it on accident, so we're 290 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 291 * empty subvol= again"). 292 */ 293 break; 294 case Opt_subvol: 295 kfree(ctx->subvol_name); 296 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 297 if (!ctx->subvol_name) 298 return -ENOMEM; 299 break; 300 case Opt_subvolid: 301 ctx->subvol_objectid = result.uint_64; 302 303 /* subvolid=0 means give me the original fs_tree. */ 304 if (!ctx->subvol_objectid) 305 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 306 break; 307 case Opt_device: { 308 struct btrfs_device *device; 309 blk_mode_t mode = btrfs_open_mode(fc); 310 311 mutex_lock(&uuid_mutex); 312 device = btrfs_scan_one_device(param->string, mode, false); 313 mutex_unlock(&uuid_mutex); 314 if (IS_ERR(device)) 315 return PTR_ERR(device); 316 break; 317 } 318 case Opt_datasum: 319 if (result.negated) { 320 btrfs_set_opt(ctx->mount_opt, NODATASUM); 321 } else { 322 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 323 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 324 } 325 break; 326 case Opt_datacow: 327 if (result.negated) { 328 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 329 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 330 btrfs_set_opt(ctx->mount_opt, NODATACOW); 331 btrfs_set_opt(ctx->mount_opt, NODATASUM); 332 } else { 333 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 334 } 335 break; 336 case Opt_compress_force: 337 case Opt_compress_force_type: 338 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 339 fallthrough; 340 case Opt_compress: 341 case Opt_compress_type: 342 /* 343 * Provide the same semantics as older kernels that don't use fs 344 * context, specifying the "compress" option clears 345 * "force-compress" without the need to pass 346 * "compress-force=[no|none]" before specifying "compress". 347 */ 348 if (opt != Opt_compress_force && opt != Opt_compress_force_type) 349 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 350 351 if (opt == Opt_compress || opt == Opt_compress_force) { 352 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 353 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 354 btrfs_set_opt(ctx->mount_opt, COMPRESS); 355 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 356 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 357 } else if (strncmp(param->string, "zlib", 4) == 0) { 358 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 359 ctx->compress_level = 360 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 361 param->string + 4); 362 btrfs_set_opt(ctx->mount_opt, COMPRESS); 363 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 364 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 365 } else if (strncmp(param->string, "lzo", 3) == 0) { 366 ctx->compress_type = BTRFS_COMPRESS_LZO; 367 ctx->compress_level = 0; 368 btrfs_set_opt(ctx->mount_opt, COMPRESS); 369 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 370 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 371 } else if (strncmp(param->string, "zstd", 4) == 0) { 372 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 373 ctx->compress_level = 374 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 375 param->string + 4); 376 btrfs_set_opt(ctx->mount_opt, COMPRESS); 377 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 378 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 379 } else if (strncmp(param->string, "no", 2) == 0) { 380 ctx->compress_level = 0; 381 ctx->compress_type = 0; 382 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 383 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 384 } else { 385 btrfs_err(NULL, "unrecognized compression value %s", 386 param->string); 387 return -EINVAL; 388 } 389 break; 390 case Opt_ssd: 391 if (result.negated) { 392 btrfs_set_opt(ctx->mount_opt, NOSSD); 393 btrfs_clear_opt(ctx->mount_opt, SSD); 394 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 395 } else { 396 btrfs_set_opt(ctx->mount_opt, SSD); 397 btrfs_clear_opt(ctx->mount_opt, NOSSD); 398 } 399 break; 400 case Opt_ssd_spread: 401 if (result.negated) { 402 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 403 } else { 404 btrfs_set_opt(ctx->mount_opt, SSD); 405 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 406 btrfs_clear_opt(ctx->mount_opt, NOSSD); 407 } 408 break; 409 case Opt_barrier: 410 if (result.negated) 411 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 412 else 413 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 414 break; 415 case Opt_thread_pool: 416 if (result.uint_32 == 0) { 417 btrfs_err(NULL, "invalid value 0 for thread_pool"); 418 return -EINVAL; 419 } 420 ctx->thread_pool_size = result.uint_32; 421 break; 422 case Opt_max_inline: 423 ctx->max_inline = memparse(param->string, NULL); 424 break; 425 case Opt_acl: 426 if (result.negated) { 427 fc->sb_flags &= ~SB_POSIXACL; 428 } else { 429 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 430 fc->sb_flags |= SB_POSIXACL; 431 #else 432 btrfs_err(NULL, "support for ACL not compiled in"); 433 return -EINVAL; 434 #endif 435 } 436 /* 437 * VFS limits the ability to toggle ACL on and off via remount, 438 * despite every file system allowing this. This seems to be 439 * an oversight since we all do, but it'll fail if we're 440 * remounting. So don't set the mask here, we'll check it in 441 * btrfs_reconfigure and do the toggling ourselves. 442 */ 443 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 444 fc->sb_flags_mask |= SB_POSIXACL; 445 break; 446 case Opt_treelog: 447 if (result.negated) 448 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 449 else 450 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 451 break; 452 case Opt_nologreplay: 453 btrfs_warn(NULL, 454 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 455 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 456 break; 457 case Opt_norecovery: 458 btrfs_info(NULL, 459 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 460 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 461 break; 462 case Opt_flushoncommit: 463 if (result.negated) 464 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 465 else 466 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 467 break; 468 case Opt_ratio: 469 ctx->metadata_ratio = result.uint_32; 470 break; 471 case Opt_discard: 472 if (result.negated) { 473 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 474 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 475 btrfs_set_opt(ctx->mount_opt, NODISCARD); 476 } else { 477 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 478 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 479 } 480 break; 481 case Opt_discard_mode: 482 switch (result.uint_32) { 483 case Opt_discard_sync: 484 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 485 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 486 break; 487 case Opt_discard_async: 488 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 489 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 490 break; 491 default: 492 btrfs_err(NULL, "unrecognized discard mode value %s", 493 param->key); 494 return -EINVAL; 495 } 496 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 497 break; 498 case Opt_space_cache: 499 if (result.negated) { 500 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 501 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 502 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 503 } else { 504 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 505 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 506 } 507 break; 508 case Opt_space_cache_version: 509 switch (result.uint_32) { 510 case Opt_space_cache_v1: 511 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 512 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 513 break; 514 case Opt_space_cache_v2: 515 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 516 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 517 break; 518 default: 519 btrfs_err(NULL, "unrecognized space_cache value %s", 520 param->key); 521 return -EINVAL; 522 } 523 break; 524 case Opt_rescan_uuid_tree: 525 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 526 break; 527 case Opt_clear_cache: 528 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 529 break; 530 case Opt_user_subvol_rm_allowed: 531 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 532 break; 533 case Opt_enospc_debug: 534 if (result.negated) 535 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 536 else 537 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 538 break; 539 case Opt_defrag: 540 if (result.negated) 541 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 542 else 543 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 544 break; 545 case Opt_usebackuproot: 546 btrfs_warn(NULL, 547 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 548 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 549 550 /* If we're loading the backup roots we can't trust the space cache. */ 551 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 552 break; 553 case Opt_skip_balance: 554 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 555 break; 556 case Opt_fatal_errors: 557 switch (result.uint_32) { 558 case Opt_fatal_errors_panic: 559 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 560 break; 561 case Opt_fatal_errors_bug: 562 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 563 break; 564 default: 565 btrfs_err(NULL, "unrecognized fatal_errors value %s", 566 param->key); 567 return -EINVAL; 568 } 569 break; 570 case Opt_commit_interval: 571 ctx->commit_interval = result.uint_32; 572 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) { 573 btrfs_warn(NULL, "excessive commit interval %u, use with care", 574 ctx->commit_interval); 575 } 576 if (ctx->commit_interval == 0) 577 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 578 break; 579 case Opt_rescue: 580 switch (result.uint_32) { 581 case Opt_rescue_usebackuproot: 582 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 583 break; 584 case Opt_rescue_nologreplay: 585 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 586 break; 587 case Opt_rescue_ignorebadroots: 588 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 589 break; 590 case Opt_rescue_ignoredatacsums: 591 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 592 break; 593 case Opt_rescue_ignoremetacsums: 594 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 595 break; 596 case Opt_rescue_ignoresuperflags: 597 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 598 break; 599 case Opt_rescue_parameter_all: 600 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 601 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 602 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 603 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 604 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 605 break; 606 default: 607 btrfs_info(NULL, "unrecognized rescue option '%s'", 608 param->key); 609 return -EINVAL; 610 } 611 break; 612 #ifdef CONFIG_BTRFS_DEBUG 613 case Opt_fragment: 614 switch (result.uint_32) { 615 case Opt_fragment_parameter_all: 616 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 617 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 618 break; 619 case Opt_fragment_parameter_metadata: 620 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 621 break; 622 case Opt_fragment_parameter_data: 623 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 624 break; 625 default: 626 btrfs_info(NULL, "unrecognized fragment option '%s'", 627 param->key); 628 return -EINVAL; 629 } 630 break; 631 #endif 632 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 633 case Opt_ref_verify: 634 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 635 break; 636 #endif 637 default: 638 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 639 return -EINVAL; 640 } 641 642 return 0; 643 } 644 645 /* 646 * Some options only have meaning at mount time and shouldn't persist across 647 * remounts, or be displayed. Clear these at the end of mount and remount code 648 * paths. 649 */ 650 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 651 { 652 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 653 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 654 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 655 } 656 657 static bool check_ro_option(const struct btrfs_fs_info *fs_info, 658 unsigned long long mount_opt, unsigned long long opt, 659 const char *opt_name) 660 { 661 if (mount_opt & opt) { 662 btrfs_err(fs_info, "%s must be used with ro mount option", 663 opt_name); 664 return true; 665 } 666 return false; 667 } 668 669 bool btrfs_check_options(const struct btrfs_fs_info *info, 670 unsigned long long *mount_opt, 671 unsigned long flags) 672 { 673 bool ret = true; 674 675 if (!(flags & SB_RDONLY) && 676 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 677 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 678 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") || 679 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") || 680 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags"))) 681 ret = false; 682 683 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 684 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 685 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 686 btrfs_err(info, "cannot disable free-space-tree"); 687 ret = false; 688 } 689 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 690 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 691 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 692 ret = false; 693 } 694 695 if (btrfs_check_mountopts_zoned(info, mount_opt)) 696 ret = false; 697 698 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 699 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 700 btrfs_info(info, "disk space caching is enabled"); 701 btrfs_warn(info, 702 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2"); 703 } 704 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 705 btrfs_info(info, "using free-space-tree"); 706 } 707 708 return ret; 709 } 710 711 /* 712 * This is subtle, we only call this during open_ctree(). We need to pre-load 713 * the mount options with the on-disk settings. Before the new mount API took 714 * effect we would do this on mount and remount. With the new mount API we'll 715 * only do this on the initial mount. 716 * 717 * This isn't a change in behavior, because we're using the current state of the 718 * file system to set the current mount options. If you mounted with special 719 * options to disable these features and then remounted we wouldn't revert the 720 * settings, because mounting without these features cleared the on-disk 721 * settings, so this being called on re-mount is not needed. 722 */ 723 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 724 { 725 if (fs_info->sectorsize < PAGE_SIZE) { 726 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 727 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 728 btrfs_info(fs_info, 729 "forcing free space tree for sector size %u with page size %lu", 730 fs_info->sectorsize, PAGE_SIZE); 731 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 732 } 733 } 734 735 /* 736 * At this point our mount options are populated, so we only mess with 737 * these settings if we don't have any settings already. 738 */ 739 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 740 return; 741 742 if (btrfs_is_zoned(fs_info) && 743 btrfs_free_space_cache_v1_active(fs_info)) { 744 btrfs_info(fs_info, "zoned: clearing existing space cache"); 745 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 746 return; 747 } 748 749 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 750 return; 751 752 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 753 return; 754 755 /* 756 * At this point we don't have explicit options set by the user, set 757 * them ourselves based on the state of the file system. 758 */ 759 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 760 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 761 else if (btrfs_free_space_cache_v1_active(fs_info)) 762 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 763 } 764 765 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 766 { 767 if (!btrfs_test_opt(fs_info, NOSSD) && 768 !fs_info->fs_devices->rotating) 769 btrfs_set_opt(fs_info->mount_opt, SSD); 770 771 /* 772 * For devices supporting discard turn on discard=async automatically, 773 * unless it's already set or disabled. This could be turned off by 774 * nodiscard for the same mount. 775 * 776 * The zoned mode piggy backs on the discard functionality for 777 * resetting a zone. There is no reason to delay the zone reset as it is 778 * fast enough. So, do not enable async discard for zoned mode. 779 */ 780 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 781 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 782 btrfs_test_opt(fs_info, NODISCARD)) && 783 fs_info->fs_devices->discardable && 784 !btrfs_is_zoned(fs_info)) 785 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 786 } 787 788 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 789 u64 subvol_objectid) 790 { 791 struct btrfs_root *root = fs_info->tree_root; 792 struct btrfs_root *fs_root = NULL; 793 struct btrfs_root_ref *root_ref; 794 struct btrfs_inode_ref *inode_ref; 795 struct btrfs_key key; 796 struct btrfs_path *path = NULL; 797 char *name = NULL, *ptr; 798 u64 dirid; 799 int len; 800 int ret; 801 802 path = btrfs_alloc_path(); 803 if (!path) { 804 ret = -ENOMEM; 805 goto err; 806 } 807 808 name = kmalloc(PATH_MAX, GFP_KERNEL); 809 if (!name) { 810 ret = -ENOMEM; 811 goto err; 812 } 813 ptr = name + PATH_MAX - 1; 814 ptr[0] = '\0'; 815 816 /* 817 * Walk up the subvolume trees in the tree of tree roots by root 818 * backrefs until we hit the top-level subvolume. 819 */ 820 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 821 key.objectid = subvol_objectid; 822 key.type = BTRFS_ROOT_BACKREF_KEY; 823 key.offset = (u64)-1; 824 825 ret = btrfs_search_backwards(root, &key, path); 826 if (ret < 0) { 827 goto err; 828 } else if (ret > 0) { 829 ret = -ENOENT; 830 goto err; 831 } 832 833 subvol_objectid = key.offset; 834 835 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 836 struct btrfs_root_ref); 837 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 838 ptr -= len + 1; 839 if (ptr < name) { 840 ret = -ENAMETOOLONG; 841 goto err; 842 } 843 read_extent_buffer(path->nodes[0], ptr + 1, 844 (unsigned long)(root_ref + 1), len); 845 ptr[0] = '/'; 846 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 847 btrfs_release_path(path); 848 849 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 850 if (IS_ERR(fs_root)) { 851 ret = PTR_ERR(fs_root); 852 fs_root = NULL; 853 goto err; 854 } 855 856 /* 857 * Walk up the filesystem tree by inode refs until we hit the 858 * root directory. 859 */ 860 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 861 key.objectid = dirid; 862 key.type = BTRFS_INODE_REF_KEY; 863 key.offset = (u64)-1; 864 865 ret = btrfs_search_backwards(fs_root, &key, path); 866 if (ret < 0) { 867 goto err; 868 } else if (ret > 0) { 869 ret = -ENOENT; 870 goto err; 871 } 872 873 dirid = key.offset; 874 875 inode_ref = btrfs_item_ptr(path->nodes[0], 876 path->slots[0], 877 struct btrfs_inode_ref); 878 len = btrfs_inode_ref_name_len(path->nodes[0], 879 inode_ref); 880 ptr -= len + 1; 881 if (ptr < name) { 882 ret = -ENAMETOOLONG; 883 goto err; 884 } 885 read_extent_buffer(path->nodes[0], ptr + 1, 886 (unsigned long)(inode_ref + 1), len); 887 ptr[0] = '/'; 888 btrfs_release_path(path); 889 } 890 btrfs_put_root(fs_root); 891 fs_root = NULL; 892 } 893 894 btrfs_free_path(path); 895 if (ptr == name + PATH_MAX - 1) { 896 name[0] = '/'; 897 name[1] = '\0'; 898 } else { 899 memmove(name, ptr, name + PATH_MAX - ptr); 900 } 901 return name; 902 903 err: 904 btrfs_put_root(fs_root); 905 btrfs_free_path(path); 906 kfree(name); 907 return ERR_PTR(ret); 908 } 909 910 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 911 { 912 struct btrfs_root *root = fs_info->tree_root; 913 struct btrfs_dir_item *di; 914 struct btrfs_path *path; 915 struct btrfs_key location; 916 struct fscrypt_str name = FSTR_INIT("default", 7); 917 u64 dir_id; 918 919 path = btrfs_alloc_path(); 920 if (!path) 921 return -ENOMEM; 922 923 /* 924 * Find the "default" dir item which points to the root item that we 925 * will mount by default if we haven't been given a specific subvolume 926 * to mount. 927 */ 928 dir_id = btrfs_super_root_dir(fs_info->super_copy); 929 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 930 if (IS_ERR(di)) { 931 btrfs_free_path(path); 932 return PTR_ERR(di); 933 } 934 if (!di) { 935 /* 936 * Ok the default dir item isn't there. This is weird since 937 * it's always been there, but don't freak out, just try and 938 * mount the top-level subvolume. 939 */ 940 btrfs_free_path(path); 941 *objectid = BTRFS_FS_TREE_OBJECTID; 942 return 0; 943 } 944 945 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 946 btrfs_free_path(path); 947 *objectid = location.objectid; 948 return 0; 949 } 950 951 static int btrfs_fill_super(struct super_block *sb, 952 struct btrfs_fs_devices *fs_devices) 953 { 954 struct btrfs_inode *inode; 955 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 956 int err; 957 958 sb->s_maxbytes = MAX_LFS_FILESIZE; 959 sb->s_magic = BTRFS_SUPER_MAGIC; 960 sb->s_op = &btrfs_super_ops; 961 sb->s_d_op = &btrfs_dentry_operations; 962 sb->s_export_op = &btrfs_export_ops; 963 #ifdef CONFIG_FS_VERITY 964 sb->s_vop = &btrfs_verityops; 965 #endif 966 sb->s_xattr = btrfs_xattr_handlers; 967 sb->s_time_gran = 1; 968 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM; 969 970 err = super_setup_bdi(sb); 971 if (err) { 972 btrfs_err(fs_info, "super_setup_bdi failed"); 973 return err; 974 } 975 976 err = open_ctree(sb, fs_devices); 977 if (err) { 978 btrfs_err(fs_info, "open_ctree failed: %d", err); 979 return err; 980 } 981 982 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 983 if (IS_ERR(inode)) { 984 err = PTR_ERR(inode); 985 btrfs_handle_fs_error(fs_info, err, NULL); 986 goto fail_close; 987 } 988 989 sb->s_root = d_make_root(&inode->vfs_inode); 990 if (!sb->s_root) { 991 err = -ENOMEM; 992 goto fail_close; 993 } 994 995 sb->s_flags |= SB_ACTIVE; 996 return 0; 997 998 fail_close: 999 close_ctree(fs_info); 1000 return err; 1001 } 1002 1003 int btrfs_sync_fs(struct super_block *sb, int wait) 1004 { 1005 struct btrfs_trans_handle *trans; 1006 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1007 struct btrfs_root *root = fs_info->tree_root; 1008 1009 trace_btrfs_sync_fs(fs_info, wait); 1010 1011 if (!wait) { 1012 filemap_flush(fs_info->btree_inode->i_mapping); 1013 return 0; 1014 } 1015 1016 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 1017 1018 trans = btrfs_attach_transaction_barrier(root); 1019 if (IS_ERR(trans)) { 1020 /* no transaction, don't bother */ 1021 if (PTR_ERR(trans) == -ENOENT) { 1022 /* 1023 * Exit unless we have some pending changes 1024 * that need to go through commit 1025 */ 1026 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1027 &fs_info->flags)) 1028 return 0; 1029 /* 1030 * A non-blocking test if the fs is frozen. We must not 1031 * start a new transaction here otherwise a deadlock 1032 * happens. The pending operations are delayed to the 1033 * next commit after thawing. 1034 */ 1035 if (sb_start_write_trylock(sb)) 1036 sb_end_write(sb); 1037 else 1038 return 0; 1039 trans = btrfs_start_transaction(root, 0); 1040 } 1041 if (IS_ERR(trans)) 1042 return PTR_ERR(trans); 1043 } 1044 return btrfs_commit_transaction(trans); 1045 } 1046 1047 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1048 { 1049 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1050 *printed = true; 1051 } 1052 1053 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1054 { 1055 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1056 const char *compress_type; 1057 const char *subvol_name; 1058 bool printed = false; 1059 1060 if (btrfs_test_opt(info, DEGRADED)) 1061 seq_puts(seq, ",degraded"); 1062 if (btrfs_test_opt(info, NODATASUM)) 1063 seq_puts(seq, ",nodatasum"); 1064 if (btrfs_test_opt(info, NODATACOW)) 1065 seq_puts(seq, ",nodatacow"); 1066 if (btrfs_test_opt(info, NOBARRIER)) 1067 seq_puts(seq, ",nobarrier"); 1068 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1069 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1070 if (info->thread_pool_size != min_t(unsigned long, 1071 num_online_cpus() + 2, 8)) 1072 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1073 if (btrfs_test_opt(info, COMPRESS)) { 1074 compress_type = btrfs_compress_type2str(info->compress_type); 1075 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1076 seq_printf(seq, ",compress-force=%s", compress_type); 1077 else 1078 seq_printf(seq, ",compress=%s", compress_type); 1079 if (info->compress_level) 1080 seq_printf(seq, ":%d", info->compress_level); 1081 } 1082 if (btrfs_test_opt(info, NOSSD)) 1083 seq_puts(seq, ",nossd"); 1084 if (btrfs_test_opt(info, SSD_SPREAD)) 1085 seq_puts(seq, ",ssd_spread"); 1086 else if (btrfs_test_opt(info, SSD)) 1087 seq_puts(seq, ",ssd"); 1088 if (btrfs_test_opt(info, NOTREELOG)) 1089 seq_puts(seq, ",notreelog"); 1090 if (btrfs_test_opt(info, NOLOGREPLAY)) 1091 print_rescue_option(seq, "nologreplay", &printed); 1092 if (btrfs_test_opt(info, USEBACKUPROOT)) 1093 print_rescue_option(seq, "usebackuproot", &printed); 1094 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1095 print_rescue_option(seq, "ignorebadroots", &printed); 1096 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1097 print_rescue_option(seq, "ignoredatacsums", &printed); 1098 if (btrfs_test_opt(info, IGNOREMETACSUMS)) 1099 print_rescue_option(seq, "ignoremetacsums", &printed); 1100 if (btrfs_test_opt(info, IGNORESUPERFLAGS)) 1101 print_rescue_option(seq, "ignoresuperflags", &printed); 1102 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1103 seq_puts(seq, ",flushoncommit"); 1104 if (btrfs_test_opt(info, DISCARD_SYNC)) 1105 seq_puts(seq, ",discard"); 1106 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1107 seq_puts(seq, ",discard=async"); 1108 if (!(info->sb->s_flags & SB_POSIXACL)) 1109 seq_puts(seq, ",noacl"); 1110 if (btrfs_free_space_cache_v1_active(info)) 1111 seq_puts(seq, ",space_cache"); 1112 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1113 seq_puts(seq, ",space_cache=v2"); 1114 else 1115 seq_puts(seq, ",nospace_cache"); 1116 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1117 seq_puts(seq, ",rescan_uuid_tree"); 1118 if (btrfs_test_opt(info, CLEAR_CACHE)) 1119 seq_puts(seq, ",clear_cache"); 1120 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1121 seq_puts(seq, ",user_subvol_rm_allowed"); 1122 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1123 seq_puts(seq, ",enospc_debug"); 1124 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1125 seq_puts(seq, ",autodefrag"); 1126 if (btrfs_test_opt(info, SKIP_BALANCE)) 1127 seq_puts(seq, ",skip_balance"); 1128 if (info->metadata_ratio) 1129 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1130 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1131 seq_puts(seq, ",fatal_errors=panic"); 1132 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1133 seq_printf(seq, ",commit=%u", info->commit_interval); 1134 #ifdef CONFIG_BTRFS_DEBUG 1135 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1136 seq_puts(seq, ",fragment=data"); 1137 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1138 seq_puts(seq, ",fragment=metadata"); 1139 #endif 1140 if (btrfs_test_opt(info, REF_VERIFY)) 1141 seq_puts(seq, ",ref_verify"); 1142 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1143 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1144 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1145 if (!IS_ERR(subvol_name)) { 1146 seq_show_option(seq, "subvol", subvol_name); 1147 kfree(subvol_name); 1148 } 1149 return 0; 1150 } 1151 1152 /* 1153 * subvolumes are identified by ino 256 1154 */ 1155 static inline int is_subvolume_inode(struct inode *inode) 1156 { 1157 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1158 return 1; 1159 return 0; 1160 } 1161 1162 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1163 struct vfsmount *mnt) 1164 { 1165 struct dentry *root; 1166 int ret; 1167 1168 if (!subvol_name) { 1169 if (!subvol_objectid) { 1170 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1171 &subvol_objectid); 1172 if (ret) { 1173 root = ERR_PTR(ret); 1174 goto out; 1175 } 1176 } 1177 subvol_name = btrfs_get_subvol_name_from_objectid( 1178 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1179 if (IS_ERR(subvol_name)) { 1180 root = ERR_CAST(subvol_name); 1181 subvol_name = NULL; 1182 goto out; 1183 } 1184 1185 } 1186 1187 root = mount_subtree(mnt, subvol_name); 1188 /* mount_subtree() drops our reference on the vfsmount. */ 1189 mnt = NULL; 1190 1191 if (!IS_ERR(root)) { 1192 struct super_block *s = root->d_sb; 1193 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1194 struct inode *root_inode = d_inode(root); 1195 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1196 1197 ret = 0; 1198 if (!is_subvolume_inode(root_inode)) { 1199 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1200 subvol_name); 1201 ret = -EINVAL; 1202 } 1203 if (subvol_objectid && root_objectid != subvol_objectid) { 1204 /* 1205 * This will also catch a race condition where a 1206 * subvolume which was passed by ID is renamed and 1207 * another subvolume is renamed over the old location. 1208 */ 1209 btrfs_err(fs_info, 1210 "subvol '%s' does not match subvolid %llu", 1211 subvol_name, subvol_objectid); 1212 ret = -EINVAL; 1213 } 1214 if (ret) { 1215 dput(root); 1216 root = ERR_PTR(ret); 1217 deactivate_locked_super(s); 1218 } 1219 } 1220 1221 out: 1222 mntput(mnt); 1223 kfree(subvol_name); 1224 return root; 1225 } 1226 1227 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1228 u32 new_pool_size, u32 old_pool_size) 1229 { 1230 if (new_pool_size == old_pool_size) 1231 return; 1232 1233 fs_info->thread_pool_size = new_pool_size; 1234 1235 btrfs_info(fs_info, "resize thread pool %d -> %d", 1236 old_pool_size, new_pool_size); 1237 1238 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1239 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1240 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1241 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1242 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1243 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1244 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1245 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1246 } 1247 1248 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1249 unsigned long long old_opts, int flags) 1250 { 1251 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1252 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1253 (flags & SB_RDONLY))) { 1254 /* wait for any defraggers to finish */ 1255 wait_event(fs_info->transaction_wait, 1256 (atomic_read(&fs_info->defrag_running) == 0)); 1257 if (flags & SB_RDONLY) 1258 sync_filesystem(fs_info->sb); 1259 } 1260 } 1261 1262 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1263 unsigned long long old_opts) 1264 { 1265 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1266 1267 /* 1268 * We need to cleanup all defragable inodes if the autodefragment is 1269 * close or the filesystem is read only. 1270 */ 1271 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1272 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1273 btrfs_cleanup_defrag_inodes(fs_info); 1274 } 1275 1276 /* If we toggled discard async */ 1277 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1278 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1279 btrfs_discard_resume(fs_info); 1280 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1281 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1282 btrfs_discard_cleanup(fs_info); 1283 1284 /* If we toggled space cache */ 1285 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1286 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1287 } 1288 1289 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1290 { 1291 int ret; 1292 1293 if (BTRFS_FS_ERROR(fs_info)) { 1294 btrfs_err(fs_info, 1295 "remounting read-write after error is not allowed"); 1296 return -EINVAL; 1297 } 1298 1299 if (fs_info->fs_devices->rw_devices == 0) 1300 return -EACCES; 1301 1302 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1303 btrfs_warn(fs_info, 1304 "too many missing devices, writable remount is not allowed"); 1305 return -EACCES; 1306 } 1307 1308 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1309 btrfs_warn(fs_info, 1310 "mount required to replay tree-log, cannot remount read-write"); 1311 return -EINVAL; 1312 } 1313 1314 /* 1315 * NOTE: when remounting with a change that does writes, don't put it 1316 * anywhere above this point, as we are not sure to be safe to write 1317 * until we pass the above checks. 1318 */ 1319 ret = btrfs_start_pre_rw_mount(fs_info); 1320 if (ret) 1321 return ret; 1322 1323 btrfs_clear_sb_rdonly(fs_info->sb); 1324 1325 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1326 1327 /* 1328 * If we've gone from readonly -> read-write, we need to get our 1329 * sync/async discard lists in the right state. 1330 */ 1331 btrfs_discard_resume(fs_info); 1332 1333 return 0; 1334 } 1335 1336 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1337 { 1338 /* 1339 * This also happens on 'umount -rf' or on shutdown, when the 1340 * filesystem is busy. 1341 */ 1342 cancel_work_sync(&fs_info->async_reclaim_work); 1343 cancel_work_sync(&fs_info->async_data_reclaim_work); 1344 1345 btrfs_discard_cleanup(fs_info); 1346 1347 /* Wait for the uuid_scan task to finish */ 1348 down(&fs_info->uuid_tree_rescan_sem); 1349 /* Avoid complains from lockdep et al. */ 1350 up(&fs_info->uuid_tree_rescan_sem); 1351 1352 btrfs_set_sb_rdonly(fs_info->sb); 1353 1354 /* 1355 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1356 * loop if it's already active. If it's already asleep, we'll leave 1357 * unused block groups on disk until we're mounted read-write again 1358 * unless we clean them up here. 1359 */ 1360 btrfs_delete_unused_bgs(fs_info); 1361 1362 /* 1363 * The cleaner task could be already running before we set the flag 1364 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1365 * sure that after we finish the remount, i.e. after we call 1366 * btrfs_commit_super(), the cleaner can no longer start a transaction 1367 * - either because it was dropping a dead root, running delayed iputs 1368 * or deleting an unused block group (the cleaner picked a block 1369 * group from the list of unused block groups before we were able to 1370 * in the previous call to btrfs_delete_unused_bgs()). 1371 */ 1372 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1373 1374 /* 1375 * We've set the superblock to RO mode, so we might have made the 1376 * cleaner task sleep without running all pending delayed iputs. Go 1377 * through all the delayed iputs here, so that if an unmount happens 1378 * without remounting RW we don't end up at finishing close_ctree() 1379 * with a non-empty list of delayed iputs. 1380 */ 1381 btrfs_run_delayed_iputs(fs_info); 1382 1383 btrfs_dev_replace_suspend_for_unmount(fs_info); 1384 btrfs_scrub_cancel(fs_info); 1385 btrfs_pause_balance(fs_info); 1386 1387 /* 1388 * Pause the qgroup rescan worker if it is running. We don't want it to 1389 * be still running after we are in RO mode, as after that, by the time 1390 * we unmount, it might have left a transaction open, so we would leak 1391 * the transaction and/or crash. 1392 */ 1393 btrfs_qgroup_wait_for_completion(fs_info, false); 1394 1395 return btrfs_commit_super(fs_info); 1396 } 1397 1398 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1399 { 1400 fs_info->max_inline = ctx->max_inline; 1401 fs_info->commit_interval = ctx->commit_interval; 1402 fs_info->metadata_ratio = ctx->metadata_ratio; 1403 fs_info->thread_pool_size = ctx->thread_pool_size; 1404 fs_info->mount_opt = ctx->mount_opt; 1405 fs_info->compress_type = ctx->compress_type; 1406 fs_info->compress_level = ctx->compress_level; 1407 } 1408 1409 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1410 { 1411 ctx->max_inline = fs_info->max_inline; 1412 ctx->commit_interval = fs_info->commit_interval; 1413 ctx->metadata_ratio = fs_info->metadata_ratio; 1414 ctx->thread_pool_size = fs_info->thread_pool_size; 1415 ctx->mount_opt = fs_info->mount_opt; 1416 ctx->compress_type = fs_info->compress_type; 1417 ctx->compress_level = fs_info->compress_level; 1418 } 1419 1420 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1421 do { \ 1422 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1423 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1424 btrfs_info(fs_info, fmt, ##args); \ 1425 } while (0) 1426 1427 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1428 do { \ 1429 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1430 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1431 btrfs_info(fs_info, fmt, ##args); \ 1432 } while (0) 1433 1434 static void btrfs_emit_options(struct btrfs_fs_info *info, 1435 struct btrfs_fs_context *old) 1436 { 1437 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1438 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1439 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1440 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1441 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1442 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1443 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1444 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1445 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1446 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1447 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1448 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1449 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1450 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1451 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1452 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1453 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1454 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1455 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1456 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1457 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1458 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums"); 1459 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags"); 1460 1461 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1462 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1463 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1464 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1465 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1466 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1467 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1468 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1469 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1470 1471 /* Did the compression settings change? */ 1472 if (btrfs_test_opt(info, COMPRESS) && 1473 (!old || 1474 old->compress_type != info->compress_type || 1475 old->compress_level != info->compress_level || 1476 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1477 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1478 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1479 1480 btrfs_info(info, "%s %s compression, level %d", 1481 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1482 compress_type, info->compress_level); 1483 } 1484 1485 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1486 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1487 } 1488 1489 static int btrfs_reconfigure(struct fs_context *fc) 1490 { 1491 struct super_block *sb = fc->root->d_sb; 1492 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1493 struct btrfs_fs_context *ctx = fc->fs_private; 1494 struct btrfs_fs_context old_ctx; 1495 int ret = 0; 1496 bool mount_reconfigure = (fc->s_fs_info != NULL); 1497 1498 btrfs_info_to_ctx(fs_info, &old_ctx); 1499 1500 /* 1501 * This is our "bind mount" trick, we don't want to allow the user to do 1502 * anything other than mount a different ro/rw and a different subvol, 1503 * all of the mount options should be maintained. 1504 */ 1505 if (mount_reconfigure) 1506 ctx->mount_opt = old_ctx.mount_opt; 1507 1508 sync_filesystem(sb); 1509 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1510 1511 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1512 return -EINVAL; 1513 1514 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1515 if (ret < 0) 1516 return ret; 1517 1518 btrfs_ctx_to_info(fs_info, ctx); 1519 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1520 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1521 old_ctx.thread_pool_size); 1522 1523 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1524 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1525 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1526 btrfs_warn(fs_info, 1527 "remount supports changing free space tree only from RO to RW"); 1528 /* Make sure free space cache options match the state on disk. */ 1529 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1530 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1531 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1532 } 1533 if (btrfs_free_space_cache_v1_active(fs_info)) { 1534 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1535 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1536 } 1537 } 1538 1539 ret = 0; 1540 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1541 ret = btrfs_remount_ro(fs_info); 1542 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1543 ret = btrfs_remount_rw(fs_info); 1544 if (ret) 1545 goto restore; 1546 1547 /* 1548 * If we set the mask during the parameter parsing VFS would reject the 1549 * remount. Here we can set the mask and the value will be updated 1550 * appropriately. 1551 */ 1552 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1553 fc->sb_flags_mask |= SB_POSIXACL; 1554 1555 btrfs_emit_options(fs_info, &old_ctx); 1556 wake_up_process(fs_info->transaction_kthread); 1557 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1558 btrfs_clear_oneshot_options(fs_info); 1559 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1560 1561 return 0; 1562 restore: 1563 btrfs_ctx_to_info(fs_info, &old_ctx); 1564 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1565 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1566 return ret; 1567 } 1568 1569 /* Used to sort the devices by max_avail(descending sort) */ 1570 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1571 { 1572 const struct btrfs_device_info *dev_info1 = a; 1573 const struct btrfs_device_info *dev_info2 = b; 1574 1575 if (dev_info1->max_avail > dev_info2->max_avail) 1576 return -1; 1577 else if (dev_info1->max_avail < dev_info2->max_avail) 1578 return 1; 1579 return 0; 1580 } 1581 1582 /* 1583 * sort the devices by max_avail, in which max free extent size of each device 1584 * is stored.(Descending Sort) 1585 */ 1586 static inline void btrfs_descending_sort_devices( 1587 struct btrfs_device_info *devices, 1588 size_t nr_devices) 1589 { 1590 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1591 btrfs_cmp_device_free_bytes, NULL); 1592 } 1593 1594 /* 1595 * The helper to calc the free space on the devices that can be used to store 1596 * file data. 1597 */ 1598 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1599 u64 *free_bytes) 1600 { 1601 struct btrfs_device_info *devices_info; 1602 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1603 struct btrfs_device *device; 1604 u64 type; 1605 u64 avail_space; 1606 u64 min_stripe_size; 1607 int num_stripes = 1; 1608 int i = 0, nr_devices; 1609 const struct btrfs_raid_attr *rattr; 1610 1611 /* 1612 * We aren't under the device list lock, so this is racy-ish, but good 1613 * enough for our purposes. 1614 */ 1615 nr_devices = fs_info->fs_devices->open_devices; 1616 if (!nr_devices) { 1617 smp_mb(); 1618 nr_devices = fs_info->fs_devices->open_devices; 1619 ASSERT(nr_devices); 1620 if (!nr_devices) { 1621 *free_bytes = 0; 1622 return 0; 1623 } 1624 } 1625 1626 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1627 GFP_KERNEL); 1628 if (!devices_info) 1629 return -ENOMEM; 1630 1631 /* calc min stripe number for data space allocation */ 1632 type = btrfs_data_alloc_profile(fs_info); 1633 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1634 1635 if (type & BTRFS_BLOCK_GROUP_RAID0) 1636 num_stripes = nr_devices; 1637 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1638 num_stripes = rattr->ncopies; 1639 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1640 num_stripes = 4; 1641 1642 /* Adjust for more than 1 stripe per device */ 1643 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1644 1645 rcu_read_lock(); 1646 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1647 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1648 &device->dev_state) || 1649 !device->bdev || 1650 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1651 continue; 1652 1653 if (i >= nr_devices) 1654 break; 1655 1656 avail_space = device->total_bytes - device->bytes_used; 1657 1658 /* align with stripe_len */ 1659 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1660 1661 /* 1662 * Ensure we have at least min_stripe_size on top of the 1663 * reserved space on the device. 1664 */ 1665 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1666 continue; 1667 1668 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1669 1670 devices_info[i].dev = device; 1671 devices_info[i].max_avail = avail_space; 1672 1673 i++; 1674 } 1675 rcu_read_unlock(); 1676 1677 nr_devices = i; 1678 1679 btrfs_descending_sort_devices(devices_info, nr_devices); 1680 1681 i = nr_devices - 1; 1682 avail_space = 0; 1683 while (nr_devices >= rattr->devs_min) { 1684 num_stripes = min(num_stripes, nr_devices); 1685 1686 if (devices_info[i].max_avail >= min_stripe_size) { 1687 int j; 1688 u64 alloc_size; 1689 1690 avail_space += devices_info[i].max_avail * num_stripes; 1691 alloc_size = devices_info[i].max_avail; 1692 for (j = i + 1 - num_stripes; j <= i; j++) 1693 devices_info[j].max_avail -= alloc_size; 1694 } 1695 i--; 1696 nr_devices--; 1697 } 1698 1699 kfree(devices_info); 1700 *free_bytes = avail_space; 1701 return 0; 1702 } 1703 1704 /* 1705 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1706 * 1707 * If there's a redundant raid level at DATA block groups, use the respective 1708 * multiplier to scale the sizes. 1709 * 1710 * Unused device space usage is based on simulating the chunk allocator 1711 * algorithm that respects the device sizes and order of allocations. This is 1712 * a close approximation of the actual use but there are other factors that may 1713 * change the result (like a new metadata chunk). 1714 * 1715 * If metadata is exhausted, f_bavail will be 0. 1716 */ 1717 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1718 { 1719 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1720 struct btrfs_super_block *disk_super = fs_info->super_copy; 1721 struct btrfs_space_info *found; 1722 u64 total_used = 0; 1723 u64 total_free_data = 0; 1724 u64 total_free_meta = 0; 1725 u32 bits = fs_info->sectorsize_bits; 1726 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1727 unsigned factor = 1; 1728 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1729 int ret; 1730 u64 thresh = 0; 1731 int mixed = 0; 1732 1733 list_for_each_entry(found, &fs_info->space_info, list) { 1734 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1735 int i; 1736 1737 total_free_data += found->disk_total - found->disk_used; 1738 total_free_data -= 1739 btrfs_account_ro_block_groups_free_space(found); 1740 1741 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1742 if (!list_empty(&found->block_groups[i])) 1743 factor = btrfs_bg_type_to_factor( 1744 btrfs_raid_array[i].bg_flag); 1745 } 1746 } 1747 1748 /* 1749 * Metadata in mixed block group profiles are accounted in data 1750 */ 1751 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1752 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1753 mixed = 1; 1754 else 1755 total_free_meta += found->disk_total - 1756 found->disk_used; 1757 } 1758 1759 total_used += found->disk_used; 1760 } 1761 1762 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1763 buf->f_blocks >>= bits; 1764 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1765 1766 /* Account global block reserve as used, it's in logical size already */ 1767 spin_lock(&block_rsv->lock); 1768 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1769 if (buf->f_bfree >= block_rsv->size >> bits) 1770 buf->f_bfree -= block_rsv->size >> bits; 1771 else 1772 buf->f_bfree = 0; 1773 spin_unlock(&block_rsv->lock); 1774 1775 buf->f_bavail = div_u64(total_free_data, factor); 1776 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1777 if (ret) 1778 return ret; 1779 buf->f_bavail += div_u64(total_free_data, factor); 1780 buf->f_bavail = buf->f_bavail >> bits; 1781 1782 /* 1783 * We calculate the remaining metadata space minus global reserve. If 1784 * this is (supposedly) smaller than zero, there's no space. But this 1785 * does not hold in practice, the exhausted state happens where's still 1786 * some positive delta. So we apply some guesswork and compare the 1787 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1788 * 1789 * We probably cannot calculate the exact threshold value because this 1790 * depends on the internal reservations requested by various 1791 * operations, so some operations that consume a few metadata will 1792 * succeed even if the Avail is zero. But this is better than the other 1793 * way around. 1794 */ 1795 thresh = SZ_4M; 1796 1797 /* 1798 * We only want to claim there's no available space if we can no longer 1799 * allocate chunks for our metadata profile and our global reserve will 1800 * not fit in the free metadata space. If we aren't ->full then we 1801 * still can allocate chunks and thus are fine using the currently 1802 * calculated f_bavail. 1803 */ 1804 if (!mixed && block_rsv->space_info->full && 1805 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1806 buf->f_bavail = 0; 1807 1808 buf->f_type = BTRFS_SUPER_MAGIC; 1809 buf->f_bsize = fs_info->sectorsize; 1810 buf->f_namelen = BTRFS_NAME_LEN; 1811 1812 /* We treat it as constant endianness (it doesn't matter _which_) 1813 because we want the fsid to come out the same whether mounted 1814 on a big-endian or little-endian host */ 1815 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1816 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1817 /* Mask in the root object ID too, to disambiguate subvols */ 1818 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1819 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1820 1821 return 0; 1822 } 1823 1824 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1825 { 1826 struct btrfs_fs_info *p = fc->s_fs_info; 1827 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1828 1829 return fs_info->fs_devices == p->fs_devices; 1830 } 1831 1832 static int btrfs_get_tree_super(struct fs_context *fc) 1833 { 1834 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1835 struct btrfs_fs_context *ctx = fc->fs_private; 1836 struct btrfs_fs_devices *fs_devices = NULL; 1837 struct block_device *bdev; 1838 struct btrfs_device *device; 1839 struct super_block *sb; 1840 blk_mode_t mode = btrfs_open_mode(fc); 1841 int ret; 1842 1843 btrfs_ctx_to_info(fs_info, ctx); 1844 mutex_lock(&uuid_mutex); 1845 1846 /* 1847 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1848 * either a valid device or an error. 1849 */ 1850 device = btrfs_scan_one_device(fc->source, mode, true); 1851 ASSERT(device != NULL); 1852 if (IS_ERR(device)) { 1853 mutex_unlock(&uuid_mutex); 1854 return PTR_ERR(device); 1855 } 1856 1857 fs_devices = device->fs_devices; 1858 fs_info->fs_devices = fs_devices; 1859 1860 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1861 mutex_unlock(&uuid_mutex); 1862 if (ret) 1863 return ret; 1864 1865 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1866 ret = -EACCES; 1867 goto error; 1868 } 1869 1870 bdev = fs_devices->latest_dev->bdev; 1871 1872 /* 1873 * From now on the error handling is not straightforward. 1874 * 1875 * If successful, this will transfer the fs_info into the super block, 1876 * and fc->s_fs_info will be NULL. However if there's an existing 1877 * super, we'll still have fc->s_fs_info populated. If we error 1878 * completely out it'll be cleaned up when we drop the fs_context, 1879 * otherwise it's tied to the lifetime of the super_block. 1880 */ 1881 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1882 if (IS_ERR(sb)) { 1883 ret = PTR_ERR(sb); 1884 goto error; 1885 } 1886 1887 set_device_specific_options(fs_info); 1888 1889 if (sb->s_root) { 1890 btrfs_close_devices(fs_devices); 1891 /* 1892 * At this stage we may have RO flag mismatch between 1893 * fc->sb_flags and sb->s_flags. Caller should detect such 1894 * mismatch and reconfigure with sb->s_umount rwsem held if 1895 * needed. 1896 */ 1897 } else { 1898 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1899 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1900 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1901 ret = btrfs_fill_super(sb, fs_devices); 1902 if (ret) { 1903 deactivate_locked_super(sb); 1904 return ret; 1905 } 1906 } 1907 1908 btrfs_clear_oneshot_options(fs_info); 1909 1910 fc->root = dget(sb->s_root); 1911 return 0; 1912 1913 error: 1914 btrfs_close_devices(fs_devices); 1915 return ret; 1916 } 1917 1918 /* 1919 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1920 * with different ro/rw options") the following works: 1921 * 1922 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1923 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1924 * 1925 * which looks nice and innocent but is actually pretty intricate and deserves 1926 * a long comment. 1927 * 1928 * On another filesystem a subvolume mount is close to something like: 1929 * 1930 * (iii) # create rw superblock + initial mount 1931 * mount -t xfs /dev/sdb /opt/ 1932 * 1933 * # create ro bind mount 1934 * mount --bind -o ro /opt/foo /mnt/foo 1935 * 1936 * # unmount initial mount 1937 * umount /opt 1938 * 1939 * Of course, there's some special subvolume sauce and there's the fact that the 1940 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1941 * it's very close and will help us understand the issue. 1942 * 1943 * The old mount API didn't cleanly distinguish between a mount being made ro 1944 * and a superblock being made ro. The only way to change the ro state of 1945 * either object was by passing ms_rdonly. If a new mount was created via 1946 * mount(2) such as: 1947 * 1948 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1949 * 1950 * the MS_RDONLY flag being specified had two effects: 1951 * 1952 * (1) MNT_READONLY was raised -> the resulting mount got 1953 * @mnt->mnt_flags |= MNT_READONLY raised. 1954 * 1955 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1956 * made the superblock ro. Note, how SB_RDONLY has the same value as 1957 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1958 * 1959 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1960 * subtree mounted ro. 1961 * 1962 * But consider the effect on the old mount API on btrfs subvolume mounting 1963 * which combines the distinct step in (iii) into a single step. 1964 * 1965 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1966 * is issued the superblock is ro and thus even if the mount created for (ii) is 1967 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1968 * to rw for (ii) which it did using an internal remount call. 1969 * 1970 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1971 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1972 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1973 * passed by mount(8) to mount(2). 1974 * 1975 * Enter the new mount API. The new mount API disambiguates making a mount ro 1976 * and making a superblock ro. 1977 * 1978 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1979 * fsmount() or mount_setattr() this is a pure VFS level change for a 1980 * specific mount or mount tree that is never seen by the filesystem itself. 1981 * 1982 * (4) To turn a superblock ro the "ro" flag must be used with 1983 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1984 * in fc->sb_flags. 1985 * 1986 * But, currently the util-linux mount command already utilizes the new mount 1987 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's 1988 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting 1989 * work with different options work we need to keep backward compatibility. 1990 */ 1991 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt) 1992 { 1993 int ret = 0; 1994 1995 if (fc->sb_flags & SB_RDONLY) 1996 return ret; 1997 1998 down_write(&mnt->mnt_sb->s_umount); 1999 if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY)) 2000 ret = btrfs_reconfigure(fc); 2001 up_write(&mnt->mnt_sb->s_umount); 2002 return ret; 2003 } 2004 2005 static int btrfs_get_tree_subvol(struct fs_context *fc) 2006 { 2007 struct btrfs_fs_info *fs_info = NULL; 2008 struct btrfs_fs_context *ctx = fc->fs_private; 2009 struct fs_context *dup_fc; 2010 struct dentry *dentry; 2011 struct vfsmount *mnt; 2012 int ret = 0; 2013 2014 /* 2015 * Setup a dummy root and fs_info for test/set super. This is because 2016 * we don't actually fill this stuff out until open_ctree, but we need 2017 * then open_ctree will properly initialize the file system specific 2018 * settings later. btrfs_init_fs_info initializes the static elements 2019 * of the fs_info (locks and such) to make cleanup easier if we find a 2020 * superblock with our given fs_devices later on at sget() time. 2021 */ 2022 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2023 if (!fs_info) 2024 return -ENOMEM; 2025 2026 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2027 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2028 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2029 btrfs_free_fs_info(fs_info); 2030 return -ENOMEM; 2031 } 2032 btrfs_init_fs_info(fs_info); 2033 2034 dup_fc = vfs_dup_fs_context(fc); 2035 if (IS_ERR(dup_fc)) { 2036 btrfs_free_fs_info(fs_info); 2037 return PTR_ERR(dup_fc); 2038 } 2039 2040 /* 2041 * When we do the sget_fc this gets transferred to the sb, so we only 2042 * need to set it on the dup_fc as this is what creates the super block. 2043 */ 2044 dup_fc->s_fs_info = fs_info; 2045 2046 /* 2047 * We'll do the security settings in our btrfs_get_tree_super() mount 2048 * loop, they were duplicated into dup_fc, we can drop the originals 2049 * here. 2050 */ 2051 security_free_mnt_opts(&fc->security); 2052 fc->security = NULL; 2053 2054 mnt = fc_mount(dup_fc); 2055 if (IS_ERR(mnt)) { 2056 put_fs_context(dup_fc); 2057 return PTR_ERR(mnt); 2058 } 2059 ret = btrfs_reconfigure_for_mount(dup_fc, mnt); 2060 put_fs_context(dup_fc); 2061 if (ret) { 2062 mntput(mnt); 2063 return ret; 2064 } 2065 2066 /* 2067 * This free's ->subvol_name, because if it isn't set we have to 2068 * allocate a buffer to hold the subvol_name, so we just drop our 2069 * reference to it here. 2070 */ 2071 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2072 ctx->subvol_name = NULL; 2073 if (IS_ERR(dentry)) 2074 return PTR_ERR(dentry); 2075 2076 fc->root = dentry; 2077 return 0; 2078 } 2079 2080 static int btrfs_get_tree(struct fs_context *fc) 2081 { 2082 /* 2083 * Since we use mount_subtree to mount the default/specified subvol, we 2084 * have to do mounts in two steps. 2085 * 2086 * First pass through we call btrfs_get_tree_subvol(), this is just a 2087 * wrapper around fc_mount() to call back into here again, and this time 2088 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2089 * everything to open the devices and file system. Then we return back 2090 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2091 * from there we can do our mount_subvol() call, which will lookup 2092 * whichever subvol we're mounting and setup this fc with the 2093 * appropriate dentry for the subvol. 2094 */ 2095 if (fc->s_fs_info) 2096 return btrfs_get_tree_super(fc); 2097 return btrfs_get_tree_subvol(fc); 2098 } 2099 2100 static void btrfs_kill_super(struct super_block *sb) 2101 { 2102 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2103 kill_anon_super(sb); 2104 btrfs_free_fs_info(fs_info); 2105 } 2106 2107 static void btrfs_free_fs_context(struct fs_context *fc) 2108 { 2109 struct btrfs_fs_context *ctx = fc->fs_private; 2110 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2111 2112 if (fs_info) 2113 btrfs_free_fs_info(fs_info); 2114 2115 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2116 kfree(ctx->subvol_name); 2117 kfree(ctx); 2118 } 2119 } 2120 2121 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2122 { 2123 struct btrfs_fs_context *ctx = src_fc->fs_private; 2124 2125 /* 2126 * Give a ref to our ctx to this dup, as we want to keep it around for 2127 * our original fc so we can have the subvolume name or objectid. 2128 * 2129 * We unset ->source in the original fc because the dup needs it for 2130 * mounting, and then once we free the dup it'll free ->source, so we 2131 * need to make sure we're only pointing to it in one fc. 2132 */ 2133 refcount_inc(&ctx->refs); 2134 fc->fs_private = ctx; 2135 fc->source = src_fc->source; 2136 src_fc->source = NULL; 2137 return 0; 2138 } 2139 2140 static const struct fs_context_operations btrfs_fs_context_ops = { 2141 .parse_param = btrfs_parse_param, 2142 .reconfigure = btrfs_reconfigure, 2143 .get_tree = btrfs_get_tree, 2144 .dup = btrfs_dup_fs_context, 2145 .free = btrfs_free_fs_context, 2146 }; 2147 2148 static int btrfs_init_fs_context(struct fs_context *fc) 2149 { 2150 struct btrfs_fs_context *ctx; 2151 2152 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2153 if (!ctx) 2154 return -ENOMEM; 2155 2156 refcount_set(&ctx->refs, 1); 2157 fc->fs_private = ctx; 2158 fc->ops = &btrfs_fs_context_ops; 2159 2160 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2161 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2162 } else { 2163 ctx->thread_pool_size = 2164 min_t(unsigned long, num_online_cpus() + 2, 8); 2165 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2166 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2167 } 2168 2169 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2170 fc->sb_flags |= SB_POSIXACL; 2171 #endif 2172 fc->sb_flags |= SB_I_VERSION; 2173 2174 return 0; 2175 } 2176 2177 static struct file_system_type btrfs_fs_type = { 2178 .owner = THIS_MODULE, 2179 .name = "btrfs", 2180 .init_fs_context = btrfs_init_fs_context, 2181 .parameters = btrfs_fs_parameters, 2182 .kill_sb = btrfs_kill_super, 2183 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | 2184 FS_ALLOW_IDMAP | FS_MGTIME, 2185 }; 2186 2187 MODULE_ALIAS_FS("btrfs"); 2188 2189 static int btrfs_control_open(struct inode *inode, struct file *file) 2190 { 2191 /* 2192 * The control file's private_data is used to hold the 2193 * transaction when it is started and is used to keep 2194 * track of whether a transaction is already in progress. 2195 */ 2196 file->private_data = NULL; 2197 return 0; 2198 } 2199 2200 /* 2201 * Used by /dev/btrfs-control for devices ioctls. 2202 */ 2203 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2204 unsigned long arg) 2205 { 2206 struct btrfs_ioctl_vol_args *vol; 2207 struct btrfs_device *device = NULL; 2208 dev_t devt = 0; 2209 int ret = -ENOTTY; 2210 2211 if (!capable(CAP_SYS_ADMIN)) 2212 return -EPERM; 2213 2214 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2215 if (IS_ERR(vol)) 2216 return PTR_ERR(vol); 2217 ret = btrfs_check_ioctl_vol_args_path(vol); 2218 if (ret < 0) 2219 goto out; 2220 2221 switch (cmd) { 2222 case BTRFS_IOC_SCAN_DEV: 2223 mutex_lock(&uuid_mutex); 2224 /* 2225 * Scanning outside of mount can return NULL which would turn 2226 * into 0 error code. 2227 */ 2228 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2229 ret = PTR_ERR_OR_ZERO(device); 2230 mutex_unlock(&uuid_mutex); 2231 break; 2232 case BTRFS_IOC_FORGET_DEV: 2233 if (vol->name[0] != 0) { 2234 ret = lookup_bdev(vol->name, &devt); 2235 if (ret) 2236 break; 2237 } 2238 ret = btrfs_forget_devices(devt); 2239 break; 2240 case BTRFS_IOC_DEVICES_READY: 2241 mutex_lock(&uuid_mutex); 2242 /* 2243 * Scanning outside of mount can return NULL which would turn 2244 * into 0 error code. 2245 */ 2246 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2247 if (IS_ERR_OR_NULL(device)) { 2248 mutex_unlock(&uuid_mutex); 2249 if (IS_ERR(device)) 2250 ret = PTR_ERR(device); 2251 else 2252 ret = 0; 2253 break; 2254 } 2255 ret = !(device->fs_devices->num_devices == 2256 device->fs_devices->total_devices); 2257 mutex_unlock(&uuid_mutex); 2258 break; 2259 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2260 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2261 break; 2262 } 2263 2264 out: 2265 kfree(vol); 2266 return ret; 2267 } 2268 2269 static int btrfs_freeze(struct super_block *sb) 2270 { 2271 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2272 2273 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2274 /* 2275 * We don't need a barrier here, we'll wait for any transaction that 2276 * could be in progress on other threads (and do delayed iputs that 2277 * we want to avoid on a frozen filesystem), or do the commit 2278 * ourselves. 2279 */ 2280 return btrfs_commit_current_transaction(fs_info->tree_root); 2281 } 2282 2283 static int check_dev_super(struct btrfs_device *dev) 2284 { 2285 struct btrfs_fs_info *fs_info = dev->fs_info; 2286 struct btrfs_super_block *sb; 2287 u64 last_trans; 2288 u16 csum_type; 2289 int ret = 0; 2290 2291 /* This should be called with fs still frozen. */ 2292 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2293 2294 /* Missing dev, no need to check. */ 2295 if (!dev->bdev) 2296 return 0; 2297 2298 /* Only need to check the primary super block. */ 2299 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2300 if (IS_ERR(sb)) 2301 return PTR_ERR(sb); 2302 2303 /* Verify the checksum. */ 2304 csum_type = btrfs_super_csum_type(sb); 2305 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2306 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2307 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2308 ret = -EUCLEAN; 2309 goto out; 2310 } 2311 2312 if (btrfs_check_super_csum(fs_info, sb)) { 2313 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2314 ret = -EUCLEAN; 2315 goto out; 2316 } 2317 2318 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2319 ret = btrfs_validate_super(fs_info, sb, 0); 2320 if (ret < 0) 2321 goto out; 2322 2323 last_trans = btrfs_get_last_trans_committed(fs_info); 2324 if (btrfs_super_generation(sb) != last_trans) { 2325 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2326 btrfs_super_generation(sb), last_trans); 2327 ret = -EUCLEAN; 2328 goto out; 2329 } 2330 out: 2331 btrfs_release_disk_super(sb); 2332 return ret; 2333 } 2334 2335 static int btrfs_unfreeze(struct super_block *sb) 2336 { 2337 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2338 struct btrfs_device *device; 2339 int ret = 0; 2340 2341 /* 2342 * Make sure the fs is not changed by accident (like hibernation then 2343 * modified by other OS). 2344 * If we found anything wrong, we mark the fs error immediately. 2345 * 2346 * And since the fs is frozen, no one can modify the fs yet, thus 2347 * we don't need to hold device_list_mutex. 2348 */ 2349 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2350 ret = check_dev_super(device); 2351 if (ret < 0) { 2352 btrfs_handle_fs_error(fs_info, ret, 2353 "super block on devid %llu got modified unexpectedly", 2354 device->devid); 2355 break; 2356 } 2357 } 2358 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2359 2360 /* 2361 * We still return 0, to allow VFS layer to unfreeze the fs even the 2362 * above checks failed. Since the fs is either fine or read-only, we're 2363 * safe to continue, without causing further damage. 2364 */ 2365 return 0; 2366 } 2367 2368 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2369 { 2370 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2371 2372 /* 2373 * There should be always a valid pointer in latest_dev, it may be stale 2374 * for a short moment in case it's being deleted but still valid until 2375 * the end of RCU grace period. 2376 */ 2377 rcu_read_lock(); 2378 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2379 rcu_read_unlock(); 2380 2381 return 0; 2382 } 2383 2384 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2385 { 2386 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2387 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2388 2389 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2390 2391 return nr; 2392 } 2393 2394 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2395 { 2396 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2397 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2398 2399 btrfs_free_extent_maps(fs_info, nr_to_scan); 2400 2401 /* The extent map shrinker runs asynchronously, so always return 0. */ 2402 return 0; 2403 } 2404 2405 static const struct super_operations btrfs_super_ops = { 2406 .drop_inode = btrfs_drop_inode, 2407 .evict_inode = btrfs_evict_inode, 2408 .put_super = btrfs_put_super, 2409 .sync_fs = btrfs_sync_fs, 2410 .show_options = btrfs_show_options, 2411 .show_devname = btrfs_show_devname, 2412 .alloc_inode = btrfs_alloc_inode, 2413 .destroy_inode = btrfs_destroy_inode, 2414 .free_inode = btrfs_free_inode, 2415 .statfs = btrfs_statfs, 2416 .freeze_fs = btrfs_freeze, 2417 .unfreeze_fs = btrfs_unfreeze, 2418 .nr_cached_objects = btrfs_nr_cached_objects, 2419 .free_cached_objects = btrfs_free_cached_objects, 2420 }; 2421 2422 static const struct file_operations btrfs_ctl_fops = { 2423 .open = btrfs_control_open, 2424 .unlocked_ioctl = btrfs_control_ioctl, 2425 .compat_ioctl = compat_ptr_ioctl, 2426 .owner = THIS_MODULE, 2427 .llseek = noop_llseek, 2428 }; 2429 2430 static struct miscdevice btrfs_misc = { 2431 .minor = BTRFS_MINOR, 2432 .name = "btrfs-control", 2433 .fops = &btrfs_ctl_fops 2434 }; 2435 2436 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2437 MODULE_ALIAS("devname:btrfs-control"); 2438 2439 static int __init btrfs_interface_init(void) 2440 { 2441 return misc_register(&btrfs_misc); 2442 } 2443 2444 static __cold void btrfs_interface_exit(void) 2445 { 2446 misc_deregister(&btrfs_misc); 2447 } 2448 2449 static int __init btrfs_print_mod_info(void) 2450 { 2451 static const char options[] = "" 2452 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2453 ", experimental=on" 2454 #endif 2455 #ifdef CONFIG_BTRFS_DEBUG 2456 ", debug=on" 2457 #endif 2458 #ifdef CONFIG_BTRFS_ASSERT 2459 ", assert=on" 2460 #endif 2461 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2462 ", ref-verify=on" 2463 #endif 2464 #ifdef CONFIG_BLK_DEV_ZONED 2465 ", zoned=yes" 2466 #else 2467 ", zoned=no" 2468 #endif 2469 #ifdef CONFIG_FS_VERITY 2470 ", fsverity=yes" 2471 #else 2472 ", fsverity=no" 2473 #endif 2474 ; 2475 2476 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2477 if (btrfs_get_mod_read_policy() == NULL) 2478 pr_info("Btrfs loaded%s\n", options); 2479 else 2480 pr_info("Btrfs loaded%s, read_policy=%s\n", 2481 options, btrfs_get_mod_read_policy()); 2482 #else 2483 pr_info("Btrfs loaded%s\n", options); 2484 #endif 2485 2486 return 0; 2487 } 2488 2489 static int register_btrfs(void) 2490 { 2491 return register_filesystem(&btrfs_fs_type); 2492 } 2493 2494 static void unregister_btrfs(void) 2495 { 2496 unregister_filesystem(&btrfs_fs_type); 2497 } 2498 2499 /* Helper structure for long init/exit functions. */ 2500 struct init_sequence { 2501 int (*init_func)(void); 2502 /* Can be NULL if the init_func doesn't need cleanup. */ 2503 void (*exit_func)(void); 2504 }; 2505 2506 static const struct init_sequence mod_init_seq[] = { 2507 { 2508 .init_func = btrfs_props_init, 2509 .exit_func = NULL, 2510 }, { 2511 .init_func = btrfs_init_sysfs, 2512 .exit_func = btrfs_exit_sysfs, 2513 }, { 2514 .init_func = btrfs_init_compress, 2515 .exit_func = btrfs_exit_compress, 2516 }, { 2517 .init_func = btrfs_init_cachep, 2518 .exit_func = btrfs_destroy_cachep, 2519 }, { 2520 .init_func = btrfs_init_dio, 2521 .exit_func = btrfs_destroy_dio, 2522 }, { 2523 .init_func = btrfs_transaction_init, 2524 .exit_func = btrfs_transaction_exit, 2525 }, { 2526 .init_func = btrfs_ctree_init, 2527 .exit_func = btrfs_ctree_exit, 2528 }, { 2529 .init_func = btrfs_free_space_init, 2530 .exit_func = btrfs_free_space_exit, 2531 }, { 2532 .init_func = extent_state_init_cachep, 2533 .exit_func = extent_state_free_cachep, 2534 }, { 2535 .init_func = extent_buffer_init_cachep, 2536 .exit_func = extent_buffer_free_cachep, 2537 }, { 2538 .init_func = btrfs_bioset_init, 2539 .exit_func = btrfs_bioset_exit, 2540 }, { 2541 .init_func = extent_map_init, 2542 .exit_func = extent_map_exit, 2543 #ifdef CONFIG_BTRFS_EXPERIMENTAL 2544 }, { 2545 .init_func = btrfs_read_policy_init, 2546 .exit_func = NULL, 2547 #endif 2548 }, { 2549 .init_func = ordered_data_init, 2550 .exit_func = ordered_data_exit, 2551 }, { 2552 .init_func = btrfs_delayed_inode_init, 2553 .exit_func = btrfs_delayed_inode_exit, 2554 }, { 2555 .init_func = btrfs_auto_defrag_init, 2556 .exit_func = btrfs_auto_defrag_exit, 2557 }, { 2558 .init_func = btrfs_delayed_ref_init, 2559 .exit_func = btrfs_delayed_ref_exit, 2560 }, { 2561 .init_func = btrfs_prelim_ref_init, 2562 .exit_func = btrfs_prelim_ref_exit, 2563 }, { 2564 .init_func = btrfs_interface_init, 2565 .exit_func = btrfs_interface_exit, 2566 }, { 2567 .init_func = btrfs_print_mod_info, 2568 .exit_func = NULL, 2569 }, { 2570 .init_func = btrfs_run_sanity_tests, 2571 .exit_func = NULL, 2572 }, { 2573 .init_func = register_btrfs, 2574 .exit_func = unregister_btrfs, 2575 } 2576 }; 2577 2578 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2579 2580 static __always_inline void btrfs_exit_btrfs_fs(void) 2581 { 2582 int i; 2583 2584 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2585 if (!mod_init_result[i]) 2586 continue; 2587 if (mod_init_seq[i].exit_func) 2588 mod_init_seq[i].exit_func(); 2589 mod_init_result[i] = false; 2590 } 2591 } 2592 2593 static void __exit exit_btrfs_fs(void) 2594 { 2595 btrfs_exit_btrfs_fs(); 2596 btrfs_cleanup_fs_uuids(); 2597 } 2598 2599 static int __init init_btrfs_fs(void) 2600 { 2601 int ret; 2602 int i; 2603 2604 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2605 ASSERT(!mod_init_result[i]); 2606 ret = mod_init_seq[i].init_func(); 2607 if (ret < 0) { 2608 btrfs_exit_btrfs_fs(); 2609 return ret; 2610 } 2611 mod_init_result[i] = true; 2612 } 2613 return 0; 2614 } 2615 2616 late_initcall(init_btrfs_fs); 2617 module_exit(exit_btrfs_fs) 2618 2619 MODULE_DESCRIPTION("B-Tree File System (BTRFS)"); 2620 MODULE_LICENSE("GPL"); 2621 MODULE_SOFTDEP("pre: crc32c"); 2622 MODULE_SOFTDEP("pre: xxhash64"); 2623 MODULE_SOFTDEP("pre: sha256"); 2624 MODULE_SOFTDEP("pre: blake2b-256"); 2625