xref: /linux/fs/btrfs/super.c (revision 2c9ee85671f66cd3ffc7067de47cc59ed6677299)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "export.h"
54 #include "compression.h"
55 #include "rcu-string.h"
56 #include "dev-replace.h"
57 #include "free-space-cache.h"
58 #include "backref.h"
59 #include "tests/btrfs-tests.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66 
67 static const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 		sb->s_flags |= MS_RDONLY;
114 		btrfs_info(fs_info, "forced readonly");
115 		/*
116 		 * Note that a running device replace operation is not
117 		 * canceled here although there is no way to update
118 		 * the progress. It would add the risk of a deadlock,
119 		 * therefore the canceling is ommited. The only penalty
120 		 * is that some I/O remains active until the procedure
121 		 * completes. The next time when the filesystem is
122 		 * mounted writeable again, the device replace
123 		 * operation continues.
124 		 */
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	const char *errstr;
138 
139 	/*
140 	 * Special case: if the error is EROFS, and we're already
141 	 * under MS_RDONLY, then it is safe here.
142 	 */
143 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144   		return;
145 
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		printk(KERN_CRIT
156 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
157 			sb->s_id, function, line, errno, errstr, &vaf);
158 		va_end(args);
159 	} else {
160 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
161 			sb->s_id, function, line, errno, errstr);
162 	}
163 
164 	/* Don't go through full error handling during mount */
165 	save_error_info(fs_info);
166 	if (sb->s_flags & MS_BORN)
167 		btrfs_handle_error(fs_info);
168 }
169 
170 static const char * const logtypes[] = {
171 	"emergency",
172 	"alert",
173 	"critical",
174 	"error",
175 	"warning",
176 	"notice",
177 	"info",
178 	"debug",
179 };
180 
181 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 	struct super_block *sb = fs_info->sb;
184 	char lvl[4];
185 	struct va_format vaf;
186 	va_list args;
187 	const char *type = logtypes[4];
188 	int kern_level;
189 
190 	va_start(args, fmt);
191 
192 	kern_level = printk_get_level(fmt);
193 	if (kern_level) {
194 		size_t size = printk_skip_level(fmt) - fmt;
195 		memcpy(lvl, fmt,  size);
196 		lvl[size] = '\0';
197 		fmt += size;
198 		type = logtypes[kern_level - '0'];
199 	} else
200 		*lvl = '\0';
201 
202 	vaf.fmt = fmt;
203 	vaf.va = &args;
204 
205 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
206 
207 	va_end(args);
208 }
209 
210 #else
211 
212 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
213 		       unsigned int line, int errno, const char *fmt, ...)
214 {
215 	struct super_block *sb = fs_info->sb;
216 
217 	/*
218 	 * Special case: if the error is EROFS, and we're already
219 	 * under MS_RDONLY, then it is safe here.
220 	 */
221 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
222 		return;
223 
224 	/* Don't go through full error handling during mount */
225 	if (sb->s_flags & MS_BORN) {
226 		save_error_info(fs_info);
227 		btrfs_handle_error(fs_info);
228 	}
229 }
230 #endif
231 
232 /*
233  * We only mark the transaction aborted and then set the file system read-only.
234  * This will prevent new transactions from starting or trying to join this
235  * one.
236  *
237  * This means that error recovery at the call site is limited to freeing
238  * any local memory allocations and passing the error code up without
239  * further cleanup. The transaction should complete as it normally would
240  * in the call path but will return -EIO.
241  *
242  * We'll complete the cleanup in btrfs_end_transaction and
243  * btrfs_commit_transaction.
244  */
245 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
246 			       struct btrfs_root *root, const char *function,
247 			       unsigned int line, int errno)
248 {
249 	/*
250 	 * Report first abort since mount
251 	 */
252 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
253 				&root->fs_info->fs_state)) {
254 		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
255 				errno);
256 	}
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->blocks_used) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(root->fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	ACCESS_ONCE(trans->transaction->aborted) = errno;
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&root->fs_info->transaction_wait);
272 	wake_up(&root->fs_info->transaction_blocked_wait);
273 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 		   function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	(void)close_ctree(btrfs_sb(sb)->tree_root);
307 	/* FIXME: need to fix VFS to return error? */
308 	/* AV: return it _where_?  ->put_super() can be triggered by any number
309 	 * of async events, up to and including delivery of SIGKILL to the
310 	 * last process that kept it busy.  Or segfault in the aforementioned
311 	 * process...  Whom would you report that to?
312 	 */
313 }
314 
315 enum {
316 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
317 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
318 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
319 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
320 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
321 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
322 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
323 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
324 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
325 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
326 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
327 	Opt_noenospc_debug, Opt_noflushoncommit,
328 	Opt_err,
329 };
330 
331 static match_table_t tokens = {
332 	{Opt_degraded, "degraded"},
333 	{Opt_subvol, "subvol=%s"},
334 	{Opt_subvolid, "subvolid=%s"},
335 	{Opt_device, "device=%s"},
336 	{Opt_nodatasum, "nodatasum"},
337 	{Opt_nodatacow, "nodatacow"},
338 	{Opt_nobarrier, "nobarrier"},
339 	{Opt_barrier, "barrier"},
340 	{Opt_max_inline, "max_inline=%s"},
341 	{Opt_alloc_start, "alloc_start=%s"},
342 	{Opt_thread_pool, "thread_pool=%d"},
343 	{Opt_compress, "compress"},
344 	{Opt_compress_type, "compress=%s"},
345 	{Opt_compress_force, "compress-force"},
346 	{Opt_compress_force_type, "compress-force=%s"},
347 	{Opt_ssd, "ssd"},
348 	{Opt_ssd_spread, "ssd_spread"},
349 	{Opt_nossd, "nossd"},
350 	{Opt_noacl, "noacl"},
351 	{Opt_notreelog, "notreelog"},
352 	{Opt_flushoncommit, "flushoncommit"},
353 	{Opt_noflushoncommit, "noflushoncommit"},
354 	{Opt_ratio, "metadata_ratio=%d"},
355 	{Opt_discard, "discard"},
356 	{Opt_nodiscard, "nodiscard"},
357 	{Opt_space_cache, "space_cache"},
358 	{Opt_clear_cache, "clear_cache"},
359 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
360 	{Opt_enospc_debug, "enospc_debug"},
361 	{Opt_noenospc_debug, "noenospc_debug"},
362 	{Opt_subvolrootid, "subvolrootid=%d"},
363 	{Opt_defrag, "autodefrag"},
364 	{Opt_nodefrag, "noautodefrag"},
365 	{Opt_inode_cache, "inode_cache"},
366 	{Opt_no_space_cache, "nospace_cache"},
367 	{Opt_recovery, "recovery"},
368 	{Opt_skip_balance, "skip_balance"},
369 	{Opt_check_integrity, "check_int"},
370 	{Opt_check_integrity_including_extent_data, "check_int_data"},
371 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
372 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
373 	{Opt_fatal_errors, "fatal_errors=%s"},
374 	{Opt_commit_interval, "commit=%d"},
375 	{Opt_err, NULL},
376 };
377 
378 /*
379  * Regular mount options parser.  Everything that is needed only when
380  * reading in a new superblock is parsed here.
381  * XXX JDM: This needs to be cleaned up for remount.
382  */
383 int btrfs_parse_options(struct btrfs_root *root, char *options)
384 {
385 	struct btrfs_fs_info *info = root->fs_info;
386 	substring_t args[MAX_OPT_ARGS];
387 	char *p, *num, *orig = NULL;
388 	u64 cache_gen;
389 	int intarg;
390 	int ret = 0;
391 	char *compress_type;
392 	bool compress_force = false;
393 
394 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
395 	if (cache_gen)
396 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
397 
398 	if (!options)
399 		goto out;
400 
401 	/*
402 	 * strsep changes the string, duplicate it because parse_options
403 	 * gets called twice
404 	 */
405 	options = kstrdup(options, GFP_NOFS);
406 	if (!options)
407 		return -ENOMEM;
408 
409 	orig = options;
410 
411 	while ((p = strsep(&options, ",")) != NULL) {
412 		int token;
413 		if (!*p)
414 			continue;
415 
416 		token = match_token(p, tokens, args);
417 		switch (token) {
418 		case Opt_degraded:
419 			btrfs_info(root->fs_info, "allowing degraded mounts");
420 			btrfs_set_opt(info->mount_opt, DEGRADED);
421 			break;
422 		case Opt_subvol:
423 		case Opt_subvolid:
424 		case Opt_subvolrootid:
425 		case Opt_device:
426 			/*
427 			 * These are parsed by btrfs_parse_early_options
428 			 * and can be happily ignored here.
429 			 */
430 			break;
431 		case Opt_nodatasum:
432 			btrfs_info(root->fs_info, "setting nodatasum");
433 			btrfs_set_opt(info->mount_opt, NODATASUM);
434 			break;
435 		case Opt_nodatacow:
436 			if (!btrfs_test_opt(root, COMPRESS) ||
437 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
438 					btrfs_info(root->fs_info,
439 						"setting nodatacow, compression disabled");
440 			} else {
441 				btrfs_info(root->fs_info, "setting nodatacow");
442 			}
443 			btrfs_clear_opt(info->mount_opt, COMPRESS);
444 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
445 			btrfs_set_opt(info->mount_opt, NODATACOW);
446 			btrfs_set_opt(info->mount_opt, NODATASUM);
447 			break;
448 		case Opt_compress_force:
449 		case Opt_compress_force_type:
450 			compress_force = true;
451 			/* Fallthrough */
452 		case Opt_compress:
453 		case Opt_compress_type:
454 			if (token == Opt_compress ||
455 			    token == Opt_compress_force ||
456 			    strcmp(args[0].from, "zlib") == 0) {
457 				compress_type = "zlib";
458 				info->compress_type = BTRFS_COMPRESS_ZLIB;
459 				btrfs_set_opt(info->mount_opt, COMPRESS);
460 				btrfs_clear_opt(info->mount_opt, NODATACOW);
461 				btrfs_clear_opt(info->mount_opt, NODATASUM);
462 			} else if (strcmp(args[0].from, "lzo") == 0) {
463 				compress_type = "lzo";
464 				info->compress_type = BTRFS_COMPRESS_LZO;
465 				btrfs_set_opt(info->mount_opt, COMPRESS);
466 				btrfs_clear_opt(info->mount_opt, NODATACOW);
467 				btrfs_clear_opt(info->mount_opt, NODATASUM);
468 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
469 			} else if (strncmp(args[0].from, "no", 2) == 0) {
470 				compress_type = "no";
471 				btrfs_clear_opt(info->mount_opt, COMPRESS);
472 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
473 				compress_force = false;
474 			} else {
475 				ret = -EINVAL;
476 				goto out;
477 			}
478 
479 			if (compress_force) {
480 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
481 				btrfs_info(root->fs_info, "force %s compression",
482 					compress_type);
483 			} else if (btrfs_test_opt(root, COMPRESS)) {
484 				pr_info("btrfs: use %s compression\n",
485 					compress_type);
486 			}
487 			break;
488 		case Opt_ssd:
489 			btrfs_info(root->fs_info, "use ssd allocation scheme");
490 			btrfs_set_opt(info->mount_opt, SSD);
491 			break;
492 		case Opt_ssd_spread:
493 			btrfs_info(root->fs_info, "use spread ssd allocation scheme");
494 			btrfs_set_opt(info->mount_opt, SSD);
495 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
496 			break;
497 		case Opt_nossd:
498 			btrfs_info(root->fs_info, "not using ssd allocation scheme");
499 			btrfs_set_opt(info->mount_opt, NOSSD);
500 			btrfs_clear_opt(info->mount_opt, SSD);
501 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
502 			break;
503 		case Opt_barrier:
504 			if (btrfs_test_opt(root, NOBARRIER))
505 				btrfs_info(root->fs_info, "turning on barriers");
506 			btrfs_clear_opt(info->mount_opt, NOBARRIER);
507 			break;
508 		case Opt_nobarrier:
509 			btrfs_info(root->fs_info, "turning off barriers");
510 			btrfs_set_opt(info->mount_opt, NOBARRIER);
511 			break;
512 		case Opt_thread_pool:
513 			ret = match_int(&args[0], &intarg);
514 			if (ret) {
515 				goto out;
516 			} else if (intarg > 0) {
517 				info->thread_pool_size = intarg;
518 			} else {
519 				ret = -EINVAL;
520 				goto out;
521 			}
522 			break;
523 		case Opt_max_inline:
524 			num = match_strdup(&args[0]);
525 			if (num) {
526 				info->max_inline = memparse(num, NULL);
527 				kfree(num);
528 
529 				if (info->max_inline) {
530 					info->max_inline = max_t(u64,
531 						info->max_inline,
532 						root->sectorsize);
533 				}
534 				btrfs_info(root->fs_info, "max_inline at %llu",
535 					info->max_inline);
536 			} else {
537 				ret = -ENOMEM;
538 				goto out;
539 			}
540 			break;
541 		case Opt_alloc_start:
542 			num = match_strdup(&args[0]);
543 			if (num) {
544 				mutex_lock(&info->chunk_mutex);
545 				info->alloc_start = memparse(num, NULL);
546 				mutex_unlock(&info->chunk_mutex);
547 				kfree(num);
548 				btrfs_info(root->fs_info, "allocations start at %llu",
549 					info->alloc_start);
550 			} else {
551 				ret = -ENOMEM;
552 				goto out;
553 			}
554 			break;
555 		case Opt_noacl:
556 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
557 			break;
558 		case Opt_notreelog:
559 			btrfs_info(root->fs_info, "disabling tree log");
560 			btrfs_set_opt(info->mount_opt, NOTREELOG);
561 			break;
562 		case Opt_flushoncommit:
563 			btrfs_info(root->fs_info, "turning on flush-on-commit");
564 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
565 			break;
566 		case Opt_noflushoncommit:
567 			if (btrfs_test_opt(root, FLUSHONCOMMIT))
568 				btrfs_info(root->fs_info, "turning off flush-on-commit");
569 			btrfs_clear_opt(info->mount_opt, FLUSHONCOMMIT);
570 			break;
571 		case Opt_ratio:
572 			ret = match_int(&args[0], &intarg);
573 			if (ret) {
574 				goto out;
575 			} else if (intarg >= 0) {
576 				info->metadata_ratio = intarg;
577 				btrfs_info(root->fs_info, "metadata ratio %d",
578 				       info->metadata_ratio);
579 			} else {
580 				ret = -EINVAL;
581 				goto out;
582 			}
583 			break;
584 		case Opt_discard:
585 			btrfs_set_opt(info->mount_opt, DISCARD);
586 			break;
587 		case Opt_nodiscard:
588 			btrfs_clear_opt(info->mount_opt, DISCARD);
589 			break;
590 		case Opt_space_cache:
591 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
592 			break;
593 		case Opt_rescan_uuid_tree:
594 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
595 			break;
596 		case Opt_no_space_cache:
597 			btrfs_info(root->fs_info, "disabling disk space caching");
598 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
599 			break;
600 		case Opt_inode_cache:
601 			btrfs_info(root->fs_info, "enabling inode map caching");
602 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
603 			break;
604 		case Opt_clear_cache:
605 			btrfs_info(root->fs_info, "force clearing of disk cache");
606 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
607 			break;
608 		case Opt_user_subvol_rm_allowed:
609 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
610 			break;
611 		case Opt_enospc_debug:
612 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
613 			break;
614 		case Opt_noenospc_debug:
615 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
616 			break;
617 		case Opt_defrag:
618 			btrfs_info(root->fs_info, "enabling auto defrag");
619 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
620 			break;
621 		case Opt_nodefrag:
622 			if (btrfs_test_opt(root, AUTO_DEFRAG))
623 				btrfs_info(root->fs_info, "disabling auto defrag");
624 			btrfs_clear_opt(info->mount_opt, AUTO_DEFRAG);
625 			break;
626 		case Opt_recovery:
627 			btrfs_info(root->fs_info, "enabling auto recovery");
628 			btrfs_set_opt(info->mount_opt, RECOVERY);
629 			break;
630 		case Opt_skip_balance:
631 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
632 			break;
633 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
634 		case Opt_check_integrity_including_extent_data:
635 			btrfs_info(root->fs_info,
636 				   "enabling check integrity including extent data");
637 			btrfs_set_opt(info->mount_opt,
638 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
639 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
640 			break;
641 		case Opt_check_integrity:
642 			btrfs_info(root->fs_info, "enabling check integrity");
643 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
644 			break;
645 		case Opt_check_integrity_print_mask:
646 			ret = match_int(&args[0], &intarg);
647 			if (ret) {
648 				goto out;
649 			} else if (intarg >= 0) {
650 				info->check_integrity_print_mask = intarg;
651 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
652 				       info->check_integrity_print_mask);
653 			} else {
654 				ret = -EINVAL;
655 				goto out;
656 			}
657 			break;
658 #else
659 		case Opt_check_integrity_including_extent_data:
660 		case Opt_check_integrity:
661 		case Opt_check_integrity_print_mask:
662 			btrfs_err(root->fs_info,
663 				"support for check_integrity* not compiled in!");
664 			ret = -EINVAL;
665 			goto out;
666 #endif
667 		case Opt_fatal_errors:
668 			if (strcmp(args[0].from, "panic") == 0)
669 				btrfs_set_opt(info->mount_opt,
670 					      PANIC_ON_FATAL_ERROR);
671 			else if (strcmp(args[0].from, "bug") == 0)
672 				btrfs_clear_opt(info->mount_opt,
673 					      PANIC_ON_FATAL_ERROR);
674 			else {
675 				ret = -EINVAL;
676 				goto out;
677 			}
678 			break;
679 		case Opt_commit_interval:
680 			intarg = 0;
681 			ret = match_int(&args[0], &intarg);
682 			if (ret < 0) {
683 				btrfs_err(root->fs_info, "invalid commit interval");
684 				ret = -EINVAL;
685 				goto out;
686 			}
687 			if (intarg > 0) {
688 				if (intarg > 300) {
689 					btrfs_warn(root->fs_info, "excessive commit interval %d",
690 							intarg);
691 				}
692 				info->commit_interval = intarg;
693 			} else {
694 				btrfs_info(root->fs_info, "using default commit interval %ds",
695 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
696 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
697 			}
698 			break;
699 		case Opt_err:
700 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
701 			ret = -EINVAL;
702 			goto out;
703 		default:
704 			break;
705 		}
706 	}
707 out:
708 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
709 		btrfs_info(root->fs_info, "disk space caching is enabled");
710 	kfree(orig);
711 	return ret;
712 }
713 
714 /*
715  * Parse mount options that are required early in the mount process.
716  *
717  * All other options will be parsed on much later in the mount process and
718  * only when we need to allocate a new super block.
719  */
720 static int btrfs_parse_early_options(const char *options, fmode_t flags,
721 		void *holder, char **subvol_name, u64 *subvol_objectid,
722 		struct btrfs_fs_devices **fs_devices)
723 {
724 	substring_t args[MAX_OPT_ARGS];
725 	char *device_name, *opts, *orig, *p;
726 	char *num = NULL;
727 	int error = 0;
728 
729 	if (!options)
730 		return 0;
731 
732 	/*
733 	 * strsep changes the string, duplicate it because parse_options
734 	 * gets called twice
735 	 */
736 	opts = kstrdup(options, GFP_KERNEL);
737 	if (!opts)
738 		return -ENOMEM;
739 	orig = opts;
740 
741 	while ((p = strsep(&opts, ",")) != NULL) {
742 		int token;
743 		if (!*p)
744 			continue;
745 
746 		token = match_token(p, tokens, args);
747 		switch (token) {
748 		case Opt_subvol:
749 			kfree(*subvol_name);
750 			*subvol_name = match_strdup(&args[0]);
751 			if (!*subvol_name) {
752 				error = -ENOMEM;
753 				goto out;
754 			}
755 			break;
756 		case Opt_subvolid:
757 			num = match_strdup(&args[0]);
758 			if (num) {
759 				*subvol_objectid = memparse(num, NULL);
760 				kfree(num);
761 				/* we want the original fs_tree */
762 				if (!*subvol_objectid)
763 					*subvol_objectid =
764 						BTRFS_FS_TREE_OBJECTID;
765 			} else {
766 				error = -EINVAL;
767 				goto out;
768 			}
769 			break;
770 		case Opt_subvolrootid:
771 			printk(KERN_WARNING
772 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
773 				"no effect\n");
774 			break;
775 		case Opt_device:
776 			device_name = match_strdup(&args[0]);
777 			if (!device_name) {
778 				error = -ENOMEM;
779 				goto out;
780 			}
781 			error = btrfs_scan_one_device(device_name,
782 					flags, holder, fs_devices);
783 			kfree(device_name);
784 			if (error)
785 				goto out;
786 			break;
787 		default:
788 			break;
789 		}
790 	}
791 
792 out:
793 	kfree(orig);
794 	return error;
795 }
796 
797 static struct dentry *get_default_root(struct super_block *sb,
798 				       u64 subvol_objectid)
799 {
800 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
801 	struct btrfs_root *root = fs_info->tree_root;
802 	struct btrfs_root *new_root;
803 	struct btrfs_dir_item *di;
804 	struct btrfs_path *path;
805 	struct btrfs_key location;
806 	struct inode *inode;
807 	u64 dir_id;
808 	int new = 0;
809 
810 	/*
811 	 * We have a specific subvol we want to mount, just setup location and
812 	 * go look up the root.
813 	 */
814 	if (subvol_objectid) {
815 		location.objectid = subvol_objectid;
816 		location.type = BTRFS_ROOT_ITEM_KEY;
817 		location.offset = (u64)-1;
818 		goto find_root;
819 	}
820 
821 	path = btrfs_alloc_path();
822 	if (!path)
823 		return ERR_PTR(-ENOMEM);
824 	path->leave_spinning = 1;
825 
826 	/*
827 	 * Find the "default" dir item which points to the root item that we
828 	 * will mount by default if we haven't been given a specific subvolume
829 	 * to mount.
830 	 */
831 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
832 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
833 	if (IS_ERR(di)) {
834 		btrfs_free_path(path);
835 		return ERR_CAST(di);
836 	}
837 	if (!di) {
838 		/*
839 		 * Ok the default dir item isn't there.  This is weird since
840 		 * it's always been there, but don't freak out, just try and
841 		 * mount to root most subvolume.
842 		 */
843 		btrfs_free_path(path);
844 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
845 		new_root = fs_info->fs_root;
846 		goto setup_root;
847 	}
848 
849 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
850 	btrfs_free_path(path);
851 
852 find_root:
853 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
854 	if (IS_ERR(new_root))
855 		return ERR_CAST(new_root);
856 
857 	dir_id = btrfs_root_dirid(&new_root->root_item);
858 setup_root:
859 	location.objectid = dir_id;
860 	location.type = BTRFS_INODE_ITEM_KEY;
861 	location.offset = 0;
862 
863 	inode = btrfs_iget(sb, &location, new_root, &new);
864 	if (IS_ERR(inode))
865 		return ERR_CAST(inode);
866 
867 	/*
868 	 * If we're just mounting the root most subvol put the inode and return
869 	 * a reference to the dentry.  We will have already gotten a reference
870 	 * to the inode in btrfs_fill_super so we're good to go.
871 	 */
872 	if (!new && sb->s_root->d_inode == inode) {
873 		iput(inode);
874 		return dget(sb->s_root);
875 	}
876 
877 	return d_obtain_alias(inode);
878 }
879 
880 static int btrfs_fill_super(struct super_block *sb,
881 			    struct btrfs_fs_devices *fs_devices,
882 			    void *data, int silent)
883 {
884 	struct inode *inode;
885 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
886 	struct btrfs_key key;
887 	int err;
888 
889 	sb->s_maxbytes = MAX_LFS_FILESIZE;
890 	sb->s_magic = BTRFS_SUPER_MAGIC;
891 	sb->s_op = &btrfs_super_ops;
892 	sb->s_d_op = &btrfs_dentry_operations;
893 	sb->s_export_op = &btrfs_export_ops;
894 	sb->s_xattr = btrfs_xattr_handlers;
895 	sb->s_time_gran = 1;
896 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
897 	sb->s_flags |= MS_POSIXACL;
898 #endif
899 	sb->s_flags |= MS_I_VERSION;
900 	err = open_ctree(sb, fs_devices, (char *)data);
901 	if (err) {
902 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
903 		return err;
904 	}
905 
906 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
907 	key.type = BTRFS_INODE_ITEM_KEY;
908 	key.offset = 0;
909 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
910 	if (IS_ERR(inode)) {
911 		err = PTR_ERR(inode);
912 		goto fail_close;
913 	}
914 
915 	sb->s_root = d_make_root(inode);
916 	if (!sb->s_root) {
917 		err = -ENOMEM;
918 		goto fail_close;
919 	}
920 
921 	save_mount_options(sb, data);
922 	cleancache_init_fs(sb);
923 	sb->s_flags |= MS_ACTIVE;
924 	return 0;
925 
926 fail_close:
927 	close_ctree(fs_info->tree_root);
928 	return err;
929 }
930 
931 int btrfs_sync_fs(struct super_block *sb, int wait)
932 {
933 	struct btrfs_trans_handle *trans;
934 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
935 	struct btrfs_root *root = fs_info->tree_root;
936 
937 	trace_btrfs_sync_fs(wait);
938 
939 	if (!wait) {
940 		filemap_flush(fs_info->btree_inode->i_mapping);
941 		return 0;
942 	}
943 
944 	btrfs_wait_ordered_roots(fs_info, -1);
945 
946 	trans = btrfs_attach_transaction_barrier(root);
947 	if (IS_ERR(trans)) {
948 		/* no transaction, don't bother */
949 		if (PTR_ERR(trans) == -ENOENT)
950 			return 0;
951 		return PTR_ERR(trans);
952 	}
953 	return btrfs_commit_transaction(trans, root);
954 }
955 
956 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
957 {
958 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
959 	struct btrfs_root *root = info->tree_root;
960 	char *compress_type;
961 
962 	if (btrfs_test_opt(root, DEGRADED))
963 		seq_puts(seq, ",degraded");
964 	if (btrfs_test_opt(root, NODATASUM))
965 		seq_puts(seq, ",nodatasum");
966 	if (btrfs_test_opt(root, NODATACOW))
967 		seq_puts(seq, ",nodatacow");
968 	if (btrfs_test_opt(root, NOBARRIER))
969 		seq_puts(seq, ",nobarrier");
970 	if (info->max_inline != 8192 * 1024)
971 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
972 	if (info->alloc_start != 0)
973 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
974 	if (info->thread_pool_size !=  min_t(unsigned long,
975 					     num_online_cpus() + 2, 8))
976 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
977 	if (btrfs_test_opt(root, COMPRESS)) {
978 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
979 			compress_type = "zlib";
980 		else
981 			compress_type = "lzo";
982 		if (btrfs_test_opt(root, FORCE_COMPRESS))
983 			seq_printf(seq, ",compress-force=%s", compress_type);
984 		else
985 			seq_printf(seq, ",compress=%s", compress_type);
986 	}
987 	if (btrfs_test_opt(root, NOSSD))
988 		seq_puts(seq, ",nossd");
989 	if (btrfs_test_opt(root, SSD_SPREAD))
990 		seq_puts(seq, ",ssd_spread");
991 	else if (btrfs_test_opt(root, SSD))
992 		seq_puts(seq, ",ssd");
993 	if (btrfs_test_opt(root, NOTREELOG))
994 		seq_puts(seq, ",notreelog");
995 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
996 		seq_puts(seq, ",flushoncommit");
997 	if (btrfs_test_opt(root, DISCARD))
998 		seq_puts(seq, ",discard");
999 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1000 		seq_puts(seq, ",noacl");
1001 	if (btrfs_test_opt(root, SPACE_CACHE))
1002 		seq_puts(seq, ",space_cache");
1003 	else
1004 		seq_puts(seq, ",nospace_cache");
1005 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1006 		seq_puts(seq, ",rescan_uuid_tree");
1007 	if (btrfs_test_opt(root, CLEAR_CACHE))
1008 		seq_puts(seq, ",clear_cache");
1009 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1010 		seq_puts(seq, ",user_subvol_rm_allowed");
1011 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1012 		seq_puts(seq, ",enospc_debug");
1013 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1014 		seq_puts(seq, ",autodefrag");
1015 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1016 		seq_puts(seq, ",inode_cache");
1017 	if (btrfs_test_opt(root, SKIP_BALANCE))
1018 		seq_puts(seq, ",skip_balance");
1019 	if (btrfs_test_opt(root, RECOVERY))
1020 		seq_puts(seq, ",recovery");
1021 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1022 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1023 		seq_puts(seq, ",check_int_data");
1024 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1025 		seq_puts(seq, ",check_int");
1026 	if (info->check_integrity_print_mask)
1027 		seq_printf(seq, ",check_int_print_mask=%d",
1028 				info->check_integrity_print_mask);
1029 #endif
1030 	if (info->metadata_ratio)
1031 		seq_printf(seq, ",metadata_ratio=%d",
1032 				info->metadata_ratio);
1033 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1034 		seq_puts(seq, ",fatal_errors=panic");
1035 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1036 		seq_printf(seq, ",commit=%d", info->commit_interval);
1037 	return 0;
1038 }
1039 
1040 static int btrfs_test_super(struct super_block *s, void *data)
1041 {
1042 	struct btrfs_fs_info *p = data;
1043 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1044 
1045 	return fs_info->fs_devices == p->fs_devices;
1046 }
1047 
1048 static int btrfs_set_super(struct super_block *s, void *data)
1049 {
1050 	int err = set_anon_super(s, data);
1051 	if (!err)
1052 		s->s_fs_info = data;
1053 	return err;
1054 }
1055 
1056 /*
1057  * subvolumes are identified by ino 256
1058  */
1059 static inline int is_subvolume_inode(struct inode *inode)
1060 {
1061 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1062 		return 1;
1063 	return 0;
1064 }
1065 
1066 /*
1067  * This will strip out the subvol=%s argument for an argument string and add
1068  * subvolid=0 to make sure we get the actual tree root for path walking to the
1069  * subvol we want.
1070  */
1071 static char *setup_root_args(char *args)
1072 {
1073 	unsigned len = strlen(args) + 2 + 1;
1074 	char *src, *dst, *buf;
1075 
1076 	/*
1077 	 * We need the same args as before, but with this substitution:
1078 	 * s!subvol=[^,]+!subvolid=0!
1079 	 *
1080 	 * Since the replacement string is up to 2 bytes longer than the
1081 	 * original, allocate strlen(args) + 2 + 1 bytes.
1082 	 */
1083 
1084 	src = strstr(args, "subvol=");
1085 	/* This shouldn't happen, but just in case.. */
1086 	if (!src)
1087 		return NULL;
1088 
1089 	buf = dst = kmalloc(len, GFP_NOFS);
1090 	if (!buf)
1091 		return NULL;
1092 
1093 	/*
1094 	 * If the subvol= arg is not at the start of the string,
1095 	 * copy whatever precedes it into buf.
1096 	 */
1097 	if (src != args) {
1098 		*src++ = '\0';
1099 		strcpy(buf, args);
1100 		dst += strlen(args);
1101 	}
1102 
1103 	strcpy(dst, "subvolid=0");
1104 	dst += strlen("subvolid=0");
1105 
1106 	/*
1107 	 * If there is a "," after the original subvol=... string,
1108 	 * copy that suffix into our buffer.  Otherwise, we're done.
1109 	 */
1110 	src = strchr(src, ',');
1111 	if (src)
1112 		strcpy(dst, src);
1113 
1114 	return buf;
1115 }
1116 
1117 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1118 				   const char *device_name, char *data)
1119 {
1120 	struct dentry *root;
1121 	struct vfsmount *mnt;
1122 	char *newargs;
1123 
1124 	newargs = setup_root_args(data);
1125 	if (!newargs)
1126 		return ERR_PTR(-ENOMEM);
1127 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1128 			     newargs);
1129 	kfree(newargs);
1130 	if (IS_ERR(mnt))
1131 		return ERR_CAST(mnt);
1132 
1133 	root = mount_subtree(mnt, subvol_name);
1134 
1135 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1136 		struct super_block *s = root->d_sb;
1137 		dput(root);
1138 		root = ERR_PTR(-EINVAL);
1139 		deactivate_locked_super(s);
1140 		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1141 				subvol_name);
1142 	}
1143 
1144 	return root;
1145 }
1146 
1147 /*
1148  * Find a superblock for the given device / mount point.
1149  *
1150  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1151  *	  for multiple device setup.  Make sure to keep it in sync.
1152  */
1153 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1154 		const char *device_name, void *data)
1155 {
1156 	struct block_device *bdev = NULL;
1157 	struct super_block *s;
1158 	struct dentry *root;
1159 	struct btrfs_fs_devices *fs_devices = NULL;
1160 	struct btrfs_fs_info *fs_info = NULL;
1161 	fmode_t mode = FMODE_READ;
1162 	char *subvol_name = NULL;
1163 	u64 subvol_objectid = 0;
1164 	int error = 0;
1165 
1166 	if (!(flags & MS_RDONLY))
1167 		mode |= FMODE_WRITE;
1168 
1169 	error = btrfs_parse_early_options(data, mode, fs_type,
1170 					  &subvol_name, &subvol_objectid,
1171 					  &fs_devices);
1172 	if (error) {
1173 		kfree(subvol_name);
1174 		return ERR_PTR(error);
1175 	}
1176 
1177 	if (subvol_name) {
1178 		root = mount_subvol(subvol_name, flags, device_name, data);
1179 		kfree(subvol_name);
1180 		return root;
1181 	}
1182 
1183 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1184 	if (error)
1185 		return ERR_PTR(error);
1186 
1187 	/*
1188 	 * Setup a dummy root and fs_info for test/set super.  This is because
1189 	 * we don't actually fill this stuff out until open_ctree, but we need
1190 	 * it for searching for existing supers, so this lets us do that and
1191 	 * then open_ctree will properly initialize everything later.
1192 	 */
1193 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1194 	if (!fs_info)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	fs_info->fs_devices = fs_devices;
1198 
1199 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1200 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1201 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1202 		error = -ENOMEM;
1203 		goto error_fs_info;
1204 	}
1205 
1206 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1207 	if (error)
1208 		goto error_fs_info;
1209 
1210 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1211 		error = -EACCES;
1212 		goto error_close_devices;
1213 	}
1214 
1215 	bdev = fs_devices->latest_bdev;
1216 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1217 		 fs_info);
1218 	if (IS_ERR(s)) {
1219 		error = PTR_ERR(s);
1220 		goto error_close_devices;
1221 	}
1222 
1223 	if (s->s_root) {
1224 		btrfs_close_devices(fs_devices);
1225 		free_fs_info(fs_info);
1226 		if ((flags ^ s->s_flags) & MS_RDONLY)
1227 			error = -EBUSY;
1228 	} else {
1229 		char b[BDEVNAME_SIZE];
1230 
1231 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1232 		btrfs_sb(s)->bdev_holder = fs_type;
1233 		error = btrfs_fill_super(s, fs_devices, data,
1234 					 flags & MS_SILENT ? 1 : 0);
1235 	}
1236 
1237 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1238 	if (IS_ERR(root))
1239 		deactivate_locked_super(s);
1240 
1241 	return root;
1242 
1243 error_close_devices:
1244 	btrfs_close_devices(fs_devices);
1245 error_fs_info:
1246 	free_fs_info(fs_info);
1247 	return ERR_PTR(error);
1248 }
1249 
1250 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1251 {
1252 	spin_lock_irq(&workers->lock);
1253 	workers->max_workers = new_limit;
1254 	spin_unlock_irq(&workers->lock);
1255 }
1256 
1257 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1258 				     int new_pool_size, int old_pool_size)
1259 {
1260 	if (new_pool_size == old_pool_size)
1261 		return;
1262 
1263 	fs_info->thread_pool_size = new_pool_size;
1264 
1265 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1266 	       old_pool_size, new_pool_size);
1267 
1268 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1269 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1270 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1271 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1272 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1273 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1274 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1275 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1276 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1277 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1278 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1279 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1280 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1281 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1282 			      new_pool_size);
1283 }
1284 
1285 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1286 {
1287 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1288 }
1289 
1290 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1291 				       unsigned long old_opts, int flags)
1292 {
1293 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1294 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1295 	     (flags & MS_RDONLY))) {
1296 		/* wait for any defraggers to finish */
1297 		wait_event(fs_info->transaction_wait,
1298 			   (atomic_read(&fs_info->defrag_running) == 0));
1299 		if (flags & MS_RDONLY)
1300 			sync_filesystem(fs_info->sb);
1301 	}
1302 }
1303 
1304 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1305 					 unsigned long old_opts)
1306 {
1307 	/*
1308 	 * We need cleanup all defragable inodes if the autodefragment is
1309 	 * close or the fs is R/O.
1310 	 */
1311 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1312 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1313 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1314 		btrfs_cleanup_defrag_inodes(fs_info);
1315 	}
1316 
1317 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1318 }
1319 
1320 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1321 {
1322 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1323 	struct btrfs_root *root = fs_info->tree_root;
1324 	unsigned old_flags = sb->s_flags;
1325 	unsigned long old_opts = fs_info->mount_opt;
1326 	unsigned long old_compress_type = fs_info->compress_type;
1327 	u64 old_max_inline = fs_info->max_inline;
1328 	u64 old_alloc_start = fs_info->alloc_start;
1329 	int old_thread_pool_size = fs_info->thread_pool_size;
1330 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1331 	int ret;
1332 
1333 	btrfs_remount_prepare(fs_info);
1334 
1335 	ret = btrfs_parse_options(root, data);
1336 	if (ret) {
1337 		ret = -EINVAL;
1338 		goto restore;
1339 	}
1340 
1341 	btrfs_remount_begin(fs_info, old_opts, *flags);
1342 	btrfs_resize_thread_pool(fs_info,
1343 		fs_info->thread_pool_size, old_thread_pool_size);
1344 
1345 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1346 		goto out;
1347 
1348 	if (*flags & MS_RDONLY) {
1349 		/*
1350 		 * this also happens on 'umount -rf' or on shutdown, when
1351 		 * the filesystem is busy.
1352 		 */
1353 
1354 		/* wait for the uuid_scan task to finish */
1355 		down(&fs_info->uuid_tree_rescan_sem);
1356 		/* avoid complains from lockdep et al. */
1357 		up(&fs_info->uuid_tree_rescan_sem);
1358 
1359 		sb->s_flags |= MS_RDONLY;
1360 
1361 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1362 		btrfs_scrub_cancel(fs_info);
1363 		btrfs_pause_balance(fs_info);
1364 
1365 		ret = btrfs_commit_super(root);
1366 		if (ret)
1367 			goto restore;
1368 	} else {
1369 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1370 			btrfs_err(fs_info,
1371 				"Remounting read-write after error is not allowed");
1372 			ret = -EINVAL;
1373 			goto restore;
1374 		}
1375 		if (fs_info->fs_devices->rw_devices == 0) {
1376 			ret = -EACCES;
1377 			goto restore;
1378 		}
1379 
1380 		if (fs_info->fs_devices->missing_devices >
1381 		     fs_info->num_tolerated_disk_barrier_failures &&
1382 		    !(*flags & MS_RDONLY)) {
1383 			btrfs_warn(fs_info,
1384 				"too many missing devices, writeable remount is not allowed");
1385 			ret = -EACCES;
1386 			goto restore;
1387 		}
1388 
1389 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1390 			ret = -EINVAL;
1391 			goto restore;
1392 		}
1393 
1394 		ret = btrfs_cleanup_fs_roots(fs_info);
1395 		if (ret)
1396 			goto restore;
1397 
1398 		/* recover relocation */
1399 		ret = btrfs_recover_relocation(root);
1400 		if (ret)
1401 			goto restore;
1402 
1403 		ret = btrfs_resume_balance_async(fs_info);
1404 		if (ret)
1405 			goto restore;
1406 
1407 		ret = btrfs_resume_dev_replace_async(fs_info);
1408 		if (ret) {
1409 			btrfs_warn(fs_info, "failed to resume dev_replace");
1410 			goto restore;
1411 		}
1412 
1413 		if (!fs_info->uuid_root) {
1414 			btrfs_info(fs_info, "creating UUID tree");
1415 			ret = btrfs_create_uuid_tree(fs_info);
1416 			if (ret) {
1417 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1418 				goto restore;
1419 			}
1420 		}
1421 		sb->s_flags &= ~MS_RDONLY;
1422 	}
1423 out:
1424 	btrfs_remount_cleanup(fs_info, old_opts);
1425 	return 0;
1426 
1427 restore:
1428 	/* We've hit an error - don't reset MS_RDONLY */
1429 	if (sb->s_flags & MS_RDONLY)
1430 		old_flags |= MS_RDONLY;
1431 	sb->s_flags = old_flags;
1432 	fs_info->mount_opt = old_opts;
1433 	fs_info->compress_type = old_compress_type;
1434 	fs_info->max_inline = old_max_inline;
1435 	mutex_lock(&fs_info->chunk_mutex);
1436 	fs_info->alloc_start = old_alloc_start;
1437 	mutex_unlock(&fs_info->chunk_mutex);
1438 	btrfs_resize_thread_pool(fs_info,
1439 		old_thread_pool_size, fs_info->thread_pool_size);
1440 	fs_info->metadata_ratio = old_metadata_ratio;
1441 	btrfs_remount_cleanup(fs_info, old_opts);
1442 	return ret;
1443 }
1444 
1445 /* Used to sort the devices by max_avail(descending sort) */
1446 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1447 				       const void *dev_info2)
1448 {
1449 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1450 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1451 		return -1;
1452 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1453 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1454 		return 1;
1455 	else
1456 	return 0;
1457 }
1458 
1459 /*
1460  * sort the devices by max_avail, in which max free extent size of each device
1461  * is stored.(Descending Sort)
1462  */
1463 static inline void btrfs_descending_sort_devices(
1464 					struct btrfs_device_info *devices,
1465 					size_t nr_devices)
1466 {
1467 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1468 	     btrfs_cmp_device_free_bytes, NULL);
1469 }
1470 
1471 /*
1472  * The helper to calc the free space on the devices that can be used to store
1473  * file data.
1474  */
1475 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1476 {
1477 	struct btrfs_fs_info *fs_info = root->fs_info;
1478 	struct btrfs_device_info *devices_info;
1479 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1480 	struct btrfs_device *device;
1481 	u64 skip_space;
1482 	u64 type;
1483 	u64 avail_space;
1484 	u64 used_space;
1485 	u64 min_stripe_size;
1486 	int min_stripes = 1, num_stripes = 1;
1487 	int i = 0, nr_devices;
1488 	int ret;
1489 
1490 	nr_devices = fs_info->fs_devices->open_devices;
1491 	BUG_ON(!nr_devices);
1492 
1493 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1494 			       GFP_NOFS);
1495 	if (!devices_info)
1496 		return -ENOMEM;
1497 
1498 	/* calc min stripe number for data space alloction */
1499 	type = btrfs_get_alloc_profile(root, 1);
1500 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1501 		min_stripes = 2;
1502 		num_stripes = nr_devices;
1503 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1504 		min_stripes = 2;
1505 		num_stripes = 2;
1506 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1507 		min_stripes = 4;
1508 		num_stripes = 4;
1509 	}
1510 
1511 	if (type & BTRFS_BLOCK_GROUP_DUP)
1512 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1513 	else
1514 		min_stripe_size = BTRFS_STRIPE_LEN;
1515 
1516 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1517 		if (!device->in_fs_metadata || !device->bdev ||
1518 		    device->is_tgtdev_for_dev_replace)
1519 			continue;
1520 
1521 		avail_space = device->total_bytes - device->bytes_used;
1522 
1523 		/* align with stripe_len */
1524 		do_div(avail_space, BTRFS_STRIPE_LEN);
1525 		avail_space *= BTRFS_STRIPE_LEN;
1526 
1527 		/*
1528 		 * In order to avoid overwritting the superblock on the drive,
1529 		 * btrfs starts at an offset of at least 1MB when doing chunk
1530 		 * allocation.
1531 		 */
1532 		skip_space = 1024 * 1024;
1533 
1534 		/* user can set the offset in fs_info->alloc_start. */
1535 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1536 		    device->total_bytes)
1537 			skip_space = max(fs_info->alloc_start, skip_space);
1538 
1539 		/*
1540 		 * btrfs can not use the free space in [0, skip_space - 1],
1541 		 * we must subtract it from the total. In order to implement
1542 		 * it, we account the used space in this range first.
1543 		 */
1544 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1545 						     &used_space);
1546 		if (ret) {
1547 			kfree(devices_info);
1548 			return ret;
1549 		}
1550 
1551 		/* calc the free space in [0, skip_space - 1] */
1552 		skip_space -= used_space;
1553 
1554 		/*
1555 		 * we can use the free space in [0, skip_space - 1], subtract
1556 		 * it from the total.
1557 		 */
1558 		if (avail_space && avail_space >= skip_space)
1559 			avail_space -= skip_space;
1560 		else
1561 			avail_space = 0;
1562 
1563 		if (avail_space < min_stripe_size)
1564 			continue;
1565 
1566 		devices_info[i].dev = device;
1567 		devices_info[i].max_avail = avail_space;
1568 
1569 		i++;
1570 	}
1571 
1572 	nr_devices = i;
1573 
1574 	btrfs_descending_sort_devices(devices_info, nr_devices);
1575 
1576 	i = nr_devices - 1;
1577 	avail_space = 0;
1578 	while (nr_devices >= min_stripes) {
1579 		if (num_stripes > nr_devices)
1580 			num_stripes = nr_devices;
1581 
1582 		if (devices_info[i].max_avail >= min_stripe_size) {
1583 			int j;
1584 			u64 alloc_size;
1585 
1586 			avail_space += devices_info[i].max_avail * num_stripes;
1587 			alloc_size = devices_info[i].max_avail;
1588 			for (j = i + 1 - num_stripes; j <= i; j++)
1589 				devices_info[j].max_avail -= alloc_size;
1590 		}
1591 		i--;
1592 		nr_devices--;
1593 	}
1594 
1595 	kfree(devices_info);
1596 	*free_bytes = avail_space;
1597 	return 0;
1598 }
1599 
1600 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1601 {
1602 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1603 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1604 	struct list_head *head = &fs_info->space_info;
1605 	struct btrfs_space_info *found;
1606 	u64 total_used = 0;
1607 	u64 total_free_data = 0;
1608 	int bits = dentry->d_sb->s_blocksize_bits;
1609 	__be32 *fsid = (__be32 *)fs_info->fsid;
1610 	int ret;
1611 
1612 	/* holding chunk_muext to avoid allocating new chunks */
1613 	mutex_lock(&fs_info->chunk_mutex);
1614 	rcu_read_lock();
1615 	list_for_each_entry_rcu(found, head, list) {
1616 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1617 			total_free_data += found->disk_total - found->disk_used;
1618 			total_free_data -=
1619 				btrfs_account_ro_block_groups_free_space(found);
1620 		}
1621 
1622 		total_used += found->disk_used;
1623 	}
1624 	rcu_read_unlock();
1625 
1626 	buf->f_namelen = BTRFS_NAME_LEN;
1627 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1628 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1629 	buf->f_bsize = dentry->d_sb->s_blocksize;
1630 	buf->f_type = BTRFS_SUPER_MAGIC;
1631 	buf->f_bavail = total_free_data;
1632 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1633 	if (ret) {
1634 		mutex_unlock(&fs_info->chunk_mutex);
1635 		return ret;
1636 	}
1637 	buf->f_bavail += total_free_data;
1638 	buf->f_bavail = buf->f_bavail >> bits;
1639 	mutex_unlock(&fs_info->chunk_mutex);
1640 
1641 	/* We treat it as constant endianness (it doesn't matter _which_)
1642 	   because we want the fsid to come out the same whether mounted
1643 	   on a big-endian or little-endian host */
1644 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1645 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1646 	/* Mask in the root object ID too, to disambiguate subvols */
1647 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1648 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1649 
1650 	return 0;
1651 }
1652 
1653 static void btrfs_kill_super(struct super_block *sb)
1654 {
1655 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1656 	kill_anon_super(sb);
1657 	free_fs_info(fs_info);
1658 }
1659 
1660 static struct file_system_type btrfs_fs_type = {
1661 	.owner		= THIS_MODULE,
1662 	.name		= "btrfs",
1663 	.mount		= btrfs_mount,
1664 	.kill_sb	= btrfs_kill_super,
1665 	.fs_flags	= FS_REQUIRES_DEV,
1666 };
1667 MODULE_ALIAS_FS("btrfs");
1668 
1669 /*
1670  * used by btrfsctl to scan devices when no FS is mounted
1671  */
1672 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1673 				unsigned long arg)
1674 {
1675 	struct btrfs_ioctl_vol_args *vol;
1676 	struct btrfs_fs_devices *fs_devices;
1677 	int ret = -ENOTTY;
1678 
1679 	if (!capable(CAP_SYS_ADMIN))
1680 		return -EPERM;
1681 
1682 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1683 	if (IS_ERR(vol))
1684 		return PTR_ERR(vol);
1685 
1686 	switch (cmd) {
1687 	case BTRFS_IOC_SCAN_DEV:
1688 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1689 					    &btrfs_fs_type, &fs_devices);
1690 		break;
1691 	case BTRFS_IOC_DEVICES_READY:
1692 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1693 					    &btrfs_fs_type, &fs_devices);
1694 		if (ret)
1695 			break;
1696 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1697 		break;
1698 	}
1699 
1700 	kfree(vol);
1701 	return ret;
1702 }
1703 
1704 static int btrfs_freeze(struct super_block *sb)
1705 {
1706 	struct btrfs_trans_handle *trans;
1707 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1708 
1709 	trans = btrfs_attach_transaction_barrier(root);
1710 	if (IS_ERR(trans)) {
1711 		/* no transaction, don't bother */
1712 		if (PTR_ERR(trans) == -ENOENT)
1713 			return 0;
1714 		return PTR_ERR(trans);
1715 	}
1716 	return btrfs_commit_transaction(trans, root);
1717 }
1718 
1719 static int btrfs_unfreeze(struct super_block *sb)
1720 {
1721 	return 0;
1722 }
1723 
1724 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1725 {
1726 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1727 	struct btrfs_fs_devices *cur_devices;
1728 	struct btrfs_device *dev, *first_dev = NULL;
1729 	struct list_head *head;
1730 	struct rcu_string *name;
1731 
1732 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1733 	cur_devices = fs_info->fs_devices;
1734 	while (cur_devices) {
1735 		head = &cur_devices->devices;
1736 		list_for_each_entry(dev, head, dev_list) {
1737 			if (dev->missing)
1738 				continue;
1739 			if (!first_dev || dev->devid < first_dev->devid)
1740 				first_dev = dev;
1741 		}
1742 		cur_devices = cur_devices->seed;
1743 	}
1744 
1745 	if (first_dev) {
1746 		rcu_read_lock();
1747 		name = rcu_dereference(first_dev->name);
1748 		seq_escape(m, name->str, " \t\n\\");
1749 		rcu_read_unlock();
1750 	} else {
1751 		WARN_ON(1);
1752 	}
1753 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1754 	return 0;
1755 }
1756 
1757 static const struct super_operations btrfs_super_ops = {
1758 	.drop_inode	= btrfs_drop_inode,
1759 	.evict_inode	= btrfs_evict_inode,
1760 	.put_super	= btrfs_put_super,
1761 	.sync_fs	= btrfs_sync_fs,
1762 	.show_options	= btrfs_show_options,
1763 	.show_devname	= btrfs_show_devname,
1764 	.write_inode	= btrfs_write_inode,
1765 	.alloc_inode	= btrfs_alloc_inode,
1766 	.destroy_inode	= btrfs_destroy_inode,
1767 	.statfs		= btrfs_statfs,
1768 	.remount_fs	= btrfs_remount,
1769 	.freeze_fs	= btrfs_freeze,
1770 	.unfreeze_fs	= btrfs_unfreeze,
1771 };
1772 
1773 static const struct file_operations btrfs_ctl_fops = {
1774 	.unlocked_ioctl	 = btrfs_control_ioctl,
1775 	.compat_ioctl = btrfs_control_ioctl,
1776 	.owner	 = THIS_MODULE,
1777 	.llseek = noop_llseek,
1778 };
1779 
1780 static struct miscdevice btrfs_misc = {
1781 	.minor		= BTRFS_MINOR,
1782 	.name		= "btrfs-control",
1783 	.fops		= &btrfs_ctl_fops
1784 };
1785 
1786 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1787 MODULE_ALIAS("devname:btrfs-control");
1788 
1789 static int btrfs_interface_init(void)
1790 {
1791 	return misc_register(&btrfs_misc);
1792 }
1793 
1794 static void btrfs_interface_exit(void)
1795 {
1796 	if (misc_deregister(&btrfs_misc) < 0)
1797 		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1798 }
1799 
1800 static void btrfs_print_info(void)
1801 {
1802 	printk(KERN_INFO "Btrfs loaded"
1803 #ifdef CONFIG_BTRFS_DEBUG
1804 			", debug=on"
1805 #endif
1806 #ifdef CONFIG_BTRFS_ASSERT
1807 			", assert=on"
1808 #endif
1809 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1810 			", integrity-checker=on"
1811 #endif
1812 			"\n");
1813 }
1814 
1815 static int btrfs_run_sanity_tests(void)
1816 {
1817 	int ret;
1818 
1819 	ret = btrfs_init_test_fs();
1820 	if (ret)
1821 		return ret;
1822 
1823 	ret = btrfs_test_free_space_cache();
1824 	if (ret)
1825 		goto out;
1826 	ret = btrfs_test_extent_buffer_operations();
1827 	if (ret)
1828 		goto out;
1829 	ret = btrfs_test_extent_io();
1830 	if (ret)
1831 		goto out;
1832 	ret = btrfs_test_inodes();
1833 out:
1834 	btrfs_destroy_test_fs();
1835 	return ret;
1836 }
1837 
1838 static int __init init_btrfs_fs(void)
1839 {
1840 	int err;
1841 
1842 	err = btrfs_init_sysfs();
1843 	if (err)
1844 		return err;
1845 
1846 	btrfs_init_compress();
1847 
1848 	err = btrfs_init_cachep();
1849 	if (err)
1850 		goto free_compress;
1851 
1852 	err = extent_io_init();
1853 	if (err)
1854 		goto free_cachep;
1855 
1856 	err = extent_map_init();
1857 	if (err)
1858 		goto free_extent_io;
1859 
1860 	err = ordered_data_init();
1861 	if (err)
1862 		goto free_extent_map;
1863 
1864 	err = btrfs_delayed_inode_init();
1865 	if (err)
1866 		goto free_ordered_data;
1867 
1868 	err = btrfs_auto_defrag_init();
1869 	if (err)
1870 		goto free_delayed_inode;
1871 
1872 	err = btrfs_delayed_ref_init();
1873 	if (err)
1874 		goto free_auto_defrag;
1875 
1876 	err = btrfs_prelim_ref_init();
1877 	if (err)
1878 		goto free_prelim_ref;
1879 
1880 	err = btrfs_interface_init();
1881 	if (err)
1882 		goto free_delayed_ref;
1883 
1884 	btrfs_init_lockdep();
1885 
1886 	btrfs_print_info();
1887 
1888 	err = btrfs_run_sanity_tests();
1889 	if (err)
1890 		goto unregister_ioctl;
1891 
1892 	err = register_filesystem(&btrfs_fs_type);
1893 	if (err)
1894 		goto unregister_ioctl;
1895 
1896 	return 0;
1897 
1898 unregister_ioctl:
1899 	btrfs_interface_exit();
1900 free_prelim_ref:
1901 	btrfs_prelim_ref_exit();
1902 free_delayed_ref:
1903 	btrfs_delayed_ref_exit();
1904 free_auto_defrag:
1905 	btrfs_auto_defrag_exit();
1906 free_delayed_inode:
1907 	btrfs_delayed_inode_exit();
1908 free_ordered_data:
1909 	ordered_data_exit();
1910 free_extent_map:
1911 	extent_map_exit();
1912 free_extent_io:
1913 	extent_io_exit();
1914 free_cachep:
1915 	btrfs_destroy_cachep();
1916 free_compress:
1917 	btrfs_exit_compress();
1918 	btrfs_exit_sysfs();
1919 	return err;
1920 }
1921 
1922 static void __exit exit_btrfs_fs(void)
1923 {
1924 	btrfs_destroy_cachep();
1925 	btrfs_delayed_ref_exit();
1926 	btrfs_auto_defrag_exit();
1927 	btrfs_delayed_inode_exit();
1928 	btrfs_prelim_ref_exit();
1929 	ordered_data_exit();
1930 	extent_map_exit();
1931 	extent_io_exit();
1932 	btrfs_interface_exit();
1933 	unregister_filesystem(&btrfs_fs_type);
1934 	btrfs_exit_sysfs();
1935 	btrfs_cleanup_fs_uuids();
1936 	btrfs_exit_compress();
1937 }
1938 
1939 module_init(init_btrfs_fs)
1940 module_exit(exit_btrfs_fs)
1941 
1942 MODULE_LICENSE("GPL");
1943