xref: /linux/fs/btrfs/super.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61 
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64 
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 				      char nbuf[16])
67 {
68 	char *errstr = NULL;
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	default:
84 		if (nbuf) {
85 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 				errstr = nbuf;
87 		}
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 	/*
97 	 * today we only save the error info into ram.  Long term we'll
98 	 * also send it down to the disk
99 	 */
100 	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102 
103 /* NOTE:
104  *	We move write_super stuff at umount in order to avoid deadlock
105  *	for umount hold all lock.
106  */
107 static void save_error_info(struct btrfs_fs_info *fs_info)
108 {
109 	__save_error_info(fs_info);
110 }
111 
112 /* btrfs handle error by forcing the filesystem readonly */
113 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114 {
115 	struct super_block *sb = fs_info->sb;
116 
117 	if (sb->s_flags & MS_RDONLY)
118 		return;
119 
120 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121 		sb->s_flags |= MS_RDONLY;
122 		printk(KERN_INFO "btrfs is forced readonly\n");
123 		__btrfs_scrub_cancel(fs_info);
124 //		WARN_ON(1);
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	char nbuf[16];
138 	const char *errstr;
139 	va_list args;
140 	va_start(args, fmt);
141 
142 	/*
143 	 * Special case: if the error is EROFS, and we're already
144 	 * under MS_RDONLY, then it is safe here.
145 	 */
146 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
147   		return;
148 
149   	errstr = btrfs_decode_error(fs_info, errno, nbuf);
150 	if (fmt) {
151 		struct va_format vaf = {
152 			.fmt = fmt,
153 			.va = &args,
154 		};
155 
156 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
157 			sb->s_id, function, line, errstr, &vaf);
158 	} else {
159 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
160 			sb->s_id, function, line, errstr);
161 	}
162 
163 	/* Don't go through full error handling during mount */
164 	if (sb->s_flags & MS_BORN) {
165 		save_error_info(fs_info);
166 		btrfs_handle_error(fs_info);
167 	}
168 	va_end(args);
169 }
170 
171 static const char * const logtypes[] = {
172 	"emergency",
173 	"alert",
174 	"critical",
175 	"error",
176 	"warning",
177 	"notice",
178 	"info",
179 	"debug",
180 };
181 
182 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
183 {
184 	struct super_block *sb = fs_info->sb;
185 	char lvl[4];
186 	struct va_format vaf;
187 	va_list args;
188 	const char *type = logtypes[4];
189 	int kern_level;
190 
191 	va_start(args, fmt);
192 
193 	kern_level = printk_get_level(fmt);
194 	if (kern_level) {
195 		size_t size = printk_skip_level(fmt) - fmt;
196 		memcpy(lvl, fmt,  size);
197 		lvl[size] = '\0';
198 		fmt += size;
199 		type = logtypes[kern_level - '0'];
200 	} else
201 		*lvl = '\0';
202 
203 	vaf.fmt = fmt;
204 	vaf.va = &args;
205 
206 	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
207 
208 	va_end(args);
209 }
210 
211 #else
212 
213 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
214 		       unsigned int line, int errno, const char *fmt, ...)
215 {
216 	struct super_block *sb = fs_info->sb;
217 
218 	/*
219 	 * Special case: if the error is EROFS, and we're already
220 	 * under MS_RDONLY, then it is safe here.
221 	 */
222 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
223 		return;
224 
225 	/* Don't go through full error handling during mount */
226 	if (sb->s_flags & MS_BORN) {
227 		save_error_info(fs_info);
228 		btrfs_handle_error(fs_info);
229 	}
230 }
231 #endif
232 
233 /*
234  * We only mark the transaction aborted and then set the file system read-only.
235  * This will prevent new transactions from starting or trying to join this
236  * one.
237  *
238  * This means that error recovery at the call site is limited to freeing
239  * any local memory allocations and passing the error code up without
240  * further cleanup. The transaction should complete as it normally would
241  * in the call path but will return -EIO.
242  *
243  * We'll complete the cleanup in btrfs_end_transaction and
244  * btrfs_commit_transaction.
245  */
246 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
247 			       struct btrfs_root *root, const char *function,
248 			       unsigned int line, int errno)
249 {
250 	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
251 	trans->aborted = errno;
252 	/* Nothing used. The other threads that have joined this
253 	 * transaction may be able to continue. */
254 	if (!trans->blocks_used) {
255 		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
256 		return;
257 	}
258 	trans->transaction->aborted = errno;
259 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
260 }
261 /*
262  * __btrfs_panic decodes unexpected, fatal errors from the caller,
263  * issues an alert, and either panics or BUGs, depending on mount options.
264  */
265 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
266 		   unsigned int line, int errno, const char *fmt, ...)
267 {
268 	char nbuf[16];
269 	char *s_id = "<unknown>";
270 	const char *errstr;
271 	struct va_format vaf = { .fmt = fmt };
272 	va_list args;
273 
274 	if (fs_info)
275 		s_id = fs_info->sb->s_id;
276 
277 	va_start(args, fmt);
278 	vaf.va = &args;
279 
280 	errstr = btrfs_decode_error(fs_info, errno, nbuf);
281 	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
282 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
283 			s_id, function, line, &vaf, errstr);
284 
285 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
286 	       s_id, function, line, &vaf, errstr);
287 	va_end(args);
288 	/* Caller calls BUG() */
289 }
290 
291 static void btrfs_put_super(struct super_block *sb)
292 {
293 	(void)close_ctree(btrfs_sb(sb)->tree_root);
294 	/* FIXME: need to fix VFS to return error? */
295 	/* AV: return it _where_?  ->put_super() can be triggered by any number
296 	 * of async events, up to and including delivery of SIGKILL to the
297 	 * last process that kept it busy.  Or segfault in the aforementioned
298 	 * process...  Whom would you report that to?
299 	 */
300 }
301 
302 enum {
303 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
304 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
305 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
306 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
307 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
308 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
309 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
310 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
311 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
312 	Opt_check_integrity_print_mask, Opt_fatal_errors,
313 	Opt_err,
314 };
315 
316 static match_table_t tokens = {
317 	{Opt_degraded, "degraded"},
318 	{Opt_subvol, "subvol=%s"},
319 	{Opt_subvolid, "subvolid=%d"},
320 	{Opt_device, "device=%s"},
321 	{Opt_nodatasum, "nodatasum"},
322 	{Opt_nodatacow, "nodatacow"},
323 	{Opt_nobarrier, "nobarrier"},
324 	{Opt_max_inline, "max_inline=%s"},
325 	{Opt_alloc_start, "alloc_start=%s"},
326 	{Opt_thread_pool, "thread_pool=%d"},
327 	{Opt_compress, "compress"},
328 	{Opt_compress_type, "compress=%s"},
329 	{Opt_compress_force, "compress-force"},
330 	{Opt_compress_force_type, "compress-force=%s"},
331 	{Opt_ssd, "ssd"},
332 	{Opt_ssd_spread, "ssd_spread"},
333 	{Opt_nossd, "nossd"},
334 	{Opt_noacl, "noacl"},
335 	{Opt_notreelog, "notreelog"},
336 	{Opt_flushoncommit, "flushoncommit"},
337 	{Opt_ratio, "metadata_ratio=%d"},
338 	{Opt_discard, "discard"},
339 	{Opt_space_cache, "space_cache"},
340 	{Opt_clear_cache, "clear_cache"},
341 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
342 	{Opt_enospc_debug, "enospc_debug"},
343 	{Opt_subvolrootid, "subvolrootid=%d"},
344 	{Opt_defrag, "autodefrag"},
345 	{Opt_inode_cache, "inode_cache"},
346 	{Opt_no_space_cache, "nospace_cache"},
347 	{Opt_recovery, "recovery"},
348 	{Opt_skip_balance, "skip_balance"},
349 	{Opt_check_integrity, "check_int"},
350 	{Opt_check_integrity_including_extent_data, "check_int_data"},
351 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
352 	{Opt_fatal_errors, "fatal_errors=%s"},
353 	{Opt_err, NULL},
354 };
355 
356 /*
357  * Regular mount options parser.  Everything that is needed only when
358  * reading in a new superblock is parsed here.
359  * XXX JDM: This needs to be cleaned up for remount.
360  */
361 int btrfs_parse_options(struct btrfs_root *root, char *options)
362 {
363 	struct btrfs_fs_info *info = root->fs_info;
364 	substring_t args[MAX_OPT_ARGS];
365 	char *p, *num, *orig = NULL;
366 	u64 cache_gen;
367 	int intarg;
368 	int ret = 0;
369 	char *compress_type;
370 	bool compress_force = false;
371 
372 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
373 	if (cache_gen)
374 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
375 
376 	if (!options)
377 		goto out;
378 
379 	/*
380 	 * strsep changes the string, duplicate it because parse_options
381 	 * gets called twice
382 	 */
383 	options = kstrdup(options, GFP_NOFS);
384 	if (!options)
385 		return -ENOMEM;
386 
387 	orig = options;
388 
389 	while ((p = strsep(&options, ",")) != NULL) {
390 		int token;
391 		if (!*p)
392 			continue;
393 
394 		token = match_token(p, tokens, args);
395 		switch (token) {
396 		case Opt_degraded:
397 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
398 			btrfs_set_opt(info->mount_opt, DEGRADED);
399 			break;
400 		case Opt_subvol:
401 		case Opt_subvolid:
402 		case Opt_subvolrootid:
403 		case Opt_device:
404 			/*
405 			 * These are parsed by btrfs_parse_early_options
406 			 * and can be happily ignored here.
407 			 */
408 			break;
409 		case Opt_nodatasum:
410 			printk(KERN_INFO "btrfs: setting nodatasum\n");
411 			btrfs_set_opt(info->mount_opt, NODATASUM);
412 			break;
413 		case Opt_nodatacow:
414 			printk(KERN_INFO "btrfs: setting nodatacow\n");
415 			btrfs_set_opt(info->mount_opt, NODATACOW);
416 			btrfs_set_opt(info->mount_opt, NODATASUM);
417 			break;
418 		case Opt_compress_force:
419 		case Opt_compress_force_type:
420 			compress_force = true;
421 		case Opt_compress:
422 		case Opt_compress_type:
423 			if (token == Opt_compress ||
424 			    token == Opt_compress_force ||
425 			    strcmp(args[0].from, "zlib") == 0) {
426 				compress_type = "zlib";
427 				info->compress_type = BTRFS_COMPRESS_ZLIB;
428 				btrfs_set_opt(info->mount_opt, COMPRESS);
429 			} else if (strcmp(args[0].from, "lzo") == 0) {
430 				compress_type = "lzo";
431 				info->compress_type = BTRFS_COMPRESS_LZO;
432 				btrfs_set_opt(info->mount_opt, COMPRESS);
433 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
434 			} else if (strncmp(args[0].from, "no", 2) == 0) {
435 				compress_type = "no";
436 				info->compress_type = BTRFS_COMPRESS_NONE;
437 				btrfs_clear_opt(info->mount_opt, COMPRESS);
438 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
439 				compress_force = false;
440 			} else {
441 				ret = -EINVAL;
442 				goto out;
443 			}
444 
445 			if (compress_force) {
446 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
447 				pr_info("btrfs: force %s compression\n",
448 					compress_type);
449 			} else
450 				pr_info("btrfs: use %s compression\n",
451 					compress_type);
452 			break;
453 		case Opt_ssd:
454 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
455 			btrfs_set_opt(info->mount_opt, SSD);
456 			break;
457 		case Opt_ssd_spread:
458 			printk(KERN_INFO "btrfs: use spread ssd "
459 			       "allocation scheme\n");
460 			btrfs_set_opt(info->mount_opt, SSD);
461 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
462 			break;
463 		case Opt_nossd:
464 			printk(KERN_INFO "btrfs: not using ssd allocation "
465 			       "scheme\n");
466 			btrfs_set_opt(info->mount_opt, NOSSD);
467 			btrfs_clear_opt(info->mount_opt, SSD);
468 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
469 			break;
470 		case Opt_nobarrier:
471 			printk(KERN_INFO "btrfs: turning off barriers\n");
472 			btrfs_set_opt(info->mount_opt, NOBARRIER);
473 			break;
474 		case Opt_thread_pool:
475 			intarg = 0;
476 			match_int(&args[0], &intarg);
477 			if (intarg)
478 				info->thread_pool_size = intarg;
479 			break;
480 		case Opt_max_inline:
481 			num = match_strdup(&args[0]);
482 			if (num) {
483 				info->max_inline = memparse(num, NULL);
484 				kfree(num);
485 
486 				if (info->max_inline) {
487 					info->max_inline = max_t(u64,
488 						info->max_inline,
489 						root->sectorsize);
490 				}
491 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
492 					(unsigned long long)info->max_inline);
493 			}
494 			break;
495 		case Opt_alloc_start:
496 			num = match_strdup(&args[0]);
497 			if (num) {
498 				info->alloc_start = memparse(num, NULL);
499 				kfree(num);
500 				printk(KERN_INFO
501 					"btrfs: allocations start at %llu\n",
502 					(unsigned long long)info->alloc_start);
503 			}
504 			break;
505 		case Opt_noacl:
506 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
507 			break;
508 		case Opt_notreelog:
509 			printk(KERN_INFO "btrfs: disabling tree log\n");
510 			btrfs_set_opt(info->mount_opt, NOTREELOG);
511 			break;
512 		case Opt_flushoncommit:
513 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
514 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
515 			break;
516 		case Opt_ratio:
517 			intarg = 0;
518 			match_int(&args[0], &intarg);
519 			if (intarg) {
520 				info->metadata_ratio = intarg;
521 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
522 				       info->metadata_ratio);
523 			}
524 			break;
525 		case Opt_discard:
526 			btrfs_set_opt(info->mount_opt, DISCARD);
527 			break;
528 		case Opt_space_cache:
529 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
530 			break;
531 		case Opt_no_space_cache:
532 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
533 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
534 			break;
535 		case Opt_inode_cache:
536 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
537 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
538 			break;
539 		case Opt_clear_cache:
540 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
541 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
542 			break;
543 		case Opt_user_subvol_rm_allowed:
544 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
545 			break;
546 		case Opt_enospc_debug:
547 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
548 			break;
549 		case Opt_defrag:
550 			printk(KERN_INFO "btrfs: enabling auto defrag");
551 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
552 			break;
553 		case Opt_recovery:
554 			printk(KERN_INFO "btrfs: enabling auto recovery");
555 			btrfs_set_opt(info->mount_opt, RECOVERY);
556 			break;
557 		case Opt_skip_balance:
558 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
559 			break;
560 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
561 		case Opt_check_integrity_including_extent_data:
562 			printk(KERN_INFO "btrfs: enabling check integrity"
563 			       " including extent data\n");
564 			btrfs_set_opt(info->mount_opt,
565 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
566 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
567 			break;
568 		case Opt_check_integrity:
569 			printk(KERN_INFO "btrfs: enabling check integrity\n");
570 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
571 			break;
572 		case Opt_check_integrity_print_mask:
573 			intarg = 0;
574 			match_int(&args[0], &intarg);
575 			if (intarg) {
576 				info->check_integrity_print_mask = intarg;
577 				printk(KERN_INFO "btrfs:"
578 				       " check_integrity_print_mask 0x%x\n",
579 				       info->check_integrity_print_mask);
580 			}
581 			break;
582 #else
583 		case Opt_check_integrity_including_extent_data:
584 		case Opt_check_integrity:
585 		case Opt_check_integrity_print_mask:
586 			printk(KERN_ERR "btrfs: support for check_integrity*"
587 			       " not compiled in!\n");
588 			ret = -EINVAL;
589 			goto out;
590 #endif
591 		case Opt_fatal_errors:
592 			if (strcmp(args[0].from, "panic") == 0)
593 				btrfs_set_opt(info->mount_opt,
594 					      PANIC_ON_FATAL_ERROR);
595 			else if (strcmp(args[0].from, "bug") == 0)
596 				btrfs_clear_opt(info->mount_opt,
597 					      PANIC_ON_FATAL_ERROR);
598 			else {
599 				ret = -EINVAL;
600 				goto out;
601 			}
602 			break;
603 		case Opt_err:
604 			printk(KERN_INFO "btrfs: unrecognized mount option "
605 			       "'%s'\n", p);
606 			ret = -EINVAL;
607 			goto out;
608 		default:
609 			break;
610 		}
611 	}
612 out:
613 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
614 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
615 	kfree(orig);
616 	return ret;
617 }
618 
619 /*
620  * Parse mount options that are required early in the mount process.
621  *
622  * All other options will be parsed on much later in the mount process and
623  * only when we need to allocate a new super block.
624  */
625 static int btrfs_parse_early_options(const char *options, fmode_t flags,
626 		void *holder, char **subvol_name, u64 *subvol_objectid,
627 		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
628 {
629 	substring_t args[MAX_OPT_ARGS];
630 	char *device_name, *opts, *orig, *p;
631 	int error = 0;
632 	int intarg;
633 
634 	if (!options)
635 		return 0;
636 
637 	/*
638 	 * strsep changes the string, duplicate it because parse_options
639 	 * gets called twice
640 	 */
641 	opts = kstrdup(options, GFP_KERNEL);
642 	if (!opts)
643 		return -ENOMEM;
644 	orig = opts;
645 
646 	while ((p = strsep(&opts, ",")) != NULL) {
647 		int token;
648 		if (!*p)
649 			continue;
650 
651 		token = match_token(p, tokens, args);
652 		switch (token) {
653 		case Opt_subvol:
654 			kfree(*subvol_name);
655 			*subvol_name = match_strdup(&args[0]);
656 			break;
657 		case Opt_subvolid:
658 			intarg = 0;
659 			error = match_int(&args[0], &intarg);
660 			if (!error) {
661 				/* we want the original fs_tree */
662 				if (!intarg)
663 					*subvol_objectid =
664 						BTRFS_FS_TREE_OBJECTID;
665 				else
666 					*subvol_objectid = intarg;
667 			}
668 			break;
669 		case Opt_subvolrootid:
670 			intarg = 0;
671 			error = match_int(&args[0], &intarg);
672 			if (!error) {
673 				/* we want the original fs_tree */
674 				if (!intarg)
675 					*subvol_rootid =
676 						BTRFS_FS_TREE_OBJECTID;
677 				else
678 					*subvol_rootid = intarg;
679 			}
680 			break;
681 		case Opt_device:
682 			device_name = match_strdup(&args[0]);
683 			if (!device_name) {
684 				error = -ENOMEM;
685 				goto out;
686 			}
687 			error = btrfs_scan_one_device(device_name,
688 					flags, holder, fs_devices);
689 			kfree(device_name);
690 			if (error)
691 				goto out;
692 			break;
693 		default:
694 			break;
695 		}
696 	}
697 
698 out:
699 	kfree(orig);
700 	return error;
701 }
702 
703 static struct dentry *get_default_root(struct super_block *sb,
704 				       u64 subvol_objectid)
705 {
706 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
707 	struct btrfs_root *root = fs_info->tree_root;
708 	struct btrfs_root *new_root;
709 	struct btrfs_dir_item *di;
710 	struct btrfs_path *path;
711 	struct btrfs_key location;
712 	struct inode *inode;
713 	u64 dir_id;
714 	int new = 0;
715 
716 	/*
717 	 * We have a specific subvol we want to mount, just setup location and
718 	 * go look up the root.
719 	 */
720 	if (subvol_objectid) {
721 		location.objectid = subvol_objectid;
722 		location.type = BTRFS_ROOT_ITEM_KEY;
723 		location.offset = (u64)-1;
724 		goto find_root;
725 	}
726 
727 	path = btrfs_alloc_path();
728 	if (!path)
729 		return ERR_PTR(-ENOMEM);
730 	path->leave_spinning = 1;
731 
732 	/*
733 	 * Find the "default" dir item which points to the root item that we
734 	 * will mount by default if we haven't been given a specific subvolume
735 	 * to mount.
736 	 */
737 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
738 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
739 	if (IS_ERR(di)) {
740 		btrfs_free_path(path);
741 		return ERR_CAST(di);
742 	}
743 	if (!di) {
744 		/*
745 		 * Ok the default dir item isn't there.  This is weird since
746 		 * it's always been there, but don't freak out, just try and
747 		 * mount to root most subvolume.
748 		 */
749 		btrfs_free_path(path);
750 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
751 		new_root = fs_info->fs_root;
752 		goto setup_root;
753 	}
754 
755 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
756 	btrfs_free_path(path);
757 
758 find_root:
759 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
760 	if (IS_ERR(new_root))
761 		return ERR_CAST(new_root);
762 
763 	if (btrfs_root_refs(&new_root->root_item) == 0)
764 		return ERR_PTR(-ENOENT);
765 
766 	dir_id = btrfs_root_dirid(&new_root->root_item);
767 setup_root:
768 	location.objectid = dir_id;
769 	location.type = BTRFS_INODE_ITEM_KEY;
770 	location.offset = 0;
771 
772 	inode = btrfs_iget(sb, &location, new_root, &new);
773 	if (IS_ERR(inode))
774 		return ERR_CAST(inode);
775 
776 	/*
777 	 * If we're just mounting the root most subvol put the inode and return
778 	 * a reference to the dentry.  We will have already gotten a reference
779 	 * to the inode in btrfs_fill_super so we're good to go.
780 	 */
781 	if (!new && sb->s_root->d_inode == inode) {
782 		iput(inode);
783 		return dget(sb->s_root);
784 	}
785 
786 	return d_obtain_alias(inode);
787 }
788 
789 static int btrfs_fill_super(struct super_block *sb,
790 			    struct btrfs_fs_devices *fs_devices,
791 			    void *data, int silent)
792 {
793 	struct inode *inode;
794 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
795 	struct btrfs_key key;
796 	int err;
797 
798 	sb->s_maxbytes = MAX_LFS_FILESIZE;
799 	sb->s_magic = BTRFS_SUPER_MAGIC;
800 	sb->s_op = &btrfs_super_ops;
801 	sb->s_d_op = &btrfs_dentry_operations;
802 	sb->s_export_op = &btrfs_export_ops;
803 	sb->s_xattr = btrfs_xattr_handlers;
804 	sb->s_time_gran = 1;
805 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
806 	sb->s_flags |= MS_POSIXACL;
807 #endif
808 	sb->s_flags |= MS_I_VERSION;
809 	err = open_ctree(sb, fs_devices, (char *)data);
810 	if (err) {
811 		printk("btrfs: open_ctree failed\n");
812 		return err;
813 	}
814 
815 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
816 	key.type = BTRFS_INODE_ITEM_KEY;
817 	key.offset = 0;
818 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
819 	if (IS_ERR(inode)) {
820 		err = PTR_ERR(inode);
821 		goto fail_close;
822 	}
823 
824 	sb->s_root = d_make_root(inode);
825 	if (!sb->s_root) {
826 		err = -ENOMEM;
827 		goto fail_close;
828 	}
829 
830 	save_mount_options(sb, data);
831 	cleancache_init_fs(sb);
832 	sb->s_flags |= MS_ACTIVE;
833 	return 0;
834 
835 fail_close:
836 	close_ctree(fs_info->tree_root);
837 	return err;
838 }
839 
840 int btrfs_sync_fs(struct super_block *sb, int wait)
841 {
842 	struct btrfs_trans_handle *trans;
843 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
844 	struct btrfs_root *root = fs_info->tree_root;
845 	int ret;
846 
847 	trace_btrfs_sync_fs(wait);
848 
849 	if (!wait) {
850 		filemap_flush(fs_info->btree_inode->i_mapping);
851 		return 0;
852 	}
853 
854 	btrfs_wait_ordered_extents(root, 0, 0);
855 
856 	trans = btrfs_start_transaction(root, 0);
857 	if (IS_ERR(trans))
858 		return PTR_ERR(trans);
859 	ret = btrfs_commit_transaction(trans, root);
860 	return ret;
861 }
862 
863 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
864 {
865 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
866 	struct btrfs_root *root = info->tree_root;
867 	char *compress_type;
868 
869 	if (btrfs_test_opt(root, DEGRADED))
870 		seq_puts(seq, ",degraded");
871 	if (btrfs_test_opt(root, NODATASUM))
872 		seq_puts(seq, ",nodatasum");
873 	if (btrfs_test_opt(root, NODATACOW))
874 		seq_puts(seq, ",nodatacow");
875 	if (btrfs_test_opt(root, NOBARRIER))
876 		seq_puts(seq, ",nobarrier");
877 	if (info->max_inline != 8192 * 1024)
878 		seq_printf(seq, ",max_inline=%llu",
879 			   (unsigned long long)info->max_inline);
880 	if (info->alloc_start != 0)
881 		seq_printf(seq, ",alloc_start=%llu",
882 			   (unsigned long long)info->alloc_start);
883 	if (info->thread_pool_size !=  min_t(unsigned long,
884 					     num_online_cpus() + 2, 8))
885 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
886 	if (btrfs_test_opt(root, COMPRESS)) {
887 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
888 			compress_type = "zlib";
889 		else
890 			compress_type = "lzo";
891 		if (btrfs_test_opt(root, FORCE_COMPRESS))
892 			seq_printf(seq, ",compress-force=%s", compress_type);
893 		else
894 			seq_printf(seq, ",compress=%s", compress_type);
895 	}
896 	if (btrfs_test_opt(root, NOSSD))
897 		seq_puts(seq, ",nossd");
898 	if (btrfs_test_opt(root, SSD_SPREAD))
899 		seq_puts(seq, ",ssd_spread");
900 	else if (btrfs_test_opt(root, SSD))
901 		seq_puts(seq, ",ssd");
902 	if (btrfs_test_opt(root, NOTREELOG))
903 		seq_puts(seq, ",notreelog");
904 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
905 		seq_puts(seq, ",flushoncommit");
906 	if (btrfs_test_opt(root, DISCARD))
907 		seq_puts(seq, ",discard");
908 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
909 		seq_puts(seq, ",noacl");
910 	if (btrfs_test_opt(root, SPACE_CACHE))
911 		seq_puts(seq, ",space_cache");
912 	else
913 		seq_puts(seq, ",nospace_cache");
914 	if (btrfs_test_opt(root, CLEAR_CACHE))
915 		seq_puts(seq, ",clear_cache");
916 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
917 		seq_puts(seq, ",user_subvol_rm_allowed");
918 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
919 		seq_puts(seq, ",enospc_debug");
920 	if (btrfs_test_opt(root, AUTO_DEFRAG))
921 		seq_puts(seq, ",autodefrag");
922 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
923 		seq_puts(seq, ",inode_cache");
924 	if (btrfs_test_opt(root, SKIP_BALANCE))
925 		seq_puts(seq, ",skip_balance");
926 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
927 		seq_puts(seq, ",fatal_errors=panic");
928 	return 0;
929 }
930 
931 static int btrfs_test_super(struct super_block *s, void *data)
932 {
933 	struct btrfs_fs_info *p = data;
934 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
935 
936 	return fs_info->fs_devices == p->fs_devices;
937 }
938 
939 static int btrfs_set_super(struct super_block *s, void *data)
940 {
941 	int err = set_anon_super(s, data);
942 	if (!err)
943 		s->s_fs_info = data;
944 	return err;
945 }
946 
947 /*
948  * subvolumes are identified by ino 256
949  */
950 static inline int is_subvolume_inode(struct inode *inode)
951 {
952 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
953 		return 1;
954 	return 0;
955 }
956 
957 /*
958  * This will strip out the subvol=%s argument for an argument string and add
959  * subvolid=0 to make sure we get the actual tree root for path walking to the
960  * subvol we want.
961  */
962 static char *setup_root_args(char *args)
963 {
964 	unsigned len = strlen(args) + 2 + 1;
965 	char *src, *dst, *buf;
966 
967 	/*
968 	 * We need the same args as before, but with this substitution:
969 	 * s!subvol=[^,]+!subvolid=0!
970 	 *
971 	 * Since the replacement string is up to 2 bytes longer than the
972 	 * original, allocate strlen(args) + 2 + 1 bytes.
973 	 */
974 
975 	src = strstr(args, "subvol=");
976 	/* This shouldn't happen, but just in case.. */
977 	if (!src)
978 		return NULL;
979 
980 	buf = dst = kmalloc(len, GFP_NOFS);
981 	if (!buf)
982 		return NULL;
983 
984 	/*
985 	 * If the subvol= arg is not at the start of the string,
986 	 * copy whatever precedes it into buf.
987 	 */
988 	if (src != args) {
989 		*src++ = '\0';
990 		strcpy(buf, args);
991 		dst += strlen(args);
992 	}
993 
994 	strcpy(dst, "subvolid=0");
995 	dst += strlen("subvolid=0");
996 
997 	/*
998 	 * If there is a "," after the original subvol=... string,
999 	 * copy that suffix into our buffer.  Otherwise, we're done.
1000 	 */
1001 	src = strchr(src, ',');
1002 	if (src)
1003 		strcpy(dst, src);
1004 
1005 	return buf;
1006 }
1007 
1008 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1009 				   const char *device_name, char *data)
1010 {
1011 	struct dentry *root;
1012 	struct vfsmount *mnt;
1013 	char *newargs;
1014 
1015 	newargs = setup_root_args(data);
1016 	if (!newargs)
1017 		return ERR_PTR(-ENOMEM);
1018 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1019 			     newargs);
1020 	kfree(newargs);
1021 	if (IS_ERR(mnt))
1022 		return ERR_CAST(mnt);
1023 
1024 	root = mount_subtree(mnt, subvol_name);
1025 
1026 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1027 		struct super_block *s = root->d_sb;
1028 		dput(root);
1029 		root = ERR_PTR(-EINVAL);
1030 		deactivate_locked_super(s);
1031 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1032 				subvol_name);
1033 	}
1034 
1035 	return root;
1036 }
1037 
1038 /*
1039  * Find a superblock for the given device / mount point.
1040  *
1041  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1042  *	  for multiple device setup.  Make sure to keep it in sync.
1043  */
1044 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1045 		const char *device_name, void *data)
1046 {
1047 	struct block_device *bdev = NULL;
1048 	struct super_block *s;
1049 	struct dentry *root;
1050 	struct btrfs_fs_devices *fs_devices = NULL;
1051 	struct btrfs_fs_info *fs_info = NULL;
1052 	fmode_t mode = FMODE_READ;
1053 	char *subvol_name = NULL;
1054 	u64 subvol_objectid = 0;
1055 	u64 subvol_rootid = 0;
1056 	int error = 0;
1057 
1058 	if (!(flags & MS_RDONLY))
1059 		mode |= FMODE_WRITE;
1060 
1061 	error = btrfs_parse_early_options(data, mode, fs_type,
1062 					  &subvol_name, &subvol_objectid,
1063 					  &subvol_rootid, &fs_devices);
1064 	if (error) {
1065 		kfree(subvol_name);
1066 		return ERR_PTR(error);
1067 	}
1068 
1069 	if (subvol_name) {
1070 		root = mount_subvol(subvol_name, flags, device_name, data);
1071 		kfree(subvol_name);
1072 		return root;
1073 	}
1074 
1075 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1076 	if (error)
1077 		return ERR_PTR(error);
1078 
1079 	/*
1080 	 * Setup a dummy root and fs_info for test/set super.  This is because
1081 	 * we don't actually fill this stuff out until open_ctree, but we need
1082 	 * it for searching for existing supers, so this lets us do that and
1083 	 * then open_ctree will properly initialize everything later.
1084 	 */
1085 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1086 	if (!fs_info)
1087 		return ERR_PTR(-ENOMEM);
1088 
1089 	fs_info->fs_devices = fs_devices;
1090 
1091 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1092 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1093 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1094 		error = -ENOMEM;
1095 		goto error_fs_info;
1096 	}
1097 
1098 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1099 	if (error)
1100 		goto error_fs_info;
1101 
1102 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1103 		error = -EACCES;
1104 		goto error_close_devices;
1105 	}
1106 
1107 	bdev = fs_devices->latest_bdev;
1108 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1109 		 fs_info);
1110 	if (IS_ERR(s)) {
1111 		error = PTR_ERR(s);
1112 		goto error_close_devices;
1113 	}
1114 
1115 	if (s->s_root) {
1116 		btrfs_close_devices(fs_devices);
1117 		free_fs_info(fs_info);
1118 		if ((flags ^ s->s_flags) & MS_RDONLY)
1119 			error = -EBUSY;
1120 	} else {
1121 		char b[BDEVNAME_SIZE];
1122 
1123 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1124 		btrfs_sb(s)->bdev_holder = fs_type;
1125 		error = btrfs_fill_super(s, fs_devices, data,
1126 					 flags & MS_SILENT ? 1 : 0);
1127 	}
1128 
1129 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1130 	if (IS_ERR(root))
1131 		deactivate_locked_super(s);
1132 
1133 	return root;
1134 
1135 error_close_devices:
1136 	btrfs_close_devices(fs_devices);
1137 error_fs_info:
1138 	free_fs_info(fs_info);
1139 	return ERR_PTR(error);
1140 }
1141 
1142 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1143 {
1144 	spin_lock_irq(&workers->lock);
1145 	workers->max_workers = new_limit;
1146 	spin_unlock_irq(&workers->lock);
1147 }
1148 
1149 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1150 				     int new_pool_size, int old_pool_size)
1151 {
1152 	if (new_pool_size == old_pool_size)
1153 		return;
1154 
1155 	fs_info->thread_pool_size = new_pool_size;
1156 
1157 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1158 	       old_pool_size, new_pool_size);
1159 
1160 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1161 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1162 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1163 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1164 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1165 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1166 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1167 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1168 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1169 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1170 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1171 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1172 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1173 	btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1174 }
1175 
1176 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1177 {
1178 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1179 	struct btrfs_root *root = fs_info->tree_root;
1180 	unsigned old_flags = sb->s_flags;
1181 	unsigned long old_opts = fs_info->mount_opt;
1182 	unsigned long old_compress_type = fs_info->compress_type;
1183 	u64 old_max_inline = fs_info->max_inline;
1184 	u64 old_alloc_start = fs_info->alloc_start;
1185 	int old_thread_pool_size = fs_info->thread_pool_size;
1186 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1187 	int ret;
1188 
1189 	ret = btrfs_parse_options(root, data);
1190 	if (ret) {
1191 		ret = -EINVAL;
1192 		goto restore;
1193 	}
1194 
1195 	btrfs_resize_thread_pool(fs_info,
1196 		fs_info->thread_pool_size, old_thread_pool_size);
1197 
1198 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1199 		return 0;
1200 
1201 	if (*flags & MS_RDONLY) {
1202 		sb->s_flags |= MS_RDONLY;
1203 
1204 		ret = btrfs_commit_super(root);
1205 		if (ret)
1206 			goto restore;
1207 	} else {
1208 		if (fs_info->fs_devices->rw_devices == 0) {
1209 			ret = -EACCES;
1210 			goto restore;
1211 		}
1212 
1213 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1214 			ret = -EINVAL;
1215 			goto restore;
1216 		}
1217 
1218 		ret = btrfs_cleanup_fs_roots(fs_info);
1219 		if (ret)
1220 			goto restore;
1221 
1222 		/* recover relocation */
1223 		ret = btrfs_recover_relocation(root);
1224 		if (ret)
1225 			goto restore;
1226 
1227 		ret = btrfs_resume_balance_async(fs_info);
1228 		if (ret)
1229 			goto restore;
1230 
1231 		sb->s_flags &= ~MS_RDONLY;
1232 	}
1233 
1234 	return 0;
1235 
1236 restore:
1237 	/* We've hit an error - don't reset MS_RDONLY */
1238 	if (sb->s_flags & MS_RDONLY)
1239 		old_flags |= MS_RDONLY;
1240 	sb->s_flags = old_flags;
1241 	fs_info->mount_opt = old_opts;
1242 	fs_info->compress_type = old_compress_type;
1243 	fs_info->max_inline = old_max_inline;
1244 	fs_info->alloc_start = old_alloc_start;
1245 	btrfs_resize_thread_pool(fs_info,
1246 		old_thread_pool_size, fs_info->thread_pool_size);
1247 	fs_info->metadata_ratio = old_metadata_ratio;
1248 	return ret;
1249 }
1250 
1251 /* Used to sort the devices by max_avail(descending sort) */
1252 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1253 				       const void *dev_info2)
1254 {
1255 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1256 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1257 		return -1;
1258 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1259 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1260 		return 1;
1261 	else
1262 	return 0;
1263 }
1264 
1265 /*
1266  * sort the devices by max_avail, in which max free extent size of each device
1267  * is stored.(Descending Sort)
1268  */
1269 static inline void btrfs_descending_sort_devices(
1270 					struct btrfs_device_info *devices,
1271 					size_t nr_devices)
1272 {
1273 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1274 	     btrfs_cmp_device_free_bytes, NULL);
1275 }
1276 
1277 /*
1278  * The helper to calc the free space on the devices that can be used to store
1279  * file data.
1280  */
1281 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1282 {
1283 	struct btrfs_fs_info *fs_info = root->fs_info;
1284 	struct btrfs_device_info *devices_info;
1285 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1286 	struct btrfs_device *device;
1287 	u64 skip_space;
1288 	u64 type;
1289 	u64 avail_space;
1290 	u64 used_space;
1291 	u64 min_stripe_size;
1292 	int min_stripes = 1, num_stripes = 1;
1293 	int i = 0, nr_devices;
1294 	int ret;
1295 
1296 	nr_devices = fs_info->fs_devices->open_devices;
1297 	BUG_ON(!nr_devices);
1298 
1299 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1300 			       GFP_NOFS);
1301 	if (!devices_info)
1302 		return -ENOMEM;
1303 
1304 	/* calc min stripe number for data space alloction */
1305 	type = btrfs_get_alloc_profile(root, 1);
1306 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1307 		min_stripes = 2;
1308 		num_stripes = nr_devices;
1309 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1310 		min_stripes = 2;
1311 		num_stripes = 2;
1312 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1313 		min_stripes = 4;
1314 		num_stripes = 4;
1315 	}
1316 
1317 	if (type & BTRFS_BLOCK_GROUP_DUP)
1318 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1319 	else
1320 		min_stripe_size = BTRFS_STRIPE_LEN;
1321 
1322 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1323 		if (!device->in_fs_metadata || !device->bdev)
1324 			continue;
1325 
1326 		avail_space = device->total_bytes - device->bytes_used;
1327 
1328 		/* align with stripe_len */
1329 		do_div(avail_space, BTRFS_STRIPE_LEN);
1330 		avail_space *= BTRFS_STRIPE_LEN;
1331 
1332 		/*
1333 		 * In order to avoid overwritting the superblock on the drive,
1334 		 * btrfs starts at an offset of at least 1MB when doing chunk
1335 		 * allocation.
1336 		 */
1337 		skip_space = 1024 * 1024;
1338 
1339 		/* user can set the offset in fs_info->alloc_start. */
1340 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1341 		    device->total_bytes)
1342 			skip_space = max(fs_info->alloc_start, skip_space);
1343 
1344 		/*
1345 		 * btrfs can not use the free space in [0, skip_space - 1],
1346 		 * we must subtract it from the total. In order to implement
1347 		 * it, we account the used space in this range first.
1348 		 */
1349 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1350 						     &used_space);
1351 		if (ret) {
1352 			kfree(devices_info);
1353 			return ret;
1354 		}
1355 
1356 		/* calc the free space in [0, skip_space - 1] */
1357 		skip_space -= used_space;
1358 
1359 		/*
1360 		 * we can use the free space in [0, skip_space - 1], subtract
1361 		 * it from the total.
1362 		 */
1363 		if (avail_space && avail_space >= skip_space)
1364 			avail_space -= skip_space;
1365 		else
1366 			avail_space = 0;
1367 
1368 		if (avail_space < min_stripe_size)
1369 			continue;
1370 
1371 		devices_info[i].dev = device;
1372 		devices_info[i].max_avail = avail_space;
1373 
1374 		i++;
1375 	}
1376 
1377 	nr_devices = i;
1378 
1379 	btrfs_descending_sort_devices(devices_info, nr_devices);
1380 
1381 	i = nr_devices - 1;
1382 	avail_space = 0;
1383 	while (nr_devices >= min_stripes) {
1384 		if (num_stripes > nr_devices)
1385 			num_stripes = nr_devices;
1386 
1387 		if (devices_info[i].max_avail >= min_stripe_size) {
1388 			int j;
1389 			u64 alloc_size;
1390 
1391 			avail_space += devices_info[i].max_avail * num_stripes;
1392 			alloc_size = devices_info[i].max_avail;
1393 			for (j = i + 1 - num_stripes; j <= i; j++)
1394 				devices_info[j].max_avail -= alloc_size;
1395 		}
1396 		i--;
1397 		nr_devices--;
1398 	}
1399 
1400 	kfree(devices_info);
1401 	*free_bytes = avail_space;
1402 	return 0;
1403 }
1404 
1405 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1406 {
1407 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1408 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1409 	struct list_head *head = &fs_info->space_info;
1410 	struct btrfs_space_info *found;
1411 	u64 total_used = 0;
1412 	u64 total_free_data = 0;
1413 	int bits = dentry->d_sb->s_blocksize_bits;
1414 	__be32 *fsid = (__be32 *)fs_info->fsid;
1415 	int ret;
1416 
1417 	/* holding chunk_muext to avoid allocating new chunks */
1418 	mutex_lock(&fs_info->chunk_mutex);
1419 	rcu_read_lock();
1420 	list_for_each_entry_rcu(found, head, list) {
1421 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1422 			total_free_data += found->disk_total - found->disk_used;
1423 			total_free_data -=
1424 				btrfs_account_ro_block_groups_free_space(found);
1425 		}
1426 
1427 		total_used += found->disk_used;
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	buf->f_namelen = BTRFS_NAME_LEN;
1432 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1433 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1434 	buf->f_bsize = dentry->d_sb->s_blocksize;
1435 	buf->f_type = BTRFS_SUPER_MAGIC;
1436 	buf->f_bavail = total_free_data;
1437 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1438 	if (ret) {
1439 		mutex_unlock(&fs_info->chunk_mutex);
1440 		return ret;
1441 	}
1442 	buf->f_bavail += total_free_data;
1443 	buf->f_bavail = buf->f_bavail >> bits;
1444 	mutex_unlock(&fs_info->chunk_mutex);
1445 
1446 	/* We treat it as constant endianness (it doesn't matter _which_)
1447 	   because we want the fsid to come out the same whether mounted
1448 	   on a big-endian or little-endian host */
1449 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1450 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1451 	/* Mask in the root object ID too, to disambiguate subvols */
1452 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1453 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1454 
1455 	return 0;
1456 }
1457 
1458 static void btrfs_kill_super(struct super_block *sb)
1459 {
1460 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1461 	kill_anon_super(sb);
1462 	free_fs_info(fs_info);
1463 }
1464 
1465 static struct file_system_type btrfs_fs_type = {
1466 	.owner		= THIS_MODULE,
1467 	.name		= "btrfs",
1468 	.mount		= btrfs_mount,
1469 	.kill_sb	= btrfs_kill_super,
1470 	.fs_flags	= FS_REQUIRES_DEV,
1471 };
1472 
1473 /*
1474  * used by btrfsctl to scan devices when no FS is mounted
1475  */
1476 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1477 				unsigned long arg)
1478 {
1479 	struct btrfs_ioctl_vol_args *vol;
1480 	struct btrfs_fs_devices *fs_devices;
1481 	int ret = -ENOTTY;
1482 
1483 	if (!capable(CAP_SYS_ADMIN))
1484 		return -EPERM;
1485 
1486 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1487 	if (IS_ERR(vol))
1488 		return PTR_ERR(vol);
1489 
1490 	switch (cmd) {
1491 	case BTRFS_IOC_SCAN_DEV:
1492 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1493 					    &btrfs_fs_type, &fs_devices);
1494 		break;
1495 	case BTRFS_IOC_DEVICES_READY:
1496 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1497 					    &btrfs_fs_type, &fs_devices);
1498 		if (ret)
1499 			break;
1500 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1501 		break;
1502 	}
1503 
1504 	kfree(vol);
1505 	return ret;
1506 }
1507 
1508 static int btrfs_freeze(struct super_block *sb)
1509 {
1510 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1511 	mutex_lock(&fs_info->transaction_kthread_mutex);
1512 	mutex_lock(&fs_info->cleaner_mutex);
1513 	return 0;
1514 }
1515 
1516 static int btrfs_unfreeze(struct super_block *sb)
1517 {
1518 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1519 	mutex_unlock(&fs_info->cleaner_mutex);
1520 	mutex_unlock(&fs_info->transaction_kthread_mutex);
1521 	return 0;
1522 }
1523 
1524 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1525 {
1526 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1527 	struct btrfs_fs_devices *cur_devices;
1528 	struct btrfs_device *dev, *first_dev = NULL;
1529 	struct list_head *head;
1530 	struct rcu_string *name;
1531 
1532 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1533 	cur_devices = fs_info->fs_devices;
1534 	while (cur_devices) {
1535 		head = &cur_devices->devices;
1536 		list_for_each_entry(dev, head, dev_list) {
1537 			if (!first_dev || dev->devid < first_dev->devid)
1538 				first_dev = dev;
1539 		}
1540 		cur_devices = cur_devices->seed;
1541 	}
1542 
1543 	if (first_dev) {
1544 		rcu_read_lock();
1545 		name = rcu_dereference(first_dev->name);
1546 		seq_escape(m, name->str, " \t\n\\");
1547 		rcu_read_unlock();
1548 	} else {
1549 		WARN_ON(1);
1550 	}
1551 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1552 	return 0;
1553 }
1554 
1555 static const struct super_operations btrfs_super_ops = {
1556 	.drop_inode	= btrfs_drop_inode,
1557 	.evict_inode	= btrfs_evict_inode,
1558 	.put_super	= btrfs_put_super,
1559 	.sync_fs	= btrfs_sync_fs,
1560 	.show_options	= btrfs_show_options,
1561 	.show_devname	= btrfs_show_devname,
1562 	.write_inode	= btrfs_write_inode,
1563 	.alloc_inode	= btrfs_alloc_inode,
1564 	.destroy_inode	= btrfs_destroy_inode,
1565 	.statfs		= btrfs_statfs,
1566 	.remount_fs	= btrfs_remount,
1567 	.freeze_fs	= btrfs_freeze,
1568 	.unfreeze_fs	= btrfs_unfreeze,
1569 };
1570 
1571 static const struct file_operations btrfs_ctl_fops = {
1572 	.unlocked_ioctl	 = btrfs_control_ioctl,
1573 	.compat_ioctl = btrfs_control_ioctl,
1574 	.owner	 = THIS_MODULE,
1575 	.llseek = noop_llseek,
1576 };
1577 
1578 static struct miscdevice btrfs_misc = {
1579 	.minor		= BTRFS_MINOR,
1580 	.name		= "btrfs-control",
1581 	.fops		= &btrfs_ctl_fops
1582 };
1583 
1584 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1585 MODULE_ALIAS("devname:btrfs-control");
1586 
1587 static int btrfs_interface_init(void)
1588 {
1589 	return misc_register(&btrfs_misc);
1590 }
1591 
1592 static void btrfs_interface_exit(void)
1593 {
1594 	if (misc_deregister(&btrfs_misc) < 0)
1595 		printk(KERN_INFO "misc_deregister failed for control device");
1596 }
1597 
1598 static int __init init_btrfs_fs(void)
1599 {
1600 	int err;
1601 
1602 	err = btrfs_init_sysfs();
1603 	if (err)
1604 		return err;
1605 
1606 	btrfs_init_compress();
1607 
1608 	err = btrfs_init_cachep();
1609 	if (err)
1610 		goto free_compress;
1611 
1612 	err = extent_io_init();
1613 	if (err)
1614 		goto free_cachep;
1615 
1616 	err = extent_map_init();
1617 	if (err)
1618 		goto free_extent_io;
1619 
1620 	err = btrfs_delayed_inode_init();
1621 	if (err)
1622 		goto free_extent_map;
1623 
1624 	err = btrfs_interface_init();
1625 	if (err)
1626 		goto free_delayed_inode;
1627 
1628 	err = register_filesystem(&btrfs_fs_type);
1629 	if (err)
1630 		goto unregister_ioctl;
1631 
1632 	btrfs_init_lockdep();
1633 
1634 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1635 	return 0;
1636 
1637 unregister_ioctl:
1638 	btrfs_interface_exit();
1639 free_delayed_inode:
1640 	btrfs_delayed_inode_exit();
1641 free_extent_map:
1642 	extent_map_exit();
1643 free_extent_io:
1644 	extent_io_exit();
1645 free_cachep:
1646 	btrfs_destroy_cachep();
1647 free_compress:
1648 	btrfs_exit_compress();
1649 	btrfs_exit_sysfs();
1650 	return err;
1651 }
1652 
1653 static void __exit exit_btrfs_fs(void)
1654 {
1655 	btrfs_destroy_cachep();
1656 	btrfs_delayed_inode_exit();
1657 	extent_map_exit();
1658 	extent_io_exit();
1659 	btrfs_interface_exit();
1660 	unregister_filesystem(&btrfs_fs_type);
1661 	btrfs_exit_sysfs();
1662 	btrfs_cleanup_fs_uuids();
1663 	btrfs_exit_compress();
1664 }
1665 
1666 module_init(init_btrfs_fs)
1667 module_exit(exit_btrfs_fs)
1668 
1669 MODULE_LICENSE("GPL");
1670