xref: /linux/fs/btrfs/super.c (revision 1e1159bb97cf4191849b4b03f77ab32977c2ece6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "export.h"
55 #include "compression.h"
56 #include "rcu-string.h"
57 #include "dev-replace.h"
58 #include "free-space-cache.h"
59 #include "backref.h"
60 #include "tests/btrfs-tests.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/btrfs.h>
64 
65 static const struct super_operations btrfs_super_ops;
66 static struct file_system_type btrfs_fs_type;
67 
68 static const char *btrfs_decode_error(int errno)
69 {
70 	char *errstr = "unknown";
71 
72 	switch (errno) {
73 	case -EIO:
74 		errstr = "IO failure";
75 		break;
76 	case -ENOMEM:
77 		errstr = "Out of memory";
78 		break;
79 	case -EROFS:
80 		errstr = "Readonly filesystem";
81 		break;
82 	case -EEXIST:
83 		errstr = "Object already exists";
84 		break;
85 	case -ENOSPC:
86 		errstr = "No space left";
87 		break;
88 	case -ENOENT:
89 		errstr = "No such entry";
90 		break;
91 	}
92 
93 	return errstr;
94 }
95 
96 static void save_error_info(struct btrfs_fs_info *fs_info)
97 {
98 	/*
99 	 * today we only save the error info into ram.  Long term we'll
100 	 * also send it down to the disk
101 	 */
102 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
103 }
104 
105 /* btrfs handle error by forcing the filesystem readonly */
106 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
107 {
108 	struct super_block *sb = fs_info->sb;
109 
110 	if (sb->s_flags & MS_RDONLY)
111 		return;
112 
113 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
114 		sb->s_flags |= MS_RDONLY;
115 		btrfs_info(fs_info, "forced readonly");
116 		/*
117 		 * Note that a running device replace operation is not
118 		 * canceled here although there is no way to update
119 		 * the progress. It would add the risk of a deadlock,
120 		 * therefore the canceling is ommited. The only penalty
121 		 * is that some I/O remains active until the procedure
122 		 * completes. The next time when the filesystem is
123 		 * mounted writeable again, the device replace
124 		 * operation continues.
125 		 */
126 	}
127 }
128 
129 #ifdef CONFIG_PRINTK
130 /*
131  * __btrfs_std_error decodes expected errors from the caller and
132  * invokes the approciate error response.
133  */
134 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
135 		       unsigned int line, int errno, const char *fmt, ...)
136 {
137 	struct super_block *sb = fs_info->sb;
138 	const char *errstr;
139 
140 	/*
141 	 * Special case: if the error is EROFS, and we're already
142 	 * under MS_RDONLY, then it is safe here.
143 	 */
144 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
145   		return;
146 
147 	errstr = btrfs_decode_error(errno);
148 	if (fmt) {
149 		struct va_format vaf;
150 		va_list args;
151 
152 		va_start(args, fmt);
153 		vaf.fmt = fmt;
154 		vaf.va = &args;
155 
156 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
157 			sb->s_id, function, line, errno, errstr, &vaf);
158 		va_end(args);
159 	} else {
160 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
161 			sb->s_id, function, line, errno, errstr);
162 	}
163 
164 	/* Don't go through full error handling during mount */
165 	save_error_info(fs_info);
166 	if (sb->s_flags & MS_BORN)
167 		btrfs_handle_error(fs_info);
168 }
169 
170 static const char * const logtypes[] = {
171 	"emergency",
172 	"alert",
173 	"critical",
174 	"error",
175 	"warning",
176 	"notice",
177 	"info",
178 	"debug",
179 };
180 
181 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 	struct super_block *sb = fs_info->sb;
184 	char lvl[4];
185 	struct va_format vaf;
186 	va_list args;
187 	const char *type = logtypes[4];
188 	int kern_level;
189 
190 	va_start(args, fmt);
191 
192 	kern_level = printk_get_level(fmt);
193 	if (kern_level) {
194 		size_t size = printk_skip_level(fmt) - fmt;
195 		memcpy(lvl, fmt,  size);
196 		lvl[size] = '\0';
197 		fmt += size;
198 		type = logtypes[kern_level - '0'];
199 	} else
200 		*lvl = '\0';
201 
202 	vaf.fmt = fmt;
203 	vaf.va = &args;
204 
205 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
206 
207 	va_end(args);
208 }
209 
210 #else
211 
212 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
213 		       unsigned int line, int errno, const char *fmt, ...)
214 {
215 	struct super_block *sb = fs_info->sb;
216 
217 	/*
218 	 * Special case: if the error is EROFS, and we're already
219 	 * under MS_RDONLY, then it is safe here.
220 	 */
221 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
222 		return;
223 
224 	/* Don't go through full error handling during mount */
225 	if (sb->s_flags & MS_BORN) {
226 		save_error_info(fs_info);
227 		btrfs_handle_error(fs_info);
228 	}
229 }
230 #endif
231 
232 /*
233  * We only mark the transaction aborted and then set the file system read-only.
234  * This will prevent new transactions from starting or trying to join this
235  * one.
236  *
237  * This means that error recovery at the call site is limited to freeing
238  * any local memory allocations and passing the error code up without
239  * further cleanup. The transaction should complete as it normally would
240  * in the call path but will return -EIO.
241  *
242  * We'll complete the cleanup in btrfs_end_transaction and
243  * btrfs_commit_transaction.
244  */
245 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
246 			       struct btrfs_root *root, const char *function,
247 			       unsigned int line, int errno)
248 {
249 	/*
250 	 * Report first abort since mount
251 	 */
252 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
253 				&root->fs_info->fs_state)) {
254 		WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
255 				errno);
256 	}
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->blocks_used) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(root->fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	ACCESS_ONCE(trans->transaction->aborted) = errno;
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&root->fs_info->transaction_wait);
272 	wake_up(&root->fs_info->transaction_blocked_wait);
273 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 		   unsigned int line, int errno, const char *fmt, ...)
281 {
282 	char *s_id = "<unknown>";
283 	const char *errstr;
284 	struct va_format vaf = { .fmt = fmt };
285 	va_list args;
286 
287 	if (fs_info)
288 		s_id = fs_info->sb->s_id;
289 
290 	va_start(args, fmt);
291 	vaf.va = &args;
292 
293 	errstr = btrfs_decode_error(errno);
294 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 			s_id, function, line, &vaf, errno, errstr);
297 
298 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
299 	       s_id, function, line, &vaf, errno, errstr);
300 	va_end(args);
301 	/* Caller calls BUG() */
302 }
303 
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 	(void)close_ctree(btrfs_sb(sb)->tree_root);
307 	/* FIXME: need to fix VFS to return error? */
308 	/* AV: return it _where_?  ->put_super() can be triggered by any number
309 	 * of async events, up to and including delivery of SIGKILL to the
310 	 * last process that kept it busy.  Or segfault in the aforementioned
311 	 * process...  Whom would you report that to?
312 	 */
313 }
314 
315 enum {
316 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
317 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
318 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
319 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
320 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
321 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
322 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
323 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
324 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
325 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
326 	Opt_commit_interval,
327 	Opt_err,
328 };
329 
330 static match_table_t tokens = {
331 	{Opt_degraded, "degraded"},
332 	{Opt_subvol, "subvol=%s"},
333 	{Opt_subvolid, "subvolid=%s"},
334 	{Opt_device, "device=%s"},
335 	{Opt_nodatasum, "nodatasum"},
336 	{Opt_nodatacow, "nodatacow"},
337 	{Opt_nobarrier, "nobarrier"},
338 	{Opt_max_inline, "max_inline=%s"},
339 	{Opt_alloc_start, "alloc_start=%s"},
340 	{Opt_thread_pool, "thread_pool=%d"},
341 	{Opt_compress, "compress"},
342 	{Opt_compress_type, "compress=%s"},
343 	{Opt_compress_force, "compress-force"},
344 	{Opt_compress_force_type, "compress-force=%s"},
345 	{Opt_ssd, "ssd"},
346 	{Opt_ssd_spread, "ssd_spread"},
347 	{Opt_nossd, "nossd"},
348 	{Opt_noacl, "noacl"},
349 	{Opt_notreelog, "notreelog"},
350 	{Opt_flushoncommit, "flushoncommit"},
351 	{Opt_ratio, "metadata_ratio=%d"},
352 	{Opt_discard, "discard"},
353 	{Opt_space_cache, "space_cache"},
354 	{Opt_clear_cache, "clear_cache"},
355 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
356 	{Opt_enospc_debug, "enospc_debug"},
357 	{Opt_subvolrootid, "subvolrootid=%d"},
358 	{Opt_defrag, "autodefrag"},
359 	{Opt_inode_cache, "inode_cache"},
360 	{Opt_no_space_cache, "nospace_cache"},
361 	{Opt_recovery, "recovery"},
362 	{Opt_skip_balance, "skip_balance"},
363 	{Opt_check_integrity, "check_int"},
364 	{Opt_check_integrity_including_extent_data, "check_int_data"},
365 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
366 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
367 	{Opt_fatal_errors, "fatal_errors=%s"},
368 	{Opt_commit_interval, "commit=%d"},
369 	{Opt_err, NULL},
370 };
371 
372 /*
373  * Regular mount options parser.  Everything that is needed only when
374  * reading in a new superblock is parsed here.
375  * XXX JDM: This needs to be cleaned up for remount.
376  */
377 int btrfs_parse_options(struct btrfs_root *root, char *options)
378 {
379 	struct btrfs_fs_info *info = root->fs_info;
380 	substring_t args[MAX_OPT_ARGS];
381 	char *p, *num, *orig = NULL;
382 	u64 cache_gen;
383 	int intarg;
384 	int ret = 0;
385 	char *compress_type;
386 	bool compress_force = false;
387 
388 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
389 	if (cache_gen)
390 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
391 
392 	if (!options)
393 		goto out;
394 
395 	/*
396 	 * strsep changes the string, duplicate it because parse_options
397 	 * gets called twice
398 	 */
399 	options = kstrdup(options, GFP_NOFS);
400 	if (!options)
401 		return -ENOMEM;
402 
403 	orig = options;
404 
405 	while ((p = strsep(&options, ",")) != NULL) {
406 		int token;
407 		if (!*p)
408 			continue;
409 
410 		token = match_token(p, tokens, args);
411 		switch (token) {
412 		case Opt_degraded:
413 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
414 			btrfs_set_opt(info->mount_opt, DEGRADED);
415 			break;
416 		case Opt_subvol:
417 		case Opt_subvolid:
418 		case Opt_subvolrootid:
419 		case Opt_device:
420 			/*
421 			 * These are parsed by btrfs_parse_early_options
422 			 * and can be happily ignored here.
423 			 */
424 			break;
425 		case Opt_nodatasum:
426 			printk(KERN_INFO "btrfs: setting nodatasum\n");
427 			btrfs_set_opt(info->mount_opt, NODATASUM);
428 			break;
429 		case Opt_nodatacow:
430 			if (!btrfs_test_opt(root, COMPRESS) ||
431 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
432 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
433 			} else {
434 				printk(KERN_INFO "btrfs: setting nodatacow\n");
435 			}
436 			info->compress_type = BTRFS_COMPRESS_NONE;
437 			btrfs_clear_opt(info->mount_opt, COMPRESS);
438 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
439 			btrfs_set_opt(info->mount_opt, NODATACOW);
440 			btrfs_set_opt(info->mount_opt, NODATASUM);
441 			break;
442 		case Opt_compress_force:
443 		case Opt_compress_force_type:
444 			compress_force = true;
445 			/* Fallthrough */
446 		case Opt_compress:
447 		case Opt_compress_type:
448 			if (token == Opt_compress ||
449 			    token == Opt_compress_force ||
450 			    strcmp(args[0].from, "zlib") == 0) {
451 				compress_type = "zlib";
452 				info->compress_type = BTRFS_COMPRESS_ZLIB;
453 				btrfs_set_opt(info->mount_opt, COMPRESS);
454 				btrfs_clear_opt(info->mount_opt, NODATACOW);
455 				btrfs_clear_opt(info->mount_opt, NODATASUM);
456 			} else if (strcmp(args[0].from, "lzo") == 0) {
457 				compress_type = "lzo";
458 				info->compress_type = BTRFS_COMPRESS_LZO;
459 				btrfs_set_opt(info->mount_opt, COMPRESS);
460 				btrfs_clear_opt(info->mount_opt, NODATACOW);
461 				btrfs_clear_opt(info->mount_opt, NODATASUM);
462 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
463 			} else if (strncmp(args[0].from, "no", 2) == 0) {
464 				compress_type = "no";
465 				info->compress_type = BTRFS_COMPRESS_NONE;
466 				btrfs_clear_opt(info->mount_opt, COMPRESS);
467 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 				compress_force = false;
469 			} else {
470 				ret = -EINVAL;
471 				goto out;
472 			}
473 
474 			if (compress_force) {
475 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
476 				pr_info("btrfs: force %s compression\n",
477 					compress_type);
478 			} else
479 				pr_info("btrfs: use %s compression\n",
480 					compress_type);
481 			break;
482 		case Opt_ssd:
483 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
484 			btrfs_set_opt(info->mount_opt, SSD);
485 			break;
486 		case Opt_ssd_spread:
487 			printk(KERN_INFO "btrfs: use spread ssd "
488 			       "allocation scheme\n");
489 			btrfs_set_opt(info->mount_opt, SSD);
490 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
491 			break;
492 		case Opt_nossd:
493 			printk(KERN_INFO "btrfs: not using ssd allocation "
494 			       "scheme\n");
495 			btrfs_set_opt(info->mount_opt, NOSSD);
496 			btrfs_clear_opt(info->mount_opt, SSD);
497 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
498 			break;
499 		case Opt_nobarrier:
500 			printk(KERN_INFO "btrfs: turning off barriers\n");
501 			btrfs_set_opt(info->mount_opt, NOBARRIER);
502 			break;
503 		case Opt_thread_pool:
504 			ret = match_int(&args[0], &intarg);
505 			if (ret) {
506 				goto out;
507 			} else if (intarg > 0) {
508 				info->thread_pool_size = intarg;
509 			} else {
510 				ret = -EINVAL;
511 				goto out;
512 			}
513 			break;
514 		case Opt_max_inline:
515 			num = match_strdup(&args[0]);
516 			if (num) {
517 				info->max_inline = memparse(num, NULL);
518 				kfree(num);
519 
520 				if (info->max_inline) {
521 					info->max_inline = max_t(u64,
522 						info->max_inline,
523 						root->sectorsize);
524 				}
525 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
526 					info->max_inline);
527 			} else {
528 				ret = -ENOMEM;
529 				goto out;
530 			}
531 			break;
532 		case Opt_alloc_start:
533 			num = match_strdup(&args[0]);
534 			if (num) {
535 				mutex_lock(&info->chunk_mutex);
536 				info->alloc_start = memparse(num, NULL);
537 				mutex_unlock(&info->chunk_mutex);
538 				kfree(num);
539 				printk(KERN_INFO
540 					"btrfs: allocations start at %llu\n",
541 					info->alloc_start);
542 			} else {
543 				ret = -ENOMEM;
544 				goto out;
545 			}
546 			break;
547 		case Opt_noacl:
548 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
549 			break;
550 		case Opt_notreelog:
551 			printk(KERN_INFO "btrfs: disabling tree log\n");
552 			btrfs_set_opt(info->mount_opt, NOTREELOG);
553 			break;
554 		case Opt_flushoncommit:
555 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
556 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
557 			break;
558 		case Opt_ratio:
559 			ret = match_int(&args[0], &intarg);
560 			if (ret) {
561 				goto out;
562 			} else if (intarg >= 0) {
563 				info->metadata_ratio = intarg;
564 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
565 				       info->metadata_ratio);
566 			} else {
567 				ret = -EINVAL;
568 				goto out;
569 			}
570 			break;
571 		case Opt_discard:
572 			btrfs_set_opt(info->mount_opt, DISCARD);
573 			break;
574 		case Opt_space_cache:
575 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
576 			break;
577 		case Opt_rescan_uuid_tree:
578 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
579 			break;
580 		case Opt_no_space_cache:
581 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
582 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
583 			break;
584 		case Opt_inode_cache:
585 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
586 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
587 			break;
588 		case Opt_clear_cache:
589 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
590 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
591 			break;
592 		case Opt_user_subvol_rm_allowed:
593 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
594 			break;
595 		case Opt_enospc_debug:
596 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
597 			break;
598 		case Opt_defrag:
599 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
600 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
601 			break;
602 		case Opt_recovery:
603 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
604 			btrfs_set_opt(info->mount_opt, RECOVERY);
605 			break;
606 		case Opt_skip_balance:
607 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
608 			break;
609 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
610 		case Opt_check_integrity_including_extent_data:
611 			printk(KERN_INFO "btrfs: enabling check integrity"
612 			       " including extent data\n");
613 			btrfs_set_opt(info->mount_opt,
614 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
615 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
616 			break;
617 		case Opt_check_integrity:
618 			printk(KERN_INFO "btrfs: enabling check integrity\n");
619 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
620 			break;
621 		case Opt_check_integrity_print_mask:
622 			ret = match_int(&args[0], &intarg);
623 			if (ret) {
624 				goto out;
625 			} else if (intarg >= 0) {
626 				info->check_integrity_print_mask = intarg;
627 				printk(KERN_INFO "btrfs:"
628 				       " check_integrity_print_mask 0x%x\n",
629 				       info->check_integrity_print_mask);
630 			} else {
631 				ret = -EINVAL;
632 				goto out;
633 			}
634 			break;
635 #else
636 		case Opt_check_integrity_including_extent_data:
637 		case Opt_check_integrity:
638 		case Opt_check_integrity_print_mask:
639 			printk(KERN_ERR "btrfs: support for check_integrity*"
640 			       " not compiled in!\n");
641 			ret = -EINVAL;
642 			goto out;
643 #endif
644 		case Opt_fatal_errors:
645 			if (strcmp(args[0].from, "panic") == 0)
646 				btrfs_set_opt(info->mount_opt,
647 					      PANIC_ON_FATAL_ERROR);
648 			else if (strcmp(args[0].from, "bug") == 0)
649 				btrfs_clear_opt(info->mount_opt,
650 					      PANIC_ON_FATAL_ERROR);
651 			else {
652 				ret = -EINVAL;
653 				goto out;
654 			}
655 			break;
656 		case Opt_commit_interval:
657 			intarg = 0;
658 			ret = match_int(&args[0], &intarg);
659 			if (ret < 0) {
660 				printk(KERN_ERR
661 					"btrfs: invalid commit interval\n");
662 				ret = -EINVAL;
663 				goto out;
664 			}
665 			if (intarg > 0) {
666 				if (intarg > 300) {
667 					printk(KERN_WARNING
668 					    "btrfs: excessive commit interval %d\n",
669 							intarg);
670 				}
671 				info->commit_interval = intarg;
672 			} else {
673 				printk(KERN_INFO
674 				    "btrfs: using default commit interval %ds\n",
675 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
676 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
677 			}
678 			break;
679 		case Opt_err:
680 			printk(KERN_INFO "btrfs: unrecognized mount option "
681 			       "'%s'\n", p);
682 			ret = -EINVAL;
683 			goto out;
684 		default:
685 			break;
686 		}
687 	}
688 out:
689 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
690 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
691 	kfree(orig);
692 	return ret;
693 }
694 
695 /*
696  * Parse mount options that are required early in the mount process.
697  *
698  * All other options will be parsed on much later in the mount process and
699  * only when we need to allocate a new super block.
700  */
701 static int btrfs_parse_early_options(const char *options, fmode_t flags,
702 		void *holder, char **subvol_name, u64 *subvol_objectid,
703 		struct btrfs_fs_devices **fs_devices)
704 {
705 	substring_t args[MAX_OPT_ARGS];
706 	char *device_name, *opts, *orig, *p;
707 	char *num = NULL;
708 	int error = 0;
709 
710 	if (!options)
711 		return 0;
712 
713 	/*
714 	 * strsep changes the string, duplicate it because parse_options
715 	 * gets called twice
716 	 */
717 	opts = kstrdup(options, GFP_KERNEL);
718 	if (!opts)
719 		return -ENOMEM;
720 	orig = opts;
721 
722 	while ((p = strsep(&opts, ",")) != NULL) {
723 		int token;
724 		if (!*p)
725 			continue;
726 
727 		token = match_token(p, tokens, args);
728 		switch (token) {
729 		case Opt_subvol:
730 			kfree(*subvol_name);
731 			*subvol_name = match_strdup(&args[0]);
732 			if (!*subvol_name) {
733 				error = -ENOMEM;
734 				goto out;
735 			}
736 			break;
737 		case Opt_subvolid:
738 			num = match_strdup(&args[0]);
739 			if (num) {
740 				*subvol_objectid = memparse(num, NULL);
741 				kfree(num);
742 				/* we want the original fs_tree */
743 				if (!*subvol_objectid)
744 					*subvol_objectid =
745 						BTRFS_FS_TREE_OBJECTID;
746 			} else {
747 				error = -EINVAL;
748 				goto out;
749 			}
750 			break;
751 		case Opt_subvolrootid:
752 			printk(KERN_WARNING
753 				"btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
754 			break;
755 		case Opt_device:
756 			device_name = match_strdup(&args[0]);
757 			if (!device_name) {
758 				error = -ENOMEM;
759 				goto out;
760 			}
761 			error = btrfs_scan_one_device(device_name,
762 					flags, holder, fs_devices);
763 			kfree(device_name);
764 			if (error)
765 				goto out;
766 			break;
767 		default:
768 			break;
769 		}
770 	}
771 
772 out:
773 	kfree(orig);
774 	return error;
775 }
776 
777 static struct dentry *get_default_root(struct super_block *sb,
778 				       u64 subvol_objectid)
779 {
780 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
781 	struct btrfs_root *root = fs_info->tree_root;
782 	struct btrfs_root *new_root;
783 	struct btrfs_dir_item *di;
784 	struct btrfs_path *path;
785 	struct btrfs_key location;
786 	struct inode *inode;
787 	u64 dir_id;
788 	int new = 0;
789 
790 	/*
791 	 * We have a specific subvol we want to mount, just setup location and
792 	 * go look up the root.
793 	 */
794 	if (subvol_objectid) {
795 		location.objectid = subvol_objectid;
796 		location.type = BTRFS_ROOT_ITEM_KEY;
797 		location.offset = (u64)-1;
798 		goto find_root;
799 	}
800 
801 	path = btrfs_alloc_path();
802 	if (!path)
803 		return ERR_PTR(-ENOMEM);
804 	path->leave_spinning = 1;
805 
806 	/*
807 	 * Find the "default" dir item which points to the root item that we
808 	 * will mount by default if we haven't been given a specific subvolume
809 	 * to mount.
810 	 */
811 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
812 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
813 	if (IS_ERR(di)) {
814 		btrfs_free_path(path);
815 		return ERR_CAST(di);
816 	}
817 	if (!di) {
818 		/*
819 		 * Ok the default dir item isn't there.  This is weird since
820 		 * it's always been there, but don't freak out, just try and
821 		 * mount to root most subvolume.
822 		 */
823 		btrfs_free_path(path);
824 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
825 		new_root = fs_info->fs_root;
826 		goto setup_root;
827 	}
828 
829 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
830 	btrfs_free_path(path);
831 
832 find_root:
833 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
834 	if (IS_ERR(new_root))
835 		return ERR_CAST(new_root);
836 
837 	dir_id = btrfs_root_dirid(&new_root->root_item);
838 setup_root:
839 	location.objectid = dir_id;
840 	location.type = BTRFS_INODE_ITEM_KEY;
841 	location.offset = 0;
842 
843 	inode = btrfs_iget(sb, &location, new_root, &new);
844 	if (IS_ERR(inode))
845 		return ERR_CAST(inode);
846 
847 	/*
848 	 * If we're just mounting the root most subvol put the inode and return
849 	 * a reference to the dentry.  We will have already gotten a reference
850 	 * to the inode in btrfs_fill_super so we're good to go.
851 	 */
852 	if (!new && sb->s_root->d_inode == inode) {
853 		iput(inode);
854 		return dget(sb->s_root);
855 	}
856 
857 	return d_obtain_alias(inode);
858 }
859 
860 static int btrfs_fill_super(struct super_block *sb,
861 			    struct btrfs_fs_devices *fs_devices,
862 			    void *data, int silent)
863 {
864 	struct inode *inode;
865 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
866 	struct btrfs_key key;
867 	int err;
868 
869 	sb->s_maxbytes = MAX_LFS_FILESIZE;
870 	sb->s_magic = BTRFS_SUPER_MAGIC;
871 	sb->s_op = &btrfs_super_ops;
872 	sb->s_d_op = &btrfs_dentry_operations;
873 	sb->s_export_op = &btrfs_export_ops;
874 	sb->s_xattr = btrfs_xattr_handlers;
875 	sb->s_time_gran = 1;
876 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
877 	sb->s_flags |= MS_POSIXACL;
878 #endif
879 	sb->s_flags |= MS_I_VERSION;
880 	err = open_ctree(sb, fs_devices, (char *)data);
881 	if (err) {
882 		printk("btrfs: open_ctree failed\n");
883 		return err;
884 	}
885 
886 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
887 	key.type = BTRFS_INODE_ITEM_KEY;
888 	key.offset = 0;
889 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
890 	if (IS_ERR(inode)) {
891 		err = PTR_ERR(inode);
892 		goto fail_close;
893 	}
894 
895 	sb->s_root = d_make_root(inode);
896 	if (!sb->s_root) {
897 		err = -ENOMEM;
898 		goto fail_close;
899 	}
900 
901 	save_mount_options(sb, data);
902 	cleancache_init_fs(sb);
903 	sb->s_flags |= MS_ACTIVE;
904 	return 0;
905 
906 fail_close:
907 	close_ctree(fs_info->tree_root);
908 	return err;
909 }
910 
911 int btrfs_sync_fs(struct super_block *sb, int wait)
912 {
913 	struct btrfs_trans_handle *trans;
914 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
915 	struct btrfs_root *root = fs_info->tree_root;
916 
917 	trace_btrfs_sync_fs(wait);
918 
919 	if (!wait) {
920 		filemap_flush(fs_info->btree_inode->i_mapping);
921 		return 0;
922 	}
923 
924 	btrfs_wait_all_ordered_extents(fs_info);
925 
926 	trans = btrfs_attach_transaction_barrier(root);
927 	if (IS_ERR(trans)) {
928 		/* no transaction, don't bother */
929 		if (PTR_ERR(trans) == -ENOENT)
930 			return 0;
931 		return PTR_ERR(trans);
932 	}
933 	return btrfs_commit_transaction(trans, root);
934 }
935 
936 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
937 {
938 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
939 	struct btrfs_root *root = info->tree_root;
940 	char *compress_type;
941 
942 	if (btrfs_test_opt(root, DEGRADED))
943 		seq_puts(seq, ",degraded");
944 	if (btrfs_test_opt(root, NODATASUM))
945 		seq_puts(seq, ",nodatasum");
946 	if (btrfs_test_opt(root, NODATACOW))
947 		seq_puts(seq, ",nodatacow");
948 	if (btrfs_test_opt(root, NOBARRIER))
949 		seq_puts(seq, ",nobarrier");
950 	if (info->max_inline != 8192 * 1024)
951 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
952 	if (info->alloc_start != 0)
953 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
954 	if (info->thread_pool_size !=  min_t(unsigned long,
955 					     num_online_cpus() + 2, 8))
956 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
957 	if (btrfs_test_opt(root, COMPRESS)) {
958 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
959 			compress_type = "zlib";
960 		else
961 			compress_type = "lzo";
962 		if (btrfs_test_opt(root, FORCE_COMPRESS))
963 			seq_printf(seq, ",compress-force=%s", compress_type);
964 		else
965 			seq_printf(seq, ",compress=%s", compress_type);
966 	}
967 	if (btrfs_test_opt(root, NOSSD))
968 		seq_puts(seq, ",nossd");
969 	if (btrfs_test_opt(root, SSD_SPREAD))
970 		seq_puts(seq, ",ssd_spread");
971 	else if (btrfs_test_opt(root, SSD))
972 		seq_puts(seq, ",ssd");
973 	if (btrfs_test_opt(root, NOTREELOG))
974 		seq_puts(seq, ",notreelog");
975 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
976 		seq_puts(seq, ",flushoncommit");
977 	if (btrfs_test_opt(root, DISCARD))
978 		seq_puts(seq, ",discard");
979 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
980 		seq_puts(seq, ",noacl");
981 	if (btrfs_test_opt(root, SPACE_CACHE))
982 		seq_puts(seq, ",space_cache");
983 	else
984 		seq_puts(seq, ",nospace_cache");
985 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
986 		seq_puts(seq, ",rescan_uuid_tree");
987 	if (btrfs_test_opt(root, CLEAR_CACHE))
988 		seq_puts(seq, ",clear_cache");
989 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
990 		seq_puts(seq, ",user_subvol_rm_allowed");
991 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
992 		seq_puts(seq, ",enospc_debug");
993 	if (btrfs_test_opt(root, AUTO_DEFRAG))
994 		seq_puts(seq, ",autodefrag");
995 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
996 		seq_puts(seq, ",inode_cache");
997 	if (btrfs_test_opt(root, SKIP_BALANCE))
998 		seq_puts(seq, ",skip_balance");
999 	if (btrfs_test_opt(root, RECOVERY))
1000 		seq_puts(seq, ",recovery");
1001 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1002 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1003 		seq_puts(seq, ",check_int_data");
1004 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1005 		seq_puts(seq, ",check_int");
1006 	if (info->check_integrity_print_mask)
1007 		seq_printf(seq, ",check_int_print_mask=%d",
1008 				info->check_integrity_print_mask);
1009 #endif
1010 	if (info->metadata_ratio)
1011 		seq_printf(seq, ",metadata_ratio=%d",
1012 				info->metadata_ratio);
1013 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1014 		seq_puts(seq, ",fatal_errors=panic");
1015 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1016 		seq_printf(seq, ",commit=%d", info->commit_interval);
1017 	return 0;
1018 }
1019 
1020 static int btrfs_test_super(struct super_block *s, void *data)
1021 {
1022 	struct btrfs_fs_info *p = data;
1023 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1024 
1025 	return fs_info->fs_devices == p->fs_devices;
1026 }
1027 
1028 static int btrfs_set_super(struct super_block *s, void *data)
1029 {
1030 	int err = set_anon_super(s, data);
1031 	if (!err)
1032 		s->s_fs_info = data;
1033 	return err;
1034 }
1035 
1036 /*
1037  * subvolumes are identified by ino 256
1038  */
1039 static inline int is_subvolume_inode(struct inode *inode)
1040 {
1041 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1042 		return 1;
1043 	return 0;
1044 }
1045 
1046 /*
1047  * This will strip out the subvol=%s argument for an argument string and add
1048  * subvolid=0 to make sure we get the actual tree root for path walking to the
1049  * subvol we want.
1050  */
1051 static char *setup_root_args(char *args)
1052 {
1053 	unsigned len = strlen(args) + 2 + 1;
1054 	char *src, *dst, *buf;
1055 
1056 	/*
1057 	 * We need the same args as before, but with this substitution:
1058 	 * s!subvol=[^,]+!subvolid=0!
1059 	 *
1060 	 * Since the replacement string is up to 2 bytes longer than the
1061 	 * original, allocate strlen(args) + 2 + 1 bytes.
1062 	 */
1063 
1064 	src = strstr(args, "subvol=");
1065 	/* This shouldn't happen, but just in case.. */
1066 	if (!src)
1067 		return NULL;
1068 
1069 	buf = dst = kmalloc(len, GFP_NOFS);
1070 	if (!buf)
1071 		return NULL;
1072 
1073 	/*
1074 	 * If the subvol= arg is not at the start of the string,
1075 	 * copy whatever precedes it into buf.
1076 	 */
1077 	if (src != args) {
1078 		*src++ = '\0';
1079 		strcpy(buf, args);
1080 		dst += strlen(args);
1081 	}
1082 
1083 	strcpy(dst, "subvolid=0");
1084 	dst += strlen("subvolid=0");
1085 
1086 	/*
1087 	 * If there is a "," after the original subvol=... string,
1088 	 * copy that suffix into our buffer.  Otherwise, we're done.
1089 	 */
1090 	src = strchr(src, ',');
1091 	if (src)
1092 		strcpy(dst, src);
1093 
1094 	return buf;
1095 }
1096 
1097 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1098 				   const char *device_name, char *data)
1099 {
1100 	struct dentry *root;
1101 	struct vfsmount *mnt;
1102 	char *newargs;
1103 
1104 	newargs = setup_root_args(data);
1105 	if (!newargs)
1106 		return ERR_PTR(-ENOMEM);
1107 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1108 			     newargs);
1109 	kfree(newargs);
1110 	if (IS_ERR(mnt))
1111 		return ERR_CAST(mnt);
1112 
1113 	root = mount_subtree(mnt, subvol_name);
1114 
1115 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1116 		struct super_block *s = root->d_sb;
1117 		dput(root);
1118 		root = ERR_PTR(-EINVAL);
1119 		deactivate_locked_super(s);
1120 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1121 				subvol_name);
1122 	}
1123 
1124 	return root;
1125 }
1126 
1127 /*
1128  * Find a superblock for the given device / mount point.
1129  *
1130  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1131  *	  for multiple device setup.  Make sure to keep it in sync.
1132  */
1133 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1134 		const char *device_name, void *data)
1135 {
1136 	struct block_device *bdev = NULL;
1137 	struct super_block *s;
1138 	struct dentry *root;
1139 	struct btrfs_fs_devices *fs_devices = NULL;
1140 	struct btrfs_fs_info *fs_info = NULL;
1141 	fmode_t mode = FMODE_READ;
1142 	char *subvol_name = NULL;
1143 	u64 subvol_objectid = 0;
1144 	int error = 0;
1145 
1146 	if (!(flags & MS_RDONLY))
1147 		mode |= FMODE_WRITE;
1148 
1149 	error = btrfs_parse_early_options(data, mode, fs_type,
1150 					  &subvol_name, &subvol_objectid,
1151 					  &fs_devices);
1152 	if (error) {
1153 		kfree(subvol_name);
1154 		return ERR_PTR(error);
1155 	}
1156 
1157 	if (subvol_name) {
1158 		root = mount_subvol(subvol_name, flags, device_name, data);
1159 		kfree(subvol_name);
1160 		return root;
1161 	}
1162 
1163 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1164 	if (error)
1165 		return ERR_PTR(error);
1166 
1167 	/*
1168 	 * Setup a dummy root and fs_info for test/set super.  This is because
1169 	 * we don't actually fill this stuff out until open_ctree, but we need
1170 	 * it for searching for existing supers, so this lets us do that and
1171 	 * then open_ctree will properly initialize everything later.
1172 	 */
1173 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1174 	if (!fs_info)
1175 		return ERR_PTR(-ENOMEM);
1176 
1177 	fs_info->fs_devices = fs_devices;
1178 
1179 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1180 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1181 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1182 		error = -ENOMEM;
1183 		goto error_fs_info;
1184 	}
1185 
1186 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1187 	if (error)
1188 		goto error_fs_info;
1189 
1190 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1191 		error = -EACCES;
1192 		goto error_close_devices;
1193 	}
1194 
1195 	bdev = fs_devices->latest_bdev;
1196 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1197 		 fs_info);
1198 	if (IS_ERR(s)) {
1199 		error = PTR_ERR(s);
1200 		goto error_close_devices;
1201 	}
1202 
1203 	if (s->s_root) {
1204 		btrfs_close_devices(fs_devices);
1205 		free_fs_info(fs_info);
1206 		if ((flags ^ s->s_flags) & MS_RDONLY)
1207 			error = -EBUSY;
1208 	} else {
1209 		char b[BDEVNAME_SIZE];
1210 
1211 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1212 		btrfs_sb(s)->bdev_holder = fs_type;
1213 		error = btrfs_fill_super(s, fs_devices, data,
1214 					 flags & MS_SILENT ? 1 : 0);
1215 	}
1216 
1217 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1218 	if (IS_ERR(root))
1219 		deactivate_locked_super(s);
1220 
1221 	return root;
1222 
1223 error_close_devices:
1224 	btrfs_close_devices(fs_devices);
1225 error_fs_info:
1226 	free_fs_info(fs_info);
1227 	return ERR_PTR(error);
1228 }
1229 
1230 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1231 {
1232 	spin_lock_irq(&workers->lock);
1233 	workers->max_workers = new_limit;
1234 	spin_unlock_irq(&workers->lock);
1235 }
1236 
1237 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1238 				     int new_pool_size, int old_pool_size)
1239 {
1240 	if (new_pool_size == old_pool_size)
1241 		return;
1242 
1243 	fs_info->thread_pool_size = new_pool_size;
1244 
1245 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1246 	       old_pool_size, new_pool_size);
1247 
1248 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1249 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1250 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1251 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1252 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1253 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1254 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1255 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1256 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1257 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1258 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1259 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1260 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1261 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1262 			      new_pool_size);
1263 }
1264 
1265 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1266 {
1267 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1268 }
1269 
1270 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1271 				       unsigned long old_opts, int flags)
1272 {
1273 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1274 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1275 	     (flags & MS_RDONLY))) {
1276 		/* wait for any defraggers to finish */
1277 		wait_event(fs_info->transaction_wait,
1278 			   (atomic_read(&fs_info->defrag_running) == 0));
1279 		if (flags & MS_RDONLY)
1280 			sync_filesystem(fs_info->sb);
1281 	}
1282 }
1283 
1284 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1285 					 unsigned long old_opts)
1286 {
1287 	/*
1288 	 * We need cleanup all defragable inodes if the autodefragment is
1289 	 * close or the fs is R/O.
1290 	 */
1291 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1292 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1293 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1294 		btrfs_cleanup_defrag_inodes(fs_info);
1295 	}
1296 
1297 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1298 }
1299 
1300 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1301 {
1302 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1303 	struct btrfs_root *root = fs_info->tree_root;
1304 	unsigned old_flags = sb->s_flags;
1305 	unsigned long old_opts = fs_info->mount_opt;
1306 	unsigned long old_compress_type = fs_info->compress_type;
1307 	u64 old_max_inline = fs_info->max_inline;
1308 	u64 old_alloc_start = fs_info->alloc_start;
1309 	int old_thread_pool_size = fs_info->thread_pool_size;
1310 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1311 	int ret;
1312 
1313 	btrfs_remount_prepare(fs_info);
1314 
1315 	ret = btrfs_parse_options(root, data);
1316 	if (ret) {
1317 		ret = -EINVAL;
1318 		goto restore;
1319 	}
1320 
1321 	btrfs_remount_begin(fs_info, old_opts, *flags);
1322 	btrfs_resize_thread_pool(fs_info,
1323 		fs_info->thread_pool_size, old_thread_pool_size);
1324 
1325 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1326 		goto out;
1327 
1328 	if (*flags & MS_RDONLY) {
1329 		/*
1330 		 * this also happens on 'umount -rf' or on shutdown, when
1331 		 * the filesystem is busy.
1332 		 */
1333 		sb->s_flags |= MS_RDONLY;
1334 
1335 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1336 		btrfs_scrub_cancel(fs_info);
1337 		btrfs_pause_balance(fs_info);
1338 
1339 		ret = btrfs_commit_super(root);
1340 		if (ret)
1341 			goto restore;
1342 	} else {
1343 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1344 			btrfs_err(fs_info,
1345 				"Remounting read-write after error is not allowed\n");
1346 			ret = -EINVAL;
1347 			goto restore;
1348 		}
1349 		if (fs_info->fs_devices->rw_devices == 0) {
1350 			ret = -EACCES;
1351 			goto restore;
1352 		}
1353 
1354 		if (fs_info->fs_devices->missing_devices >
1355 		     fs_info->num_tolerated_disk_barrier_failures &&
1356 		    !(*flags & MS_RDONLY)) {
1357 			printk(KERN_WARNING
1358 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1359 			ret = -EACCES;
1360 			goto restore;
1361 		}
1362 
1363 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1364 			ret = -EINVAL;
1365 			goto restore;
1366 		}
1367 
1368 		ret = btrfs_cleanup_fs_roots(fs_info);
1369 		if (ret)
1370 			goto restore;
1371 
1372 		/* recover relocation */
1373 		ret = btrfs_recover_relocation(root);
1374 		if (ret)
1375 			goto restore;
1376 
1377 		ret = btrfs_resume_balance_async(fs_info);
1378 		if (ret)
1379 			goto restore;
1380 
1381 		ret = btrfs_resume_dev_replace_async(fs_info);
1382 		if (ret) {
1383 			pr_warn("btrfs: failed to resume dev_replace\n");
1384 			goto restore;
1385 		}
1386 
1387 		if (!fs_info->uuid_root) {
1388 			pr_info("btrfs: creating UUID tree\n");
1389 			ret = btrfs_create_uuid_tree(fs_info);
1390 			if (ret) {
1391 				pr_warn("btrfs: failed to create the uuid tree"
1392 					"%d\n", ret);
1393 				goto restore;
1394 			}
1395 		}
1396 		sb->s_flags &= ~MS_RDONLY;
1397 	}
1398 out:
1399 	btrfs_remount_cleanup(fs_info, old_opts);
1400 	return 0;
1401 
1402 restore:
1403 	/* We've hit an error - don't reset MS_RDONLY */
1404 	if (sb->s_flags & MS_RDONLY)
1405 		old_flags |= MS_RDONLY;
1406 	sb->s_flags = old_flags;
1407 	fs_info->mount_opt = old_opts;
1408 	fs_info->compress_type = old_compress_type;
1409 	fs_info->max_inline = old_max_inline;
1410 	mutex_lock(&fs_info->chunk_mutex);
1411 	fs_info->alloc_start = old_alloc_start;
1412 	mutex_unlock(&fs_info->chunk_mutex);
1413 	btrfs_resize_thread_pool(fs_info,
1414 		old_thread_pool_size, fs_info->thread_pool_size);
1415 	fs_info->metadata_ratio = old_metadata_ratio;
1416 	btrfs_remount_cleanup(fs_info, old_opts);
1417 	return ret;
1418 }
1419 
1420 /* Used to sort the devices by max_avail(descending sort) */
1421 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1422 				       const void *dev_info2)
1423 {
1424 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1425 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1426 		return -1;
1427 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1428 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1429 		return 1;
1430 	else
1431 	return 0;
1432 }
1433 
1434 /*
1435  * sort the devices by max_avail, in which max free extent size of each device
1436  * is stored.(Descending Sort)
1437  */
1438 static inline void btrfs_descending_sort_devices(
1439 					struct btrfs_device_info *devices,
1440 					size_t nr_devices)
1441 {
1442 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1443 	     btrfs_cmp_device_free_bytes, NULL);
1444 }
1445 
1446 /*
1447  * The helper to calc the free space on the devices that can be used to store
1448  * file data.
1449  */
1450 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1451 {
1452 	struct btrfs_fs_info *fs_info = root->fs_info;
1453 	struct btrfs_device_info *devices_info;
1454 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1455 	struct btrfs_device *device;
1456 	u64 skip_space;
1457 	u64 type;
1458 	u64 avail_space;
1459 	u64 used_space;
1460 	u64 min_stripe_size;
1461 	int min_stripes = 1, num_stripes = 1;
1462 	int i = 0, nr_devices;
1463 	int ret;
1464 
1465 	nr_devices = fs_info->fs_devices->open_devices;
1466 	BUG_ON(!nr_devices);
1467 
1468 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1469 			       GFP_NOFS);
1470 	if (!devices_info)
1471 		return -ENOMEM;
1472 
1473 	/* calc min stripe number for data space alloction */
1474 	type = btrfs_get_alloc_profile(root, 1);
1475 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1476 		min_stripes = 2;
1477 		num_stripes = nr_devices;
1478 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1479 		min_stripes = 2;
1480 		num_stripes = 2;
1481 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1482 		min_stripes = 4;
1483 		num_stripes = 4;
1484 	}
1485 
1486 	if (type & BTRFS_BLOCK_GROUP_DUP)
1487 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1488 	else
1489 		min_stripe_size = BTRFS_STRIPE_LEN;
1490 
1491 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1492 		if (!device->in_fs_metadata || !device->bdev ||
1493 		    device->is_tgtdev_for_dev_replace)
1494 			continue;
1495 
1496 		avail_space = device->total_bytes - device->bytes_used;
1497 
1498 		/* align with stripe_len */
1499 		do_div(avail_space, BTRFS_STRIPE_LEN);
1500 		avail_space *= BTRFS_STRIPE_LEN;
1501 
1502 		/*
1503 		 * In order to avoid overwritting the superblock on the drive,
1504 		 * btrfs starts at an offset of at least 1MB when doing chunk
1505 		 * allocation.
1506 		 */
1507 		skip_space = 1024 * 1024;
1508 
1509 		/* user can set the offset in fs_info->alloc_start. */
1510 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1511 		    device->total_bytes)
1512 			skip_space = max(fs_info->alloc_start, skip_space);
1513 
1514 		/*
1515 		 * btrfs can not use the free space in [0, skip_space - 1],
1516 		 * we must subtract it from the total. In order to implement
1517 		 * it, we account the used space in this range first.
1518 		 */
1519 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1520 						     &used_space);
1521 		if (ret) {
1522 			kfree(devices_info);
1523 			return ret;
1524 		}
1525 
1526 		/* calc the free space in [0, skip_space - 1] */
1527 		skip_space -= used_space;
1528 
1529 		/*
1530 		 * we can use the free space in [0, skip_space - 1], subtract
1531 		 * it from the total.
1532 		 */
1533 		if (avail_space && avail_space >= skip_space)
1534 			avail_space -= skip_space;
1535 		else
1536 			avail_space = 0;
1537 
1538 		if (avail_space < min_stripe_size)
1539 			continue;
1540 
1541 		devices_info[i].dev = device;
1542 		devices_info[i].max_avail = avail_space;
1543 
1544 		i++;
1545 	}
1546 
1547 	nr_devices = i;
1548 
1549 	btrfs_descending_sort_devices(devices_info, nr_devices);
1550 
1551 	i = nr_devices - 1;
1552 	avail_space = 0;
1553 	while (nr_devices >= min_stripes) {
1554 		if (num_stripes > nr_devices)
1555 			num_stripes = nr_devices;
1556 
1557 		if (devices_info[i].max_avail >= min_stripe_size) {
1558 			int j;
1559 			u64 alloc_size;
1560 
1561 			avail_space += devices_info[i].max_avail * num_stripes;
1562 			alloc_size = devices_info[i].max_avail;
1563 			for (j = i + 1 - num_stripes; j <= i; j++)
1564 				devices_info[j].max_avail -= alloc_size;
1565 		}
1566 		i--;
1567 		nr_devices--;
1568 	}
1569 
1570 	kfree(devices_info);
1571 	*free_bytes = avail_space;
1572 	return 0;
1573 }
1574 
1575 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1576 {
1577 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1578 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1579 	struct list_head *head = &fs_info->space_info;
1580 	struct btrfs_space_info *found;
1581 	u64 total_used = 0;
1582 	u64 total_free_data = 0;
1583 	int bits = dentry->d_sb->s_blocksize_bits;
1584 	__be32 *fsid = (__be32 *)fs_info->fsid;
1585 	int ret;
1586 
1587 	/* holding chunk_muext to avoid allocating new chunks */
1588 	mutex_lock(&fs_info->chunk_mutex);
1589 	rcu_read_lock();
1590 	list_for_each_entry_rcu(found, head, list) {
1591 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1592 			total_free_data += found->disk_total - found->disk_used;
1593 			total_free_data -=
1594 				btrfs_account_ro_block_groups_free_space(found);
1595 		}
1596 
1597 		total_used += found->disk_used;
1598 	}
1599 	rcu_read_unlock();
1600 
1601 	buf->f_namelen = BTRFS_NAME_LEN;
1602 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1603 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1604 	buf->f_bsize = dentry->d_sb->s_blocksize;
1605 	buf->f_type = BTRFS_SUPER_MAGIC;
1606 	buf->f_bavail = total_free_data;
1607 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1608 	if (ret) {
1609 		mutex_unlock(&fs_info->chunk_mutex);
1610 		return ret;
1611 	}
1612 	buf->f_bavail += total_free_data;
1613 	buf->f_bavail = buf->f_bavail >> bits;
1614 	mutex_unlock(&fs_info->chunk_mutex);
1615 
1616 	/* We treat it as constant endianness (it doesn't matter _which_)
1617 	   because we want the fsid to come out the same whether mounted
1618 	   on a big-endian or little-endian host */
1619 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1620 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1621 	/* Mask in the root object ID too, to disambiguate subvols */
1622 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1623 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1624 
1625 	return 0;
1626 }
1627 
1628 static void btrfs_kill_super(struct super_block *sb)
1629 {
1630 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1631 	kill_anon_super(sb);
1632 	free_fs_info(fs_info);
1633 }
1634 
1635 static struct file_system_type btrfs_fs_type = {
1636 	.owner		= THIS_MODULE,
1637 	.name		= "btrfs",
1638 	.mount		= btrfs_mount,
1639 	.kill_sb	= btrfs_kill_super,
1640 	.fs_flags	= FS_REQUIRES_DEV,
1641 };
1642 MODULE_ALIAS_FS("btrfs");
1643 
1644 /*
1645  * used by btrfsctl to scan devices when no FS is mounted
1646  */
1647 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1648 				unsigned long arg)
1649 {
1650 	struct btrfs_ioctl_vol_args *vol;
1651 	struct btrfs_fs_devices *fs_devices;
1652 	int ret = -ENOTTY;
1653 
1654 	if (!capable(CAP_SYS_ADMIN))
1655 		return -EPERM;
1656 
1657 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1658 	if (IS_ERR(vol))
1659 		return PTR_ERR(vol);
1660 
1661 	switch (cmd) {
1662 	case BTRFS_IOC_SCAN_DEV:
1663 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1664 					    &btrfs_fs_type, &fs_devices);
1665 		break;
1666 	case BTRFS_IOC_DEVICES_READY:
1667 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1668 					    &btrfs_fs_type, &fs_devices);
1669 		if (ret)
1670 			break;
1671 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1672 		break;
1673 	}
1674 
1675 	kfree(vol);
1676 	return ret;
1677 }
1678 
1679 static int btrfs_freeze(struct super_block *sb)
1680 {
1681 	struct btrfs_trans_handle *trans;
1682 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1683 
1684 	trans = btrfs_attach_transaction_barrier(root);
1685 	if (IS_ERR(trans)) {
1686 		/* no transaction, don't bother */
1687 		if (PTR_ERR(trans) == -ENOENT)
1688 			return 0;
1689 		return PTR_ERR(trans);
1690 	}
1691 	return btrfs_commit_transaction(trans, root);
1692 }
1693 
1694 static int btrfs_unfreeze(struct super_block *sb)
1695 {
1696 	return 0;
1697 }
1698 
1699 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1700 {
1701 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1702 	struct btrfs_fs_devices *cur_devices;
1703 	struct btrfs_device *dev, *first_dev = NULL;
1704 	struct list_head *head;
1705 	struct rcu_string *name;
1706 
1707 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1708 	cur_devices = fs_info->fs_devices;
1709 	while (cur_devices) {
1710 		head = &cur_devices->devices;
1711 		list_for_each_entry(dev, head, dev_list) {
1712 			if (dev->missing)
1713 				continue;
1714 			if (!first_dev || dev->devid < first_dev->devid)
1715 				first_dev = dev;
1716 		}
1717 		cur_devices = cur_devices->seed;
1718 	}
1719 
1720 	if (first_dev) {
1721 		rcu_read_lock();
1722 		name = rcu_dereference(first_dev->name);
1723 		seq_escape(m, name->str, " \t\n\\");
1724 		rcu_read_unlock();
1725 	} else {
1726 		WARN_ON(1);
1727 	}
1728 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1729 	return 0;
1730 }
1731 
1732 static const struct super_operations btrfs_super_ops = {
1733 	.drop_inode	= btrfs_drop_inode,
1734 	.evict_inode	= btrfs_evict_inode,
1735 	.put_super	= btrfs_put_super,
1736 	.sync_fs	= btrfs_sync_fs,
1737 	.show_options	= btrfs_show_options,
1738 	.show_devname	= btrfs_show_devname,
1739 	.write_inode	= btrfs_write_inode,
1740 	.alloc_inode	= btrfs_alloc_inode,
1741 	.destroy_inode	= btrfs_destroy_inode,
1742 	.statfs		= btrfs_statfs,
1743 	.remount_fs	= btrfs_remount,
1744 	.freeze_fs	= btrfs_freeze,
1745 	.unfreeze_fs	= btrfs_unfreeze,
1746 };
1747 
1748 static const struct file_operations btrfs_ctl_fops = {
1749 	.unlocked_ioctl	 = btrfs_control_ioctl,
1750 	.compat_ioctl = btrfs_control_ioctl,
1751 	.owner	 = THIS_MODULE,
1752 	.llseek = noop_llseek,
1753 };
1754 
1755 static struct miscdevice btrfs_misc = {
1756 	.minor		= BTRFS_MINOR,
1757 	.name		= "btrfs-control",
1758 	.fops		= &btrfs_ctl_fops
1759 };
1760 
1761 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1762 MODULE_ALIAS("devname:btrfs-control");
1763 
1764 static int btrfs_interface_init(void)
1765 {
1766 	return misc_register(&btrfs_misc);
1767 }
1768 
1769 static void btrfs_interface_exit(void)
1770 {
1771 	if (misc_deregister(&btrfs_misc) < 0)
1772 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1773 }
1774 
1775 static void btrfs_print_info(void)
1776 {
1777 	printk(KERN_INFO "Btrfs loaded"
1778 #ifdef CONFIG_BTRFS_DEBUG
1779 			", debug=on"
1780 #endif
1781 #ifdef CONFIG_BTRFS_ASSERT
1782 			", assert=on"
1783 #endif
1784 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1785 			", integrity-checker=on"
1786 #endif
1787 			"\n");
1788 }
1789 
1790 static int btrfs_run_sanity_tests(void)
1791 {
1792 	return btrfs_test_free_space_cache();
1793 }
1794 
1795 static int __init init_btrfs_fs(void)
1796 {
1797 	int err;
1798 
1799 	err = btrfs_init_sysfs();
1800 	if (err)
1801 		return err;
1802 
1803 	btrfs_init_compress();
1804 
1805 	err = btrfs_init_cachep();
1806 	if (err)
1807 		goto free_compress;
1808 
1809 	err = extent_io_init();
1810 	if (err)
1811 		goto free_cachep;
1812 
1813 	err = extent_map_init();
1814 	if (err)
1815 		goto free_extent_io;
1816 
1817 	err = ordered_data_init();
1818 	if (err)
1819 		goto free_extent_map;
1820 
1821 	err = btrfs_delayed_inode_init();
1822 	if (err)
1823 		goto free_ordered_data;
1824 
1825 	err = btrfs_auto_defrag_init();
1826 	if (err)
1827 		goto free_delayed_inode;
1828 
1829 	err = btrfs_delayed_ref_init();
1830 	if (err)
1831 		goto free_auto_defrag;
1832 
1833 	err = btrfs_prelim_ref_init();
1834 	if (err)
1835 		goto free_prelim_ref;
1836 
1837 	err = btrfs_interface_init();
1838 	if (err)
1839 		goto free_delayed_ref;
1840 
1841 	btrfs_init_lockdep();
1842 
1843 	btrfs_print_info();
1844 
1845 	err = btrfs_run_sanity_tests();
1846 	if (err)
1847 		goto unregister_ioctl;
1848 
1849 	err = register_filesystem(&btrfs_fs_type);
1850 	if (err)
1851 		goto unregister_ioctl;
1852 
1853 	return 0;
1854 
1855 unregister_ioctl:
1856 	btrfs_interface_exit();
1857 free_prelim_ref:
1858 	btrfs_prelim_ref_exit();
1859 free_delayed_ref:
1860 	btrfs_delayed_ref_exit();
1861 free_auto_defrag:
1862 	btrfs_auto_defrag_exit();
1863 free_delayed_inode:
1864 	btrfs_delayed_inode_exit();
1865 free_ordered_data:
1866 	ordered_data_exit();
1867 free_extent_map:
1868 	extent_map_exit();
1869 free_extent_io:
1870 	extent_io_exit();
1871 free_cachep:
1872 	btrfs_destroy_cachep();
1873 free_compress:
1874 	btrfs_exit_compress();
1875 	btrfs_exit_sysfs();
1876 	return err;
1877 }
1878 
1879 static void __exit exit_btrfs_fs(void)
1880 {
1881 	btrfs_destroy_cachep();
1882 	btrfs_delayed_ref_exit();
1883 	btrfs_auto_defrag_exit();
1884 	btrfs_delayed_inode_exit();
1885 	btrfs_prelim_ref_exit();
1886 	ordered_data_exit();
1887 	extent_map_exit();
1888 	extent_io_exit();
1889 	btrfs_interface_exit();
1890 	unregister_filesystem(&btrfs_fs_type);
1891 	btrfs_exit_sysfs();
1892 	btrfs_cleanup_fs_uuids();
1893 	btrfs_exit_compress();
1894 }
1895 
1896 module_init(init_btrfs_fs)
1897 module_exit(exit_btrfs_fs)
1898 
1899 MODULE_LICENSE("GPL");
1900