xref: /linux/fs/btrfs/super.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 
69 /*
70  * Types for mounting the default subvolume and a subvolume explicitly
71  * requested by subvol=/path. That way the callchain is straightforward and we
72  * don't have to play tricks with the mount options and recursive calls to
73  * btrfs_mount.
74  *
75  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
76  */
77 static struct file_system_type btrfs_fs_type;
78 static struct file_system_type btrfs_root_fs_type;
79 
80 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
81 
82 const char *btrfs_decode_error(int errno)
83 {
84 	char *errstr = "unknown";
85 
86 	switch (errno) {
87 	case -EIO:
88 		errstr = "IO failure";
89 		break;
90 	case -ENOMEM:
91 		errstr = "Out of memory";
92 		break;
93 	case -EROFS:
94 		errstr = "Readonly filesystem";
95 		break;
96 	case -EEXIST:
97 		errstr = "Object already exists";
98 		break;
99 	case -ENOSPC:
100 		errstr = "No space left";
101 		break;
102 	case -ENOENT:
103 		errstr = "No such entry";
104 		break;
105 	}
106 
107 	return errstr;
108 }
109 
110 /*
111  * __btrfs_handle_fs_error decodes expected errors from the caller and
112  * invokes the approciate error response.
113  */
114 __cold
115 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
116 		       unsigned int line, int errno, const char *fmt, ...)
117 {
118 	struct super_block *sb = fs_info->sb;
119 #ifdef CONFIG_PRINTK
120 	const char *errstr;
121 #endif
122 
123 	/*
124 	 * Special case: if the error is EROFS, and we're already
125 	 * under SB_RDONLY, then it is safe here.
126 	 */
127 	if (errno == -EROFS && sb_rdonly(sb))
128   		return;
129 
130 #ifdef CONFIG_PRINTK
131 	errstr = btrfs_decode_error(errno);
132 	if (fmt) {
133 		struct va_format vaf;
134 		va_list args;
135 
136 		va_start(args, fmt);
137 		vaf.fmt = fmt;
138 		vaf.va = &args;
139 
140 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
141 			sb->s_id, function, line, errno, errstr, &vaf);
142 		va_end(args);
143 	} else {
144 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
145 			sb->s_id, function, line, errno, errstr);
146 	}
147 #endif
148 
149 	/*
150 	 * Today we only save the error info to memory.  Long term we'll
151 	 * also send it down to the disk
152 	 */
153 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
154 
155 	/* Don't go through full error handling during mount */
156 	if (!(sb->s_flags & SB_BORN))
157 		return;
158 
159 	if (sb_rdonly(sb))
160 		return;
161 
162 	/* btrfs handle error by forcing the filesystem readonly */
163 	sb->s_flags |= SB_RDONLY;
164 	btrfs_info(fs_info, "forced readonly");
165 	/*
166 	 * Note that a running device replace operation is not canceled here
167 	 * although there is no way to update the progress. It would add the
168 	 * risk of a deadlock, therefore the canceling is omitted. The only
169 	 * penalty is that some I/O remains active until the procedure
170 	 * completes. The next time when the filesystem is mounted writeable
171 	 * again, the device replace operation continues.
172 	 */
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 	struct va_format vaf;
207 	va_list args;
208 	int kern_level;
209 	const char *type = logtypes[4];
210 	struct ratelimit_state *ratelimit = &printk_limits[4];
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	vaf.fmt = fmt;
227 	vaf.va = &args;
228 
229 	if (__ratelimit(ratelimit))
230 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
231 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
232 
233 	va_end(args);
234 }
235 #endif
236 
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 __cold
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       const char *function,
253 			       unsigned int line, int errno)
254 {
255 	struct btrfs_fs_info *fs_info = trans->fs_info;
256 
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	WRITE_ONCE(trans->transaction->aborted, errno);
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&fs_info->transaction_wait);
272 	wake_up(&fs_info->transaction_blocked_wait);
273 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 __cold
280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 		   unsigned int line, int errno, const char *fmt, ...)
282 {
283 	char *s_id = "<unknown>";
284 	const char *errstr;
285 	struct va_format vaf = { .fmt = fmt };
286 	va_list args;
287 
288 	if (fs_info)
289 		s_id = fs_info->sb->s_id;
290 
291 	va_start(args, fmt);
292 	vaf.va = &args;
293 
294 	errstr = btrfs_decode_error(errno);
295 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
296 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 			s_id, function, line, &vaf, errno, errstr);
298 
299 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 		   function, line, &vaf, errno, errstr);
301 	va_end(args);
302 	/* Caller calls BUG() */
303 }
304 
305 static void btrfs_put_super(struct super_block *sb)
306 {
307 	close_ctree(btrfs_sb(sb));
308 }
309 
310 enum {
311 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
317 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
318 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
319 	Opt_skip_balance, Opt_check_integrity,
320 	Opt_check_integrity_including_extent_data,
321 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
322 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
323 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
324 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
325 	Opt_nologreplay, Opt_norecovery,
326 #ifdef CONFIG_BTRFS_DEBUG
327 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
328 #endif
329 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
330 	Opt_ref_verify,
331 #endif
332 	Opt_err,
333 };
334 
335 static const match_table_t tokens = {
336 	{Opt_degraded, "degraded"},
337 	{Opt_subvol, "subvol=%s"},
338 	{Opt_subvolid, "subvolid=%s"},
339 	{Opt_device, "device=%s"},
340 	{Opt_nodatasum, "nodatasum"},
341 	{Opt_datasum, "datasum"},
342 	{Opt_nodatacow, "nodatacow"},
343 	{Opt_datacow, "datacow"},
344 	{Opt_nobarrier, "nobarrier"},
345 	{Opt_barrier, "barrier"},
346 	{Opt_max_inline, "max_inline=%s"},
347 	{Opt_alloc_start, "alloc_start=%s"},
348 	{Opt_thread_pool, "thread_pool=%d"},
349 	{Opt_compress, "compress"},
350 	{Opt_compress_type, "compress=%s"},
351 	{Opt_compress_force, "compress-force"},
352 	{Opt_compress_force_type, "compress-force=%s"},
353 	{Opt_ssd, "ssd"},
354 	{Opt_ssd_spread, "ssd_spread"},
355 	{Opt_nossd, "nossd"},
356 	{Opt_acl, "acl"},
357 	{Opt_noacl, "noacl"},
358 	{Opt_notreelog, "notreelog"},
359 	{Opt_treelog, "treelog"},
360 	{Opt_nologreplay, "nologreplay"},
361 	{Opt_norecovery, "norecovery"},
362 	{Opt_flushoncommit, "flushoncommit"},
363 	{Opt_noflushoncommit, "noflushoncommit"},
364 	{Opt_ratio, "metadata_ratio=%d"},
365 	{Opt_discard, "discard"},
366 	{Opt_nodiscard, "nodiscard"},
367 	{Opt_space_cache, "space_cache"},
368 	{Opt_space_cache_version, "space_cache=%s"},
369 	{Opt_clear_cache, "clear_cache"},
370 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
371 	{Opt_enospc_debug, "enospc_debug"},
372 	{Opt_noenospc_debug, "noenospc_debug"},
373 	{Opt_subvolrootid, "subvolrootid=%d"},
374 	{Opt_defrag, "autodefrag"},
375 	{Opt_nodefrag, "noautodefrag"},
376 	{Opt_inode_cache, "inode_cache"},
377 	{Opt_noinode_cache, "noinode_cache"},
378 	{Opt_no_space_cache, "nospace_cache"},
379 	{Opt_recovery, "recovery"}, /* deprecated */
380 	{Opt_usebackuproot, "usebackuproot"},
381 	{Opt_skip_balance, "skip_balance"},
382 	{Opt_check_integrity, "check_int"},
383 	{Opt_check_integrity_including_extent_data, "check_int_data"},
384 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
385 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
386 	{Opt_fatal_errors, "fatal_errors=%s"},
387 	{Opt_commit_interval, "commit=%d"},
388 #ifdef CONFIG_BTRFS_DEBUG
389 	{Opt_fragment_data, "fragment=data"},
390 	{Opt_fragment_metadata, "fragment=metadata"},
391 	{Opt_fragment_all, "fragment=all"},
392 #endif
393 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
394 	{Opt_ref_verify, "ref_verify"},
395 #endif
396 	{Opt_err, NULL},
397 };
398 
399 /*
400  * Regular mount options parser.  Everything that is needed only when
401  * reading in a new superblock is parsed here.
402  * XXX JDM: This needs to be cleaned up for remount.
403  */
404 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
405 			unsigned long new_flags)
406 {
407 	substring_t args[MAX_OPT_ARGS];
408 	char *p, *num;
409 	u64 cache_gen;
410 	int intarg;
411 	int ret = 0;
412 	char *compress_type;
413 	bool compress_force = false;
414 	enum btrfs_compression_type saved_compress_type;
415 	bool saved_compress_force;
416 	int no_compress = 0;
417 
418 	cache_gen = btrfs_super_cache_generation(info->super_copy);
419 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
420 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
421 	else if (cache_gen)
422 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
423 
424 	/*
425 	 * Even the options are empty, we still need to do extra check
426 	 * against new flags
427 	 */
428 	if (!options)
429 		goto check;
430 
431 	while ((p = strsep(&options, ",")) != NULL) {
432 		int token;
433 		if (!*p)
434 			continue;
435 
436 		token = match_token(p, tokens, args);
437 		switch (token) {
438 		case Opt_degraded:
439 			btrfs_info(info, "allowing degraded mounts");
440 			btrfs_set_opt(info->mount_opt, DEGRADED);
441 			break;
442 		case Opt_subvol:
443 		case Opt_subvolid:
444 		case Opt_subvolrootid:
445 		case Opt_device:
446 			/*
447 			 * These are parsed by btrfs_parse_subvol_options
448 			 * and btrfs_parse_early_options
449 			 * and can be happily ignored here.
450 			 */
451 			break;
452 		case Opt_nodatasum:
453 			btrfs_set_and_info(info, NODATASUM,
454 					   "setting nodatasum");
455 			break;
456 		case Opt_datasum:
457 			if (btrfs_test_opt(info, NODATASUM)) {
458 				if (btrfs_test_opt(info, NODATACOW))
459 					btrfs_info(info,
460 						   "setting datasum, datacow enabled");
461 				else
462 					btrfs_info(info, "setting datasum");
463 			}
464 			btrfs_clear_opt(info->mount_opt, NODATACOW);
465 			btrfs_clear_opt(info->mount_opt, NODATASUM);
466 			break;
467 		case Opt_nodatacow:
468 			if (!btrfs_test_opt(info, NODATACOW)) {
469 				if (!btrfs_test_opt(info, COMPRESS) ||
470 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
471 					btrfs_info(info,
472 						   "setting nodatacow, compression disabled");
473 				} else {
474 					btrfs_info(info, "setting nodatacow");
475 				}
476 			}
477 			btrfs_clear_opt(info->mount_opt, COMPRESS);
478 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
479 			btrfs_set_opt(info->mount_opt, NODATACOW);
480 			btrfs_set_opt(info->mount_opt, NODATASUM);
481 			break;
482 		case Opt_datacow:
483 			btrfs_clear_and_info(info, NODATACOW,
484 					     "setting datacow");
485 			break;
486 		case Opt_compress_force:
487 		case Opt_compress_force_type:
488 			compress_force = true;
489 			/* Fallthrough */
490 		case Opt_compress:
491 		case Opt_compress_type:
492 			saved_compress_type = btrfs_test_opt(info,
493 							     COMPRESS) ?
494 				info->compress_type : BTRFS_COMPRESS_NONE;
495 			saved_compress_force =
496 				btrfs_test_opt(info, FORCE_COMPRESS);
497 			if (token == Opt_compress ||
498 			    token == Opt_compress_force ||
499 			    strncmp(args[0].from, "zlib", 4) == 0) {
500 				compress_type = "zlib";
501 
502 				info->compress_type = BTRFS_COMPRESS_ZLIB;
503 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
504 				/*
505 				 * args[0] contains uninitialized data since
506 				 * for these tokens we don't expect any
507 				 * parameter.
508 				 */
509 				if (token != Opt_compress &&
510 				    token != Opt_compress_force)
511 					info->compress_level =
512 					  btrfs_compress_str2level(args[0].from);
513 				btrfs_set_opt(info->mount_opt, COMPRESS);
514 				btrfs_clear_opt(info->mount_opt, NODATACOW);
515 				btrfs_clear_opt(info->mount_opt, NODATASUM);
516 				no_compress = 0;
517 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
518 				compress_type = "lzo";
519 				info->compress_type = BTRFS_COMPRESS_LZO;
520 				btrfs_set_opt(info->mount_opt, COMPRESS);
521 				btrfs_clear_opt(info->mount_opt, NODATACOW);
522 				btrfs_clear_opt(info->mount_opt, NODATASUM);
523 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
524 				no_compress = 0;
525 			} else if (strcmp(args[0].from, "zstd") == 0) {
526 				compress_type = "zstd";
527 				info->compress_type = BTRFS_COMPRESS_ZSTD;
528 				btrfs_set_opt(info->mount_opt, COMPRESS);
529 				btrfs_clear_opt(info->mount_opt, NODATACOW);
530 				btrfs_clear_opt(info->mount_opt, NODATASUM);
531 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
532 				no_compress = 0;
533 			} else if (strncmp(args[0].from, "no", 2) == 0) {
534 				compress_type = "no";
535 				btrfs_clear_opt(info->mount_opt, COMPRESS);
536 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
537 				compress_force = false;
538 				no_compress++;
539 			} else {
540 				ret = -EINVAL;
541 				goto out;
542 			}
543 
544 			if (compress_force) {
545 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
546 			} else {
547 				/*
548 				 * If we remount from compress-force=xxx to
549 				 * compress=xxx, we need clear FORCE_COMPRESS
550 				 * flag, otherwise, there is no way for users
551 				 * to disable forcible compression separately.
552 				 */
553 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
554 			}
555 			if ((btrfs_test_opt(info, COMPRESS) &&
556 			     (info->compress_type != saved_compress_type ||
557 			      compress_force != saved_compress_force)) ||
558 			    (!btrfs_test_opt(info, COMPRESS) &&
559 			     no_compress == 1)) {
560 				btrfs_info(info, "%s %s compression, level %d",
561 					   (compress_force) ? "force" : "use",
562 					   compress_type, info->compress_level);
563 			}
564 			compress_force = false;
565 			break;
566 		case Opt_ssd:
567 			btrfs_set_and_info(info, SSD,
568 					   "enabling ssd optimizations");
569 			btrfs_clear_opt(info->mount_opt, NOSSD);
570 			break;
571 		case Opt_ssd_spread:
572 			btrfs_set_and_info(info, SSD,
573 					   "enabling ssd optimizations");
574 			btrfs_set_and_info(info, SSD_SPREAD,
575 					   "using spread ssd allocation scheme");
576 			btrfs_clear_opt(info->mount_opt, NOSSD);
577 			break;
578 		case Opt_nossd:
579 			btrfs_set_opt(info->mount_opt, NOSSD);
580 			btrfs_clear_and_info(info, SSD,
581 					     "not using ssd optimizations");
582 			btrfs_clear_and_info(info, SSD_SPREAD,
583 					     "not using spread ssd allocation scheme");
584 			break;
585 		case Opt_barrier:
586 			btrfs_clear_and_info(info, NOBARRIER,
587 					     "turning on barriers");
588 			break;
589 		case Opt_nobarrier:
590 			btrfs_set_and_info(info, NOBARRIER,
591 					   "turning off barriers");
592 			break;
593 		case Opt_thread_pool:
594 			ret = match_int(&args[0], &intarg);
595 			if (ret) {
596 				goto out;
597 			} else if (intarg > 0) {
598 				info->thread_pool_size = intarg;
599 			} else {
600 				ret = -EINVAL;
601 				goto out;
602 			}
603 			break;
604 		case Opt_max_inline:
605 			num = match_strdup(&args[0]);
606 			if (num) {
607 				info->max_inline = memparse(num, NULL);
608 				kfree(num);
609 
610 				if (info->max_inline) {
611 					info->max_inline = min_t(u64,
612 						info->max_inline,
613 						info->sectorsize);
614 				}
615 				btrfs_info(info, "max_inline at %llu",
616 					   info->max_inline);
617 			} else {
618 				ret = -ENOMEM;
619 				goto out;
620 			}
621 			break;
622 		case Opt_alloc_start:
623 			btrfs_info(info,
624 				"option alloc_start is obsolete, ignored");
625 			break;
626 		case Opt_acl:
627 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
628 			info->sb->s_flags |= SB_POSIXACL;
629 			break;
630 #else
631 			btrfs_err(info, "support for ACL not compiled in!");
632 			ret = -EINVAL;
633 			goto out;
634 #endif
635 		case Opt_noacl:
636 			info->sb->s_flags &= ~SB_POSIXACL;
637 			break;
638 		case Opt_notreelog:
639 			btrfs_set_and_info(info, NOTREELOG,
640 					   "disabling tree log");
641 			break;
642 		case Opt_treelog:
643 			btrfs_clear_and_info(info, NOTREELOG,
644 					     "enabling tree log");
645 			break;
646 		case Opt_norecovery:
647 		case Opt_nologreplay:
648 			btrfs_set_and_info(info, NOLOGREPLAY,
649 					   "disabling log replay at mount time");
650 			break;
651 		case Opt_flushoncommit:
652 			btrfs_set_and_info(info, FLUSHONCOMMIT,
653 					   "turning on flush-on-commit");
654 			break;
655 		case Opt_noflushoncommit:
656 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
657 					     "turning off flush-on-commit");
658 			break;
659 		case Opt_ratio:
660 			ret = match_int(&args[0], &intarg);
661 			if (ret) {
662 				goto out;
663 			} else if (intarg >= 0) {
664 				info->metadata_ratio = intarg;
665 				btrfs_info(info, "metadata ratio %d",
666 					   info->metadata_ratio);
667 			} else {
668 				ret = -EINVAL;
669 				goto out;
670 			}
671 			break;
672 		case Opt_discard:
673 			btrfs_set_and_info(info, DISCARD,
674 					   "turning on discard");
675 			break;
676 		case Opt_nodiscard:
677 			btrfs_clear_and_info(info, DISCARD,
678 					     "turning off discard");
679 			break;
680 		case Opt_space_cache:
681 		case Opt_space_cache_version:
682 			if (token == Opt_space_cache ||
683 			    strcmp(args[0].from, "v1") == 0) {
684 				btrfs_clear_opt(info->mount_opt,
685 						FREE_SPACE_TREE);
686 				btrfs_set_and_info(info, SPACE_CACHE,
687 					   "enabling disk space caching");
688 			} else if (strcmp(args[0].from, "v2") == 0) {
689 				btrfs_clear_opt(info->mount_opt,
690 						SPACE_CACHE);
691 				btrfs_set_and_info(info, FREE_SPACE_TREE,
692 						   "enabling free space tree");
693 			} else {
694 				ret = -EINVAL;
695 				goto out;
696 			}
697 			break;
698 		case Opt_rescan_uuid_tree:
699 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
700 			break;
701 		case Opt_no_space_cache:
702 			if (btrfs_test_opt(info, SPACE_CACHE)) {
703 				btrfs_clear_and_info(info, SPACE_CACHE,
704 					     "disabling disk space caching");
705 			}
706 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
707 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
708 					     "disabling free space tree");
709 			}
710 			break;
711 		case Opt_inode_cache:
712 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
713 					   "enabling inode map caching");
714 			break;
715 		case Opt_noinode_cache:
716 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
717 					     "disabling inode map caching");
718 			break;
719 		case Opt_clear_cache:
720 			btrfs_set_and_info(info, CLEAR_CACHE,
721 					   "force clearing of disk cache");
722 			break;
723 		case Opt_user_subvol_rm_allowed:
724 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
725 			break;
726 		case Opt_enospc_debug:
727 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
728 			break;
729 		case Opt_noenospc_debug:
730 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
731 			break;
732 		case Opt_defrag:
733 			btrfs_set_and_info(info, AUTO_DEFRAG,
734 					   "enabling auto defrag");
735 			break;
736 		case Opt_nodefrag:
737 			btrfs_clear_and_info(info, AUTO_DEFRAG,
738 					     "disabling auto defrag");
739 			break;
740 		case Opt_recovery:
741 			btrfs_warn(info,
742 				   "'recovery' is deprecated, use 'usebackuproot' instead");
743 		case Opt_usebackuproot:
744 			btrfs_info(info,
745 				   "trying to use backup root at mount time");
746 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
747 			break;
748 		case Opt_skip_balance:
749 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
750 			break;
751 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
752 		case Opt_check_integrity_including_extent_data:
753 			btrfs_info(info,
754 				   "enabling check integrity including extent data");
755 			btrfs_set_opt(info->mount_opt,
756 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
757 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
758 			break;
759 		case Opt_check_integrity:
760 			btrfs_info(info, "enabling check integrity");
761 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
762 			break;
763 		case Opt_check_integrity_print_mask:
764 			ret = match_int(&args[0], &intarg);
765 			if (ret) {
766 				goto out;
767 			} else if (intarg >= 0) {
768 				info->check_integrity_print_mask = intarg;
769 				btrfs_info(info,
770 					   "check_integrity_print_mask 0x%x",
771 					   info->check_integrity_print_mask);
772 			} else {
773 				ret = -EINVAL;
774 				goto out;
775 			}
776 			break;
777 #else
778 		case Opt_check_integrity_including_extent_data:
779 		case Opt_check_integrity:
780 		case Opt_check_integrity_print_mask:
781 			btrfs_err(info,
782 				  "support for check_integrity* not compiled in!");
783 			ret = -EINVAL;
784 			goto out;
785 #endif
786 		case Opt_fatal_errors:
787 			if (strcmp(args[0].from, "panic") == 0)
788 				btrfs_set_opt(info->mount_opt,
789 					      PANIC_ON_FATAL_ERROR);
790 			else if (strcmp(args[0].from, "bug") == 0)
791 				btrfs_clear_opt(info->mount_opt,
792 					      PANIC_ON_FATAL_ERROR);
793 			else {
794 				ret = -EINVAL;
795 				goto out;
796 			}
797 			break;
798 		case Opt_commit_interval:
799 			intarg = 0;
800 			ret = match_int(&args[0], &intarg);
801 			if (ret < 0) {
802 				btrfs_err(info, "invalid commit interval");
803 				ret = -EINVAL;
804 				goto out;
805 			}
806 			if (intarg > 0) {
807 				if (intarg > 300) {
808 					btrfs_warn(info,
809 						"excessive commit interval %d",
810 						intarg);
811 				}
812 				info->commit_interval = intarg;
813 			} else {
814 				btrfs_info(info,
815 					   "using default commit interval %ds",
816 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
817 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
818 			}
819 			break;
820 #ifdef CONFIG_BTRFS_DEBUG
821 		case Opt_fragment_all:
822 			btrfs_info(info, "fragmenting all space");
823 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
824 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
825 			break;
826 		case Opt_fragment_metadata:
827 			btrfs_info(info, "fragmenting metadata");
828 			btrfs_set_opt(info->mount_opt,
829 				      FRAGMENT_METADATA);
830 			break;
831 		case Opt_fragment_data:
832 			btrfs_info(info, "fragmenting data");
833 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
834 			break;
835 #endif
836 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
837 		case Opt_ref_verify:
838 			btrfs_info(info, "doing ref verification");
839 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
840 			break;
841 #endif
842 		case Opt_err:
843 			btrfs_info(info, "unrecognized mount option '%s'", p);
844 			ret = -EINVAL;
845 			goto out;
846 		default:
847 			break;
848 		}
849 	}
850 check:
851 	/*
852 	 * Extra check for current option against current flag
853 	 */
854 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
855 		btrfs_err(info,
856 			  "nologreplay must be used with ro mount option");
857 		ret = -EINVAL;
858 	}
859 out:
860 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
861 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
862 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
863 		btrfs_err(info, "cannot disable free space tree");
864 		ret = -EINVAL;
865 
866 	}
867 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
868 		btrfs_info(info, "disk space caching is enabled");
869 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
870 		btrfs_info(info, "using free space tree");
871 	return ret;
872 }
873 
874 /*
875  * Parse mount options that are required early in the mount process.
876  *
877  * All other options will be parsed on much later in the mount process and
878  * only when we need to allocate a new super block.
879  */
880 static int btrfs_parse_early_options(const char *options, fmode_t flags,
881 		void *holder, struct btrfs_fs_devices **fs_devices)
882 {
883 	substring_t args[MAX_OPT_ARGS];
884 	char *device_name, *opts, *orig, *p;
885 	int error = 0;
886 
887 	if (!options)
888 		return 0;
889 
890 	/*
891 	 * strsep changes the string, duplicate it because btrfs_parse_options
892 	 * gets called later
893 	 */
894 	opts = kstrdup(options, GFP_KERNEL);
895 	if (!opts)
896 		return -ENOMEM;
897 	orig = opts;
898 
899 	while ((p = strsep(&opts, ",")) != NULL) {
900 		int token;
901 
902 		if (!*p)
903 			continue;
904 
905 		token = match_token(p, tokens, args);
906 		if (token == Opt_device) {
907 			device_name = match_strdup(&args[0]);
908 			if (!device_name) {
909 				error = -ENOMEM;
910 				goto out;
911 			}
912 			error = btrfs_scan_one_device(device_name,
913 					flags, holder, fs_devices);
914 			kfree(device_name);
915 			if (error)
916 				goto out;
917 		}
918 	}
919 
920 out:
921 	kfree(orig);
922 	return error;
923 }
924 
925 /*
926  * Parse mount options that are related to subvolume id
927  *
928  * The value is later passed to mount_subvol()
929  */
930 static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
931 		char **subvol_name, u64 *subvol_objectid)
932 {
933 	substring_t args[MAX_OPT_ARGS];
934 	char *opts, *orig, *p;
935 	char *num = NULL;
936 	int error = 0;
937 
938 	if (!options)
939 		return 0;
940 
941 	/*
942 	 * strsep changes the string, duplicate it because
943 	 * btrfs_parse_early_options gets called later
944 	 */
945 	opts = kstrdup(options, GFP_KERNEL);
946 	if (!opts)
947 		return -ENOMEM;
948 	orig = opts;
949 
950 	while ((p = strsep(&opts, ",")) != NULL) {
951 		int token;
952 		if (!*p)
953 			continue;
954 
955 		token = match_token(p, tokens, args);
956 		switch (token) {
957 		case Opt_subvol:
958 			kfree(*subvol_name);
959 			*subvol_name = match_strdup(&args[0]);
960 			if (!*subvol_name) {
961 				error = -ENOMEM;
962 				goto out;
963 			}
964 			break;
965 		case Opt_subvolid:
966 			num = match_strdup(&args[0]);
967 			if (num) {
968 				*subvol_objectid = memparse(num, NULL);
969 				kfree(num);
970 				/* we want the original fs_tree */
971 				if (!*subvol_objectid)
972 					*subvol_objectid =
973 						BTRFS_FS_TREE_OBJECTID;
974 			} else {
975 				error = -EINVAL;
976 				goto out;
977 			}
978 			break;
979 		case Opt_subvolrootid:
980 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
981 			break;
982 		default:
983 			break;
984 		}
985 	}
986 
987 out:
988 	kfree(orig);
989 	return error;
990 }
991 
992 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
993 					   u64 subvol_objectid)
994 {
995 	struct btrfs_root *root = fs_info->tree_root;
996 	struct btrfs_root *fs_root;
997 	struct btrfs_root_ref *root_ref;
998 	struct btrfs_inode_ref *inode_ref;
999 	struct btrfs_key key;
1000 	struct btrfs_path *path = NULL;
1001 	char *name = NULL, *ptr;
1002 	u64 dirid;
1003 	int len;
1004 	int ret;
1005 
1006 	path = btrfs_alloc_path();
1007 	if (!path) {
1008 		ret = -ENOMEM;
1009 		goto err;
1010 	}
1011 	path->leave_spinning = 1;
1012 
1013 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1014 	if (!name) {
1015 		ret = -ENOMEM;
1016 		goto err;
1017 	}
1018 	ptr = name + PATH_MAX - 1;
1019 	ptr[0] = '\0';
1020 
1021 	/*
1022 	 * Walk up the subvolume trees in the tree of tree roots by root
1023 	 * backrefs until we hit the top-level subvolume.
1024 	 */
1025 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1026 		key.objectid = subvol_objectid;
1027 		key.type = BTRFS_ROOT_BACKREF_KEY;
1028 		key.offset = (u64)-1;
1029 
1030 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1031 		if (ret < 0) {
1032 			goto err;
1033 		} else if (ret > 0) {
1034 			ret = btrfs_previous_item(root, path, subvol_objectid,
1035 						  BTRFS_ROOT_BACKREF_KEY);
1036 			if (ret < 0) {
1037 				goto err;
1038 			} else if (ret > 0) {
1039 				ret = -ENOENT;
1040 				goto err;
1041 			}
1042 		}
1043 
1044 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1045 		subvol_objectid = key.offset;
1046 
1047 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1048 					  struct btrfs_root_ref);
1049 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1050 		ptr -= len + 1;
1051 		if (ptr < name) {
1052 			ret = -ENAMETOOLONG;
1053 			goto err;
1054 		}
1055 		read_extent_buffer(path->nodes[0], ptr + 1,
1056 				   (unsigned long)(root_ref + 1), len);
1057 		ptr[0] = '/';
1058 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1059 		btrfs_release_path(path);
1060 
1061 		key.objectid = subvol_objectid;
1062 		key.type = BTRFS_ROOT_ITEM_KEY;
1063 		key.offset = (u64)-1;
1064 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1065 		if (IS_ERR(fs_root)) {
1066 			ret = PTR_ERR(fs_root);
1067 			goto err;
1068 		}
1069 
1070 		/*
1071 		 * Walk up the filesystem tree by inode refs until we hit the
1072 		 * root directory.
1073 		 */
1074 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1075 			key.objectid = dirid;
1076 			key.type = BTRFS_INODE_REF_KEY;
1077 			key.offset = (u64)-1;
1078 
1079 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1080 			if (ret < 0) {
1081 				goto err;
1082 			} else if (ret > 0) {
1083 				ret = btrfs_previous_item(fs_root, path, dirid,
1084 							  BTRFS_INODE_REF_KEY);
1085 				if (ret < 0) {
1086 					goto err;
1087 				} else if (ret > 0) {
1088 					ret = -ENOENT;
1089 					goto err;
1090 				}
1091 			}
1092 
1093 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1094 			dirid = key.offset;
1095 
1096 			inode_ref = btrfs_item_ptr(path->nodes[0],
1097 						   path->slots[0],
1098 						   struct btrfs_inode_ref);
1099 			len = btrfs_inode_ref_name_len(path->nodes[0],
1100 						       inode_ref);
1101 			ptr -= len + 1;
1102 			if (ptr < name) {
1103 				ret = -ENAMETOOLONG;
1104 				goto err;
1105 			}
1106 			read_extent_buffer(path->nodes[0], ptr + 1,
1107 					   (unsigned long)(inode_ref + 1), len);
1108 			ptr[0] = '/';
1109 			btrfs_release_path(path);
1110 		}
1111 	}
1112 
1113 	btrfs_free_path(path);
1114 	if (ptr == name + PATH_MAX - 1) {
1115 		name[0] = '/';
1116 		name[1] = '\0';
1117 	} else {
1118 		memmove(name, ptr, name + PATH_MAX - ptr);
1119 	}
1120 	return name;
1121 
1122 err:
1123 	btrfs_free_path(path);
1124 	kfree(name);
1125 	return ERR_PTR(ret);
1126 }
1127 
1128 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1129 {
1130 	struct btrfs_root *root = fs_info->tree_root;
1131 	struct btrfs_dir_item *di;
1132 	struct btrfs_path *path;
1133 	struct btrfs_key location;
1134 	u64 dir_id;
1135 
1136 	path = btrfs_alloc_path();
1137 	if (!path)
1138 		return -ENOMEM;
1139 	path->leave_spinning = 1;
1140 
1141 	/*
1142 	 * Find the "default" dir item which points to the root item that we
1143 	 * will mount by default if we haven't been given a specific subvolume
1144 	 * to mount.
1145 	 */
1146 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1147 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1148 	if (IS_ERR(di)) {
1149 		btrfs_free_path(path);
1150 		return PTR_ERR(di);
1151 	}
1152 	if (!di) {
1153 		/*
1154 		 * Ok the default dir item isn't there.  This is weird since
1155 		 * it's always been there, but don't freak out, just try and
1156 		 * mount the top-level subvolume.
1157 		 */
1158 		btrfs_free_path(path);
1159 		*objectid = BTRFS_FS_TREE_OBJECTID;
1160 		return 0;
1161 	}
1162 
1163 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1164 	btrfs_free_path(path);
1165 	*objectid = location.objectid;
1166 	return 0;
1167 }
1168 
1169 static int btrfs_fill_super(struct super_block *sb,
1170 			    struct btrfs_fs_devices *fs_devices,
1171 			    void *data)
1172 {
1173 	struct inode *inode;
1174 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1175 	struct btrfs_key key;
1176 	int err;
1177 
1178 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1179 	sb->s_magic = BTRFS_SUPER_MAGIC;
1180 	sb->s_op = &btrfs_super_ops;
1181 	sb->s_d_op = &btrfs_dentry_operations;
1182 	sb->s_export_op = &btrfs_export_ops;
1183 	sb->s_xattr = btrfs_xattr_handlers;
1184 	sb->s_time_gran = 1;
1185 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1186 	sb->s_flags |= SB_POSIXACL;
1187 #endif
1188 	sb->s_flags |= SB_I_VERSION;
1189 	sb->s_iflags |= SB_I_CGROUPWB;
1190 
1191 	err = super_setup_bdi(sb);
1192 	if (err) {
1193 		btrfs_err(fs_info, "super_setup_bdi failed");
1194 		return err;
1195 	}
1196 
1197 	err = open_ctree(sb, fs_devices, (char *)data);
1198 	if (err) {
1199 		btrfs_err(fs_info, "open_ctree failed");
1200 		return err;
1201 	}
1202 
1203 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1204 	key.type = BTRFS_INODE_ITEM_KEY;
1205 	key.offset = 0;
1206 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1207 	if (IS_ERR(inode)) {
1208 		err = PTR_ERR(inode);
1209 		goto fail_close;
1210 	}
1211 
1212 	sb->s_root = d_make_root(inode);
1213 	if (!sb->s_root) {
1214 		err = -ENOMEM;
1215 		goto fail_close;
1216 	}
1217 
1218 	cleancache_init_fs(sb);
1219 	sb->s_flags |= SB_ACTIVE;
1220 	return 0;
1221 
1222 fail_close:
1223 	close_ctree(fs_info);
1224 	return err;
1225 }
1226 
1227 int btrfs_sync_fs(struct super_block *sb, int wait)
1228 {
1229 	struct btrfs_trans_handle *trans;
1230 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1231 	struct btrfs_root *root = fs_info->tree_root;
1232 
1233 	trace_btrfs_sync_fs(fs_info, wait);
1234 
1235 	if (!wait) {
1236 		filemap_flush(fs_info->btree_inode->i_mapping);
1237 		return 0;
1238 	}
1239 
1240 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1241 
1242 	trans = btrfs_attach_transaction_barrier(root);
1243 	if (IS_ERR(trans)) {
1244 		/* no transaction, don't bother */
1245 		if (PTR_ERR(trans) == -ENOENT) {
1246 			/*
1247 			 * Exit unless we have some pending changes
1248 			 * that need to go through commit
1249 			 */
1250 			if (fs_info->pending_changes == 0)
1251 				return 0;
1252 			/*
1253 			 * A non-blocking test if the fs is frozen. We must not
1254 			 * start a new transaction here otherwise a deadlock
1255 			 * happens. The pending operations are delayed to the
1256 			 * next commit after thawing.
1257 			 */
1258 			if (sb_start_write_trylock(sb))
1259 				sb_end_write(sb);
1260 			else
1261 				return 0;
1262 			trans = btrfs_start_transaction(root, 0);
1263 		}
1264 		if (IS_ERR(trans))
1265 			return PTR_ERR(trans);
1266 	}
1267 	return btrfs_commit_transaction(trans);
1268 }
1269 
1270 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1271 {
1272 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1273 	const char *compress_type;
1274 
1275 	if (btrfs_test_opt(info, DEGRADED))
1276 		seq_puts(seq, ",degraded");
1277 	if (btrfs_test_opt(info, NODATASUM))
1278 		seq_puts(seq, ",nodatasum");
1279 	if (btrfs_test_opt(info, NODATACOW))
1280 		seq_puts(seq, ",nodatacow");
1281 	if (btrfs_test_opt(info, NOBARRIER))
1282 		seq_puts(seq, ",nobarrier");
1283 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1284 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1285 	if (info->thread_pool_size !=  min_t(unsigned long,
1286 					     num_online_cpus() + 2, 8))
1287 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1288 	if (btrfs_test_opt(info, COMPRESS)) {
1289 		compress_type = btrfs_compress_type2str(info->compress_type);
1290 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1291 			seq_printf(seq, ",compress-force=%s", compress_type);
1292 		else
1293 			seq_printf(seq, ",compress=%s", compress_type);
1294 		if (info->compress_level)
1295 			seq_printf(seq, ":%d", info->compress_level);
1296 	}
1297 	if (btrfs_test_opt(info, NOSSD))
1298 		seq_puts(seq, ",nossd");
1299 	if (btrfs_test_opt(info, SSD_SPREAD))
1300 		seq_puts(seq, ",ssd_spread");
1301 	else if (btrfs_test_opt(info, SSD))
1302 		seq_puts(seq, ",ssd");
1303 	if (btrfs_test_opt(info, NOTREELOG))
1304 		seq_puts(seq, ",notreelog");
1305 	if (btrfs_test_opt(info, NOLOGREPLAY))
1306 		seq_puts(seq, ",nologreplay");
1307 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1308 		seq_puts(seq, ",flushoncommit");
1309 	if (btrfs_test_opt(info, DISCARD))
1310 		seq_puts(seq, ",discard");
1311 	if (!(info->sb->s_flags & SB_POSIXACL))
1312 		seq_puts(seq, ",noacl");
1313 	if (btrfs_test_opt(info, SPACE_CACHE))
1314 		seq_puts(seq, ",space_cache");
1315 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1316 		seq_puts(seq, ",space_cache=v2");
1317 	else
1318 		seq_puts(seq, ",nospace_cache");
1319 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1320 		seq_puts(seq, ",rescan_uuid_tree");
1321 	if (btrfs_test_opt(info, CLEAR_CACHE))
1322 		seq_puts(seq, ",clear_cache");
1323 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1324 		seq_puts(seq, ",user_subvol_rm_allowed");
1325 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1326 		seq_puts(seq, ",enospc_debug");
1327 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1328 		seq_puts(seq, ",autodefrag");
1329 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1330 		seq_puts(seq, ",inode_cache");
1331 	if (btrfs_test_opt(info, SKIP_BALANCE))
1332 		seq_puts(seq, ",skip_balance");
1333 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1334 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1335 		seq_puts(seq, ",check_int_data");
1336 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1337 		seq_puts(seq, ",check_int");
1338 	if (info->check_integrity_print_mask)
1339 		seq_printf(seq, ",check_int_print_mask=%d",
1340 				info->check_integrity_print_mask);
1341 #endif
1342 	if (info->metadata_ratio)
1343 		seq_printf(seq, ",metadata_ratio=%d",
1344 				info->metadata_ratio);
1345 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1346 		seq_puts(seq, ",fatal_errors=panic");
1347 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1348 		seq_printf(seq, ",commit=%d", info->commit_interval);
1349 #ifdef CONFIG_BTRFS_DEBUG
1350 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1351 		seq_puts(seq, ",fragment=data");
1352 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1353 		seq_puts(seq, ",fragment=metadata");
1354 #endif
1355 	if (btrfs_test_opt(info, REF_VERIFY))
1356 		seq_puts(seq, ",ref_verify");
1357 	seq_printf(seq, ",subvolid=%llu",
1358 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1359 	seq_puts(seq, ",subvol=");
1360 	seq_dentry(seq, dentry, " \t\n\\");
1361 	return 0;
1362 }
1363 
1364 static int btrfs_test_super(struct super_block *s, void *data)
1365 {
1366 	struct btrfs_fs_info *p = data;
1367 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1368 
1369 	return fs_info->fs_devices == p->fs_devices;
1370 }
1371 
1372 static int btrfs_set_super(struct super_block *s, void *data)
1373 {
1374 	int err = set_anon_super(s, data);
1375 	if (!err)
1376 		s->s_fs_info = data;
1377 	return err;
1378 }
1379 
1380 /*
1381  * subvolumes are identified by ino 256
1382  */
1383 static inline int is_subvolume_inode(struct inode *inode)
1384 {
1385 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1386 		return 1;
1387 	return 0;
1388 }
1389 
1390 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1391 				   const char *device_name, struct vfsmount *mnt)
1392 {
1393 	struct dentry *root;
1394 	int ret;
1395 
1396 	if (!subvol_name) {
1397 		if (!subvol_objectid) {
1398 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1399 							  &subvol_objectid);
1400 			if (ret) {
1401 				root = ERR_PTR(ret);
1402 				goto out;
1403 			}
1404 		}
1405 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1406 							    subvol_objectid);
1407 		if (IS_ERR(subvol_name)) {
1408 			root = ERR_CAST(subvol_name);
1409 			subvol_name = NULL;
1410 			goto out;
1411 		}
1412 
1413 	}
1414 
1415 	root = mount_subtree(mnt, subvol_name);
1416 	/* mount_subtree() drops our reference on the vfsmount. */
1417 	mnt = NULL;
1418 
1419 	if (!IS_ERR(root)) {
1420 		struct super_block *s = root->d_sb;
1421 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1422 		struct inode *root_inode = d_inode(root);
1423 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1424 
1425 		ret = 0;
1426 		if (!is_subvolume_inode(root_inode)) {
1427 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1428 			       subvol_name);
1429 			ret = -EINVAL;
1430 		}
1431 		if (subvol_objectid && root_objectid != subvol_objectid) {
1432 			/*
1433 			 * This will also catch a race condition where a
1434 			 * subvolume which was passed by ID is renamed and
1435 			 * another subvolume is renamed over the old location.
1436 			 */
1437 			btrfs_err(fs_info,
1438 				  "subvol '%s' does not match subvolid %llu",
1439 				  subvol_name, subvol_objectid);
1440 			ret = -EINVAL;
1441 		}
1442 		if (ret) {
1443 			dput(root);
1444 			root = ERR_PTR(ret);
1445 			deactivate_locked_super(s);
1446 		}
1447 	}
1448 
1449 out:
1450 	mntput(mnt);
1451 	kfree(subvol_name);
1452 	return root;
1453 }
1454 
1455 static int parse_security_options(char *orig_opts,
1456 				  struct security_mnt_opts *sec_opts)
1457 {
1458 	char *secdata = NULL;
1459 	int ret = 0;
1460 
1461 	secdata = alloc_secdata();
1462 	if (!secdata)
1463 		return -ENOMEM;
1464 	ret = security_sb_copy_data(orig_opts, secdata);
1465 	if (ret) {
1466 		free_secdata(secdata);
1467 		return ret;
1468 	}
1469 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1470 	free_secdata(secdata);
1471 	return ret;
1472 }
1473 
1474 static int setup_security_options(struct btrfs_fs_info *fs_info,
1475 				  struct super_block *sb,
1476 				  struct security_mnt_opts *sec_opts)
1477 {
1478 	int ret = 0;
1479 
1480 	/*
1481 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1482 	 * is valid.
1483 	 */
1484 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1485 	if (ret)
1486 		return ret;
1487 
1488 #ifdef CONFIG_SECURITY
1489 	if (!fs_info->security_opts.num_mnt_opts) {
1490 		/* first time security setup, copy sec_opts to fs_info */
1491 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1492 	} else {
1493 		/*
1494 		 * Since SELinux (the only one supporting security_mnt_opts)
1495 		 * does NOT support changing context during remount/mount of
1496 		 * the same sb, this must be the same or part of the same
1497 		 * security options, just free it.
1498 		 */
1499 		security_free_mnt_opts(sec_opts);
1500 	}
1501 #endif
1502 	return ret;
1503 }
1504 
1505 /*
1506  * Find a superblock for the given device / mount point.
1507  *
1508  * Note: This is based on mount_bdev from fs/super.c with a few additions
1509  *       for multiple device setup.  Make sure to keep it in sync.
1510  */
1511 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1512 		int flags, const char *device_name, void *data)
1513 {
1514 	struct block_device *bdev = NULL;
1515 	struct super_block *s;
1516 	struct btrfs_fs_devices *fs_devices = NULL;
1517 	struct btrfs_fs_info *fs_info = NULL;
1518 	struct security_mnt_opts new_sec_opts;
1519 	fmode_t mode = FMODE_READ;
1520 	int error = 0;
1521 
1522 	if (!(flags & SB_RDONLY))
1523 		mode |= FMODE_WRITE;
1524 
1525 	error = btrfs_parse_early_options(data, mode, fs_type,
1526 					  &fs_devices);
1527 	if (error) {
1528 		return ERR_PTR(error);
1529 	}
1530 
1531 	security_init_mnt_opts(&new_sec_opts);
1532 	if (data) {
1533 		error = parse_security_options(data, &new_sec_opts);
1534 		if (error)
1535 			return ERR_PTR(error);
1536 	}
1537 
1538 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1539 	if (error)
1540 		goto error_sec_opts;
1541 
1542 	/*
1543 	 * Setup a dummy root and fs_info for test/set super.  This is because
1544 	 * we don't actually fill this stuff out until open_ctree, but we need
1545 	 * it for searching for existing supers, so this lets us do that and
1546 	 * then open_ctree will properly initialize everything later.
1547 	 */
1548 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1549 	if (!fs_info) {
1550 		error = -ENOMEM;
1551 		goto error_sec_opts;
1552 	}
1553 
1554 	fs_info->fs_devices = fs_devices;
1555 
1556 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1557 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1558 	security_init_mnt_opts(&fs_info->security_opts);
1559 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1560 		error = -ENOMEM;
1561 		goto error_fs_info;
1562 	}
1563 
1564 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1565 	if (error)
1566 		goto error_fs_info;
1567 
1568 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1569 		error = -EACCES;
1570 		goto error_close_devices;
1571 	}
1572 
1573 	bdev = fs_devices->latest_bdev;
1574 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1575 		 fs_info);
1576 	if (IS_ERR(s)) {
1577 		error = PTR_ERR(s);
1578 		goto error_close_devices;
1579 	}
1580 
1581 	if (s->s_root) {
1582 		btrfs_close_devices(fs_devices);
1583 		free_fs_info(fs_info);
1584 		if ((flags ^ s->s_flags) & SB_RDONLY)
1585 			error = -EBUSY;
1586 	} else {
1587 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1588 		btrfs_sb(s)->bdev_holder = fs_type;
1589 		error = btrfs_fill_super(s, fs_devices, data);
1590 	}
1591 	if (error) {
1592 		deactivate_locked_super(s);
1593 		goto error_sec_opts;
1594 	}
1595 
1596 	fs_info = btrfs_sb(s);
1597 	error = setup_security_options(fs_info, s, &new_sec_opts);
1598 	if (error) {
1599 		deactivate_locked_super(s);
1600 		goto error_sec_opts;
1601 	}
1602 
1603 	return dget(s->s_root);
1604 
1605 error_close_devices:
1606 	btrfs_close_devices(fs_devices);
1607 error_fs_info:
1608 	free_fs_info(fs_info);
1609 error_sec_opts:
1610 	security_free_mnt_opts(&new_sec_opts);
1611 	return ERR_PTR(error);
1612 }
1613 
1614 /*
1615  * Mount function which is called by VFS layer.
1616  *
1617  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1618  * which needs vfsmount* of device's root (/).  This means device's root has to
1619  * be mounted internally in any case.
1620  *
1621  * Operation flow:
1622  *   1. Parse subvol id related options for later use in mount_subvol().
1623  *
1624  *   2. Mount device's root (/) by calling vfs_kern_mount().
1625  *
1626  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1627  *      first place. In order to avoid calling btrfs_mount() again, we use
1628  *      different file_system_type which is not registered to VFS by
1629  *      register_filesystem() (btrfs_root_fs_type). As a result,
1630  *      btrfs_mount_root() is called. The return value will be used by
1631  *      mount_subtree() in mount_subvol().
1632  *
1633  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1634  *      "btrfs subvolume set-default", mount_subvol() is called always.
1635  */
1636 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1637 		const char *device_name, void *data)
1638 {
1639 	struct vfsmount *mnt_root;
1640 	struct dentry *root;
1641 	fmode_t mode = FMODE_READ;
1642 	char *subvol_name = NULL;
1643 	u64 subvol_objectid = 0;
1644 	int error = 0;
1645 
1646 	if (!(flags & SB_RDONLY))
1647 		mode |= FMODE_WRITE;
1648 
1649 	error = btrfs_parse_subvol_options(data, mode,
1650 					  &subvol_name, &subvol_objectid);
1651 	if (error) {
1652 		kfree(subvol_name);
1653 		return ERR_PTR(error);
1654 	}
1655 
1656 	/* mount device's root (/) */
1657 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1658 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1659 		if (flags & SB_RDONLY) {
1660 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1661 				flags & ~SB_RDONLY, device_name, data);
1662 		} else {
1663 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1664 				flags | SB_RDONLY, device_name, data);
1665 			if (IS_ERR(mnt_root)) {
1666 				root = ERR_CAST(mnt_root);
1667 				goto out;
1668 			}
1669 
1670 			down_write(&mnt_root->mnt_sb->s_umount);
1671 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1672 			up_write(&mnt_root->mnt_sb->s_umount);
1673 			if (error < 0) {
1674 				root = ERR_PTR(error);
1675 				mntput(mnt_root);
1676 				goto out;
1677 			}
1678 		}
1679 	}
1680 	if (IS_ERR(mnt_root)) {
1681 		root = ERR_CAST(mnt_root);
1682 		goto out;
1683 	}
1684 
1685 	/* mount_subvol() will free subvol_name and mnt_root */
1686 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1687 
1688 out:
1689 	return root;
1690 }
1691 
1692 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1693 				     int new_pool_size, int old_pool_size)
1694 {
1695 	if (new_pool_size == old_pool_size)
1696 		return;
1697 
1698 	fs_info->thread_pool_size = new_pool_size;
1699 
1700 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1701 	       old_pool_size, new_pool_size);
1702 
1703 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1704 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1705 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1706 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1707 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1708 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1709 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1710 				new_pool_size);
1711 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1712 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1713 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1714 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1715 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1716 				new_pool_size);
1717 }
1718 
1719 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1720 {
1721 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1722 }
1723 
1724 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1725 				       unsigned long old_opts, int flags)
1726 {
1727 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1728 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1729 	     (flags & SB_RDONLY))) {
1730 		/* wait for any defraggers to finish */
1731 		wait_event(fs_info->transaction_wait,
1732 			   (atomic_read(&fs_info->defrag_running) == 0));
1733 		if (flags & SB_RDONLY)
1734 			sync_filesystem(fs_info->sb);
1735 	}
1736 }
1737 
1738 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1739 					 unsigned long old_opts)
1740 {
1741 	/*
1742 	 * We need to cleanup all defragable inodes if the autodefragment is
1743 	 * close or the filesystem is read only.
1744 	 */
1745 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1746 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1747 		btrfs_cleanup_defrag_inodes(fs_info);
1748 	}
1749 
1750 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1751 }
1752 
1753 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1754 {
1755 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1756 	struct btrfs_root *root = fs_info->tree_root;
1757 	unsigned old_flags = sb->s_flags;
1758 	unsigned long old_opts = fs_info->mount_opt;
1759 	unsigned long old_compress_type = fs_info->compress_type;
1760 	u64 old_max_inline = fs_info->max_inline;
1761 	int old_thread_pool_size = fs_info->thread_pool_size;
1762 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1763 	int ret;
1764 
1765 	sync_filesystem(sb);
1766 	btrfs_remount_prepare(fs_info);
1767 
1768 	if (data) {
1769 		struct security_mnt_opts new_sec_opts;
1770 
1771 		security_init_mnt_opts(&new_sec_opts);
1772 		ret = parse_security_options(data, &new_sec_opts);
1773 		if (ret)
1774 			goto restore;
1775 		ret = setup_security_options(fs_info, sb,
1776 					     &new_sec_opts);
1777 		if (ret) {
1778 			security_free_mnt_opts(&new_sec_opts);
1779 			goto restore;
1780 		}
1781 	}
1782 
1783 	ret = btrfs_parse_options(fs_info, data, *flags);
1784 	if (ret) {
1785 		ret = -EINVAL;
1786 		goto restore;
1787 	}
1788 
1789 	btrfs_remount_begin(fs_info, old_opts, *flags);
1790 	btrfs_resize_thread_pool(fs_info,
1791 		fs_info->thread_pool_size, old_thread_pool_size);
1792 
1793 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1794 		goto out;
1795 
1796 	if (*flags & SB_RDONLY) {
1797 		/*
1798 		 * this also happens on 'umount -rf' or on shutdown, when
1799 		 * the filesystem is busy.
1800 		 */
1801 		cancel_work_sync(&fs_info->async_reclaim_work);
1802 
1803 		/* wait for the uuid_scan task to finish */
1804 		down(&fs_info->uuid_tree_rescan_sem);
1805 		/* avoid complains from lockdep et al. */
1806 		up(&fs_info->uuid_tree_rescan_sem);
1807 
1808 		sb->s_flags |= SB_RDONLY;
1809 
1810 		/*
1811 		 * Setting SB_RDONLY will put the cleaner thread to
1812 		 * sleep at the next loop if it's already active.
1813 		 * If it's already asleep, we'll leave unused block
1814 		 * groups on disk until we're mounted read-write again
1815 		 * unless we clean them up here.
1816 		 */
1817 		btrfs_delete_unused_bgs(fs_info);
1818 
1819 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1820 		btrfs_scrub_cancel(fs_info);
1821 		btrfs_pause_balance(fs_info);
1822 
1823 		ret = btrfs_commit_super(fs_info);
1824 		if (ret)
1825 			goto restore;
1826 	} else {
1827 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1828 			btrfs_err(fs_info,
1829 				"Remounting read-write after error is not allowed");
1830 			ret = -EINVAL;
1831 			goto restore;
1832 		}
1833 		if (fs_info->fs_devices->rw_devices == 0) {
1834 			ret = -EACCES;
1835 			goto restore;
1836 		}
1837 
1838 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1839 			btrfs_warn(fs_info,
1840 				"too many missing devices, writeable remount is not allowed");
1841 			ret = -EACCES;
1842 			goto restore;
1843 		}
1844 
1845 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1846 			ret = -EINVAL;
1847 			goto restore;
1848 		}
1849 
1850 		ret = btrfs_cleanup_fs_roots(fs_info);
1851 		if (ret)
1852 			goto restore;
1853 
1854 		/* recover relocation */
1855 		mutex_lock(&fs_info->cleaner_mutex);
1856 		ret = btrfs_recover_relocation(root);
1857 		mutex_unlock(&fs_info->cleaner_mutex);
1858 		if (ret)
1859 			goto restore;
1860 
1861 		ret = btrfs_resume_balance_async(fs_info);
1862 		if (ret)
1863 			goto restore;
1864 
1865 		ret = btrfs_resume_dev_replace_async(fs_info);
1866 		if (ret) {
1867 			btrfs_warn(fs_info, "failed to resume dev_replace");
1868 			goto restore;
1869 		}
1870 
1871 		btrfs_qgroup_rescan_resume(fs_info);
1872 
1873 		if (!fs_info->uuid_root) {
1874 			btrfs_info(fs_info, "creating UUID tree");
1875 			ret = btrfs_create_uuid_tree(fs_info);
1876 			if (ret) {
1877 				btrfs_warn(fs_info,
1878 					   "failed to create the UUID tree %d",
1879 					   ret);
1880 				goto restore;
1881 			}
1882 		}
1883 		sb->s_flags &= ~SB_RDONLY;
1884 
1885 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1886 	}
1887 out:
1888 	wake_up_process(fs_info->transaction_kthread);
1889 	btrfs_remount_cleanup(fs_info, old_opts);
1890 	return 0;
1891 
1892 restore:
1893 	/* We've hit an error - don't reset SB_RDONLY */
1894 	if (sb_rdonly(sb))
1895 		old_flags |= SB_RDONLY;
1896 	sb->s_flags = old_flags;
1897 	fs_info->mount_opt = old_opts;
1898 	fs_info->compress_type = old_compress_type;
1899 	fs_info->max_inline = old_max_inline;
1900 	btrfs_resize_thread_pool(fs_info,
1901 		old_thread_pool_size, fs_info->thread_pool_size);
1902 	fs_info->metadata_ratio = old_metadata_ratio;
1903 	btrfs_remount_cleanup(fs_info, old_opts);
1904 	return ret;
1905 }
1906 
1907 /* Used to sort the devices by max_avail(descending sort) */
1908 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1909 				       const void *dev_info2)
1910 {
1911 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1912 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1913 		return -1;
1914 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1915 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1916 		return 1;
1917 	else
1918 	return 0;
1919 }
1920 
1921 /*
1922  * sort the devices by max_avail, in which max free extent size of each device
1923  * is stored.(Descending Sort)
1924  */
1925 static inline void btrfs_descending_sort_devices(
1926 					struct btrfs_device_info *devices,
1927 					size_t nr_devices)
1928 {
1929 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1930 	     btrfs_cmp_device_free_bytes, NULL);
1931 }
1932 
1933 /*
1934  * The helper to calc the free space on the devices that can be used to store
1935  * file data.
1936  */
1937 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1938 				       u64 *free_bytes)
1939 {
1940 	struct btrfs_device_info *devices_info;
1941 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1942 	struct btrfs_device *device;
1943 	u64 skip_space;
1944 	u64 type;
1945 	u64 avail_space;
1946 	u64 min_stripe_size;
1947 	int min_stripes = 1, num_stripes = 1;
1948 	int i = 0, nr_devices;
1949 
1950 	/*
1951 	 * We aren't under the device list lock, so this is racy-ish, but good
1952 	 * enough for our purposes.
1953 	 */
1954 	nr_devices = fs_info->fs_devices->open_devices;
1955 	if (!nr_devices) {
1956 		smp_mb();
1957 		nr_devices = fs_info->fs_devices->open_devices;
1958 		ASSERT(nr_devices);
1959 		if (!nr_devices) {
1960 			*free_bytes = 0;
1961 			return 0;
1962 		}
1963 	}
1964 
1965 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1966 			       GFP_KERNEL);
1967 	if (!devices_info)
1968 		return -ENOMEM;
1969 
1970 	/* calc min stripe number for data space allocation */
1971 	type = btrfs_data_alloc_profile(fs_info);
1972 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1973 		min_stripes = 2;
1974 		num_stripes = nr_devices;
1975 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1976 		min_stripes = 2;
1977 		num_stripes = 2;
1978 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1979 		min_stripes = 4;
1980 		num_stripes = 4;
1981 	}
1982 
1983 	if (type & BTRFS_BLOCK_GROUP_DUP)
1984 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1985 	else
1986 		min_stripe_size = BTRFS_STRIPE_LEN;
1987 
1988 	rcu_read_lock();
1989 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1990 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1991 						&device->dev_state) ||
1992 		    !device->bdev ||
1993 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1994 			continue;
1995 
1996 		if (i >= nr_devices)
1997 			break;
1998 
1999 		avail_space = device->total_bytes - device->bytes_used;
2000 
2001 		/* align with stripe_len */
2002 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2003 		avail_space *= BTRFS_STRIPE_LEN;
2004 
2005 		/*
2006 		 * In order to avoid overwriting the superblock on the drive,
2007 		 * btrfs starts at an offset of at least 1MB when doing chunk
2008 		 * allocation.
2009 		 */
2010 		skip_space = SZ_1M;
2011 
2012 		/*
2013 		 * we can use the free space in [0, skip_space - 1], subtract
2014 		 * it from the total.
2015 		 */
2016 		if (avail_space && avail_space >= skip_space)
2017 			avail_space -= skip_space;
2018 		else
2019 			avail_space = 0;
2020 
2021 		if (avail_space < min_stripe_size)
2022 			continue;
2023 
2024 		devices_info[i].dev = device;
2025 		devices_info[i].max_avail = avail_space;
2026 
2027 		i++;
2028 	}
2029 	rcu_read_unlock();
2030 
2031 	nr_devices = i;
2032 
2033 	btrfs_descending_sort_devices(devices_info, nr_devices);
2034 
2035 	i = nr_devices - 1;
2036 	avail_space = 0;
2037 	while (nr_devices >= min_stripes) {
2038 		if (num_stripes > nr_devices)
2039 			num_stripes = nr_devices;
2040 
2041 		if (devices_info[i].max_avail >= min_stripe_size) {
2042 			int j;
2043 			u64 alloc_size;
2044 
2045 			avail_space += devices_info[i].max_avail * num_stripes;
2046 			alloc_size = devices_info[i].max_avail;
2047 			for (j = i + 1 - num_stripes; j <= i; j++)
2048 				devices_info[j].max_avail -= alloc_size;
2049 		}
2050 		i--;
2051 		nr_devices--;
2052 	}
2053 
2054 	kfree(devices_info);
2055 	*free_bytes = avail_space;
2056 	return 0;
2057 }
2058 
2059 /*
2060  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2061  *
2062  * If there's a redundant raid level at DATA block groups, use the respective
2063  * multiplier to scale the sizes.
2064  *
2065  * Unused device space usage is based on simulating the chunk allocator
2066  * algorithm that respects the device sizes and order of allocations.  This is
2067  * a close approximation of the actual use but there are other factors that may
2068  * change the result (like a new metadata chunk).
2069  *
2070  * If metadata is exhausted, f_bavail will be 0.
2071  */
2072 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2073 {
2074 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2075 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2076 	struct list_head *head = &fs_info->space_info;
2077 	struct btrfs_space_info *found;
2078 	u64 total_used = 0;
2079 	u64 total_free_data = 0;
2080 	u64 total_free_meta = 0;
2081 	int bits = dentry->d_sb->s_blocksize_bits;
2082 	__be32 *fsid = (__be32 *)fs_info->fsid;
2083 	unsigned factor = 1;
2084 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2085 	int ret;
2086 	u64 thresh = 0;
2087 	int mixed = 0;
2088 
2089 	rcu_read_lock();
2090 	list_for_each_entry_rcu(found, head, list) {
2091 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2092 			int i;
2093 
2094 			total_free_data += found->disk_total - found->disk_used;
2095 			total_free_data -=
2096 				btrfs_account_ro_block_groups_free_space(found);
2097 
2098 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2099 				if (!list_empty(&found->block_groups[i])) {
2100 					switch (i) {
2101 					case BTRFS_RAID_DUP:
2102 					case BTRFS_RAID_RAID1:
2103 					case BTRFS_RAID_RAID10:
2104 						factor = 2;
2105 					}
2106 				}
2107 			}
2108 		}
2109 
2110 		/*
2111 		 * Metadata in mixed block goup profiles are accounted in data
2112 		 */
2113 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2114 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2115 				mixed = 1;
2116 			else
2117 				total_free_meta += found->disk_total -
2118 					found->disk_used;
2119 		}
2120 
2121 		total_used += found->disk_used;
2122 	}
2123 
2124 	rcu_read_unlock();
2125 
2126 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2127 	buf->f_blocks >>= bits;
2128 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2129 
2130 	/* Account global block reserve as used, it's in logical size already */
2131 	spin_lock(&block_rsv->lock);
2132 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2133 	if (buf->f_bfree >= block_rsv->size >> bits)
2134 		buf->f_bfree -= block_rsv->size >> bits;
2135 	else
2136 		buf->f_bfree = 0;
2137 	spin_unlock(&block_rsv->lock);
2138 
2139 	buf->f_bavail = div_u64(total_free_data, factor);
2140 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2141 	if (ret)
2142 		return ret;
2143 	buf->f_bavail += div_u64(total_free_data, factor);
2144 	buf->f_bavail = buf->f_bavail >> bits;
2145 
2146 	/*
2147 	 * We calculate the remaining metadata space minus global reserve. If
2148 	 * this is (supposedly) smaller than zero, there's no space. But this
2149 	 * does not hold in practice, the exhausted state happens where's still
2150 	 * some positive delta. So we apply some guesswork and compare the
2151 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2152 	 *
2153 	 * We probably cannot calculate the exact threshold value because this
2154 	 * depends on the internal reservations requested by various
2155 	 * operations, so some operations that consume a few metadata will
2156 	 * succeed even if the Avail is zero. But this is better than the other
2157 	 * way around.
2158 	 */
2159 	thresh = SZ_4M;
2160 
2161 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2162 		buf->f_bavail = 0;
2163 
2164 	buf->f_type = BTRFS_SUPER_MAGIC;
2165 	buf->f_bsize = dentry->d_sb->s_blocksize;
2166 	buf->f_namelen = BTRFS_NAME_LEN;
2167 
2168 	/* We treat it as constant endianness (it doesn't matter _which_)
2169 	   because we want the fsid to come out the same whether mounted
2170 	   on a big-endian or little-endian host */
2171 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2172 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2173 	/* Mask in the root object ID too, to disambiguate subvols */
2174 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2175 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2176 
2177 	return 0;
2178 }
2179 
2180 static void btrfs_kill_super(struct super_block *sb)
2181 {
2182 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2183 	kill_anon_super(sb);
2184 	free_fs_info(fs_info);
2185 }
2186 
2187 static struct file_system_type btrfs_fs_type = {
2188 	.owner		= THIS_MODULE,
2189 	.name		= "btrfs",
2190 	.mount		= btrfs_mount,
2191 	.kill_sb	= btrfs_kill_super,
2192 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2193 };
2194 
2195 static struct file_system_type btrfs_root_fs_type = {
2196 	.owner		= THIS_MODULE,
2197 	.name		= "btrfs",
2198 	.mount		= btrfs_mount_root,
2199 	.kill_sb	= btrfs_kill_super,
2200 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2201 };
2202 
2203 MODULE_ALIAS_FS("btrfs");
2204 
2205 static int btrfs_control_open(struct inode *inode, struct file *file)
2206 {
2207 	/*
2208 	 * The control file's private_data is used to hold the
2209 	 * transaction when it is started and is used to keep
2210 	 * track of whether a transaction is already in progress.
2211 	 */
2212 	file->private_data = NULL;
2213 	return 0;
2214 }
2215 
2216 /*
2217  * used by btrfsctl to scan devices when no FS is mounted
2218  */
2219 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2220 				unsigned long arg)
2221 {
2222 	struct btrfs_ioctl_vol_args *vol;
2223 	struct btrfs_fs_devices *fs_devices;
2224 	int ret = -ENOTTY;
2225 
2226 	if (!capable(CAP_SYS_ADMIN))
2227 		return -EPERM;
2228 
2229 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2230 	if (IS_ERR(vol))
2231 		return PTR_ERR(vol);
2232 
2233 	switch (cmd) {
2234 	case BTRFS_IOC_SCAN_DEV:
2235 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2236 					    &btrfs_root_fs_type, &fs_devices);
2237 		break;
2238 	case BTRFS_IOC_DEVICES_READY:
2239 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2240 					    &btrfs_root_fs_type, &fs_devices);
2241 		if (ret)
2242 			break;
2243 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2244 		break;
2245 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2246 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2247 		break;
2248 	}
2249 
2250 	kfree(vol);
2251 	return ret;
2252 }
2253 
2254 static int btrfs_freeze(struct super_block *sb)
2255 {
2256 	struct btrfs_trans_handle *trans;
2257 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2258 	struct btrfs_root *root = fs_info->tree_root;
2259 
2260 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2261 	/*
2262 	 * We don't need a barrier here, we'll wait for any transaction that
2263 	 * could be in progress on other threads (and do delayed iputs that
2264 	 * we want to avoid on a frozen filesystem), or do the commit
2265 	 * ourselves.
2266 	 */
2267 	trans = btrfs_attach_transaction_barrier(root);
2268 	if (IS_ERR(trans)) {
2269 		/* no transaction, don't bother */
2270 		if (PTR_ERR(trans) == -ENOENT)
2271 			return 0;
2272 		return PTR_ERR(trans);
2273 	}
2274 	return btrfs_commit_transaction(trans);
2275 }
2276 
2277 static int btrfs_unfreeze(struct super_block *sb)
2278 {
2279 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2280 
2281 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2282 	return 0;
2283 }
2284 
2285 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2286 {
2287 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2288 	struct btrfs_fs_devices *cur_devices;
2289 	struct btrfs_device *dev, *first_dev = NULL;
2290 	struct list_head *head;
2291 	struct rcu_string *name;
2292 
2293 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2294 	cur_devices = fs_info->fs_devices;
2295 	while (cur_devices) {
2296 		head = &cur_devices->devices;
2297 		list_for_each_entry(dev, head, dev_list) {
2298 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2299 				continue;
2300 			if (!dev->name)
2301 				continue;
2302 			if (!first_dev || dev->devid < first_dev->devid)
2303 				first_dev = dev;
2304 		}
2305 		cur_devices = cur_devices->seed;
2306 	}
2307 
2308 	if (first_dev) {
2309 		rcu_read_lock();
2310 		name = rcu_dereference(first_dev->name);
2311 		seq_escape(m, name->str, " \t\n\\");
2312 		rcu_read_unlock();
2313 	} else {
2314 		WARN_ON(1);
2315 	}
2316 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2317 	return 0;
2318 }
2319 
2320 static const struct super_operations btrfs_super_ops = {
2321 	.drop_inode	= btrfs_drop_inode,
2322 	.evict_inode	= btrfs_evict_inode,
2323 	.put_super	= btrfs_put_super,
2324 	.sync_fs	= btrfs_sync_fs,
2325 	.show_options	= btrfs_show_options,
2326 	.show_devname	= btrfs_show_devname,
2327 	.write_inode	= btrfs_write_inode,
2328 	.alloc_inode	= btrfs_alloc_inode,
2329 	.destroy_inode	= btrfs_destroy_inode,
2330 	.statfs		= btrfs_statfs,
2331 	.remount_fs	= btrfs_remount,
2332 	.freeze_fs	= btrfs_freeze,
2333 	.unfreeze_fs	= btrfs_unfreeze,
2334 };
2335 
2336 static const struct file_operations btrfs_ctl_fops = {
2337 	.open = btrfs_control_open,
2338 	.unlocked_ioctl	 = btrfs_control_ioctl,
2339 	.compat_ioctl = btrfs_control_ioctl,
2340 	.owner	 = THIS_MODULE,
2341 	.llseek = noop_llseek,
2342 };
2343 
2344 static struct miscdevice btrfs_misc = {
2345 	.minor		= BTRFS_MINOR,
2346 	.name		= "btrfs-control",
2347 	.fops		= &btrfs_ctl_fops
2348 };
2349 
2350 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2351 MODULE_ALIAS("devname:btrfs-control");
2352 
2353 static int __init btrfs_interface_init(void)
2354 {
2355 	return misc_register(&btrfs_misc);
2356 }
2357 
2358 static void btrfs_interface_exit(void)
2359 {
2360 	misc_deregister(&btrfs_misc);
2361 }
2362 
2363 static void __init btrfs_print_mod_info(void)
2364 {
2365 	pr_info("Btrfs loaded, crc32c=%s"
2366 #ifdef CONFIG_BTRFS_DEBUG
2367 			", debug=on"
2368 #endif
2369 #ifdef CONFIG_BTRFS_ASSERT
2370 			", assert=on"
2371 #endif
2372 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2373 			", integrity-checker=on"
2374 #endif
2375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2376 			", ref-verify=on"
2377 #endif
2378 			"\n",
2379 			btrfs_crc32c_impl());
2380 }
2381 
2382 static int __init init_btrfs_fs(void)
2383 {
2384 	int err;
2385 
2386 	err = btrfs_hash_init();
2387 	if (err)
2388 		return err;
2389 
2390 	btrfs_props_init();
2391 
2392 	err = btrfs_init_sysfs();
2393 	if (err)
2394 		goto free_hash;
2395 
2396 	btrfs_init_compress();
2397 
2398 	err = btrfs_init_cachep();
2399 	if (err)
2400 		goto free_compress;
2401 
2402 	err = extent_io_init();
2403 	if (err)
2404 		goto free_cachep;
2405 
2406 	err = extent_map_init();
2407 	if (err)
2408 		goto free_extent_io;
2409 
2410 	err = ordered_data_init();
2411 	if (err)
2412 		goto free_extent_map;
2413 
2414 	err = btrfs_delayed_inode_init();
2415 	if (err)
2416 		goto free_ordered_data;
2417 
2418 	err = btrfs_auto_defrag_init();
2419 	if (err)
2420 		goto free_delayed_inode;
2421 
2422 	err = btrfs_delayed_ref_init();
2423 	if (err)
2424 		goto free_auto_defrag;
2425 
2426 	err = btrfs_prelim_ref_init();
2427 	if (err)
2428 		goto free_delayed_ref;
2429 
2430 	err = btrfs_end_io_wq_init();
2431 	if (err)
2432 		goto free_prelim_ref;
2433 
2434 	err = btrfs_interface_init();
2435 	if (err)
2436 		goto free_end_io_wq;
2437 
2438 	btrfs_init_lockdep();
2439 
2440 	btrfs_print_mod_info();
2441 
2442 	err = btrfs_run_sanity_tests();
2443 	if (err)
2444 		goto unregister_ioctl;
2445 
2446 	err = register_filesystem(&btrfs_fs_type);
2447 	if (err)
2448 		goto unregister_ioctl;
2449 
2450 	return 0;
2451 
2452 unregister_ioctl:
2453 	btrfs_interface_exit();
2454 free_end_io_wq:
2455 	btrfs_end_io_wq_exit();
2456 free_prelim_ref:
2457 	btrfs_prelim_ref_exit();
2458 free_delayed_ref:
2459 	btrfs_delayed_ref_exit();
2460 free_auto_defrag:
2461 	btrfs_auto_defrag_exit();
2462 free_delayed_inode:
2463 	btrfs_delayed_inode_exit();
2464 free_ordered_data:
2465 	ordered_data_exit();
2466 free_extent_map:
2467 	extent_map_exit();
2468 free_extent_io:
2469 	extent_io_exit();
2470 free_cachep:
2471 	btrfs_destroy_cachep();
2472 free_compress:
2473 	btrfs_exit_compress();
2474 	btrfs_exit_sysfs();
2475 free_hash:
2476 	btrfs_hash_exit();
2477 	return err;
2478 }
2479 
2480 static void __exit exit_btrfs_fs(void)
2481 {
2482 	btrfs_destroy_cachep();
2483 	btrfs_delayed_ref_exit();
2484 	btrfs_auto_defrag_exit();
2485 	btrfs_delayed_inode_exit();
2486 	btrfs_prelim_ref_exit();
2487 	ordered_data_exit();
2488 	extent_map_exit();
2489 	extent_io_exit();
2490 	btrfs_interface_exit();
2491 	btrfs_end_io_wq_exit();
2492 	unregister_filesystem(&btrfs_fs_type);
2493 	btrfs_exit_sysfs();
2494 	btrfs_cleanup_fs_uuids();
2495 	btrfs_exit_compress();
2496 	btrfs_hash_exit();
2497 }
2498 
2499 late_initcall(init_btrfs_fs);
2500 module_exit(exit_btrfs_fs)
2501 
2502 MODULE_LICENSE("GPL");
2503