xref: /linux/fs/btrfs/subpage.c (revision 0e862838f290147ea9c16db852d8d494b552d38d)
1  // SPDX-License-Identifier: GPL-2.0
2  
3  #include <linux/slab.h>
4  #include "ctree.h"
5  #include "subpage.h"
6  #include "btrfs_inode.h"
7  
8  /*
9   * Subpage (sectorsize < PAGE_SIZE) support overview:
10   *
11   * Limitations:
12   *
13   * - Only support 64K page size for now
14   *   This is to make metadata handling easier, as 64K page would ensure
15   *   all nodesize would fit inside one page, thus we don't need to handle
16   *   cases where a tree block crosses several pages.
17   *
18   * - Only metadata read-write for now
19   *   The data read-write part is in development.
20   *
21   * - Metadata can't cross 64K page boundary
22   *   btrfs-progs and kernel have done that for a while, thus only ancient
23   *   filesystems could have such problem.  For such case, do a graceful
24   *   rejection.
25   *
26   * Special behavior:
27   *
28   * - Metadata
29   *   Metadata read is fully supported.
30   *   Meaning when reading one tree block will only trigger the read for the
31   *   needed range, other unrelated range in the same page will not be touched.
32   *
33   *   Metadata write support is partial.
34   *   The writeback is still for the full page, but we will only submit
35   *   the dirty extent buffers in the page.
36   *
37   *   This means, if we have a metadata page like this:
38   *
39   *   Page offset
40   *   0         16K         32K         48K        64K
41   *   |/////////|           |///////////|
42   *        \- Tree block A        \- Tree block B
43   *
44   *   Even if we just want to writeback tree block A, we will also writeback
45   *   tree block B if it's also dirty.
46   *
47   *   This may cause extra metadata writeback which results more COW.
48   *
49   * Implementation:
50   *
51   * - Common
52   *   Both metadata and data will use a new structure, btrfs_subpage, to
53   *   record the status of each sector inside a page.  This provides the extra
54   *   granularity needed.
55   *
56   * - Metadata
57   *   Since we have multiple tree blocks inside one page, we can't rely on page
58   *   locking anymore, or we will have greatly reduced concurrency or even
59   *   deadlocks (hold one tree lock while trying to lock another tree lock in
60   *   the same page).
61   *
62   *   Thus for metadata locking, subpage support relies on io_tree locking only.
63   *   This means a slightly higher tree locking latency.
64   */
65  
66  bool btrfs_is_subpage(const struct btrfs_fs_info *fs_info, struct page *page)
67  {
68  	if (fs_info->sectorsize >= PAGE_SIZE)
69  		return false;
70  
71  	/*
72  	 * Only data pages (either through DIO or compression) can have no
73  	 * mapping. And if page->mapping->host is data inode, it's subpage.
74  	 * As we have ruled our sectorsize >= PAGE_SIZE case already.
75  	 */
76  	if (!page->mapping || !page->mapping->host ||
77  	    is_data_inode(page->mapping->host))
78  		return true;
79  
80  	/*
81  	 * Now the only remaining case is metadata, which we only go subpage
82  	 * routine if nodesize < PAGE_SIZE.
83  	 */
84  	if (fs_info->nodesize < PAGE_SIZE)
85  		return true;
86  	return false;
87  }
88  
89  void btrfs_init_subpage_info(struct btrfs_subpage_info *subpage_info, u32 sectorsize)
90  {
91  	unsigned int cur = 0;
92  	unsigned int nr_bits;
93  
94  	ASSERT(IS_ALIGNED(PAGE_SIZE, sectorsize));
95  
96  	nr_bits = PAGE_SIZE / sectorsize;
97  	subpage_info->bitmap_nr_bits = nr_bits;
98  
99  	subpage_info->uptodate_offset = cur;
100  	cur += nr_bits;
101  
102  	subpage_info->error_offset = cur;
103  	cur += nr_bits;
104  
105  	subpage_info->dirty_offset = cur;
106  	cur += nr_bits;
107  
108  	subpage_info->writeback_offset = cur;
109  	cur += nr_bits;
110  
111  	subpage_info->ordered_offset = cur;
112  	cur += nr_bits;
113  
114  	subpage_info->checked_offset = cur;
115  	cur += nr_bits;
116  
117  	subpage_info->total_nr_bits = cur;
118  }
119  
120  int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
121  			 struct page *page, enum btrfs_subpage_type type)
122  {
123  	struct btrfs_subpage *subpage;
124  
125  	/*
126  	 * We have cases like a dummy extent buffer page, which is not mappped
127  	 * and doesn't need to be locked.
128  	 */
129  	if (page->mapping)
130  		ASSERT(PageLocked(page));
131  
132  	/* Either not subpage, or the page already has private attached */
133  	if (!btrfs_is_subpage(fs_info, page) || PagePrivate(page))
134  		return 0;
135  
136  	subpage = btrfs_alloc_subpage(fs_info, type);
137  	if (IS_ERR(subpage))
138  		return  PTR_ERR(subpage);
139  
140  	attach_page_private(page, subpage);
141  	return 0;
142  }
143  
144  void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
145  			  struct page *page)
146  {
147  	struct btrfs_subpage *subpage;
148  
149  	/* Either not subpage, or already detached */
150  	if (!btrfs_is_subpage(fs_info, page) || !PagePrivate(page))
151  		return;
152  
153  	subpage = detach_page_private(page);
154  	ASSERT(subpage);
155  	btrfs_free_subpage(subpage);
156  }
157  
158  struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
159  					  enum btrfs_subpage_type type)
160  {
161  	struct btrfs_subpage *ret;
162  	unsigned int real_size;
163  
164  	ASSERT(fs_info->sectorsize < PAGE_SIZE);
165  
166  	real_size = struct_size(ret, bitmaps,
167  			BITS_TO_LONGS(fs_info->subpage_info->total_nr_bits));
168  	ret = kzalloc(real_size, GFP_NOFS);
169  	if (!ret)
170  		return ERR_PTR(-ENOMEM);
171  
172  	spin_lock_init(&ret->lock);
173  	if (type == BTRFS_SUBPAGE_METADATA) {
174  		atomic_set(&ret->eb_refs, 0);
175  	} else {
176  		atomic_set(&ret->readers, 0);
177  		atomic_set(&ret->writers, 0);
178  	}
179  	return ret;
180  }
181  
182  void btrfs_free_subpage(struct btrfs_subpage *subpage)
183  {
184  	kfree(subpage);
185  }
186  
187  /*
188   * Increase the eb_refs of current subpage.
189   *
190   * This is important for eb allocation, to prevent race with last eb freeing
191   * of the same page.
192   * With the eb_refs increased before the eb inserted into radix tree,
193   * detach_extent_buffer_page() won't detach the page private while we're still
194   * allocating the extent buffer.
195   */
196  void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
197  			    struct page *page)
198  {
199  	struct btrfs_subpage *subpage;
200  
201  	if (!btrfs_is_subpage(fs_info, page))
202  		return;
203  
204  	ASSERT(PagePrivate(page) && page->mapping);
205  	lockdep_assert_held(&page->mapping->private_lock);
206  
207  	subpage = (struct btrfs_subpage *)page->private;
208  	atomic_inc(&subpage->eb_refs);
209  }
210  
211  void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
212  			    struct page *page)
213  {
214  	struct btrfs_subpage *subpage;
215  
216  	if (!btrfs_is_subpage(fs_info, page))
217  		return;
218  
219  	ASSERT(PagePrivate(page) && page->mapping);
220  	lockdep_assert_held(&page->mapping->private_lock);
221  
222  	subpage = (struct btrfs_subpage *)page->private;
223  	ASSERT(atomic_read(&subpage->eb_refs));
224  	atomic_dec(&subpage->eb_refs);
225  }
226  
227  static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
228  		struct page *page, u64 start, u32 len)
229  {
230  	/* Basic checks */
231  	ASSERT(PagePrivate(page) && page->private);
232  	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
233  	       IS_ALIGNED(len, fs_info->sectorsize));
234  	/*
235  	 * The range check only works for mapped page, we can still have
236  	 * unmapped page like dummy extent buffer pages.
237  	 */
238  	if (page->mapping)
239  		ASSERT(page_offset(page) <= start &&
240  		       start + len <= page_offset(page) + PAGE_SIZE);
241  }
242  
243  void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
244  		struct page *page, u64 start, u32 len)
245  {
246  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
247  	const int nbits = len >> fs_info->sectorsize_bits;
248  
249  	btrfs_subpage_assert(fs_info, page, start, len);
250  
251  	atomic_add(nbits, &subpage->readers);
252  }
253  
254  void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
255  		struct page *page, u64 start, u32 len)
256  {
257  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
258  	const int nbits = len >> fs_info->sectorsize_bits;
259  	bool is_data;
260  	bool last;
261  
262  	btrfs_subpage_assert(fs_info, page, start, len);
263  	is_data = is_data_inode(page->mapping->host);
264  	ASSERT(atomic_read(&subpage->readers) >= nbits);
265  	last = atomic_sub_and_test(nbits, &subpage->readers);
266  
267  	/*
268  	 * For data we need to unlock the page if the last read has finished.
269  	 *
270  	 * And please don't replace @last with atomic_sub_and_test() call
271  	 * inside if () condition.
272  	 * As we want the atomic_sub_and_test() to be always executed.
273  	 */
274  	if (is_data && last)
275  		unlock_page(page);
276  }
277  
278  static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
279  {
280  	u64 orig_start = *start;
281  	u32 orig_len = *len;
282  
283  	*start = max_t(u64, page_offset(page), orig_start);
284  	/*
285  	 * For certain call sites like btrfs_drop_pages(), we may have pages
286  	 * beyond the target range. In that case, just set @len to 0, subpage
287  	 * helpers can handle @len == 0 without any problem.
288  	 */
289  	if (page_offset(page) >= orig_start + orig_len)
290  		*len = 0;
291  	else
292  		*len = min_t(u64, page_offset(page) + PAGE_SIZE,
293  			     orig_start + orig_len) - *start;
294  }
295  
296  void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
297  		struct page *page, u64 start, u32 len)
298  {
299  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
300  	const int nbits = (len >> fs_info->sectorsize_bits);
301  	int ret;
302  
303  	btrfs_subpage_assert(fs_info, page, start, len);
304  
305  	ASSERT(atomic_read(&subpage->readers) == 0);
306  	ret = atomic_add_return(nbits, &subpage->writers);
307  	ASSERT(ret == nbits);
308  }
309  
310  bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
311  		struct page *page, u64 start, u32 len)
312  {
313  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
314  	const int nbits = (len >> fs_info->sectorsize_bits);
315  
316  	btrfs_subpage_assert(fs_info, page, start, len);
317  
318  	/*
319  	 * We have call sites passing @lock_page into
320  	 * extent_clear_unlock_delalloc() for compression path.
321  	 *
322  	 * This @locked_page is locked by plain lock_page(), thus its
323  	 * subpage::writers is 0.  Handle them in a special way.
324  	 */
325  	if (atomic_read(&subpage->writers) == 0)
326  		return true;
327  
328  	ASSERT(atomic_read(&subpage->writers) >= nbits);
329  	return atomic_sub_and_test(nbits, &subpage->writers);
330  }
331  
332  /*
333   * Lock a page for delalloc page writeback.
334   *
335   * Return -EAGAIN if the page is not properly initialized.
336   * Return 0 with the page locked, and writer counter updated.
337   *
338   * Even with 0 returned, the page still need extra check to make sure
339   * it's really the correct page, as the caller is using
340   * find_get_pages_contig(), which can race with page invalidating.
341   */
342  int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
343  		struct page *page, u64 start, u32 len)
344  {
345  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {
346  		lock_page(page);
347  		return 0;
348  	}
349  	lock_page(page);
350  	if (!PagePrivate(page) || !page->private) {
351  		unlock_page(page);
352  		return -EAGAIN;
353  	}
354  	btrfs_subpage_clamp_range(page, &start, &len);
355  	btrfs_subpage_start_writer(fs_info, page, start, len);
356  	return 0;
357  }
358  
359  void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
360  		struct page *page, u64 start, u32 len)
361  {
362  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))
363  		return unlock_page(page);
364  	btrfs_subpage_clamp_range(page, &start, &len);
365  	if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
366  		unlock_page(page);
367  }
368  
369  static bool bitmap_test_range_all_set(unsigned long *addr, unsigned int start,
370  				      unsigned int nbits)
371  {
372  	unsigned int found_zero;
373  
374  	found_zero = find_next_zero_bit(addr, start + nbits, start);
375  	if (found_zero == start + nbits)
376  		return true;
377  	return false;
378  }
379  
380  static bool bitmap_test_range_all_zero(unsigned long *addr, unsigned int start,
381  				       unsigned int nbits)
382  {
383  	unsigned int found_set;
384  
385  	found_set = find_next_bit(addr, start + nbits, start);
386  	if (found_set == start + nbits)
387  		return true;
388  	return false;
389  }
390  
391  #define subpage_calc_start_bit(fs_info, page, name, start, len)		\
392  ({									\
393  	unsigned int start_bit;						\
394  									\
395  	btrfs_subpage_assert(fs_info, page, start, len);		\
396  	start_bit = offset_in_page(start) >> fs_info->sectorsize_bits;	\
397  	start_bit += fs_info->subpage_info->name##_offset;		\
398  	start_bit;							\
399  })
400  
401  #define subpage_test_bitmap_all_set(fs_info, subpage, name)		\
402  	bitmap_test_range_all_set(subpage->bitmaps,			\
403  			fs_info->subpage_info->name##_offset,		\
404  			fs_info->subpage_info->bitmap_nr_bits)
405  
406  #define subpage_test_bitmap_all_zero(fs_info, subpage, name)		\
407  	bitmap_test_range_all_zero(subpage->bitmaps,			\
408  			fs_info->subpage_info->name##_offset,		\
409  			fs_info->subpage_info->bitmap_nr_bits)
410  
411  void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
412  		struct page *page, u64 start, u32 len)
413  {
414  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
415  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
416  							uptodate, start, len);
417  	unsigned long flags;
418  
419  	spin_lock_irqsave(&subpage->lock, flags);
420  	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
421  	if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate))
422  		SetPageUptodate(page);
423  	spin_unlock_irqrestore(&subpage->lock, flags);
424  }
425  
426  void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
427  		struct page *page, u64 start, u32 len)
428  {
429  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
430  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
431  							uptodate, start, len);
432  	unsigned long flags;
433  
434  	spin_lock_irqsave(&subpage->lock, flags);
435  	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
436  	ClearPageUptodate(page);
437  	spin_unlock_irqrestore(&subpage->lock, flags);
438  }
439  
440  void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
441  		struct page *page, u64 start, u32 len)
442  {
443  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
444  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
445  							error, start, len);
446  	unsigned long flags;
447  
448  	spin_lock_irqsave(&subpage->lock, flags);
449  	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
450  	SetPageError(page);
451  	spin_unlock_irqrestore(&subpage->lock, flags);
452  }
453  
454  void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
455  		struct page *page, u64 start, u32 len)
456  {
457  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
458  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
459  							error, start, len);
460  	unsigned long flags;
461  
462  	spin_lock_irqsave(&subpage->lock, flags);
463  	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
464  	if (subpage_test_bitmap_all_zero(fs_info, subpage, error))
465  		ClearPageError(page);
466  	spin_unlock_irqrestore(&subpage->lock, flags);
467  }
468  
469  void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
470  		struct page *page, u64 start, u32 len)
471  {
472  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
473  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
474  							dirty, start, len);
475  	unsigned long flags;
476  
477  	spin_lock_irqsave(&subpage->lock, flags);
478  	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
479  	spin_unlock_irqrestore(&subpage->lock, flags);
480  	set_page_dirty(page);
481  }
482  
483  /*
484   * Extra clear_and_test function for subpage dirty bitmap.
485   *
486   * Return true if we're the last bits in the dirty_bitmap and clear the
487   * dirty_bitmap.
488   * Return false otherwise.
489   *
490   * NOTE: Callers should manually clear page dirty for true case, as we have
491   * extra handling for tree blocks.
492   */
493  bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
494  		struct page *page, u64 start, u32 len)
495  {
496  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
497  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
498  							dirty, start, len);
499  	unsigned long flags;
500  	bool last = false;
501  
502  	spin_lock_irqsave(&subpage->lock, flags);
503  	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
504  	if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty))
505  		last = true;
506  	spin_unlock_irqrestore(&subpage->lock, flags);
507  	return last;
508  }
509  
510  void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
511  		struct page *page, u64 start, u32 len)
512  {
513  	bool last;
514  
515  	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
516  	if (last)
517  		clear_page_dirty_for_io(page);
518  }
519  
520  void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
521  		struct page *page, u64 start, u32 len)
522  {
523  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
524  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
525  							writeback, start, len);
526  	unsigned long flags;
527  
528  	spin_lock_irqsave(&subpage->lock, flags);
529  	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
530  	set_page_writeback(page);
531  	spin_unlock_irqrestore(&subpage->lock, flags);
532  }
533  
534  void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
535  		struct page *page, u64 start, u32 len)
536  {
537  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
538  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
539  							writeback, start, len);
540  	unsigned long flags;
541  
542  	spin_lock_irqsave(&subpage->lock, flags);
543  	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
544  	if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) {
545  		ASSERT(PageWriteback(page));
546  		end_page_writeback(page);
547  	}
548  	spin_unlock_irqrestore(&subpage->lock, flags);
549  }
550  
551  void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
552  		struct page *page, u64 start, u32 len)
553  {
554  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
555  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
556  							ordered, start, len);
557  	unsigned long flags;
558  
559  	spin_lock_irqsave(&subpage->lock, flags);
560  	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
561  	SetPageOrdered(page);
562  	spin_unlock_irqrestore(&subpage->lock, flags);
563  }
564  
565  void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
566  		struct page *page, u64 start, u32 len)
567  {
568  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
569  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
570  							ordered, start, len);
571  	unsigned long flags;
572  
573  	spin_lock_irqsave(&subpage->lock, flags);
574  	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
575  	if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered))
576  		ClearPageOrdered(page);
577  	spin_unlock_irqrestore(&subpage->lock, flags);
578  }
579  
580  void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info,
581  			       struct page *page, u64 start, u32 len)
582  {
583  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
584  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
585  							checked, start, len);
586  	unsigned long flags;
587  
588  	spin_lock_irqsave(&subpage->lock, flags);
589  	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
590  	if (subpage_test_bitmap_all_set(fs_info, subpage, checked))
591  		SetPageChecked(page);
592  	spin_unlock_irqrestore(&subpage->lock, flags);
593  }
594  
595  void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info,
596  				 struct page *page, u64 start, u32 len)
597  {
598  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
599  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
600  							checked, start, len);
601  	unsigned long flags;
602  
603  	spin_lock_irqsave(&subpage->lock, flags);
604  	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
605  	ClearPageChecked(page);
606  	spin_unlock_irqrestore(&subpage->lock, flags);
607  }
608  
609  /*
610   * Unlike set/clear which is dependent on each page status, for test all bits
611   * are tested in the same way.
612   */
613  #define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name)				\
614  bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info,	\
615  		struct page *page, u64 start, u32 len)			\
616  {									\
617  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
618  	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,	\
619  						name, start, len);	\
620  	unsigned long flags;						\
621  	bool ret;							\
622  									\
623  	spin_lock_irqsave(&subpage->lock, flags);			\
624  	ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit,	\
625  				len >> fs_info->sectorsize_bits);	\
626  	spin_unlock_irqrestore(&subpage->lock, flags);			\
627  	return ret;							\
628  }
629  IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
630  IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
631  IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
632  IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
633  IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
634  IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked);
635  
636  /*
637   * Note that, in selftests (extent-io-tests), we can have empty fs_info passed
638   * in.  We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
639   * back to regular sectorsize branch.
640   */
641  #define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func,	\
642  			       test_page_func)				\
643  void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info,		\
644  		struct page *page, u64 start, u32 len)			\
645  {									\
646  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
647  		set_page_func(page);					\
648  		return;							\
649  	}								\
650  	btrfs_subpage_set_##name(fs_info, page, start, len);		\
651  }									\
652  void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info,	\
653  		struct page *page, u64 start, u32 len)			\
654  {									\
655  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
656  		clear_page_func(page);					\
657  		return;							\
658  	}								\
659  	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
660  }									\
661  bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info,	\
662  		struct page *page, u64 start, u32 len)			\
663  {									\
664  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
665  		return test_page_func(page);				\
666  	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
667  }									\
668  void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info,	\
669  		struct page *page, u64 start, u32 len)			\
670  {									\
671  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
672  		set_page_func(page);					\
673  		return;							\
674  	}								\
675  	btrfs_subpage_clamp_range(page, &start, &len);			\
676  	btrfs_subpage_set_##name(fs_info, page, start, len);		\
677  }									\
678  void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
679  		struct page *page, u64 start, u32 len)			\
680  {									\
681  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
682  		clear_page_func(page);					\
683  		return;							\
684  	}								\
685  	btrfs_subpage_clamp_range(page, &start, &len);			\
686  	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
687  }									\
688  bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info,	\
689  		struct page *page, u64 start, u32 len)			\
690  {									\
691  	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
692  		return test_page_func(page);				\
693  	btrfs_subpage_clamp_range(page, &start, &len);			\
694  	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
695  }
696  IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
697  			 PageUptodate);
698  IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
699  IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
700  			 PageDirty);
701  IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
702  			 PageWriteback);
703  IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
704  			 PageOrdered);
705  IMPLEMENT_BTRFS_PAGE_OPS(checked, SetPageChecked, ClearPageChecked, PageChecked);
706  
707  /*
708   * Make sure not only the page dirty bit is cleared, but also subpage dirty bit
709   * is cleared.
710   */
711  void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
712  				 struct page *page)
713  {
714  	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
715  
716  	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
717  		return;
718  
719  	ASSERT(!PageDirty(page));
720  	if (!btrfs_is_subpage(fs_info, page))
721  		return;
722  
723  	ASSERT(PagePrivate(page) && page->private);
724  	ASSERT(subpage_test_bitmap_all_zero(fs_info, subpage, dirty));
725  }
726  
727  /*
728   * Handle different locked pages with different page sizes:
729   *
730   * - Page locked by plain lock_page()
731   *   It should not have any subpage::writers count.
732   *   Can be unlocked by unlock_page().
733   *   This is the most common locked page for __extent_writepage() called
734   *   inside extent_write_cache_pages() or extent_write_full_page().
735   *   Rarer cases include the @locked_page from extent_write_locked_range().
736   *
737   * - Page locked by lock_delalloc_pages()
738   *   There is only one caller, all pages except @locked_page for
739   *   extent_write_locked_range().
740   *   In this case, we have to call subpage helper to handle the case.
741   */
742  void btrfs_page_unlock_writer(struct btrfs_fs_info *fs_info, struct page *page,
743  			      u64 start, u32 len)
744  {
745  	struct btrfs_subpage *subpage;
746  
747  	ASSERT(PageLocked(page));
748  	/* For non-subpage case, we just unlock the page */
749  	if (!btrfs_is_subpage(fs_info, page))
750  		return unlock_page(page);
751  
752  	ASSERT(PagePrivate(page) && page->private);
753  	subpage = (struct btrfs_subpage *)page->private;
754  
755  	/*
756  	 * For subpage case, there are two types of locked page.  With or
757  	 * without writers number.
758  	 *
759  	 * Since we own the page lock, no one else could touch subpage::writers
760  	 * and we are safe to do several atomic operations without spinlock.
761  	 */
762  	if (atomic_read(&subpage->writers) == 0)
763  		/* No writers, locked by plain lock_page() */
764  		return unlock_page(page);
765  
766  	/* Have writers, use proper subpage helper to end it */
767  	btrfs_page_end_writer_lock(fs_info, page, start, len);
768  }
769